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Abstract—This paper presents a cooperative coevolutive ap-
proach for designing neural network ensembles. Cooperative
coevolution is a recent paradigm in evolutionary computation
that allows the effective modeling of cooperative environments.
Although theoretically, a single neural network with a sufficient
number of neurons in the hidden layer would suffice to solve
any problem, in practice many real-world problems are too hard
to construct the appropriate network that solve them. In such
problems, neural network ensembles are a successful alternative.

Nevertheless, the design of neural network ensembles is a com-
plex task. In this paper, we propose a general framework for de-
signing neural network ensembles by means of cooperative coevo-
lution. The proposed model has two main objectives: first, the im-
provement of the combination of the trained individual networks;
second, the cooperative evolution of such networks, encouraging
collaboration among them, instead of a separate training of each
network. In order to favor the cooperation of the networks, each
network is evaluated throughout the evolutionary process using a
multiobjective method. For each network, different objectives are
defined, considering not only its performance in the given problem,
but also its cooperation with the rest of the networks.

In addition, a population of ensembles is evolved, improving
the combination of networks and obtaining subsets of networks to
form ensembles that perform better than the combination of all
the evolved networks.

The proposed model is applied to ten real-world classification
problems of a very different nature from the UCI machine learning
repository and proben1 benchmark set. In all of them the perfor-
mance of the model is better than the performance of standard en-
sembles in terms of generalization error. Moreover, the size of the
obtained ensembles is also smaller.

Index Terms—Classification, cooperative coevolution, multi-
objective optimization, neural network ensembles.

I. INTRODUCTION

NEURAL network ensembles [1] are receiving increasing
attention in recent neural network research, due to their

interesting features. They are a powerful tool especially when
facing complex problems. Network ensembles are usually made
up of a linear combination of several networks that have been
trained using the same data, although the actual sample used
by each network to learn can be different. Each network within
the ensemble has a potentially different weight in the output of
the ensemble. Several works have shown [1] that the network
ensemble has a generalization error generally smaller than that
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obtained with a single network and also that the variance of the
ensemble is lesser than the variance of a single network. The
output of a typical ensemble [2] with constituent networks
when an input pattern is presented is

(1)

where is the output of network and is the weight associ-
ated to that network. If the networks have more than one output,
a different weight is usually assigned to each output. The ensem-
bles of neural networks have some of the advantages of large
networks without their problems of long training time and risk
of overfitting. For more detailed descriptions of ensembles the
reader is referred to [3]–[7].

Although there is no clear distinction between the different
kinds of multinet networks [2], [8]–[10], we follow the distinc-
tion of [11]. In an ensemble several redundant approximations
to the same function are combined by some method, and in a
modular system the task is decomposed into a number of sim-
pler components. Nevertheless, our approach incorporates an
implicit decomposition that is provided by the use of cooper-
ative coevolution [12]–[14].

This combination of several networks that cooperate in
solving a given task has other important advantages such as
[11], [15] the following.

• They can perform more complex tasks than any of their
subcomponents [16].

• They can make an overall system easier to understand and
modify.

• They are more robust than a single network.
In most cases, neural networks in an ensemble are designed

independently or sequentially, so the advantages of interaction
and cooperation among the individual networks are not ex-
ploited. Earlier works separate the design and learning process
of the individual networks from the combination of the trained
networks. In this work, we propose a framework for designing
ensembles, where the training and combination of the indi-
vidual networks are carried out together, in order to get more
cooperative networks and more effective combinations of them.

The new framework presented in this work for designing and
evolving neural network ensembles uses and benefits from two
different paradigms: cooperative coevolution and multiobjective
optimization. The design of neural network ensembles implies
making many decisions that have a major impact on the perfor-
mance of the ensembles. The most important decisions that we
must face when designing an ensemble are the following.
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• The method for designing and training the individual

networks.

• The method of combining the individual networks, and

the mechanism for obtaining individual weights for each

network if such is the case.

• The measures of performance of the individual networks.

• The methods for encouraging diversity among the mem-

bers of the ensembles and how to measure such diversity.

• The method of selection of patterns that are used by each

network to learn.

• Whether to include regularization terms and their form.

Techniques using multiple models usually consist of two in-

dependent phases: model generation and model combination

[6]. The disadvantage of this approach is that the combination

is not considered during the generation of the models. With this

approach the possible interactions among the trained networks

cannot be exploited until the combination stage [15], and the

benefits that can be obtained from this interactions during the

learning stage are lost.

However, several researchers [17], [18] have recently shown

that some information about cooperation is useful for obtaining

better ensembles. This new approach opens a wide field where

the design and training of the different networks must be

interdependent.

In this paper, we present a new model for cooperatively

evolving the individual networks and their combinations. We

have three main aims in the design of our model.

1) Improving the combination of networks. Some recent

works have shown [17], [19] that the combination of a

subset of all the trained networks can be better than the

combination of all the networks.

2) Improving the introduction of correction terms for dis-

couraging correlation, reducing mutual information, or

similar ideas, as has been suggested by several authors.

3) Improving the diversity among the networks of the

ensemble.

The simultaneous evolution of all the networks has been

shown to be useful in some recent papers. The most common

approach is the modification of the error term in the back-prop-

agation algorithm to take into account the correlation of the

networks of the ensemble, e.g., [15] and [20]–[22]. Liu et al.

[18] evolved the population of networks minimizing the mutual

information [23] among the individual networks. Liu and Yao

[21] modified the standard back-propagation algorithm adding

a correction term that forces the networks to be negatively

correlated. Nevertheless, these works are centered only on

obtaining more diverse networks in the ensemble, and some

recent results have shown that it is not clear that the use of a

diversity term had a beneficial effect on the ensemble [24]. So,

we have opted for considering diversity as one among many

other interesting objectives.

Opitz and Shavlik [25] developed a model closer to cooper-

ative coevolution. They evolved a population of networks by

means of a genetic algorithm and combined the networks in

an ensemble with a linear combination. Competition among

the networks is encouraged with a diversity term added to the

fitness of each network. More recently, Zhou et al. analyzed the

relationship between the ensemble and its component neural

networks [17]. This study revealed that it may be better to

ensemble a subset of the neural networks instead of all of them.

In order to select this subset of possibly better performing

networks, they applied a genetic algorithm that evolved the

weight of each network in the ensemble. Their results support

our approach of evolving a population of ensembles, each

one being a combination of some of the evolved networks. A

recent work by Bakker and Heskes [19] corroborates the results

of Zhou et al.

Moreover, the selection and training of the individual clas-

sifiers is thought to be an issue as critical as the combination

method [26], [27]. Zhou et al. [17] have shown that a combina-

tion of some of the networks may be better than a combination

of all the networks, and that a genetic algorithm [28] can be used

for obtaining that subset of networks.

We propose a model that makes use of these ideas by means

of the cooperative evolution of the networks that form the en-

semble. Our model relies on two central ideas: the coevolution

of different subpopulations of diverse networks and the evolu-

tion of the best combinations of these networks. Cooperative

coevolution [12], [29] is a recent paradigm in the field of evolu-

tionary computation that has shown a natural tendency to evolve

diverse populations.

Our cooperative model is focused on improving the following

two aspects of the design and training of an ensemble: the evolu-

tion of more cooperative networks and the combination of such

networks. The use of cooperative coevolution allows us to ob-

tain more diverse networks without introducing diversity terms

that can bias the learning process and the improvement of the

collaborative features of the networks. Cooperative coevolution

also offers a framework for the combination of networks that

has been proved useful in other models of neural networks, e.g.,

modular neural networks [30].

The second basic idea of our model is the introduction of mul-

tiobjective optimization in the evaluation of the fitness of the

networks. The performance of the network is one of its most

important aspects, but not the only interesting one. The eval-

uation of different objectives for each network allows a more

accurate estimation of the goodness of a network. Additionally,

the definition of many objectives allows the inclusion of some

useful measures applied to other models, such as negative cor-

relation [21] or mutual information [18]. Multiobjective evalu-

ation of modular networks obtained good results in a previous

work [31].

The multiobjective approach improves the following features

of the design of the network ensembles.

• The measures of performance of the individual networks.

We can evaluate the performance of the networks from

different points of view.

• The methods for encouraging diversity among the mem-

bers of ensembles and how to measure such diversity.

We can estimate the diversity of networks with different

measures.

• Whether to include regularization terms and their form.

Instead of adding a regularization term [32] to the error

function that may seriously bias the learning process, we
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Fig. 1. Populations of ensembles and networks. Each element of the ensemble is a reference to an individual of the corresponding subpopulation of networks,
together with its associated weight.

can add an objective of regularization that will encourage

less complex networks without biasing the evolutionary

process.

The rest of the paper is organized as follows. Section II

describes the proposed model of cooperative ensembles.

Sections III and IV state all the aspects of network and en-

semble populations and their evolution. Section V explains

the multiobjective evaluation of the individuals. Section VI

describes the experimental setup and Section VII shows the

results of the application of our model to ten real-world prob-

lems. A comparison with standard ensemble methods is carried

out in Section VIII. Sections IX and X show a comprehensive

analysis of several aspects of the evolved ensembles. Finally,

Section XI states the conclusions of our work and the most

important lines for future research.

II. COOPERATIVE ENSEMBLE OF NEURAL NETWORKS

Evolutionary computation [28], [33] is a set of global opti-

mization techniques that have been widely used in the last few

years for training and automatically designing neural networks.

Some efforts have been made to design modular [34] neural net-

works with these techniques (e.g., [35]), but the design of net-

work ensembles by means of evolutionary computation has only

been focused on some of its aspects [21], [25], [36] and not on

the whole process.

Cooperative coevolution [37] is a recent paradigm in the

area of evolutionary computation, based on the evolution

of coadapted subcomponents without external interaction.

In cooperative coevolution a number of species are evolved

together. Cooperation among individuals is encouraged by

rewarding the individuals for their join effort to solve a target

problem. The work in this paradigm has shown that cooperative

coevolutionary models present many interesting features, such

as specialization through genetic isolation, generalization and

efficiency [29]. Cooperative coevolution approaches the design

of modular systems in a natural way, as the modularity is part

of the model. Other models need some a priori knowledge to

decompose the problem by hand. In many cases, either this

knowledge is not available or it is not clear how to decompose

the problem.

So, the cooperative coevolutionary model offers a very nat-

ural way for modeling the evolution of cooperative parts. This

is the case of neural network ensembles, where the accuracy of

the individual networks is not enough to assure a good perfor-

mance. Cooperation among individual networks is also needed

in order to improve the performance significantly.

Our cooperative model is based on two separate populations

that evolve cooperatively. A model sharing some of these basic

ideas has already been successfully applied to the evolution of

modular neural networks [31]. These two populations are the

following.

• Population of networks: This population consists of a

number of independent subpopulations of networks. The

independent evolution of subpopulations is an effective

way of keeping the networks of different populations

diverse. The absence of genetic material exchange among

subpopulations also tends to produce more diverse net-

works whose combination is more effective. Every sub-

population is evolved using evolutionary programming.
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Fig. 2. Model of a GMLP.

• Population of ensembles: Each member of the population

of ensembles is an ensemble formed by a network from

every network subpopulation. Each network has an asso-

ciated weight.

The population of ensembles keeps track of the best

combinations of networks, selecting the subsets of net-

works that are promising for the final ensemble.

The two populations evolve cooperatively. Each generation of

the whole system consists of a generation of the network popu-

lation followed by a generation of the ensemble population. The

relationship between the two populations can be seen in Fig. 1.

The second basis of our model is the use of multiobjective

optimization in the evaluation of the fitness of the individual

networks. We have quoted previous works that agree that the

learning process of the networks must take into account the co-

operation among the networks for obtaining better ensembles.

Implicit cooperation among the subpopulations in cooperative

coevolution helps this learning process, but it is necessary to en-

force cooperation to assure good results. The evaluation of sev-

eral objectives for each network allows the model to encourage

such cooperation, rewarding the networks not only for their per-

formance in solving the given problem, but also for other as-

pects, such as whether they are different from other networks,

whether they are useful in the ensembles or anything else con-

sidered relevant by the designer.

Additionally, every network is subject to back-propagation

training throughout its evolution with a certain probability. In

this way, the network is allowed to learn from the training set,

but it is also prevented from being too similar to the rest of the

networks by means of its evaluation using different objectives.

The back-propagation algorithm is implemented as a mutation

operator.

As we stated in Section I, many decisions must be made in

order to design an ensemble of neural networks. In the next sec-

tions, we explain in depth all the aspects of our model and the

decisions made, following the ideas we have already introduced.

III. NETWORK POPULATION

Our basic network is a generalized multilayer perceptron

(GMLP), as defined in [38]. It consists of an input layer, an

output layer, and a number of hidden nodes interconnected

among them.

Given a GMLP with inputs, hidden nodes, and out-

puts, and and being the input and output vectors, respec-

tively, it is defined by the equations [38]

(2)

where is the weight of the connection from node to node .

The representation of a GMLP can be seen in Fig. 2. We see that

the th node, provided it is not an input node, has connections

from every th node .

The main advantage of using a GMLP is the parsimony of

the evolved networks. Its structure allows the definition of very

complex surfaces with fewer nodes than in a standard multilayer

perceptron with one or two hidden layers.

The network population is formed by subpopulations.

Each subpopulation consists of a fixed number of networks cod-

ified directly as shown in Fig. 2. These networks are not fully

connected. When a network is initialized, each connection is
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created with a given probability. The population is subject to op-

erations of replication and mutation. Crossover is not used due

to potential disadvantages [39] that it has for evolving neural

networks. With these features the algorithm falls in the class of

evolutionary programming [40].

A. Evolution of Networks

The algorithm for the evolution of the subpopulations of net-

works is similar to other models proposed in the literature, such

as GNARL [39] or EPNet [35]. The steps for generating the new

subpopulations are the following.

• Networks of the initial subpopulation are created ran-

domly. The number of nodes of the network is obtained

from a uniform distribution . Each node

is created with a number of connections taken from a

uniform distribution .

• The new subpopulation is generated replicating the best

of the previous subpopulation. The remaining

is removed and replaced by mutated copies of net-

works selected by roulette selection from the best

individuals.

• There are two types of mutation: parametric and struc-

tural. The severity of structural mutation is determined by

the relative fitness, , of the network. Given a network

, its relative fitness is defined as

(3)

where is the fitness value of network , and is a

parameter that must be chosen by the expert. In our ex-

periments .

Parametric mutation consists of the modification of the

weights of the network without modifying its topology. Many

parametric mutation operators have been suggested in the

specific literature: random modification of the weights [12],

simulated annealing [35], and back-propagation [35], among

others. In this paper, we use the back-propagation algorithm

[38] as mutation operator. This algorithm is performed for a

few iterations with a low value of the learning coefficient

(in our experiments ). Parametric mutation is always

carried out after structural mutation, as it does not modify the

structure of the network.

Structural mutation is more complex, because it implies a

modification of the structure of the network. The behavioral link

between parents and their offspring must be enforced to avoid

generational gaps that produce inconsistency in the evolution

[35], [39]. There are four different structural mutations.

• Addition of a node: The node is added with no connections

to enforce the behavioral link with its parent.

• Deletion of a node: A node is selected randomly and

deleted together with its connections.

• Addition of a connection: A connection is added, with

weight 0, to a randomly selected node. There are three

types of connections: from an input node, from another

hidden node and to an output node. The selection of the

type of connection to remove is made according to the

relative number of each type of nodes: input, output and

hidden. Otherwise, when there is a significant difference

TABLE I
PARAMETERS OF NETWORK STRUCTURAL MUTATIONS

COMMON TO ALL THE EXPERIMENTS

in the number of these three types, the number of connec-

tions of each type may end up highly biased.

• Deletion of a connection: A connection is selected, fol-

lowing the same criterion of the addition of connections,

and removed.

All of the above mutations can be made in a single mutation

operation over the network. For each mutation there is a min-

imum value and a maximum value . The number of

elements (nodes or connections) involved in the mutation is cal-

culated as follows:

(4)

So, before making a mutation, the number of elements is

calculated. If , the mutation is not actually carried out.

The values of network mutation parameters used in all of our

experiments are shown in Table I.

There is no migration among subpopulations. So, each sub-

population must develop different behaviors of their networks,

that is, different species of networks, in order to compete with

the other subpopulations for conquering its own niche and to

cooperate to form ensembles with high fitness values. This will

help the diversity among networks of different subpopulations.

For the initialization of the weights of the networks, we

used the method suggested by Le Cun, [2], [41]. The weights

are obtained from a uniform distribution within the interval

, where is the number of inputs to the

network.

The whole evolutionary process for network in a generation

is illustrated in Fig. 3(a). The figure shows the possible evolution

of a network during one generation of the evolutionary process.

IV. ENSEMBLE POPULATION

The ensemble population is formed by a fixed number of en-

sembles. Each ensemble is the combination of one network from

each subpopulation of networks with an associated weight. The

relationship between the two populations has been shown in

Fig. 1. It is important to note that, as the chromosome that rep-

resents the ensemble is ordered, the permutation problem [39],

that is so important in network evolution, cannot appear.

A. Evolution of Ensembles

The ensemble population is evolved using the steady-state ge-

netic algorithm [42], [43]. It has been proved that this model

shows higher variance [44] and is a more aggressive and selec-

tive selection strategy [45] than the standard genetic algorithm.
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Fig. 3. (a) Evolutionary process of a network and (b) an ensemble in a generation showing the possible steps of the process.

This algorithm is selected due to the fact that we need a pop-

ulation of ensembles that evolves more slowly than the popu-

lation of networks, as the changes in the population of ensem-

bles have a major impact on the fitness of the networks. The

steady-state genetic algorithm avoids the negative effect that this

drastic modification of the population of ensembles may have

over the subpopulations of networks. It has also been shown by

some works in the area [46], [47] that the steady-state genetic

algorithm produces better solutions than the standard genetic

algorithm.

Crossover is made at network level, using a standard two-

point crossover. So the parents exchange their networks to gen-

erate their offspring. Mutation is also carried out at network

level.1 When an ensemble is mutated, one of its networks is se-

lected and is substituted by another network of the same sub-

population selected by means of a roulette algorithm.

The whole evolutionary process for ensemble th in a gen-

eration is illustrated in Fig. 3(b). The figure shows the possible

evolution of an ensemble during one generation of the evolu-

tionary process.

1There is also a parametric mutation of the weights of the networks that is
explained in Section IV-B.

During the generation of the new network population, some

networks of every subpopulation are removed and substituted

by new ones. The removed networks are also substituted in the

ensembles. This substitution has two advantages: first, poor per-

forming networks are removed from the ensembles and substi-

tuted by potentially better ones; second, new networks have the

opportunity to participate in the ensembles immediately after

their creation.

B. Combination of Network Outputs

Basically, in a classification environment, there are three

methods for combining the outputs of the networks [6]: Ma-

jority voting, sum of the outputs of the networks, and winner

takes all.

The most commonly used methods for combining the net-

works are the majority voting and sum of the outputs of the net-

works, both of them with a weight vector that measures the con-

fidence in the prediction of each network. Each network is as-

signed a weight and the output of the ensemble is obtained

using

(5)
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where is the number of networks that make up the ensemble,

and is the output of network . The problem of obtaining

the weight vector is not trivial. Usually, the values of the

weights are constrained in order to help to pro-

duce estimators with lower prediction error [48], although justi-

fication of this constraint is just intuitive [49]. In this work, we

use the sum of the outputs of the network with a weight vector.

The “basic ensemble method (BEM),” as it is called in [1],

consists of weighting all the networks equally. So, having

networks, the output of the ensembles is

(6)

Perrone and Cooper [1] defined the generalized ensemble

method, which is equivalent to the mean square error – optimal

linear combination (MSE-OLC) without a constant term of

Hashem [50], where the values of are given by

(7)

where is the symmetric correlation matrix

, where defines the misfit of func-

tion , that is the deviation from the true solution ,

. Many other techniques have been

proposed in the last few years, such as, linear regression [48],

principal components analysis and least-square regression [51],

correspondence analysis [6], and the use of a validation set [25].

In this work, we use a genetic algorithm for obtaining the

weight of each component, and not only for selecting the most

interesting subsets of networks. This approach is similar to the

use of a gradient descent procedure [52], avoiding the problem

of being trapped in local minima. The use of a genetic algorithm

has an additional advantage over the optimal linear combination,

as the former is not affected by the collinearity problem [1], [50].

Our method considers each ensemble as a chromosome and

applies a standard genetic algorithm to optimize the weight of

each network. The weight of each network of the ensemble is

codified as a real number. The chromosome formed in this way

is subject to standard two-point crossover and mutation. Muta-

tion consists of a simulated annealing [53] algorithm.

C. Diversity

Diversity is one of the key aspects of network ensembles.

The error of an ensemble can be decomposed by analysis of the

ambiguity of the individual networks that make up the ensemble

[54].

Let us assume that we have an ensemble of networks, and

the output of network th on input is . Each network has

a weight that measures the confidence on such network. The

output of the ensemble is defined by

(8)

As we have stated in the description of standard ensembles,

see Section IV-B, the weights usually have the restriction of

being positive and sum to one.

The ambiguity of the network with respect to the ensemble

on input is defined by . The ensemble

ambiguity for input is given by

(9)

The most interesting aspect of the ambiguity is that the global

error of the ensemble can be expressed in function of the error

and ambiguity of each network that form the ensemble [54]

(10)

where , and , being the error in

the network, and the average ambiguity over the generaliza-

tion set. This equation shows that the error can be decreased by

improving the ambiguity of the individual networks, provided

that the individual error of the networks is not increased. This

can be explained as another form of bias/variance decomposi-

tion [55].

Thus, the objective of any method for developing network

ensembles must be obtaining accurate networks as diverse as

possible. In our model, diversity is assured by means of three

different mechanisms.

1) Coevolution of genetically isolated subpopulation of net-

works: As there is no exchange of genetic material among

the members of the different subpopulations, diversity

among the subpopulations is preserved.

2) Fitness-sharing in the evaluation of the networks: When

a network is evaluated, we use fitness-sharing for de-

creasing the fitness of the networks functionally close to

each other.

3) Objectives of diversity: Additionally, each network is

evaluated using one or more objectives of diversity.

Again, diverse networks are rewarded. The evaluation of

the ensembles also includes an objective rewarding the

ensembles formed by diverse networks.

D. Pattern Sampling

One of the aspects of neural network ensemble design that

has received a lot of attention in the literature is the topic of

training data set sampling. Sampling methods have shown to be

successful in improving the performance of different classifiers

in artificial and real-world data sets [56]–[58].

These algorithms can be divided into two types: algorithms

that adaptively change the distribution of the training set, based

on the performance of the previous classifiers, and algorithms

that do not adapt the distribution. Boosting methods are the most

representative methods of the first group. The most widely used

boosting methods are Ada-Boost [59] and Arcing-x4 [60]. All of

them are based on adaptively increasing the probability of sam-

pling the patterns that are not classified correctly by the previous

classifiers.

Bagging [57] is the most representative algorithm of the

second group. Bagging (after Bootstrap aggregating) just

generates different bootstrap samples from the training set.

As we are developing a cooperative model of evolution, the

methods that adaptively modify the probability of selecting a

pattern are not easily incorporated to the evolution. In our model
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each network of every population receives a different bootstrap

sample from the original training data set.

V. MULTIOBJECTIVE EVALUATION OF NETWORK

AND ENSEMBLE FITNESS

If we approach the problem of evaluation of the fitness of

networks and ensembles as a multiobjective optimization task,

we will benefit from many advantages. First, there is no need

to weight the different objectives, as would be the case using

an aggregating approach. Second, the solutions based on Pareto

optimality guarantee the diversity [61] of the final population.

Third, there is an underlying theory applicable to our problem.

In addition, it gives us a framework for adding as many objec-

tives as may be of interest.

The next two sections describe the objectives that have been

defined for networks and ensembles. These are only a subset of

all the objectives that may be interesting for a given task. One

of the advantages of our model is that it allows the introduction

of any useful objective without modifying the general structure

of the system.

A. Individual Networks Objectives

The objectives of the networks could be grouped into four

sets: objectives of performance, objectives of regularization, ob-

jectives of cooperation and objectives of diversity. We have three

objectives of performance, one objective of regularization, two

objectives of cooperation, and four objectives of diversity. These

objectives are the following.

1) Objectives of Performance: These objectives measure the

performance of the network from three different complementary

points of view. The objectives are the following.

• Performance: As we use bagging, this measure of perfor-

mance is the number of patterns correctly classified by the

network pondered by the weight of each pattern.

• Shared performance: This objective enforces the net-

works to classify different patterns [15]. In this way,

the networks that are able to accurately classify patterns

that are incorrectly classified by many ensembles are

rewarded. Each pattern receives a value that measures

the number of ensembles that correctly classify the pat-

tern, namely

(11)

where is the number of ensembles that classify the

pattern correctly, and is the number of ensembles. The

value assigned to a network for this objective is given by

(12)

where is 1 if pattern is correctly classified by the net-

work, and 0, otherwise, and is the number of patterns.

With this objective the networks that classify difficult

patterns are rewarded, even if the total number of patterns

correctly classified by the network is not high. This idea

is similar to the theoretical basis of boosting, as boosting

also encourages the learning of difficult patterns raising

their probability of being sampled.

• Ensembles: Average performance of the ensembles where

the network is present. In order to reward the best col-

laborating networks, this objective measures the average

performance of the ensembles where the network partic-

ipates. When a network does not participate in any en-

semble, the objective cannot be calculated. In such a case

the objective receives a value of 0.

2) Objectives of Regularization: In order to reward small

networks, many measures may be included as regularization

terms. These measures can be taken from network pruning [62],

or regularization theory [32], [63]. Most authors use the weight

decay term proposed in many papers [64], [65]

(13)

Other authors propose a cost function of the form [62]

(14)

nevertheless, both measures have a strong impact on the evolu-

tion of the network due to the heavy constraint that is imposed

on the weights. For that reason, we have used the following less

restrictive term.

• Regularization objective: This term is taken from [66].

The idea is to model the weights of the network using a

mixture of two Gaussians, a narrow ( ) one, and a broad

( ) one

(15)

where the parameters of the distributions, , , and ,

are obtained by means of an expectation-maximization

(EM) algorithm [67]. The effect of this regularization term

is a kind of soft version of weight-sharing in which the

learning process decides itself which weights should be

tied together.

3) Objectives of Cooperation: These two objectives explic-

itly promote cooperation among the networks. Instead of eval-

uating the performance of networks or ensembles, these objec-

tives evaluates the relevance of the network within the ensem-

bles where it participates and how well it cooperates with the

rest of the members of those ensembles. These two objectives

for a network in a subpopulation , are the following.

• Difference: The network is removed from all the ensem-

bles where it is present, and the performance of such

ensembles with the network removed is measured. The

value of this criterion is measured as the difference in

performance of these ensembles with and without the

network. This criterion enforces competition among

subpopulations of networks preventing more than one

subpopulation from developing the same behavior. If two

subpopulations evolve in the same way, the value of this

criterion in the fitness of their networks will be near 0

and the networks will be penalized.
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• Substitution: The best ensembles of the population are

selected. In these ensembles the network of subpopula-

tion is substituted by the network . The fitness of the

ensemble with the network of the subpopulation sub-

stituted by is measured. The fitness assigned to the

network is the average difference in the fitness of the

ensembles with the original network and with the net-

work substituted by . This criterion enforces competition

among networks of the same subpopulation, as it tests if

a network can achieve a better performance than the rest

of the networks of its subpopulation.

4) Objectives of Diversity: In the development of ensembles

of neural networks, we must take into account the source of the

error on an ensemble. The ensemble generalization error can be

expressed (see Section IV-C)

(16)

where is the weighted average of the individual

networks’ generalization errors and is the

weighted average of the diversity among these networks. From

this point of view, the objective of any ensemble is to obtain

highly correct networks that disagree as much as possible.

Maintaining diversity needs some kind of speciation mech-

anism [68]. The most common techniques are: fitness sharing

[22], [69], crowding [70], implicit fitness sharing [12], [68],

local mating [71], and negative correlation [18]. Nevertheless

most of these methods may bias the evolutionary process.

The importance of the diversity of combined networks in an

ensemble have been stated by many authors [1], [18], [21], [24].

Nevertheless, some works raise some doubts about the useful-

ness of diversity measures in building classifier ensembles in

real-world classification problems [24]. Moreover, it is very dif-

ficult to determine which measures of diversity are the most suit-

able for a given task. Our approach takes advantage of the coop-

erative and multiobjective environment we are using. We define

four objectives regarding diversity, and the evolutionary process

will combine networks that are good at different objectives. The

number of diversity measures is enormous, so we have selected

four of the most widely used, each one centered on a different

idea. These objectives are the following.

• Correlation: Following Liu and Yao [21], we introduce an

objective that measures the correlation of the error of each

individual network with the ensembles where it partici-

pates. The error correlation of network in an ensemble

of networks is measured using

(17)

where is the number of training patterns, is the

output of network for pattern , and is the output

of the ensemble for pattern . With this measure a network

must learn what all other networks have not yet learned.

The value used as objective is , that is, the average

error correlation of the network over all the ensembles

where it is present.

From both theoretical and experimental results [72] it

has been shown that, if the individual networks in an en-

semble are unbiased, the most effective combination of

them occurs when the errors of the individual networks

are negatively correlated. As a consequence, the mutual

information between each individual and the rest of the

population should be minimized [18] to improve the esti-

mation of the ensemble. This idea has been used before in

other papers [18], and a very similar idea is implemented

in [20].

• Functional diversity: Before the definition of a functional

diversity measure, we defined such function axiomati-

cally. The three axioms that a functional diversity measure

for two functions and , , over a set , must

fulfill are the following.

Axiom 1: .

Axiom 2: if and only if

.

Axiom 3: .

Obviously, any distance measure fulfills these axioms. So,

the measure we have chosen is the average Euclidean dis-

tance among the outputs of the two networks.

This measure is used to test the discrepancy among the

outputs of the networks. For two networks, and , the

functional diversity , is defined as

(18)

A similar measure, using a principal components analysis

[73] of the outputs have been used in [12], [74].

• Mutual information. The mutual information [23] be-

tween two networks, and , is given by [18]

(19)

where is the entropy of , and is the

joint differential entropy of and . If we suppose that

the output of network is a Gaussian random variable

with variance , the differential entropy, is given

by

(20)

The joint differential entropy is given by

(21)

where is the covariance matrix of and . Following

Liu et al. [18], who used this criterion for evolving a pop-

ulation of networks, the final form of the mutual informa-

tion between the two networks is

(22)
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where is the correlation coefficient between and .

• Yule’s statistic. This objective [24] measures whether

the mistakes of the classifiers are uncorrelated, and it is

one of the various statistics to assess the similarity of two

classifiers outputs [75]. The Yule’s statistic [76] for two

classifiers and is given by

(23)

where is given by

We have selected this measure, because it has been proved

to be the one with the best results in a recent paper com-

paring ten different diversity measures [24]. Classifiers

that recognize the same patterns will have positive values

of , and classifiers that tend to commit mistakes in dif-

ferent patterns will have negative values of .

B. Ensemble Objectives

The same principles of multiobjective evolution can also be

applied to the evolution of ensembles. So, we have defined two

objectives to be considered in the evaluation of ensemble fitness.

These two objectives for the ensembles are as follows.

• Performance: This objective is just the performance of

the network measured as the number of patterns classified

correctly.

• Ambiguity: As we have explained in Section IV-C, if the

in-correlation among the networks that form the ensemble

is increased, without increasing the individual errors, the

global error of the ensemble is reduced. The ambiguity is

defined over the training set.

The ensembles could also be evolved taking into account just

one objective, their performance in solving the given problem,

but the multiobjective approach showed better results.

C. Multiobjective Algorithm

The multiobjective algorithm is common to both populations,

networks and ensembles. We will consider a population of in-

dividuals where individual has a vector of objectives values

. The population has individuals, and objectives are

considered.

The comparison and selection of the most suitable multiob-

jective algorithm is not a trivial task [77]. The proposed algo-

rithm is based on the concept of Pareto optimality [78] and has

been chosen taking into account as the most important feature

the computational cost. It has common points with other multi-

objective evolutionary algorithms. The multiobjective algorithm

for obtaining the fitness of an individual with a vector of objec-

tives is outlined in Fig. 4.

The comparison and selection of the most suitable multiob-

jective algorithm is not a trivial task [77]. This algorithm is

Fig. 4. Multiobjective evolutionary algorithm for obtaining the fitness of
individuals of the population.

basically an adaptation of nondominated sorting genetic algo-

rithm (NSGA) [79] to evolutionary programming. The idea un-

derlying NSGA is the use of a ranking selection method to em-

phasize current nondominated individuals and a niching method

to maintain diversity in the population. The use of second gener-

ation algorithms, such as strength Pareto evolutionary algorithm

(SPEA) [80] or Pareto archive evolutionary strategy (PAES)

[81], is not feasible as the concept of a separate population of

nondominated individuals cannot be translated into our model.

The algorithm consists of two stages. First, the successive

nondominated fronts2 are obtained and every individual of these

fronts is assigned an equal dummy fitness . Second, the

members of every front share their fitness. The procedure must

guarantee that none of the members of a front gets a higher

fitness than any of the members of the previous front.

The algorithm used for obtaining the nondominated set of

solutions [78] compares the individuals pairwise and marks as

dominated all the individuals that are dominated by at least one

member of the population.

Once the individuals of a nondominated front are assigned

their fitness, they are not considered any more for obtaining the

new nondominated front. That is the reason why we talk about

successive nondominated fronts.

2A nondominated front is a subset of individuals that are not dominated by
any member of the population.
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The problem of fitness sharing among the members of the

same Pareto front is crucial for the performance of the algo-

rithm. The standard method of explicit fitness sharing [69] (for

a discussion [82]) cannot be applied, as the individuals are not

in an Euclidean space. So, we must define a measure of diver-

sity for networks and ensembles in order to apply the algorithm.

Our interest is focused on keeping behavioral diversity among

the individuals, so our distance measure is based on the func-

tional diversity measure defined above, , for networks, and

on an extension of functional diversity for ensembles.

Given a set of networks of the th nondominated front,

each having a dummy fitness of , the sharing procedure

is performed for each solution . The sharing

procedure consists of the following steps for th individual.

1) Compute the functional diversity with every individual

of the Pareto front .

2) Compare this value with a predefined niche radius,

and apply the sharing function

if

otherwise
(24)

3) Calculate niche count for individual

(25)

4) Modify the fitness of the individual according to its niche

count

(26)

For the ensemble population, we have defined an ensemble

functional diversity. The measure of ensemble functional diver-

sity is based on the functional diversity of networks. Given two

ensembles and ,

their functional diversity is defined as

(27)

With this distance measure, the above sharing algorithm

is applied, just substituting the measure of functional di-

versity for the ensemble functional diversity

.

VI. EXPERIMENTAL SETUP

The experiments were carried out with the objective of

testing our cooperative model against the most used ensemble

methods. We have applied our model and standard ensemble

methods to several real-world problems of classification. These

problems are briefly described in Table II. These ten sets

cover a wide variety of problems. There are problems with

different number of available patterns, from 214 to 3175,

different number of classes, from 2 to 19, different kind of

inputs, nominal, binary and continuous, and of different areas

of application, from medical diagnosis to vowel recognition.

Testing our model on this wide variety of problems can give us

a clear idea of its performance.

The tests were conducted following the guidelines of Prechelt

[83]. Each set of available data was divided into three subsets:

50% of the patterns were used for learning, 25% of them for

validation, and the remaining 25% for testing the generaliza-

tion error. There are two exceptions, Sonar and Vowel problems,

as the patterns of these two problems are prearranged in two

subsets due to their specific features. The column network in

Table II specifies the architecture of the networks used in the

standard ensembles.

The populations of cooperative ensembles were evolved

without a validation set, adding the validation set to the training

set. At the end of the evolution, the fifth best network, in terms

of training error, was selected as the result of the evolution. The

test set was then used for obtaining the generalization of this

network.

The standard ensembles used for comparison are made up of

25 networks. It is known [84] that the diversity and the accuracy

of the ensemble usually plateau at some size between 10 and

50 members. Moreover, Opitz and Maclin [85] have found after

some exhaustive experiments that the error of the ensemble does

not decrease after adding 25 networks.

For the training of the standard networks in the ensembles,

we used the method of cross-validation and early stopping [86].

The networks were trained until the error over the validation set

started to grow.

For Ada–Boosting, it is required that the weak learning al-

gorithm, in our case, each individual network, achieves an error

strictly less than 0.5. This cannot be guaranteed especially when

dealing with multiclass problems. In our experiments when this

error is not achieved, we generate a bootstrap sample from the

original set and continue up to a limit of 25 trials. This method

has been used in previous works [17], [56]. For two problems,

Soybean and Vowel, the network was not able to reach this error

and Ada–Boosting could not be applied.

For each data set, 30 runs of the algorithm were performed.

In all the tables, we show the average error of classification over

the 30 runs, the standard deviation, and the best and worst indi-

viduals. The measure of the error is the following:

(28)

where is the number of patterns, and is 0, if pattern is

correctly classified, and 1, otherwise.

The parameters used in our experiments are common to the

ten problems. They are fairly standard as their performance is

very good for the different problems we have solved. The coop-

erative ensembles used for all the problems are made up of ten

networks, in contrast with the standard ensembles that are made

up of 25 networks. We want to show how the cooperative co-

evolution of the networks can achieve a very good performance

with a comparatively small ensemble. The population of ensem-

bles has 100 individuals and each subpopulation of networks has

30 networks. The elitism in the population of networks is 50%.
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TABLE II
SUMMARY OF DATA SETS. THE FEATURES OF EACH DATA SET CAN BE (C)ONTINUOUS, (B)INARY, OR (N)OMINAL.

THE NETWORK COLUMN SHOWS THE NUMBER OF (I)NPUT, (H)IDDEN, AND (O)UTPUT NODES

The parametric mutation rate in the population of ensembles is

100% and the structural mutation rate is 5%.

VII. EXPERIMENTAL RESULTS

The first step of our experiments was to obtain a lower limit

for the performance of the model. In order to obtain such a limit,

we trained a single network using the same model of the cooper-

ative ensembles, the GMLP. It is obvious that an ensemble must

be, at least, better than a single network. The results are shown

in Table III. The network was not able to achieve useful results

for the Soybean and Vowel problems.

Once we have established a lower bound for the performance

of our model, we carried out an experiment in order to test

the viability of the model. From the ten test problems we have

described, we chose a subset of five problems: Cancer, Glass,

Heart, Horse, and Pima. We made 30 runs for each problem,

using all the objectives we have defined. The results are shown

in Table IV.

The performance of the model is clearly better than the

results of the single network. Nevertheless, the use of the ten

objectives is not very advisable, because some of the objectives

share the same principles. So, we did a second experiment

in order to test whether all the objectives were useful in the

evolution. For two problems, Heart and Glass, we repeated the

30 runs removing each objective in turn. The results are shown

in Table V.

Table V shows that removing an objective only has a signif-

icant effect on the generalization error (with a 5% confidence

level) in four cases in the Heart problem, and in none of them

in the Glass problem. Moreover, removing the functional diver-

sity objective has a beneficial effect over the error in the Glass
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TABLE III
ERROR RATES FOR A SINGLE NETWORK (SNG) AND STANDARD ENSEMBLES. THE t-TEST COMPARES THE AVERAGE ERROR OF THE EXPERIMENT

WITH COOPERATIVE ENSEMBLES USING SIX OBJECTIVES AND THE EXPERIMENTS WITH A SINGLE NETWORK AND EACH ENSEMBLE METHOD

problem. These results showed us that the use of all the defined

objectives was not the best option. That idea is also reinforced

by two additional reasons.

1) The literature on multiobjective optimization shows that

these algorithms do not perform successfully with so

many objectives as ten [87].

2) Many of the objectives are closely related and it would be

more advisable to choose a few or just one of them from

each group.

In order to test the relevance of each objective, we carried out

another experiment over Heart and Glass data sets using every

objective alone in turn. The results are shown in Table VI.
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TABLE IV
ERROR RATES USING ALL OF THE TEN OBJECTIVES

TABLE V
ERROR RATES USING NINE OBJECTIVES FOR HEART AND GLASS DATA SETS. THE t-TEST COMPARES THE AVERAGE

ERROR OF THE EXPERIMENT WITH TEN OBJECTIVES AND EACH EXPERIMENT USING NINE OBJECTIVES

Due to the surprisingly good performance on the Glass

problem of the objectives substitution and difference alone, we

performed an additional test with these objectives on the Pima

data set (also, shown in Table VI). Further experimentation has

shown that substitution and difference alone are very efficient

in producing low learning errors. In problems where learning

and generalization errors are highly correlated, the results of

these objectives alone are excellent.
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TABLE VI
ERROR RATES USING ONE OBJECTIVE FOR HEART, GLASS, AND PIMA DATA SETS. THE t-TEST COMPARES THE AVERAGE

ERROR OF THE EXPERIMENTS WITH TEN OBJECTIVES AND EACH EXPERIMENT USING ONE OBJECTIVE

From these experiments, we obtain a subset of six objectives

to be used for all the problems. This subset is made up of dif-

ference, substitution, ensembles, shared performance, regular-

ization,and Yule’s . These objectives were selected with the

criterion of selecting at least one objective from each group and

within each group selecting the best performing one in the two

previous experiments.

The results for the ten problems with this subset of six objec-

tives are shown in Table VII. The results are excellent and are

among the best in the literature [4], [16], [35], [56], [85].

Table VII also shows the computational effort needed for ob-

taining the given results. The computational effort of an evolu-

tionary process where all the evolutions end in success, as it is

our case, can be defined [88] as the number of evaluations of the

fitness function. We have a population of fixed size ,

so the number of evaluations of the fitness function in gener-

ations is . In the table, we show the average number of

generations of the 30 runs of each experiment.

The results obtained are very good when they are compared

with other works using these data sets. Table VIII shows a sum-

mary of the results reported in papers devoted to ensemble or

similar classification methods. Comparisons must be made cau-

tiously, as the experimental setup is different in many papers.

There are differences also in the methods used for estimating the

generalization error. Some of the papers use tenfold cross-vali-

dation that for some of the problems obtains a more optimistic
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TABLE VII
ERROR RATES USING THE SUBSET OF SIX OBJECTIVES FOR ALL THE PROBLEMS. THE COMPUTATIONAL

EFFORT IS SHOWN AS THE AVERAGE NUMBER OF GENERATIONS

TABLE VIII
RESULTS OF PREVIOUS WORKS USING THE SAME DATA SETS. WE RECORD THE RESULTS OF THE

BEST METHOD AMONG THE ALGORITHMS TESTED IN EACH PAPER

estimation of the error. With these cautions, we can say that for

Cancer, Glass, Heart, Pima, Sonar, Soybean, and Vowel data sets

our methods achieve a performance that is better or similar to all

the results reported in the cited papers. Gene and Horse results

are poorer than those obtained by other papers, and card results

are improved by two of the papers. As in our experiments, most

of these papers use an experimental setup and a set of parame-

ters common to all the problems.

VIII. COMPARISON WITH STANDARD ENSEMBLE MODELS

In order to assure the level of performance of the model, we

made a comparison with standard ensembles of neural networks.

We trained four different ensembles of neural networks, using

the same individual neural network and the same back-propaga-

tion algorithm that we used for the cooperative ensemble. The

four ensembles are the following.
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TABLE IX
AVERAGE SIZE OF THE EVOLUTIONARY AND NONEVOLUTIONARY ENSEMBLES. THE TABLE SHOWS NUMBER OF NETWORKS IN THE

ENSEMBLE, AND THE AVERAGE SIZE OF THE ENSEMBLE AND OF EACH NETWORK. THE t-TEST COMPARES THE AVERAGE

NUMBER OF NODES AND CONNECTIONS FOR ENSEMBLES AND CONSTITUENT NETWORKS

Standard (Std): An ensemble of networks without sam-

pling. The combination of networks is

made using the generalized ensemble

method (GEM) [1]. If two networks are

linearly correlated, one of them is removed.

Bagging (Bag): An ensemble of networks using Bagging

[56]. As in standard, the combination of

networks is made using GEM.

Arcing (Arc): An ensemble of networks using one of the

Boosting [89] methods, Arcing-x4 [56],

[60]. As in previous methods, the combi-

nation of networks is made using GEM.

Ada (Ada): An ensemble of networks using one of

the Boosting methods, Ada-Boosting [59],

[56]. The combination of networks is made

following the Ada algorithm itself.

For each problem, we did 30 runs with every type of en-

semble. All the experimental setup was done as in the exper-

iments with the cooperative ensemble in order to make a fair

comparison.

The results of these four ensemble methods are shown in

Table III. Considering the overall performance, the best per-

forming method is Ada-Boosting together with Bagging, the

latter with a slightly worse performance than the former.

From Table III, we can see how the cooperative ensemble is

better than the four ensemble models for all the problems with a

confidence level of 5%. This result is more important if we con-

sider that the cooperative ensemble uses 10 networks against

the 25 networks that form the other ensembles. It is also inter-

esting to note that the size of the networks in the evolved en-

sembles is also less than the size of the corresponding networks

in the standard ensembles. Table IX shows the average size of

the ensembles and networks. We can see that not only the co-

operative ensembles have fewer networks, but also that the con-

stituent networks are significantly smaller (with the exception

of the soybean problem).

IX. ANALYSIS OF THE COOPERATIVE ENSEMBLES

In this section, we will study the behavior of the coopera-

tive ensemble. In the previous section, we have assured that the

model shows a dramatic reduction of generalization error when

compared with standard ensembles. Here, we want to test the

sensitivity of the model to the number of networks in the en-

semble, the relevance of each objective and how it behaves in a

bias/variance decomposition test.

A. Analysis of the Effect of Ensemble Size

In order to test the influence of the number of network sub-

populations, that is, the size of the ensembles, we carried out

experiments for Cancer, Glass, Heart, Horse, and Pima prob-

lems with 5, 10, 15, 25, and 30 subpopulations of networks. For

each size we performed ten runs of the algorithm. The results

are shown in Table X.3

The table shows that in some of the problems, namely, Heart

and Horse, the addition of new networks to the ensemble pro-

duces an improvement in the performance of the model, but this

increment is not significant and could not pay for the increased

complexity of the model. We have performed and ANOVA I

test in order to verify whether there are significant differences

among the results obtained with different numbers of subpopu-

lations. With a confidence level of 5% there are significant dif-

ferences just in a few cases. We can assure that the generaliza-

tion error is not significantly improved when more networks are

added. Not surprisingly, the learning error is improved as new

networks are being added to the ensemble.

3There are minor differences between Table X and Table VII, due to the fact
that in this table we have only considered the first ten runs of the algorithm for
the case of ten network subpopulations.
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TABLE X
ERROR RATES USING 5, 10, 15, 25, AND 30 SUBPOPULATIONS OF NETWORKS FOR

CANCER, GLASS, HEART, HORSE, AND PIMA DATA SETS.

B. Objectives Study

In this section, we evaluate the relevance of each objective

in the overall performance of the ensemble. We carry out two

studies. First, we test the individual contribution of each objec-

tive by removing it from the evolution and evaluating the perfor-

mance of the model without that objective. Second, we evaluate

the capability of every objective, evolving the ensembles with

every objective alone in turn.

1) Necessity Analysis: The necessity analysis evaluates how

relevant each objective is for the overall performance of the

model. In order to test the importance of the objectives, we re-

move every objective in turn and evolve the model using the

other five objectives. The results of the evolution with five ob-

jectives for ten runs are shown in Table XI. There are some in-

teresting effects that can be observed in these results.

• As a general rule, all the objectives are useful. The error

rate is in most cases worse when any of the objectives

are removed. Nevertheless, the performance of the model

considering five objectives is still acceptable.

• The learning error decreases when the regularization term

is removed, but the generalization error usually increases

without this objective. So, we can conclude that the regu-

larization term is playing its role, encouraging small net-
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TABLE XI
NECESSITY RESULTS. ERROR RATES REMOVING EVERY ONE OF THE SIX OBJECTIVES IN TURN FOR CANCER, GLASS, HEART,

HORSE, AND PIMA DATA SETS. THE t-TEST COMPARES THE AVERAGE ERROR OF THE EXPERIMENT WITH

SIX OBJECTIVES, ROW LABELED ALL OBJECTIVES, AND EACH EXPERIMENT USING FIVE OBJECTIVES

works with worse learning errors but in most cases better

generalization errors.

• The usefulness of the diversity objective is not clear. The

deletion of this objective significantly increases the gen-

eralization error only in the Glass problem. This result

agrees with the work of Kuncheva and Whitaker [24] that

has raised some doubts on the use of diversity terms in the

learning process.

2) Capability Analysis: The aim of capability analysis is to

study the performance of every objective when it is used as the
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TABLE XII
CAPABILITY RESULTS. ERROR RRATES USING ONE OBJECTIVE FOR CANCER, GLASS, HEART, HORSE, AND PIMA DATA SETS.

THE t-TEST COMPARES THE AVERAGE ERROR OF THE EXPERIMENT WITH SIX OBJECTIVES,
ROW LABELED ALL OBJECTIVES, AND EACH EXPERIMENT USING ONE OBJECTIVE

only objective to be evaluated along the evolution. So, we evolve

the populations considering just one of the six objectives used

for the evolution of networks. The results for Cancer, Glass,

Heart, Horse, and Pima data sets are shown in Table XII. The

performance of the isolated objectives shows two reasonable

results.

• The objectives that are focused on performance, differ-

ence, substitution, ensembles, and shared performance,
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have a better performance when they are used as the only

objective, in some cases they can achieve the same per-

formance as the six objectives.

• Objectives focused on other aspects of the ensem-

bles, such as regularization or diversity, have a worse

performance.

These two effects are more important when we consider the

learning error. For instance, for Glass, Heart, and Horse data

sets, the learning error is clearly improved when using perfor-

mance based objectives. On the other hand, if we consider reg-

ularization and diversity objectives the learning error is more

than twice the learning error using the six objectives.

C. Bias and Variance Decomposition

Many of the recent papers studying neural network ensem-

bles analyze error performance in terms of two factors: bias and

variance. The bias of a learning algorithm is the contribution

to the error of the central tendency when it is trained using dif-

ferent data, while the variance is the contribution of the error of

the deviations from the central tendency. These two terms are

evaluated with respect to a distribution of training sets usu-

ally obtained by different permutations of the available data.

In addition, there is an irreducible error that is given by the

degree to which the correct answer for a pattern can differ from

that for other patterns with the same description. As this error

cannot be estimated in most real-world problems, the measures

of bias and variance usually include this error.

Several authors have suggested different proposals for esti-

mating the decomposition of the classification error, the bias and

variance terms [49], [90], and [91]. All of them have different

advantages and drawbacks, so we have used three measures in

order to study the behavior of our cooperative model compre-

hensively (an excellent discussion of this topic can be found in

[4]).

Let us assume that the training pairs, are drawn from

a test instance distribution , , and that the classification of

pattern by means of classifier for a distribution of training

data sets is . Kohavi and Wolpert [91] proposed a

method where the expected zero-one error of classifier can

be expressed by

bias variance (29)

where

bias

variance

(30)

However, these measures of bias and variance do not mea-

sure the extent to which each of these underlying quantities con-

tribute to error [4]. The irreducible error is included in the bias

term. This estimation has the valuable property that the sum of

bias and variance terms equals the total error.

The bias estimation of Kong and Dietterich [90] measures the

probability of error of the central tendency of the learning algo-

rithm. This measure is useful when comparing the quality of the

central tendency of different classifiers, regarding other consid-

erations as the frequency or strength of such central tendency.

The formulation of this measure bias is given by

bias (31)

where the central tendency , for learner over the

distribution of training data sets is the class with the greatest

probability of selection for pattern by classifiers learned by

from training sets drawn from , and is defined

(32)

Nevertheless, the estimation of the variance of Kong and

Dietterich does not adequately measure the error due to the

deviations from the central tendency. So, we have also used the

decomposition defined by Breiman [92]

bias

(33)

variance

(34)

These definitions have the advantage that the bias term is a

direct measure of the contribution of the central tendency to the

total error, and variance is a measure of the contribution of the

deviations from the central tendency to the total error.

For estimating these five measures, we have basically fol-

lowed the experimental setup used in [4]. We divided our data

set into four randomly selected partitions. We selected each par-

tition in turn to be used as the test set and trained the learner with

the other three partitions. This method was repeated ten times

with different random partitions, making a total of 40 runs of

the learning algorithm.

The central tendency was evaluated as the most frequent clas-

sification for a pattern. The error was measured as the propor-

tion of incorrectly classified patterns. This experimental setup

guarantees that each pattern is selected for the test set the same

number of times, and alleviates the effect that the random selec-

tion of patterns can have over the estimations.

Fig. 5 shows the estimation of the bias of Kong and Dietterich

for the learning algorithms used. Instead of representing the

value of the bias, we have chosen a value of 1 for the estima-

tion obtained for the cooperative ensemble and we represent the

relative bias of the rest of the ensemble methods to the cooper-

ative ensemble.

Fig. 5 shows how the cooperative ensemble central tendency

is always more accurate than the central tendency of the rest of

the ensemble methods. This difference is more drastic in com-

plex problems, such as Gene, Soybean, and Vowel.

Fig. 6 shows the estimation of the relative bias and variance of

Kohavi and Wolpert. As we have stated, the contribution of bias

to error is the portion of the total error that is made by the central

tendency of the algorithm. The contribution of variance is the

portion of the error that is due to deviations from the central
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Fig. 5. Comparison of relative bias as defined by Kong and Dietterich [90] for the ten data sets. A value of 1 has been chosen for the estimation obtained for the
cooperative ensemble bias, and we represent the relative bias of the rest of the ensemble methods to the cooperative ensemble. The y axis represents this relative
bias.

tendency. More informally, bias is the portion of classifications

that are incorrect and equal to the central tendency, and variance

is the portion of classifications that are incorrect and differ from

the central tendency.

Fig. 6 shows that the cooperative ensemble improves the bias

error in some problems. Nevertheless, there are no significant

differences in bias error between the cooperative ensemble and

the other methods in Cancer, Card, Heart, Horse, and Pima prob-



GARCÍA-PEDRAJAS et al.: COOPERATIVE COEVOLUTION OF ARTIFICIAL NEURAL NETWORK ENSEMBLES FOR PATTERN CLASSIFICATION 293

Fig. 6. Comparison of relative bias and variance as defined by Kohavi and Wolpert [91] for the ten data sets. A value of 1 has been chosen for the estimation
obtained for the cooperative ensemble, and we represent the relative bias and variance of the rest of the ensemble methods to the cooperative ensemble. The y axis
represents this relative bias and variance.

lems. We must also take into account that the irreducible error

is included in the bias estimation in the model of Kohavi and

Wolpert. On the other hand, the variance is reduced in almost all

the problems. This is important, as it means that the algorithm

is less sensitive to variations in the training set, assuring a more

robust learning process. We also notice, as can be expected, that

Bagging is more successful in reducing variance and Ada-Boost

reduces bias more frequently.
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Fig. 7. Comparison of relative bias and variance as defined by Breiman [92] for the ten data sets. A value of 1 has been chosen for the estimation obtained for
the cooperative ensemble, and we represent the relative bias and variance of the rest of the ensemble methods to the cooperative ensemble. The y axis represents
this relative bias and variance.

Fig. 7 shows the relative bias and variance of Breiman.

Breiman estimation is more closely related with the intuitive

idea of bias and variance. In this estimation, irreducible error is

shared by the two terms. Considering this estimation, the figure

shows how the cooperative ensemble reduces both bias and

variance terms of error. This accomplished reduction allows us

to say that the cooperative ensemble is both accurate in its central

tendency and little responsive to the variations of the training set.
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Fig. 8. Lesion study for the ten problems. It shows the average percentage of increment in generalization error when the best network is removed, on the left, or
the worst network is removed, on the right. The x axis represents the number of networks removed from the ensemble, the y axis represents the increment of the
generalization error in percentage when the corresponding networks are removed.
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Fig. 9. First two principal components for every network of the best ensemble of the first run for cancer, card, heart, pima, and sonar problems.
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Fig. 10. Two first principal components for every network of the best ensemble of the first run for gene, glass, and horse problems.

D. Lesion Study

Lesions are used in biological networks to identify functions

or functional areas of the brain. Previous works [74] have used

lesions to study the functionality of different parts of an evolved

network. Here, we use lesions for testing the robustness of the

ensembles. Once all the networks of the ensemble are evolved,

we test the performance penalty of removing each network. In

this way, we can evaluate the robustness of the ensemble if any

of its constituent networks ceases to work.

We have carried out two different experiments. In a first ex-

periment, we have in turn the network that most contributes to

the performance of the ensemble, until the ensemble is just one

network. In a second experiment, we repeated the previous steps

removing the network that contributes the last to network per-

formance. Fig. 8 shows the average generalization error over the

30 runs for the two experiments for the ten data sets.

Fig. 8 shows a smooth degradation on the performance of the

ensemble as the best networks are removed. Moreover, the effect

of removing the worst network causes less damage, and this

assures quite a robust ensemble. As could be expected, the effect

of removing a network is more important in complex problems,

such as Gene, Soybean, or Horse.
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X. WHY DOES THE COOPERATIVE METHOD OUTPERFORM

STANDARD ENSEMBLES?

The experiments have shown that the cooperative ensemble

is able to perform better than the standard ensemble methods.

In the previous sections, we have gained some insights into the

way the cooperative ensemble works. In this section, we want to

study the features of the cooperative ensemble that would help

to explain the reason why the performance of the cooperative

ensemble is above the performance of the standard one.

The explanation for this performance is not an easy task, so

our objective is to make explicit some of the features of cooper-

ation rather than to carry out an exhaustive study that is outside

the scope of this paper.

A. Principal Components Analysis

Our first objective in this study is the visualization of the func-

tionality of the networks. It is a well-known issue that as the

networks are more different, the performance of the ensemble

is increased. In order to show the functionality of a network,

we follow the functional representation of a network (or node)

of Moriarty and Miikkulainen [12]. In order to obtain the func-

tional representation of a network, we calculate for each net-

work its function vector. The steps to compute this vector are

the following.

1) Initialize the function vector to nil.

2) For each input unit of the network do:

a) Set input to 1 and all the others to 0.

b) Propagate the activation through the network.

c) Append the output of the network to the function

vector.

In this way, we produce a function vector for each output

of the network. In order to represent the functionality of the

network, we perform a principal component analysis of the

function vectors, retaining the first two components. Following

this method, we can represent each network by a point in a

two-dimensional (2-D) space. The position of each network

depends on its functionality, and we can consider that if two

networks are closed in the 2-D space their functionality is

somewhat similar. On the other hand, if two networks are

separated, their functionality must be very different. Figs. 9 and

10 show the representation of the networks of the best ensemble

of the first run of the algorithms for all the problems, except for

soybean and vowel that are not represented due to their large

number of outputs. For the standard ensemble, we have chosen

the model that best performs for each problem.

Figs. 9 and 10 show how the networks in the standard en-

sembles are more clustered, with many networks sharing similar

functionality. On the other hand, the networks of the coopera-

tive ensemble tend to be more spread, so their collaboration is

more effective.

In order to corroborate the previous affirmation, we have mea-

sured the dispersion of the networks represented on the figures.

Table XIII shows the average distance of each network from the

TABLE XIII
AVERAGE DISTANCE FROM THE CENTROID OF THE

NETWORKS OF THE ENSEMBLE

centroid of the cluster made up of all the networks of the en-

semble. This value can be considered a measure of the disper-

sion of the networks in the ensemble [93]. In the table, we show

the average value of all the outputs. With networks, each one

represented by a two dimensional vector the average distance

is given by

(35)

where is the mean of the vectors that represent the networks

in the ensemble. The table shows that the average distance of

the networks is greater among the cooperative ensemble than

the standard ensemble. This means that the networks have more

varied behavior, and the efficiency of their combination should

be better. Table XIII also shows the -values of a -test that com-

pares whether the differences between the means are significant.

With a confidence level of 5%, the differences are significant for

Cancer, Heart, Gene, and Glass problems.

B. Measures of the Diversity of the Individual Networks

In order to complete the previous study of the diversity of

the networks in the ensembles, we obtain the error correlation

among the networks that make up the standard and cooperative

ensembles. The values are shown in Table XIV. We have also

obtained the value of Yule’s statistic (Table XIV) in order to

test the similarity among the classifications performed by each

network. As in the previous study, for the standard ensemble we

have chosen the model that best performs for each problem. The

-tests show that all the differences are significant.

Table XIV shows that, as a general rule, the correlation among

the errors of the individuals networks in the cooperative en-

semble is below the correlation among the networks that form

the standard ensemble. There are two exceptions, Cancer and

Pima problems. For these two problems, the standard ensemble

shows a smaller correlation. The value of Yule’s has the same

property. This result, together with the results from principal

component analysis, suggests that one of the sources of the ex-

cellent behavior of the cooperative ensemble comes from the
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TABLE XIV
MEASURES OF THE DIVERSITY OF THE INDIVIDUAL NETWORKS OF THE ENSEMBLES

TABLE XV
CLASSIFICATION OF PATTERNS BY THE NETWORKS THAT MADE UP THE COOPERATIVE AND STANDARD ENSEMBLES

fact that the cooperation is able to obtain more diverse networks

than the standard methods for constructing ensembles.

C. Classification of Individual Patterns

The last study of the networks of the ensembles concerns the

patterns that each network classifies accurately. For all the 30

runs of the cooperative and standard models, we took the best

ensemble and obtained the following two values.

1) For each ensemble, we obtained the average number of

patterns correctly classified by its constituent networks

considered alone. This value was average for the best en-

semble of all the 30 runs.

2) For each ensemble, we obtained the percentage of patterns

that were not correctly classified by any of its constituent

networks. This is a measure of how well the networks

cover the training set.

These two values for all the problems are shown in Table XV.

The results are very interesting as they show some differ-

ences between the behavior of the standard and cooperative

ensemble’s networks. The following differences can be noted.

• As a general rule, the networks of the cooperative en-

semble perform worse than the networks from the stan-

dard ensemble. This means that the former are more local

in their behavior, instead of trying to classify every pat-

tern, they specialized in some subsets of the patterns.

• In most cases, the networks of the cooperative ensemble

left fewer patterns inaccurately classified by all the net-

works. The number of patterns that are incorrectly clas-
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sified by all networks is low, even for complex problems.

In this way, the combination of the classifiers can be more

effective.

The -tests show that the differences are significant for all

comparisons in the case of average classification, and for all

comparisons in no classification, except Cancer, Gene, and

Horse problems.

XI. CONCLUSION

In this paper, we have proposed a novel approach to ensemble

design based on cooperative coevolution. The proposed model

is a framework for all the steps of the design and training of net-

work ensembles. The simultaneous evolution of all the networks

that form the ensemble allows us to obtain more cooperative net-

works with a performance significantly above the performance

of classic ensemble methods.

The performance has been thoroughly tested over a set of

ten real-world problems with different features. Our model has

proved an excellent performance in the solution of these real-

world problems. The performance obtained is among the best

present in the literature. We have also performed an extensive

analysis of the behavior of the model in different scenarios.

Additional experiments have shown that the cooperative

ensemble reduces the variance term of the error dramatically.

This feature assures a learning algorithm less dependent on the

training data set. The experiments have also shown a smooth

degradation of the performance of the ensemble, when its

networks are removed.

The multiobjective evaluation of the fitness of the networks

introduces the possibility of enforcing several aspects of the net-

works that are interesting for a better performance of the ensem-

bles. In this work, we have proposed a set of general objectives

that can be applied for any problem. However, the definition of

other sets of objectives that may be adequate for a given problem

might improve the performance of the model.

Recent works [24] have stated that it is not clear that the use

of diversity terms has a beneficial effect over the ensemble. Our

results partially agree with this statement, as the performance

of the model is not clearly improved, when the defined diversity

objective is considered.

A. Future Work

The results of our model in classification greatly encourages

a continuation of our research in cooperative coevolution of en-

sembles. One of the most natural continuations of out work is

the application of the ideas of this paper to consensual networks

[94].

It is also possible that the evolution of different kinds of net-

works on each subpopulation may generate more diverse popu-

lations with a potentiality for forming better ensembles.

Arcing and Ada-Boosting methods also suggest the possi-

bility of developing an incremental cooperative environment

where new subpopulations are added when the evolution

stagnates. The new subpopulations would be added following

the Arcing or Ada models, that is, focusing their attention

on the patterns that are less easily classified by the previous

subpopulations.
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