
Cooperative Collision Avoidance at Intersections:

Algorithms and Experiments
Michael R. Hafner, Drew Cunningham, Lorenzo Caminiti and Domitilla Del Vecchio

Abstract—In this paper, we leverage vehicle-to-vehicle (V2V)
communication technology to implement computationally effi-
cient decentralized algorithms for two-vehicle cooperative col-
lision avoidance at intersections. Our algorithms employ formal
control theoretic methods to guarantee a collision free (safe)
system, while overrides are applied only when necessary to pre-
vent a crash. Model uncertainty and communication delays are
explicitly accounted for by the model and by the state estimation
algorithm. The main contribution of this work is to provide
an experimental validation of our method on two instrumented
vehicles engaged in an intersection collision avoidance scenario
in a test-track.

I. INTRODUCTION

In the United States, vehicular collisions kill on average

116 and injure 7,900 people per day [22]. In 2009, more than

33,800 people were killed in police-reported motor vehicle

traffic crashes and about 2.2 million people were injured [2],

with an estimated economic cost of $230 billion. The situation

in the European Union is similar, with about 43,000 deaths and

1.8 million people injured per year, for an estimated cost of

¤160 billion [9]. In 2009, light vehicle crashes accounted for

68% of all U.S. motor vehicle fatalities and, of those light

vehicle fatalities, 26% were from side impacts [2], suggesting

crashes at intersections or on roadways close to and leading

to intersections. These statistics clearly indicate that crashes

at intersections have a major impact on the total number of

crashes and fatalities in the United States. Furthermore, unlike

other high-percentage crashes, such as road departure and

rear end, for which radar and camera-based forward collision

systems are now available, there is currently no established

technology to address side-impact collisions at intersections.

Vehicle to vehicle (V2V) and vehicle to infrastructure

(V2I) communication are setting the basis for establishing this

missing technology by having vehicles cooperate with each

other and with the surrounding infrastructure, sharing informa-

tion about the environment, and improving overall situational

awareness. Therefore, intelligent transportation systems (ITS)

for inter-vehicle cooperative (active) safety have been subject

of intense research world-wide in government and industry

consortia, such as the Crash Avoidance Metrics Partnership

(CAMP) and Vehicle Infrastructure Integration Consortium

(VIIC) in the U.S., the Car2Car Communications Consortium

in Europe, and the Advanced Safety Vehicle project 3 (ASV3)

in Japan.

Since cooperative active safety systems are life-critical, ad

hoc algorithms for preventing collisions are not acceptable.

Instead, there is a compelling need for employing methodolo-

gies that provide formal safety guarantees, such as found in

the control theory and computer science literature [18, 24, 26].

Specifically, the collision avoidance problem can be addressed

by computing the set of states, called backward reachable set

or capture set, that lead to an unsafe configuration (a collision)

independently of the input choice [26]. Then, a feedback map

is computed that restricts the control inputs when necessary

to prevent entrance in the capture set. While this approach is

theoretically appealing because it ensures safety by construc-

tion and applies overrides only when necessary, its practical

applicability is often limited by the complexity associated

with the computation of the capture set [15, 27]. Researchers

have been tackling computational issues by, among other

approaches, focusing on restricted classes of systems [3, 11,

13, 14].

In this work, we employ the techniques of [14], which

lead to linear complexity algorithms that are implementable

in real-time applications. Furthermore, the results of [14], as

opposed to the others, guarantee safety in the presence of

imperfect state information, due, for example, to sensor noise

or communication delays, and only need a coarse model of

the vehicle dynamics. We focus on a two-vehicle collision

avoidance scenario at intersections and develop a decentralized

control algorithm that uses V2V communication to determine

whether automatic control is needed to prevent a collision.

We prevent a collision through automatic control by actuating

only brake and throttle, but not steering, and assuming drivers

follow nominal paths as established by the driving lanes. In our

intersection collision avoidance (ICA) application, the drivers

retain full control of the vehicle until the system configuration

hits the capture set. At this point, a control action is necessary

to prevent a collision, and automatic throttle or brake are

applied to both vehicles in a coordinated fashion so that one

vehicle enters the intersection only after the other has exited.

After the crash has been prevented, the driver regains control

of brake and throttle. We report on the implementation of our

algorithms on two instrumented Lexus IS 250 test vehicles

engaged in a collision avoidance scenario at a test intersection

at the Toyota Technical Center of Ann Arbor, MI.

Related Work. The employment of formal methods in

intelligent transportation has been previously applied by the

California PATH project in the 90s. The objective of the

automated highway systems (AHS) project was to deploy fully

autonomous highway systems incorporating vehicle platoons

to increase traffic throughput, safety, and fuel efficiency [4].

More recently, work that employs job scheduling techniques

[8, 17] and optimal control [19] for intersection collision

avoidance has appeared. Collision warning algorithms have

also been proposed for general traffic scenarios [7, 28] and

2

for intersections [6, 12]. Although different in scope, related

to our work is also research on collision mitigation through

emergency braking [16]. Directly related to this paper are

experimental works on full scale vehicle test-beds focusing on

collision avoidance/warning at intersections, which leverage

V2V communication [20, 21]. Specifically, in [20] a fuzzy

controller to manage vehicles crossing an intersection is

proposed. In [21], an on-board vehicle hazard detection that

uses V2V is developed to warn the driver about dangerous

situations. In these papers, formal safety guarantees are not

provided and cooperation between vehicles is not leveraged to

provide least restrictive warnings/overrides. Here, we bridge

the gap between formal methods and cooperative collision

avoidance systems at intersections by developing/testing an

experimental cooperative collision avoidance system based on

formal control theoretic techniques.

II. PROBLEM OVERVIEW

We consider the intersection scenario depicted in Figure

1(a), in which two vehicles approach an intersection and can

potentially collide in the indicated red shaded area. A collision

may occur for a number of reasons, including a distracted

driver not seeing the incoming vehicle, under-estimating the

vehicle speed, and violating red lights or stop signs. We seek

to design controllers on board of each vehicle that use V2V

communication in order to negotiate the intersection and apply

automatic control only when it is absolutely necessary to

prevent a collision.

We assume that, after making high level route decisions,

drivers follow predefined (known) paths as established by

driving lanes. Under this assumption, the methodology that

we propose can be applied to any paths geometry at an

intersection. Here, we consider the specific intersection sce-

nario of Figure 1(a) to be consistent with the geometry of

the test intersection employed in the experiments (Figure

1(d)). Collisions between two vehicles are prevented by only

controlling the longitudinal velocity and displacement of each

vehicle along its path, never controlling vehicle steering. We

assume each vehicle is equipped with sensors for state mea-

surement (absolute position, heading, velocity, acceleration,

brake torque, and pedal position), V2V communication, and

the ability to automatically actuate the throttle and brake.

We assume our collision avoidance system is active well

before the vehicles approach the intersection, preventing initial

vehicle configurations generating unavoidable collision. Under

the above assumptions, the safety algorithms that we illustrate

here guarantee that the vehicles will never collide.

A. Test vehicles and test track

The test vehicles used in this work are modified Lexus

IS 250 (2007) test vehicles (Figure 1(c)). The modifications

include: computer running a Linux operating system; Differen-

tial Global Positioning System (DGPS) for position, absolute

time and heading measurement; Denso Wireless Safety Unit

(WSU) capable of V2V and Vehicle-to-Infrastructure (V2I)

Dedicated Short-Range Communications (DSRC); connection

to the Controller-Area Network (CAN) bus to read information

(a) (b)

(c) (d)

Fig. 1. (a) Intersection collision avoidance scenario with the red area denoting
the bad (collision) set. Vehicle displacement is considered along the path. Li

determines the lower limit of the bad set along vehicle i path, while U i

determines the upper limit of the bad set along vehicle i path. (b) Bad set
in the state space X: it is the interval]L1,H1[×]L2,H2[in the X1

(displacement) space for every value of the speeds (vertical axis) of the two
vehicles. (c) Modified Lexus IS 250 vehicles used in the experiments. (d)
Top-down view of the test-track where the experiments were performed.

from vehicle sensors (velocity, acceleration, brake pedal posi-

tion, transmission state, etc.); CAN bus interface with brake

and throttle actuators.

The computer system is affixed inside the wheel well.

The purpose of this system is to interface with all on-board

vehicle sensors and actuators, in a manner that allows for rapid

development, deployment and testing of software applications.

The computer runs an Ubuntu Linux distribution, and consists

of a Intel Core-Duo 2.0 GHz processor, 1 GB RAM, 150

GB hard drive, and a motherboard with on-board ethernet and

USB ports. A USB video card is connected to the vehicle

navigation display unit, and a wireless keyboard is used to

control the computer from the passenger seat. The computer

can read and write to the CAN bus via a USB adapter. To

communicate between vehicles and interface with a DGPS

unit, a Denso Wireless Safety Unit (WSU) is connected via

ethernet, which is an after-market industry standard (planned)

in communication and control for vehicle-to-vehicle (V2V)

and vehicle-to-infrastructure (V2I) safety systems [23].

The on-board DGPS unit is capable of 0.45 m accuracy

for absolute position, 1.5o accuracy for absolute heading, and

0.1 s accuracy for absolute time. The measurement update

rate is 10 Hz. Other sensors include: (i) accelerometer, based

on MEMS technology, capable of 0.5 m/s2 accuracy; (ii)

speedometer, measuring average speed at the wheel, capable

of 0.5 m/s accuracy; (iii) throttle pedal measurement, capable

of 0.5 % accuracy; (iv) brake torque applied at wheel, capable

3

of 0.5 Nm accuracy. The vehicle brake controller is modified

to accept brake commands from the computer via CAN bus

messages. The drive-by-wire (sends ECU electric signals over

CAN bus) throttle pedal, is modified to allow computer issued

commands via CAN bus messages to create throttle pedal

signals to the ECU. Communication is carried out by the

Denso WSU unit. The message standard is the Dedicated

Short-Range Communication (DSRC), which is broadcast at

the 5.9 GHz band, which is dedicated to V2V and V2I

communication. The WSU is connected to a top mounted

antenna (Figure 1(a)). Communication is carried out with a

broadcast network topology, that is, messages transmitted by

a sender can be received by any listener in-range.

III. SOLUTION APPROACH

The general solution approach is based on formally encod-

ing the requirement of no-collision into a bad set of vehicle

speed and position configurations to be avoided. Then, based

on the vehicles dynamical model, we calculate the capture set,

which is the set of all vehicle configurations that enter the bad

set independently of any throttle/brake control action. Once the

capture set is computed, we determine a throttle/brake control

map for both vehicles that keeps the system state outside of

the capture set at all times. This control map applies throttle

and brake inputs only when the system configuration hits the

boundary of the capture set. Otherwise, no control action is

applied and the driver has full control of the vehicle.

The computations of the capture set and of the control map

are usually very demanding, require an exact description of

the system dynamics, and assume perfect information on the

state of the system. In this section, we illustrate the approach to

compute the capture set and the control map developed in [14],

which exploits the specific structure of the application domain

to overcome these limitations. Specifically it provides efficient

algorithms, allows a coarser model obtained from suitable

experiments, and is robust to imperfect state information due

to sensor uncertainty and especially to communication delays.

A. System model and safety specification

We model each vehicle as a system Σi for i ∈ {1, 2},

describing the longitudinal dynamics of vehicle i along its

path. Each system Σi is an input-output system, defined by

the tuple Σi := {X i,Oi,U i,Di, f i, hi}, where X i ⊂ R
2 is

the state space describing position and speed, Oi ⊂ R
m is the

output measurement space, U i := [ui
L, u

i
H] ⊂ [0, 1]× [0, 1] is

the control input space representing the percentage the brake

and throttle pedal are depressed, Di := [diL, d
i
H] ⊂ R

m is the

disturbance input space, which can be employed to account for

unmodeled dynamics, f i : X i × U i × Di → X i is the vector

field modeling the dynamics of the vehicle, and hi : Oi
⇉ X i

is the output set-valued map that provides the set of states

compatible with an output measurement. We let xi
1 ∈ X i

1

denote the longitudinal displacement of vehicle i along its

fixed path and xi
2 denote the longitudinal speed of vehicle i

along its path. We denote the continuous flow of system Σi

as φi(t, xi,ui,di), where t denotes the time, xi denotes the

initial state, ui denotes the control input signal and d
i denotes

the disturbance signal. In this paper, we will denote in bold

signals, which are functions of time.

The two-vehicle system is modeled as the parallel com-

position of the two systems, denoted as Σ = Σ1||Σ2 =
{X,O,U ,D, f, h}, in which X = X1 ×X2, O = O1 ×O2,

U = U1×U2, D = D1×D2, f = (f1, f2), and h = (h1, h2).
Accordingly, we will let x = (x1, x2), u = (u1, u2), and

d = (d1, d2). Furthermore, we let x1 = (x1
1, x

2
1) ∈ X1 denote

the pair of two-vehicle displacements. The safety specification

for Σ is described in terms of a subset of the state space that

needs to be avoided to prevent a collision. Specifically, we call

such a set the bad set B ⊂ X and we will say that the system

is safe if the flow never enters the bad set B. For some initial

state xo, the system is safe if there exists some control input

signal u such that for all disturbance input signals d and time

t, we have that φ(t, xo,u,d) /∈ B.

From the construction of the state space and the fact that a

collision between two vehicles results when they are both in

the red shaded area of Figure 1 (a), B ⊆ X can be defined as

B := {x ∈ X | (x1
1, x

2
1) ∈]L1, H1[×]L2, H2[}, (1)

where Li < Hi for i ∈ {1, 2} (see Figure 1 (a)-(b)). We also

denote L = (L1, L2) and H = (H1, H2).

The safe controller is based on computing a subset of the

state space, called the capture set, denoted C ⊆ X . The capture

set is the set of all initial conditions, such that no control input

can prevent a collision. The mathematical definition is given

by

C := {x ∈ X | ∀ u, ∃ t, ∃ d s.t. φ(t, x,u,d) ∈ B}. (2)

The approach of our solution to the safety control problem

is to compute the capture set, and through the application

of feedback control, prevent the flow from ever entering the

capture set. By the definition of the capture set, safety is

guaranteed if the flow never enters the capture set.

Computing the capture set is in general a difficult problem.

In the next sections, we show how exploiting the structural

features of the specific system under study allows us to

compute this set and handle imperfect state information.

B. Computation approach exploiting partial orders

In this section, we illustrate the main result of [14] to

compute the capture set. This approach relies on (i) the state

and input spaces of the system Σi being partially ordered

and (ii) the flow of the system Σi being an order preserving

map. Specifically, for the state space X i ⊆ R
2, we consider

elements to be partially ordered according to component-wise

ordering , that is, for zi, wi ∈ X i we have that zi ≤ wi

provided zi1 ≤ wi
1 and zi2 ≤ wi

2. Further, we consider

the partial ordering between input signals defined for signals

u
i,vi as u

i ≤ v
i ⇔ u

i(t) ≤ v
i(t) for all t. The inequality

u
i(t) ≤ v

i(t) is defined such that u
i
1(t) ≥ v

i
1(t) and

u
i
2(t) ≤ v

i
2(t). We assume that the flow of each system Σi is

an order preserving map. Mathematically, this means that for

initial conditions zi, wi ∈ X i, inputs u
i,vi and disturbances

4

d
i,bi, the following implication holds

zi ≤ wi ∧ u
i ≤ v

i ∧ d
i ≤ b

i ⇒

φi(t, zi,ui,di) ≤ φi(t, wi,vi,bi) ∀ t. (3)

In terms of the vehicle dynamics, this assumption implies that

greater initial displacement, greater initial velocity, and greater

inputs will lead to greater displacements and speeds at any

time. The validity of this assumption for the vehicle dynamics

is discussed in detail in Section IV, where the vehicle model

is introduced. A liveliness condition is introduced by requiring

that for at least one i f i
1(x

i, ui, di) > 0 for all xi, ui and di.
From a practical point of view, this requires that vehicle i does

not go in reverse and does not stop.

The order preserving property of the dynamics along with

the structure of the bad set can be exploited to compute the

capture set for system Σ = Σ1||Σ2 with an algorithm that

has linear complexity with respect to the state dimension. The

algorithm is based on the restricted capture set, which for a

fixed input signal u, is defined as Cu := {x ∈ X | ∃ t ≥
0, ∃ d s.t. φ(t, x,u,d) ∈ B}. This set represents the set

of initial conditions that are taken into the bad set under the

fixed input signal u. Define the fixed input signals uL,uH, as

uL(t) := (u1
H , u2

L) and uH(t) := (u1
L, u

2
H) for all t. Then,

we have ([14])

C = CuL
∩ CuH

. (4)

The capture set can be computed by only computing the

two restricted capture sets corresponding to maximum and

minimum inputs. The restricted capture sets are simpler to

compute, since they can be obtained by just integrating the

dynamics under fixed control inputs. This is in contrast with

the capture set C, whose computation requires the solution of

a differential game between the control and the disturbance.

Based on the expression of the capture set given in (4), the

feedback control map is given by

g(x) :=







(u1
H , u2

L) if x ∈ CuL
and x ∈ ∂CuH

,

(u1
L, u

2
H) if x ∈ ∂CuL

and x ∈ CuH
,

U otherwise,

(5)

in which CuH
denotes the closure of CuH

. The controller

allows the driver to chose any input until the flow hits the

boundary of the capture set. The driver retains control once

the flow no longer touches the boundary of the capture set. A

visual interpretation of the feedback map is provided in Figure

2.

In the presence of communication delays and/or uncertain

sensor readings the vehicles will not have access to the exact

value of the system state but to a set of possible current system

states. This can be easily incorporated in the above described

control strategy [14]. Let the set of possible current system

states be denoted x̂ ⊂ X , which can be constructed using

output measurement z ∈ O as explained in Section V-A. The

safety specification is now posed in terms of preventing the

state uncertainty x̂ from intersecting the bad set B. That is,

the system is safe if x̂(t) ∩B = ∅ for all t ∈ R+. It has been

shown that this is the case if and only if x̂(t) never intersects

both CuL
and CuH

at the same time [14]. The feedback set-

Fig. 2. Feedback map g(x) shown for two separate trajectories. The orange
region represents a slice of the capture set in position space corresponding to
a pair of vehicles speeds. When the flow touches the upper boundary of the
capture set, geometrically as x ∈ CuL

and x ∈ ∂CuH
, the feedback controller

commands the input (u1

L
, u2

H
), corresponding to vehicle 1 applying maximum

brake while vehicle 2 applies maximum throttle. When the flow touches the
lower boundary of the capture set, geometrically as x ∈ CuH

and x ∈
∂CuL

, the feedback controller commands the input (u1

H , u2

L), corresponding
to vehicle 1 applying maximum throttle while vehicle 2 applies maximum
brake.

valued map g, as defined in (5) can still guarantee this as long

as it is extended to set x̂ as follows

g(x̂) :=







































(u1
H , u2

L) if x̂ ∩ CuH
6= ∅ and

x̂ ∩ ∂CuL
6= ∅ and

x̂ ∩ CuL
= ∅,

(u1
L, u

2
H) if x̂ ∩ CuL

6= ∅ and

x̂ ∩ ∂CuH
6= ∅ and

x̂ ∩ CuH
= ∅,

U otherwise.

(6)

If the set of admissible control inputs evaluated by g(x̂) is

U , the driver is free to apply any input. The interpretation of

this feedback set-valued map is that control is applied when

the state uncertainty has non-empty intersection with either

CuL
or CuH

, and simultaneously is touching the boundary

of the other. We remark that by construction, feedback map

g is order reversing with respect to partial order established

by set inclusion, that is, A ⊂ B ⇒ g(A) ⊃ g(B). This

property implies that the larger the state uncertainty, the more

conservative the controller will be.

C. Algorithmic Implementation

In this section, we provide a summary of the algorithms that

compute the restricted capture set for the case in which the

first component of the vector fields f i do not depend on the

xi
1 coordinate (displacement) [14]. This assumption is satisfied

by the vehicle dynamics considered in the next section. The

algorithms are implemented on-board the vehicle computer,

therefore they must use a discrete-time model of the dynamics.

For n > 0 and step size ∆T > 0, the discrete-time flow of

system Σ is given by Φ(n, x,u,d) and is generated by the

forward Euler approximation of the continuous time dynamics,

mathematically given by Φ(n + 1, x,u,d) = Φ(n, x,u,d) +
∆Tf(Φ(n, x,u,d),u[n− 1],d[n− 1]), with initial condition

5

Φ(0, x,u,d) = x, and sampled signals u[n] := u(n∆T) and

d[n] := d(n∆T).

The feedback map g is implemented in discrete time, which

requires an alternate definition of the capture set boundary.

We will say that the set x̂[n] ⊂ X intersects the boundary

and not the interior of the restricted capture set Cu provided

x̂[n] ∩ Cu = ∅ and x̂[n + 1] ∩ Cu 6= ∅. This states that x̂[n]
intersects the boundary and not the interior of the restricted

capture set if it is currently outside of the set, but it will be

inside the set at the next time step.

To compute the capture set Cu, we can compute a slice of it

in the displacement space, denoted Cu ⊂ X1, corresponding

to the current two-vehicle velocity (x1
2, x

2
2). Due to the order

preserving properties of the dynamics with respect to state

and input, and the structure of the bad set B, the restricted

capture set slice is computed through the back propagation of

the upper and lower bounds of the bad set, i.e., L,H ∈ X1.

Specifically, define the sequences

L(n, x, u) := L+ x1 − Φ1(n, x,u,dH),
H(n, x, u) := H + x1 − Φ1(n, x,u,dL),

(7)

where dL(k) := (d1L, d
2
L) and dH(k) := (d1H , d2H) for all k.

Given current state estimate set x̂, the restricted capture set

slice Cu can be written as (Algorithm 1)

Cu =
⋃

k∈N

]L(n, sup x̂,u), H(n, inf x̂,u)[.

Algorithm 1 Cu = CaptureSetSlice(x̂,u)

Input: (x̂,u) ∈ 2X × S(U)

n = 1
loop

if inf x̂1 ≤ H(n, inf x̂,u) and inf x̂1 /∈
]L(n, sup x̂,u), H(n, inf x̂,u)[then

n = n+ 1
else

return Cu =
⋃

k≤n]L(k, sup x̂,u), H(k, inf x̂,u)[.
end if

end loop

Output: Cu ⊂ X1.

We can determine non-empty intersection of the capture set

with the state uncertainty by using the equivalence x̂1 ∩Cu =
∅ ⇔ x̂ ∩ Cu = ∅. The closed-loop implementation of the

feedback map (6), in discrete time, is provided in Algorithm

2, where u = FeedbackMap(x̂[n+ 1], x̂[n]).

Note that for evaluating the control map, we only need

to calculate the sequences L(n, x, u) and H(n, x, u) for two

extremal constant inputs uL = (u1
H , u2

L) and uH = (u1
L, u

2
H).

Hence, we do not require the detailed model of the system Σ,

we just need to know how the system responds to these two

extremal constant inputs. As we will see in Section IV, this

can be achieved through a series of experiments where these

constant inputs are applied for a set of different initial speeds.

Algorithm 2 u = FeedbackMap(x̂[n+ 1], x̂[n])

Input: (x̂[n+ 1], x̂[n]) ∈ 2X × 2X

Construct capture set slices for state prediction.

CuL
= CaptureSetSlice(x̂[n + 1],uL), CuH

=
CaptureSetSlice(x̂[n+ 1],uH)

Check if predicted state x̂[n+1] intersects both capture set

slices.

if x̂[n+ 1] ∩ CuL
6= ∅ and x̂[n+ 1] ∩ CuH

6= ∅ then

Construct capture set slices for current state.

CuL
= CaptureSetSlice(x̂[n],uL), CuH

=
CaptureSetSlice(x̂[n],uH)

Determine control according to equation (6).

if x̂1[n] ∩ CuL
= ∅ and x̂1[n] ∩ CuH

6= ∅ then

u = uL

else if x̂1[n] ∩ CuL
6= ∅ and x̂1[n] ∩ CuH

= ∅ then

u = uH

else

u = uL

end if

else

No control specified.

u ∈ U
end if

Output: u ∈ U .

IV. VEHICLE DYNAMICS

The vehicle dynamics, which take throttle and brake as

inputs and provide longitudinal displacement as output, is

the cascade of the powertrain system and the vehicle model

(Figure 3(a)). The powertrain system (Figure 3(b)) generates

the wheel torque inputs in response to throttle and brake

inputs. The vehicle model takes throttle and brake inputs

and produces longitudinal displacement as output according

to Newton’s law. In this section, we describe each of the two

subsystems and illustrate how the cascade of the two generates

a flow that is an order preserving map when throttle inputs do

not change with time. Then, we perform a system identification

procedure to determine the dynamics of the cascade system

only in response to maximal throttle and maximal braking,

which is sufficient for the implementation of the control map

as described in Section III.

A. Vehicle Model

The longitudinal displacement of the vehicle along its path

is denoted by p and the longitudinal velocity is denoted by

v ∈ [vmin, vmax], where vmin ≥ 0. The controlled forces that

act on the vehicle are the brake input fb ∈ Fb = [fmin, 0]
with fmin < 0 and engine input fe ∈ Fe = [0, fmax] with

fmax > 0. The brake force fb is controlled by the driver via

6

(a)

(b)

Fig. 3. (a) Block diagram representing the cascade of the powertrain model
and the vehicle model. Here, p denotes longitudinal displacement and v
denotes longitudinal speed. The powertrain model (b) takes the inputs u and
velocity v to produce engine torque at the wheel fe. The static map π takes
the brake pedal percentage input u1 to produce brake torque fb. The vehicle
model takes the brake force fb and engine force fe as inputs. (b) Powertrain
system. The Engine Control Unit (ECU) is a means of controlling the fuel
injection rate and the gear state q of the transmission. The output signals of
the ECU are the fuel injection rate i and the gear reset R. The second block
is the Internal Combustion Engine (ICE), which is where the fuel combustion
takes place based on the fuel injection rate i, and produces an output torque
τ at the flywheel. The next block is the transmission, which converts torque
at the flywheel τ to torque at the transmission output τq as a function of the
gear state q. The drivetrain is the last block, which transfers torque from the
gearbox τq to force at the wheel fe.

the surjective-monotone map π : U1 → Fb that takes brake

pedal percentage u1 as an input, while the engine force fe
is supplied by the powertrain (Figure 3(a)). The longitudinal

dynamics are given by

dv

dt
=

R2

Jw +MR2
(fe + fb −

ρair
2

CDAfv
2

−CrrMg) =: f̃(v, fb, fe), (8)

where R is the wheel radius, M is the vehicle mass, ρair
is the air density, CD is the air drag coefficient, Af is the

projected vehicle cross section, and Crr is the coefficient of

rolling friction [29].

The longitudinal dynamics (8) generate a flow

(p(t, po, vo, fb, fe), v(t, vo, fb, fe)) that is an order preserving

map with respect to brake force input signal fb, engine force

signal fe, and initial conditions (po, vo). That is, larger forces

fb and fe will result in greater displacements and speeds;

larger initial conditions (po, vo) will also result in larger

displacements and speeds. On the input space, we use the

partial order defined by by u ≤ v provided u1 ≥ v1 and

u2 ≤ v2. Consequently, we have uL = (1, 0) and uH = (0, 1).
Since the brake force map π : U1 → Fb is monotone, the

flow is an order preserving map also with respect to the brake

input u1. In the next section, we illustrate the components of

the powertrain.

B. Powertrain

The dynamics of the powertrain take as control inputs u =
(u1, u2) ∈ [0, 1]× [0, 1], where the first component u1 denotes

the brake pedal percent input, and the second component u2

denotes the throttle pedal percent input [5]. In our application,

these inputs can be administered either by the driver or by the

automatic controller. The output of the system is assumed to be

the torque applied at the wheel of the vehicle fe. An overview

of the system is provided in Figure 3(b).

The first component of the powertrain is the Engine Control

Unit (ECU). This sub-system determines the fuel injection

rate i ∈ [0, 1] into the Internal Combustion Engine (ICE),

and the current gear q ∈ {1, 2, 3, 4, 5, 6} of the gearbox.

The inputs to this block consist of the current velocity of the

vehicle v, the throttle pedal input u2 and the brake pedal input

u1. The second component of the powertrain is the Internal

Combustion Engine (ICE). The output of this system is the

torque τ applied by the flywheel, and the input is the fuel

injection rate administered by the ECU. The third component

of the powertrain is the gearbox. This module consists of the

transmission with a fixed gear ratio. All switching logic is

determined by the ECU, which sends a reset input R to the

gearbox when a gear shift has been determined. The gearbox

takes torque at the flywheel τ and converts it to the torque

τq based on the current gear. The last component of the

powertrain is the drivetrain. This component transfers torque

at the gearbox τq to force applied at the wheel fe. This module

consists of the flywheel, torque converter, variable gear ratio

transformer, propeller shaft, final drive and drive shaft (details

can be found, for example, in [29]).

For the powertrain model, the order preserving property of

the output fe with respect to throttle input u2 does not hold in

general. This is due to the complexity of the ECU, which

controls the fuel injection rate in a manner that optimizes

a set of performance metrics, such as emissions, engine

thermodynamic efficiency, with transients that can be quite

complex and non-monotone [5]. By design, however, this is

performed in a manner that generates monotone input-output

behavior at steady-state [10].

Therefore, the dynamics of the vehicle system that take

brake u1 and throttle u2 commands as inputs and provide

speed and displacement as output are order preserving with re-

spect to constant throttle input at least after an initial transient.

Hence, we restrict the control commands to be constant with

time, so that the system dynamics generate an order preserving

flow with respect to the inputs after an initial transient time ǫ.
In the next section, we illustrate how to identify the vehicle

dynamics for the maximal braking and throttle inputs, which

is the only knowledge on the model required by our algorithm.

C. System Identification

In order to model how the powertrain responds to constant

control inputs (maximal braking and maximal throttle), in

principle one should model the details of all the blocks in

Figure 3(b). Rather than modeling this level of detail, we

exploit the fact that the approach illustrated in Section III

allows for disturbance inputs, which we use here to account

for unmodeled dynamics. For the input signal u and velocity

signal v, define the non-deterministic engine force trajecto-

ries Fe(u,v) as the set of all possible output engine force

trajectories applied at the wheel given an input signal and

velocity signal. When the powertrain model is combined with

the vehicle physics, the vehicle velocity v and engine force at

7

the wheel fe are coupled through the longitudinal dynamics

introduced in (8). To capture this dependency, we say a system

evolution is realizable if the velocity trajectory v(t, v0,u1, fe)
and engine torque trajectory fe([0, t]) satisfy (8) at all time

and the inclusion

fe([0, t]) ∈ Fe(u([0, t]),v([0, t], v0, π(u1), fe)). (9)

Let ǫ ∈ R+ denote the maximum delay between initial

changes in driver input u and steady state vehicle acceler-

ation v̇. This is the consequence of delays in: (1) software

subsystems of the drive-by-wire throttle system; (2) delays

in the powertrain due to chemical combustion; (3) gear shift

delays; and (4) delays imposed by the Engine Control Unit

(ECU) for filtering and environmental reasons. For a speed

x2, input u∗, and time-delay constant ǫ ≥ 0, the permissible

acceleration set, denoted Υ(x2, u
∗, ǫ) ⊂ R, is the collection

of all accelerations given by

Υ(x2, u
∗, ǫ) :=

{f̃(v(t, v0, π(u∗
1), fe), π(u

∗
1(t)), fe(t)) ∈ R |

∃ fe([0, t]) ∈ Fe(u
∗,v([0, t], v0, π(u

∗
1), fe)),

∃ t ≥ ǫ, ∃ v0 s.t. x2 = v(t, v0, π(u
∗
1), fe)},

(10)

where u
∗(t) = u∗ for all t.

This is the set of all possible accelerations α =
f̃(x2, π(u

∗
1), fe(t)) achievable at velocity x2 after t ≥ ǫ sec-

onds have elapsed under the constant input signal u∗. Letting

x1 = p and x2 = v, we construct the vector field f(x, u, d) of

Section III-B for a fixed input u = u∗ as f1(x, u
∗, d) :=

x2, f2(x, u
∗, dH) := supΥ(x2, u

∗, ǫ), f2(x, u
∗, dL) :=

inf Υ(x2, u
∗, ǫ). For the case of maximum disturbance dH

(minimum disturbance dL), the interpretation of f2(x, u
∗, dH)

(f2(x, u
∗, dL)) is that it represents the greatest acceleration

(least acceleration) that can possibly be achieved at the veloc-

ity x2 after the constant input u∗ has been applied for at least

ǫ ≥ 0 seconds. If Υ(x, u∗, ǫ) = ∅, then find the minimizer

x∗
2 := argminy2∈X2

{||y2 − x2|| | Υ(y2, u
∗, ǫ) 6= ∅} and set

f(x, u∗, d) = f((x1, x
∗
2), u

∗, d).

For implementing the feedback map of Section III-B,

it is enough to identify experimentally f2(x, uL, dH) and

f2(x, uH , dL). The identification procedure is as follows. To

identify f2(x, uL, dH), we conducted a set of experiments

called braking trials, in which, starting from an initial constant

velocity, maximal braking uL = (1, 0) is applied and vehicle

acceleration after ǫ = 0.7s is recorded to provide data points

for Υ(x2, uL, ǫ) for the values of speed x2 reached after ǫ.
The value of ǫ was chosen to be enough for the vehicle

to reach a steady state acceleration. Several trials for the

same initial speed were performed and the infimum of these

data points for every speed x2 was computed to provide the

value of f2(x, uL, dH). The set of initial velocities chosen is

V0 :=
{

1

4
vmax,

1

2
vmax,

3

4
vmax, vmax

}

, in which vmax = 8
m/s for vehicle 1 (Blue IS 250) and vmax = 17 m/s for

vehicle 2 (Grey IS 250). A brake trial consists of the following

steps (1) accelerate each vehicle to a nominal constant velocity

v0 ∈ V0 on the vehicle path; (2) maintain velocity v0 for at

least 2 seconds, so transmission comes to a steady state; (3)

apply brake input uL := (1, 0) via computer issued command,

(a) (b)

Fig. 4. (a) A summary of all the experimental data for identifying
f2

2
(x2

2
, u2

L
, d2

H
) (black solid line) of vehicle 2. (b) A summary of all the

experimental data for identifying f2

2
(x2

2
, u2

H
, d2

L
) (black solid line) of vehicle

2.

driver does not override command until vehicle reaches rest.

Similarly, to identify f2(x, uH , dL), we conducted a set

of experiments called throttle trials, in which starting from

an initial constant velocity, maximal throttle uH = (0, 1)
for the vehicle 1 and uH = (0, 0.5) for the vehicle 2 was

applied. The set of initial velocities are given by V0 :=
{

0, 1

4
vmax,

1

2
vmax,

3

4
vmax

}

, in which vmax = 8 m/s for

vehicle 1 and vmax = 17 m/s for vehicle 2. A throttle trial

consists of the following steps: (1) accelerate each vehicle to a

nominal constant velocity v0 ∈ V0 on vehicle path, if v0 = 0,

leave vehicle in idling state; (2) maintain velocity v0 for at

least 2 seconds, so transmission comes to steady state; (3)

apply acceleration input via computer issued command, driver

does not override command until vehicle reaches maximum

velocity vmax.

For vehicle 1, which has U1 = [0, 1] × [0, 0.5] and

x1
2 ∈ [0, 8.8] m/s, along path 1 (as shown in Figure 1(c)),

we obtained f1
2 (x

1
2, u

1
L, d

1
H) = −3.1 and

f1
2 (x

1
2, u

1
H , d1L) =

{

3.0 x1
2 ∈ [0, 7),

1.75 x1
2 ∈ [7,∞).

(11)

For vehicle 2, which has U2 = [0, 1]× [0, 1] and x2
2 ∈ [8.8, 20]

m/s, along path 2 (as shown in Figure 1(c)), we obtained

f2
2 (x

2
2, u

2
L, d

2
H) = −3.1 and

f2
2 (x

2
2, u

2
H , d2L) =

{

3.9 x2
2 ∈ [0, 13),

2.5 x2
2 ∈ [13,∞).

(12)

Figure 4 shows the system identification results for vehicle 2.

Similar plots were obtained for vehicle 1.

V. SOFTWARE IMPLEMENTATION

The major software components of the ICA application are

estimation, communication, and control (Figure 5).

A. Estimation

State estimation consists of several modules: longitudinal

state measurement construction from raw measurements in

UTM coordinates; calculation of the universal time; Kalman

filter for local state prediction; and a full state estimator to

construct the current state estimate set x̂(t) ⊂ X for the whole

system. We denote with superscript “L” quantities computed

on the local vehicle while with superscript “R” we denote

8

Fig. 5. Software system overview for the local vehicle. In the figure, we let the superscript L denote the local vehicle while the superscript R denotes
the remote vehicle. The estimator (delimited by a green box) takes as inputs the UTM time and position information (yUTM and tUTM), the vehicle path
information PL, the local vehicle time tL, the local vehicle input uL, and time/state information of the remote vehicle {xR, tR,AR

t }, and provides a set of
possible position/speed configurations for the two-vehicle system x̂ ⊂ X . The communication system (delimited by the blue box) is a module that continuously
sends to and receives information from the remote vehicle. The control system takes as input the state estimate set x̂ computed locally and information from
the control evaluation from the remote vehicle and returns the control input applied to the vehicle.

quantities of the remote vehicle that the local vehicle re-

ceives through the wireless communication. The measurement

projection block is used to compute the longitudinal state

measurement yk from GPS and CAN measurements yUTM

(heading and position from GPS, velocity from CAN). The

global time is computed by using a local time measurement

tL from the vehicle PC, and drift is removed by using the

universal time tUTM from the GPS system. The Kalman

filter combines the longitudinal state measurement yk and

the pedal inputs uL to compute the state estimate xL and

acceleration profile AL
t . This information is sent both to the

communication system, and to the full state estimator. The

full state estimator takes the current state estimate, time and

acceleration profile {xL, tL,AL
t }, and combines this with the

remote state information {xR, tR,AR
t } to construct the full

state estimate x̂[k] for use by the controller.

The time measurements available to each vehicle consist

of the global time tUTM , taken from the GPS system, and

the local time tL taken off the vehicle PC. The global time

tUTM is accurate, however only is received at a rate of 10

Hz, and can sometimes be unavailable due to message loss.

The local time tL is available at a higher rate of 1.5 GHz to a

precision of 1 ms, however it is not accurate globally due to

inherent drift in the crystal oscillator used to calculate time.

To accurately compute a global time with update rate equal

to 1.5 GHz, we combine the global time tUTM with the local

time tL to produce the time t with using a simple moving

average, where the moving average is updated every time a

new global time tUTM is made available.

The measurement projection block constructs a longitudinal

state measurement from raw sensors on-board the vehicle.

This involves projecting raw measurements onto the vehicle’s

path stored locally in PL. The source of absolute position

and heading measurements is the GPS system, which provides

updates at a fixed broadcast rate of 10Hz.

1) Kalman filter: For the Kalman filter, the longitudinal

dynamics are assumed to be linear and hybrid, where the

transmission state q ∈ {1, 2, 3, 4, 5, 6} is assumed to be known

at all time as obtained from the CAN bus. To model rolling

friction, we add a fictitious frictional input, which takes values

based on the sign of velocity, given by u3 = sgn(x2). Since

we seek to estimate also the acceleration, we add the engine

torque at the wheels as a third state. Specifically, the Kalman

filter state is ê ∈ R
3, where the first component is longitudinal

displacement, the second component is longitudinal velocity

and the third component is the engine torque applied at the

wheels. The output measurement is yk ∈ R
3, and incorporates

longitudinal displacement, longitudinal velocity, and accelera-

tion measured from the on-board accelerometer. The output is

a discrete time signal indexed by k ∈ N with constant time-

step ∆T > 0, where the correspondence to time t is given by

t = k∆T . The process dynamics are given by

˙̂e(t) = A(q(t))ê(t) +B(q(t))u(t) + w(t),

yk = Ckê(k∆T) +Dku(k∆T) + vk,

where w(t) ∼ (0, Q) is continuous-time white noise with

covariance Q, and vk ∼ (0, R) is discrete-time white noise

with covariance R.

Let the matrix P (t) denote the estimated state error co-

variance, which is initialized to the identity matrix. Then, the

prediction step of the filter is given by the following update

equations, which represent a forward Euler approximation of

the continuous time dynamics

ê(t) = ê(t−) + t∆(A(q(t))ê(t
−) +B(q(t))u(t))

P (t) = P (t−) + t∆(A(q(t))P (t−) +

P (t−)A(q(t))T +Q),

where t− is the time of the previous update, and t∆ := t− t−.

A prediction step is performed every time the software system

9

updates the current state, therefore, in general the time-step t∆
is not constant. The correction step occurs only when a new

longitudinal state measurement y is available and consists of

the following update equations

Kk = P (t−)CT (CP (t−)CT +R)−1

ê(t) = ê(t−) +Kk(yk − (Cê(t−) +Du(t)))

P (t) = (I −KkC)P (t−)(I −KkC)T +KkRKT
k .

By nature of the fixed rate of measurements (discrete-time)

and continuous-time inputs, the filter is said to be hybrid [25].

The matrices A, B, C, and D, have been identified from

data for every gear q employing the system identification

toolbox within MATLAB. In particular, we used a gray-box

technique, where the system identification determines a vector

of parameters, given a matrix structure derived from first

principles. In particular, we have a second order system with

rolling friction and inputs. We assume a multiplicative gear

ratio from engine input to change in wheel torque. Therefore,

the matrices are of the following form

A(q) =





0 1 0
0 0 1
0 0 a(q)



 , B(q) =





0 0 0
b1 0 b2
0 α(q)b3(q) 0



 ,

C(q) =





1 0 0
0 1 0
0 0 1



 , D(q) =





0 0 0
0 0 0
b1 0 α(q)b3(q)



 .

Data to preform this identification task was taken from four

driving trials with varying input signals. The input signals

were chosen by the driver to ensure an adequate sweep of the

vehicles dynamic range under consideration. Each trial was

taken on the path for which the vehicle normally drives on.

From the experimental data collected, we obtained for q = 1
that a(q) = −2.5, b1 = −5, b2 = −0.1, b3(q) = 5, and

b1 = 0.002. For q ∈ {2, 3, 4, 5, 6}, we obtained that a(q) =
−1, b1 = −5, b2 = −0.1, b3(q) = 5, and b1 = 0.002. The

gear ratios are given by α(1) = 3.5, α(2) = 2.0, α(3) =
1.5, α(4) = 1.2, α(5) = 1, and α(6) = 0.8, which were

taken from a technical data sheet [1]. This model was validated

by comparing simulations obtained with an experimental input

signal with the experimental trajectories.

To implement the Kalman filter, we chose the process and

output noise covariance matrices to maximize noise rejection

while still maintaining satisfactory bandwidth. We assume all

noise processes are independent and identically distributed

and have no mode dependency, therefore, the covariance

matrices are all diagonal. The matrices are given as R =
diag(0.5, 0.3, 1) and R = diag(0.5, 1, 1).

The Kalman filter is used to construct a state prediction.

This is accomplished by computing the acceleration profile

At̄, a set-valued signal containing all possible acceleration

trajectories for future times t ≥ t̄. This allows to predict

the set of possible speeds ê2(t) for t ≥ t̄. Mathematically,

this is given as ê2(t) ∈ ê2(t̄) +
t
∫

t̄

At̄(τ)dτ. As mentioned

in Section III-C, Algorithm 2 requires a two-vehicle state

prediction, which has a tunable time-step ∆p, which can be

chosen by the test engineer, assumed to be less than 1.5 sec

in total. With such a short time scale, it is reasonable to

assume the input stays constant, that is u(t) = u(t̄) for all

t ≥ t̄. To account for the error of this assumption, we add a

configurable window parametrized by the parameter β ∈ R+

to the resulting acceleration. As β is taken to 0, the prediction

is assumed to be exact. The calculation is carried out, to obtain

upper and lower bound sequences [lk, hk], with the Hybrid

Kalman filter as

êk = êk−1 +∆T (A(q(t̄))êk−1 +B(q(t̄))u(t̄)),

[lk, hk] = [0 0 1](Cêk +Du(t̄)) + k[−β, β],

where set addition is understood in the sense of the Minkowski

sum. The acceleration profile At̄(t) is found by taking the

zero-order hold approximation of the sequence [lk, uk].
2) Full state estimator: The Kalman filter output is the esti-

mate of position and speed, which are the first two components

of ê, denoted by xL for the local vehicle and by xR for the

remote vehicle, the estimate of global time t, and the accel-

eration profile At̄(t). The full state estimate is constructed by

combining local state estimation from the Kalman filter with

received remote vehicle state information. In accordance with

feedback map g(x̂), as defined in Algorithm 2, evaluating con-

trol involves discretizing the flow and constructing the current

state estimate x̂[n] and a prediction x̂[n+1]. We now define the

algorithm for computing the full state estimate and prediction,

with arguments local state information (xL, t,AL
t̄L
), remote

state information (xR, tR,AR
t̄R
), and prediction time-step ∆P .

The state estimate is found with FullStateEstimate, defined

in Algorithm 3,which returns the current state estimate x̂[n]
and state prediction estimate x̂[n+ 1].

Algorithm 3 (x̂[n], x̂[n + 1]) =

FullStateEstimate(xL, xR, t, tR,∆P ,AL
t̄L
,AR

t̄R
)

Input: (xL, xR, t, tR,∆P ,AL
t̄L
,AR

t̄R
) ∈ 2X

L

×2X
R

×R
3
+×

S(2R)× S(2R)× R+

Synchronize remote state due to transmission delay

x̂R
1 [n] = xR

1 + (t − tR)xR
2 , x̂R

2 [n] = xR
2 + (t −

tR)[inf AR
t̄R
(tR − t̄R), supAR

t̄R
(tR − t̄R)]

x̂[n] = xL × x̂R
1 [n]× x̂R

2 [n]

Construct prediction

x̂L
1 [n + 1] = x̂L

1 [n] + ∆px̂
L
2 [n], x̂L

2 [n + 1] = x̂L
2 [n] +

∆p[inf AL
t̄L
(t− t̄L), supAL

t̄L
(t− t̄L)]

x̂R
1 [n + 1] = x̂R

1 [n] + ∆px̂
R
2 [n], x̂R

2 [n + 1] = x̂R
2 [n] +

∆p[inf AR
t̄R
(t− t̄R), supAR

t̄R
(t− t̄R)]

x̂[n+1] = x̂L
1 [n+1]× x̂L

2 [n+1]× x̂R
1 [n+ 1]× x̂R

2 [n+1]

Output: (x̂[n+ 1], x̂[n]) ⊂ 2X × 2X .

B. Communication

The state prediction performed by the estimator is necessary

to account for communication delays and avoid control to be

evaluated on old information. Communication delay comprises

all delay experienced from the instant measurement data is

10

populated on-board the local vehicle until the remote vehicle

uses this state information to construct a capture set for

control evaluation. This can be broken down into the following

major components: (1) ICA application acquisition of state

information from the local state estimator; (2) construction of

a remote data message as commanded by the ICA application;

(3) interface with communication layer Denso WSU radio; (4)

physical delay in the wireless transmission of the information;

(5) reception of the message from the remote vehicle commu-

nication layer; (6) population of this state information into

the ICA application for use in capture set construction and

subsequent control evaluation. From experimental results, we

have found that the worst case delay is 0.4 seconds. Hence

the multiple predictions performed to determine x̂[n + 1] are

such that the time ∆p ≈ 0.4 seconds.

C. Control

The set-valued feedback map g is computed locally on each

vehicle. To accommodate delay in the system arising from

communication, software and actuators (as discussed before,

we evaluate the feedback controller for a set of state estimate

predictions). Let the state estimate x̂[n]i ⊂ X represent the

estimate on-board vehicle i at time t. Algorithm 3 can be used

recursively to construct more state estimate predictions. Define

the prediction horizon count Np ∈ N, which is a configurable

design parameter. We construct the state estimate predictions

on-board vehicle i, given by x̂[n + j]i for 1 ≤ j ≤ Np, as

follows (x̂[n+j]i, x̂[n+j−1]i) = FullStateEstimate(x̂[n+j−
1]i, t+j∆p, t

R+j∆p,∆p,AL
t̄L
,AR

t̄R
), where the local vehicle

refers to vehicle i ∈ {1, 2}. We then use the set of predictions

to evaluate the feedback map g on-board vehicle i ∈ {1, 2},

implemented as g(x̂[n]i) :=
⋂

1≤j≤Np
FeedbackMap(x̂[n +

j]i, x̂[n]i).

Before applying control, the two vehicles should reach an

agreement on the control commands to apply. In general, we

have that x̂[n]1 6= x̂[n]2. However, both sets contain the true

system state x by construction. As a consequence, we have

that g(x̂[n]i) ⊆ g(x) given the order reversing property of the

map g. As a consequence, we can take g(x̂[n]1) ∪ g(x̂[n]2)
as the set of all possible safe control choices. In practice,

we implement this with a handshake mechanism to guarantee

that both vehicles choose the same actions. Specifically, the

handshake module remains in the trivial initial state until

a collision is predicted on-board the local vehicle. From

Algorithm 2, a collision is predicted on-board vehicle i when

g(x̂[n]i) 6= U , at which point a message is sent to the remote

vehicle indicating a collision has been predicted. Vehicle i then

waits for a message indicating a collision has been predicted

on-board the second vehicle j. If no such message is received,

the application sleeps for 10 ms and then re-sends the message

denoting a collision has been predicted (in case the message

was not received). This process continues until a message has

been received from vehicle j, or it times out. If a message is

received, then a consensus control is chosen and applied to

the local actuator of both vehicles.

VI. INTERSECTION COLLISION AVOIDANCE EXPERIMENTS

A. Experiment Setup

Experiments were conducted at the TEMA test track in

Ann Arbor, Michigan employing two modified Lexus IS 250

vehicles (Figure 1(c)). Both vehicles run ICA as they approach

the intersection. The velocity of approach is not fixed, however

it must be within safe limits. Each path is stored as a list

of UTM co-ordinates on the respective vehicle. The speed

limits for path 1 are vmin = 0 m/s and vmax = 8.8 m/s,

while the speed limits for path 2 are vmin = 8.8 m/s and

vmax = 18 m/s. The bad set parameters chosen are L1 = 55
m, L2 = 75 m, H1 = 65 m and H2 = 85 m. These

values can be changed as they are only input parameters to

the algorithm. For the specific implementation, we chose them

in such a way that sufficient separation would be maintained

by the vehicles when crossing the intersection. The input sets

are chosen to be U1 := [u1
L, u

1
H] = [0, 0.3] × [0, 0.5] and

U2 := [u2
L, u

2
H] = [0, 0.3] × [0, 1], which represent extremal

inputs that maintain comfortable driving conditions. In general,

these are design parameters that engineers have the freedom

to change based on road surfaces, vehicle capabilities and

general intersection dependent considerations. However, these

need to remain fixed during the course of an experiment or

implementation.

We consider two real-world scenarios, which we refer to as

“use cases”. For use case A, we assume a merging vehicle en-

ters the intersection without properly surveying for oncoming

traffic. Since the vehicle has already entered the intersection

(or the speed is too high such that this is unavoidable), the

only solution is for the merging vehicle to apply throttle

and the straight vehicle to brake. A visualization of this is

provided in Figure 6(a). For use case B, we assume a merging

vehicle is approaching an intersection at high speed, and likely

misjudging the speed of oncoming traffic. The solution in this

case is for the merging vehicle to apply brake while the straight

vehicle applies the throttle. A visualization of this is provided

in Figure 6(b). We performed a total of 28 trials, 15 for use

case A and 13 for use case B.

B. Experiment results

All trajectories generated by the experiments are provided

in Figure 7 in the displacement plane. As it is apparent

from the plots, no trajectory ever entered the bad set, hence

all collisions were averted. Also, the trajectories pass fairly

close to the bad set, indicating that the control algorithm is

non- conservative as expected from theory. In order to better

quantify the performance, we calculated the distance of the

trajectory of the system from the capture set, denoted γ, and

the distance of the trajectory from the bad set, denoted ζ.

Table I provides the summary of the results. This table shows

that the trajectory never entered the capture set nor the bad

set in any trial, which follows from the non-zero values of

∧ζ and ∧γ. This is expected from theory as the controller

guarantees that trajectories starting outside of the capture set

remain outside of the capture set. Furthermore, the distances

of the trajectories from the capture set are very small and can

be decreased by decreasing the prediction horizon ∆p and

11

(a) (b)

Fig. 6. (a) Use case A involves a merging vehicle entering the intersection without first checking oncoming traffic. The figure shows a top
down cartoon of this scenario along with the system configuration related to the capture set in the position plane X1 for a fixed pair of
vehicle speeds. (b) Use case B involves a merging vehicle approaching the intersection while misjudging the speed of oncoming traffic. The
figure shows a top down cartoon of this scenario along with the configuration of the system related to the capture set in the X1 plane.

0 20 40 60 80 100
0

20

40

60

80

100

120

140

X
1
1 (m)

X
12 (

m
)

Fig. 7. All trajectories from all trials. The safety specification is
maintained given that the flow of the system never entered the bad
set B during any trial.

Np ∆p Info ζ(∧, µ) γ(∧, µ) (A,B)

4 3 0.4 P 0.9, 3 0.7 , 2.8 2, 2

4 4 0.2 P 0.6, 0.9 0.1, 0.6 2, 2

14 3 0.4 I 2, 5.9 2, 5.8 9, 5

6 4 0.2 I 0.7, 1.7 0.5, 1.4 2, 4

TABLE I
THE FIRST COLUMN INDICATES THE NUMBER OF TRIALS, THE SECOND

COLUMN THE NUMBER OF PREDICTION STEPS Np (SECTION V-C), ∆p IS

THE PREDICTION TIME (ALGORITHM 3),“P” DENOTES PERFECT STATE

INFORMATION (β = 0 IN THE PREDICTION STEP OF SECTION V-A) AND

“I” DENOTES IMPERFECT STATE INFORMATION (β = 0.2), ζ AND γ ARE

THE DISTANCES OF THE TRAJECTORY FROM THE BAD SET B AND FROM

THE CAPTURE SET C , RESPECTIVELY, WITH ∧ DENOTING THE MINIMUM

VALUE AND µ DENOTING THE AVERAGE VALUE ACROSS THE TRIALS IN

UNITS m.

removing the state uncertainty β. Larger prediction horizons

lead the system to override sooner and as a consequence

the distances from the capture set and from the bad set are

larger. With no state uncertainty (β = 0), the trajectories pass

closer to the capture set and to the bad set, indicating an

aggressive and non-conservative controller. When uncertainty

is introduced, the distances of the trajectory from the capture

set and from the bad set increase because the algorithm applies

control to keep an empty intersection between the predicted

state uncertainty and the capture set. Our algorithms hence

also provide a number of design parameters to compromise

how aggressive the controller is (measured by how close to

the bad set the trajectories go) with the control conservatism

(the controller acts sooner than it could have). This trade off

is relevant in practice because overriding the driver can be

justified only if it is needed to keep the system safe.

Figure 8 shows an experimental trial with perfect state

information (β = 0) and with use case A, while Figure 9

shows a trial for use case B and imperfect state information

(β 6= 0). In use case A (Figure 8), the merging vehicle (vehicle

1) approached the intersection at a cruising speed of 6 m/s,

while vehicle 2 approached the intersection at an accelerating

speed of around 14 m/s. To avoid the collision, the drivers were

overridden at time 19.7 sec when the state prediction hit the

boundary of the capture set. At this time, automatic throttle

was applied to vehicle 1 and automatic brake was applied

to vehicle 2. This control results in vehicle 2 entering the

intersection only (and immediately) after vehicle 1 has cleared

the intersection. Vehicle 1 reached the speed limit v1max while

applying throttle, after which time, the controller held the

speed constant. The test ended after the merging vehicle

exited the intersection, after which time, automatic control was

deactivated and the driver retained control. While conducting

this experiment, the system trajectory x̂(t) was at least within

0.7 m of the capture set, while never actually entering it, which

12

20 40 60 80
0

50

100

150

Vehicle 1 Displacement (m)

V
eh

ic
le

 2
 D

is
p

la
ce

m
en

t
(m

)

Time = 18.8 sec

Time = 18.8 sec

Path 2 Path 1

Easting

N
o

rt
h

in
g

20 40 60 80
0

50

100

150

Vehicle 1 Displacement (m)

V
eh

ic
le

 2
 D

is
p

la
ce

m
en

t
(m

)

Time = 19.7 sec

Time = 19.7 sec

Path 2 Path 1

Easting

N
o

rt
h

in
g

20 40 60 80
0

50

100

150

Vehicle 1 Displacement (m)

V
eh

ic
le

 2
 D

is
p

la
ce

m
en

t
(m

)

Time = 20.6 sec

Time = 20.6 sec

Path 2 Path 1

Easting

N
o

rt
h

in
g

20 40 60 80
0

50

100

150

Vehicle 1 Displacement (m)

V
eh

ic
le

 2
 D

is
p

la
ce

m
en

t
(m

)

Time = 21.5 sec

Time = 21.5 sec

Path 2 Path 1

Easting

N
o

rt
h

in
g

20 40 60 80
0

50

100

150

Vehicle 1 Displacement (m)

V
eh

ic
le

 2
 D

is
p

la
ce

m
en

t
(m

)

Time = 22.3 sec

Time = 22.3 sec

Path 2 Path 1

Easting

N
o

rt
h

in
g

(a)

18 20 22
0

50

100

150

D
is

p
la

ce
m

en
t

(m
)

Time (s)
18 20 22

8

10

12

14

16

18

V
el

o
ci

ty
 (

m
/s

)

Time (s)
18 20 22

-4

-2

0

2

A
cc

el
er

at
io

n
 (

m
/s

2)

Time (s)
18 20 22

0

0.2

0.4

0.6

0.8

1

T
h

ro
tt

le
 In

p
u

t

Time (s)
18 20 22

0

0.2

0.4

0.6

0.8

1

B
ra

ke
 In

p
u

t

Time (s)

18 20 22
30

40

50

60

70

80

Time (s)

D
is

p
la

ce
m

en
t

(m
)

18 20 22

0

2

4

6

8

10

V
el

o
ci

ty
 (

m
/s

)

Time (s)
18 20 22

-0.5

0

0.5

1

1.5

2

A
cc

el
er

at
io

n
 (

m
/s

2)

Time (s)
18 20 22

0

0.2

0.4

0.6

0.8

1

Time (s)

T
h

ro
tt

le
 In

p
u

t

18 20 22

0

0.2

0.4

0.6

0.8

1

B
ra

ke
 In

p
u

t

Time (s)

(b)

Fig. 8. An experimental trial for use case A. Here, perfect state information is assumed. (a) Snapshots showing the configuration of the
vehicles at different times. The upper row shows the configuration of the vehicles (indicated by the cross) in the displacement space along
with the capture set slice C (delimited by the black line) corresponding to the current vehicle speeds. The bad set is the red box. The solid
blue line indicates the trajectory in the displacement space. The portion of this line ahead of the cross indicates the state prediction. The
lower row shows the vehicle positions as they appear from a top-down view of the experiment. The red area corresponds to the bad set (red
box in the upper row plots). (b) Signals for vehicle 1 are shown in the upper row, while the bottom row shows signals for vehicle 2. At
time 19.7 sec, the state prediction hits the boundary of the capture set and hence vehicle 1 applies throttle and vehicle 2 applies brake.

implies safety was maintained and the control actions were not

conservative.

In use case B (Figure 9), imperfect state information was

considered using β = 0.2 m/s2. In this trial, the merging vehi-

cle (vehicle 1) started at rest, while vehicle 2 approached the

intersection at an accelerating speed of around 8 m/s. Vehicle

1 attempted to violently accelerate and enter the intersection.

To avoid the collision, the drivers were overridden at time 47.2

sec, when the set prediction hit the boundary of the capture

set. In this case, automatic brake was applied to vehicle 1 and

automatic throttle was applied to vehicle 2. This control results

in vehicle 1 entering the intersection only (and immediately)

after vehicle 2 has cleared the intersection. The merging

vehicle reached the speed limit v1min while applying brake,

after which time, the controller held the vehicle at rest. The

straight vehicle reached the speed limit v2max while applying

throttle, after which time, the controller held the vehicle at

a constant speed. The test ended after the straight vehicle

exited the intersection, after which time, automatic control was

deactivated and the driver retained longitudinal control. While

conducting this experiment, the system trajectory x̂(t) was

within 0.6 m of the capture set, while never actually entering

it, which implies safety was maintained and the control actions

were not conservative.

VII. CONCLUSIONS

In this paper, we have presented algorithms and experi-

mental validation on prototype vehicles for cooperative col-

lision avoidance at intersections based on a formal control

theoretic approach. Since the application considered is life-

critical, algorithms for collision avoidance should have safety

certificates. The proposed approach provides these certificates

guaranteeing that the system stays collision free and that

automatic control is not applied until absolutely necessary.

13

0 50 100
0

50

100

150

Vehicle 1 Displacement (m)

V
eh

ic
le

 2
 D

is
p

la
ce

m
en

t
(m

)

Time = 46.2 sec

Time = 46.2 sec

Path 2 Path 1

Easting

N
o

rt
h

in
g

0 50 100
0

50

100

150

Vehicle 1 Displacement (m)

V
eh

ic
le

 2
 D

is
p

la
ce

m
en

t
(m

)

Time = 47.2 sec

Time = 47.2 sec

Path 2 Path 1

Easting

N
o

rt
h

in
g

0 50 100
0

50

100

150

Vehicle 1 Displacement (m)

V
eh

ic
le

 2
 D

is
p

la
ce

m
en

t
(m

)

Time = 48.1 sec

Time = 48.1 sec

Path 2 Path 1

Easting

N
o

rt
h

in
g

0 50 100
0

50

100

150

Vehicle 1 Displacement (m)

V
eh

ic
le

 2
 D

is
p

la
ce

m
en

t
(m

)

Time = 49.1 sec

Time = 49.1 sec

Path 2 Path 1

Easting

N
o

rt
h

in
g

0 50 100
0

50

100

150

Vehicle 1 Displacement (m)

V
eh

ic
le

 2
 D

is
p

la
ce

m
en

t
(m

)

Time = 50 sec

Time = 50 sec

Path 2 Path 1

Easting

N
o

rt
h

in
g

(a)

42 44 46 48 50
0

50

100

150

D
is

p
la

ce
m

en
t

(m
)

Time (s)
42 44 46 48 50

8

10

12

14

16

18

V
el

o
ci

ty
 (

m
/s

)

Time (s)
42 44 46 48 50

-1

0

1

2

3

4

A
cc

el
er

at
io

n
 (

m
/s

2)

Time (s)
42 44 46 48 50

0

0.2

0.4

0.6

0.8

1

T
h

ro
tt

le
 In

p
u

t

Time (s)
42 44 46 48 50

0

0.2

0.4

0.6

0.8

1

B
ra

ke
 In

p
u

t

Time (s)

42 44 46 48 50
0

20

40

60

80

Time (s)

D
is

p
la

ce
m

en
t

(m
)

42 44 46 48 50

0

2

4

6

8

10

V
el

o
ci

ty
 (

m
/s

)

Time (s)
42 44 46 48 50

-4

-2

0

2

4

A
cc

el
er

at
io

n
 (

m
/s

2)

Time (s)
42 44 46 48 50

0

0.2

0.4

0.6

0.8

1

Time (s)

T
h

ro
tt

le
 In

p
u

t

42 44 46 48 50

0

0.2

0.4

0.6

0.8

1

B
ra

ke
 In

p
u

t

Time (s)

(b)

Fig. 9. An experimental trial for use case B. Imperfect state information is considered here (β 6= 0). The upper row shows the configuration
of the vehicles (indicated by the cross) in the displacement space along with the capture set slice C (delimited by the black line) corresponding
to the current vehicle speeds. The bad set is the red box. The solid blue line indicates the trajectory in the displacement space. The portion
of this line ahead of the cross indicates the state prediction set. In this experiment, Np = 3 and ∆p = 0.4 and the resulting uncertainty in
position is very small (about 0.1 m), so it is hardly visible in the plot. However, the uncertainty on the speed is significant and it is about 0.5
m/sec. The velocity signal displays the estimate velocity xL

2 resulting from the Kalman filter. The lower row shows the vehicle positions as
they appear from a top-down view of the experiment. The red area corresponds to the bad set (red box in the upper row plots). (b) Signals
for vehicle 1 are shown in the upper row, while the bottom row shows signals for vehicle 2. At time 47.2 sec, the state prediction hits the
boundary of the capture set and hence vehicle 2 applies throttle and vehicle 1 applies brake.

This is achieved by keeping the system state always outside

the capture set, the set of all states from which a collision is

unavoidable given the vehicle dynamics and the limitations on

the control efforts. A number of parameters can be chosen by

the designer, including the maximal and minimal brake and

throttle efforts for automatic control, maximal and minimal

speeds, the size of the collision set (bad set), the bounds

on the modeling uncertainty, the communication delay, and

the bounds on the uncertainty on the driver control actions.

For example, if acceleration is not considered suitable for

preventing a collision, one can set the upper and lower bounds

of the throttle input to zero in the calculation of the capture set

and the control map, so that evasive maneuvers will consider

only braking. Of course, the control action will be more

conservative in this case as the capture set will be larger.

Similarly, the size of the bad set is an input parameter to

the algorithm and it can be changed by the user depending on

the specific intersection geometry. Experimentally, we have

shown how to tune the prediction horizon and the number

of prediction steps in order to adjust the conservatism, that

is, how soon the controller decides that automatic control

is needed to prevent an imminent collision. The later the

automatic control acts, the less conservative the algorithm is,

but the closer the system trajectories come to a collision (while

still averting it). This trade off can be decided depending on

the system specifications. The experiments finally illustrate

that the (linear complexity) algorithms for evaluating the

capture set and control actions are fast enough for real-time

implementation, a feature that is necessary for the practical

applicability of our approach. A number of future research

14

avenues are left to explore. These include incorporating a

warning phase that gives the opportunity to the driver to

react before automatic control becomes necessary. Scalability

to more than two vehicles needs to be studied and initial

results are promising [8]. Our approach can be applied where

vehicles are on known crossing or merging paths, such as at

intersections or when a vehicle merges onto a road from a

parking lot or on the highway. Investigation should be carried

out to extend the approach to road topologies other than

intersections and merges, and to situations where intended

vehicle paths and collision zones cannot be identified a priori.

REFERENCES

[1] http://www.vehix.com/car-reviews/2007/lexus/is-250/4dr-sport-sdn-
auto-rwd/vehicle-specifications.

[2] Vehicle safety and fuel economy rulemaking and research priority plan
2011-2013. In http://www.nhtsa.gov/staticfiles/rulemaking/pdf/2011-

2013 Vehicle Safety-Fuel Economy Rulemaking-
Research Priority Plan.pdf, 2011.

[3] M. Althoff. Reachability analysis and its application to the safety
assessment of autonomous cars. In PhD thesis, Technische Universitat
Munchen, 2010.

[4] L. Alvarez and R. Horowitz. Analysis and verification of the PATH
AHS coordination-regulation layers hybrid system. In American Control

Conference, pages 2460–2461, Albuquerque, New Mexico, 1997.

[5] A. Balluchi, L. Benvenuti, M.D. di Benedetto, C. Pinello, and A.L.
Sangiovanni-Vincentelli. Automotive engine control and hybrid systems:
challenges and opportunities. Proceedings of the IEEE, 88(7):888 –912,
jul 2000.

[6] F. Basma, Y. Tachwali, and H.H. Refai. Intersection collision avoidance
system using infrastructure communication. In International IEEE
Conference on Intelligent Transportation Systems (ITSC), pages 422 –
427, oct. 2011.

[7] M. Braännstroöm, E. Coelingh, and J. Sjoöberg. Model-based threat
assessment for avoiding arbitrary vehicle collisions. IEEE Trans. on

Intelligent Transportation Systems, 11(3):658 –669, sept. 2010.

[8] A. Colombo and D. Del Vecchio. Efficient algorithms for collision
avoidance at intersections. In Hybrid Systems: Computation and Control,
2012.

[9] European Road Safety Observatory (ERSO). Annual statistical report.
2006.

[10] Hosam K. Fathy, Rahul Ahlawat, and Jeffrey L. Stein. Proper pow-
ertrain modeling for engine-in-the-loop simulation. ASME Conference

Proceedings, 2005(42169):1195–1201, 2005.

[11] R. Ghaemi and D. Del Vecchio. Safety control of piece-wise continuous
order preserving systems. In Proc. of IEEE Conference on Decision and
Control, 2011.

[12] D. Greene, Juan Liu, J. Reich, Y. Hirokawa, A. Shinagawa, H. Ito, and
T. Mikami. An efficient computational architecture for a collision early-
warning system for vehicles, pedestrians, and bicyclists. IEEE Trans.

on Intelligent Transportation Systems, 12(4):942 –953, dec. 2011.

[13] C. Le Guernic. Reachability analysis of hybrid systems with linear
continuous dynamics. In PhD thesis, Univerite Joseph Fourier, 2009.

[14] M. R. Hafner and D. Del Vecchio. Computational tools for the safety
control of a class of piecewise continuous systems with imperfect infor-
mation on a partial order. SIAM Journal of Control and Optimization,
49:2463–2493, 2011.

[15] T. A. Henzinger, B. Horowitz, R. Majumdar, and H. Wong-Toi. Beyond
HyTech: Hybrid systems analysis using interval numerical methods. In
Hybrid Systems: Computation and Control, Lecture Notes in Computer
Science, vol. 1790, B. Krogh and N. Lynch (Eds.), Springer Verlag,
pages 130–144, 2000.

[16] N. Kaempchen, B. Schiele, and K. Dietmayer. Situation assessment of an
autonomous emergency brake for arbitrary vehicle-to-vehicle collision
scenarios. IEEE Trans. on Intelligent Transportation Systems, 10(4):678
–687, dec. 2009.

[17] H. Kowshik, D. Caveney, and P. R. Kumar. Provable systemwide safety
in intelligent intersections. IEEE Trans. on Vehicular Technology, pages
804 – 818, 2011.

[18] A. B. Kurzhanski and P. Varaiya. Ellipsoidal techniques for hybrid
dynamics: the reachability problem. In New Directions and Applications

in Control Theory, Lecture Notes in Control and Information Sciences,
vol 321, W.P. Dayawansa, A. Lindquist, and Y. Zhou (Eds.), pages 193–
205, 2005.

[19] J. Lee and B. Park. Development and evaluation of a cooperative vehicle
intersection control algorithm under the connected vehicles environment.
IEEE Trans. on Intelligent Transportation Systems, 13(1):81–90, 2012.

[20] V. Milanés, J. Pérez, E. Onieva, and C. González. Controller for urban
intersections based on wireless communications and fuzzy logic. IEEE

Trans. on Intelligent Transportation Systems, 11(1):243–248, 2010.
[21] G. K. Mitropoulos, I. S. Karanasiou, A. Hinsberger, F. Aguado-Agelet,

H. Wieker, H-J Hilt, S. Mammar, and G. Noecker. Wireless local danger
warning: Cooperative foresighted driving using intervehicle communica-
tion. IEEE Trans. on Intelligent Transportation Systems, 11(3):539–553,
2010.

[22] U.S. DOT National Highway Traffic Administration (NHTSA). Traffic
safety facts. 2003.

[23] U.S. DOT National Highway Traffic Administration (NHTSA). Vehicle
Safety Communications Applications vsc-a, second annual report, 2008.

[24] P. J. Ramadge and W. M. Wonham. The control of discrete event
systems. Proceedings of the IEEE, 77(1):81–98, 1989.

[25] D. Simon. Optimal State Estimation: Kalman, H Infinity, and Nonlinear

Approaches. Wiley-Interscience, 2006.
[26] C. J. Tomlin, J. Lygeros, and S. Sastry. A game theoretic approach

to controller design for hybrid systems. Proceedings of the IEEE,
88(7):949–970, 2000.

[27] C. J. Tomlin, I. Mitchell, A. M. Bayen, and M. Oishi. Computational
techniques for the verification of hybrid systems. Proceedings of the
IEEE, 91(7):986–1001, 2003.

[28] L. Tu and C.-M. Huang. Forwards: A map-free intersection collision-
warning system for all road patterns. IEEE Trans. on Vehicular
Technology, 59(7):3233 –3248, sept. 2010.

[29] R. Verma, D. Del Vecchio, and H. Fathy. Development of a scaled
vehicle with longitudinal dynamics of a HMMWV for an ITS testbed.
IEEE/ASME Trans. on Mechatronics, 13:46–57, 2008.

Michael R. Hafner is a PhD candidate in the Sys-
tems Laboratory at the University of Michigan, Ann
Arbor. His current research interests include safety
control for nonlinear and hybrid systems in multi-
agent settings. He received the B.S. in Electrical
Engineering from the University of California Santa
Barbara.

Drew Cunningham is a research engineer in the In-
tegrated Vehicle Systems Department Toyota Motor
Engineering and Manufacturing NA, Inc. His current
research interests include the development and test-
ing of advanced vehicle safety systems. He received
the B.S. in computer science from Michigan State
University. Contact him at drew.cunningham@tema.
toyota.com.Lorenzo Caminiti is a manager in the Integrated
Vehicle Systems Department Toyota Motor Engi-
neering and Manufacturing NA, Inc. His current
research interests include the creation and validation
of advanced vehicular safety applications. He re-
ceived is masters in engineering from the University
of Rome. Contact him at lorenzo.caminiti@tema.
toyota.com.
Domitilla Del Vecchio received the Ph. D. degree in
Control and Dynamical Systems from the California
Institute of Technology, Pasadena, and the Laurea
degree in Electrical Engineering from the University
of Rome at Tor Vergata in 2005 and 1999, respec-
tively. From 2006 to 2010, she was an Assistant Pro-
fessor in the Department of Electrical Engineering
and Computer Science at the University of Michigan,
Ann Arbor. In 2010, she joined the Department
of Mechanical Engineering and the Laboratory for
Information and Decision Systems (LIDS) at the

Massachusetts Institute of Technology (MIT), where she is currently the
W. M. Keck Career Development Associate Professor. She is a recipient
of the Donald P. Eckman Award from the American Automatic Control
Council (2010), the NSF Career Award (2007), the Crosby Award, University
of Michigan (2007), the American Control Conference Best Student Paper
Award (2004), and the Bank of Italy Fellowship (2000). Her research interests
include analysis and control of nonlinear and hybrid dynamical systems with
application to transportation networks and biomolecular networks.

