

Delft University of Technology

Cooperative collision avoidance for nonholonomic robots

Alonso-Mora, Javier; Beardsley, Paul; Siegwart, Roland

DOI
10.1109/TRO.2018.2793890
Publication date
2018
Document Version
Final published version
Published in
IEEE Transactions on Robotics

Citation (APA)
Alonso-Mora, J., Beardsley, P., & Siegwart, R. (2018). Cooperative collision avoidance for nonholonomic
robots. IEEE Transactions on Robotics, 34(2), 404-420. https://doi.org/10.1109/TRO.2018.2793890

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TRO.2018.2793890
https://doi.org/10.1109/TRO.2018.2793890

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher

is the copyright holder of this work and the author uses the

Dutch legislation to make this work public.

404 IEEE TRANSACTIONS ON ROBOTICS, VOL. 34, NO. 2, APRIL 2018

Cooperative Collision Avoidance for

Nonholonomic Robots
Javier Alonso-Mora , Member, IEEE, Paul Beardsley , and Roland Siegwart , Fellow, IEEE

Abstract—In this paper, we present a method, namely ǫCCA, for
collision avoidance in dynamic environments among interacting
agents, such as other robots or humans. Given a preferred motion
by a global planner or driver, the method computes a collision-free
local motion for a short time horizon, which respects the actuator
constraints and allows for smooth and safe control. The method
builds on the concept of reciprocal velocity obstacles and extends it
to respect the kinodynamic constraints of the robot and account for
a grid-based map representation of the environment. The method
is best suited for large multirobot settings, including heteroge-
neous teams of robots, in which computational complexity is of
paramount importance and the robots interact with one another.
In particular, we consider a set of motion primitives for the robot
and solve an optimization in the space of control velocities with
additional constraints. Additionally, we propose a cooperative ap-
proach to compute safe velocity partitions in the distributed case.
We describe several instances of the method for distributed and
centralized operation and formulated both as convex and noncon-
vex optimizations. We compare the different variants and describe
the benefits and tradeoffs both theoretically and in extensive exper-
iments with various robotic platforms: robotic wheelchairs, robotic
boats, humanoid robots, small unicycle robots, and simulated cars.

Index Terms—Autonomous robots, collision avoidance, motion
planning, multi-robot systems, robot control, robot motion.

I. INTRODUCTION

S
UCCESSFUL robot operation builds on at least three in-

terconnected competence, namely, localization, mapping,

and motion planning/control. The latter is concerned with com-

puting a (lowest cost) path or trajectory between two configura-

tions embedded in a cost field, while taking into account motion

Manuscript received March 23, 2017; revised October 13, 2017; accepted
December 23, 2017. Date of publication March 22, 2018; date of current version
April 12, 2018.This paper was recommended for publication by Associate Editor
K. Hauser and Editor C. Torras upon evaluation of the reviewers’ comments.
(Corresponding author: Javier Alonso-Mora.)

J. Alonso-Mora is with the Department of Cognitive Robotics, Delft
University of Technology, Delft 2628 CD, The Netherlands (e-mail:
j.alonsomora@tudelft.nl).

P. Beardsley is with Disney Research Zurich, Zurich 8092, Switzerland
(e-mail: pab@disneyresearch.com).

R. Siegwart is with the Autonomous Systems Laboratory, ETH Zurich, Zurich
8092, Switzerland (e-mail: rsigwart@ethz.ch).

This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the author. The material consists of
a video, viewable with most players, such as VLC, containing exper-
iments with several robotic platforms (e-puck robots, small boats, hu-
manoid robots and simulated cars). The accompanying video is available at
https://youtu.be/WqSW3Soi0vM. Contact j.alonsomora@tudelft.nl for further
questions about this work.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TRO.2018.2793890

constraints, static obstacles, and moving obstacles [1]–[3]. The

important case where moving obstacles are decision-making

agents forms the topic of this paper. In particular, we describe

a method, ε-cooperative collision avoidance (εCCA), for col-

lision avoidance, which respects the kinodynamic constraints

of the robot and accounts for the cooperation with other robots

in avoiding collisions. The method is especially well suited for

multirobot systems.

A. Related Works

Advances in deterministic graph search [4], graph represen-

tation [5], and randomized sampling-based methods [6] have

enabled (approximately optimal) solution strategies on a global

scale including obstacles, which led to a separation between

global and local planning. The development of sampling-based

planning algorithms [7], [8] and tree-based approaches [9]

has considerably softened this separation and enabled unified

system-compliant online motion planning. Nonetheless, if this

operation takes place among other decision-making agents,

system-compliant planning alone does not seem adequate to

ensure safe navigation. Rather, it becomes important that the in-

dividual planning strategies are aware of (and take into account)

that other agents are also engaging in a similar activity. This is

the case for multirobot systems that are the focus of our paper.

In the context of collision avoidance for multiple robots, sim-

ilar approaches to those for the single-robot case can be applied.

However, the increase in robot density and collaborative in-

teraction requires methods that scale well with the number of

robots, while avoiding collisions, as well as oscillations. De-

centralized control helps to lower computational cost and in-

troduces additional robustness and flexibility to the multirobot

system. Traditional approaches for collision avoidance are po-

tential fields [10], the dynamic window [11], inevitable colli-

sion states [12], sequential convex programming [13], model

predictive control [14], priority-based planning [15], and social

forces [16]. Yet, they do not account for the interaction between

robots that appears in multirobot systems, or when robots navi-

gate among other decision-making agents. Recent methods for

fast collision avoidance in multirobot scenarios include buffered

Voronoi cells [17] and barrier certificates [18]. Our method re-

sembles the latter in that we also employ a quadratic optimiza-

tion to compute collision-free motions. Interaction can be taken

into account by learning-based methods, such as Gaussian pro-

cesses [19] and inverse reinforcement learning [20], [21]. Our

approach provides formal guarantees and is best suited for mul-

tirobot scenarios, thanks to its low computational cost.

1552-3098 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-0058-570X
https://orcid.org/0000-0003-0967-4039
https://orcid.org/0000-0002-2760-7983

ALONSO-MORA et al.: COOPERATIVE COLLISION AVOIDANCE FOR NONHOLONOMIC ROBOTS 405

The reciprocal velocity obstacle (RVO) method [22] models

robot interaction both in a decentralized manner and pairwise

optimally. Under the assumption that other agents also continue

their present motion along a straight-line trajectory, future

collisions may be estimated as a function of relative velocity

alone. Its success paved the road toward several extensions

and revisions of the basic framework: The optimal reciprocal

collision-avoidance (ORCA) method [23] prevents reciprocal

dances and casts the problem into a linear programming

framework, which can be solved efficiently. Snape et al. [24]

accounted for simple robot kinematics and sensor uncertainty by

enlarging the velocity cones, without formal guarantees. Wilkie

et al. [25] generalized RVO for robots with nonholonomic

constraints by testing sampled controls for their optimality,

which required extensive numeric computation and relied

on probabilistic sampling. Solutions limited to robots with

unicycle and bicycle kinematics are introduced in [26]–[28] and

[29], generalizations of the RVO method to second-order and

nth-order integrator dynamics are described in [30] and [31],

and generalization of the RVO method to heterogeneous teams

of robots are presented in [32], yet it required all robots to be

controlled with the same type of inputs. The extension RRVO

[33] applies to polygonal robots and COCALU [34] accounts for

uncertainty in the measurements. Extensions to aerial vehicles

navigating in three-dimensional spaces have also been pro-

posed, which rely on LQG obstacles [35] and LQR control [36].

The latter follows the same concept of motion constraints as this

paper.

Despite the large body of related contributions, we note that

most of the extensions of the RVO method are limited toward a

specific vehicle model, or a specific order of solution continuity,

or only apply to homogeneous teams of robots.

B. Contribution

We present a method, namely ε CCA, for collision-free

navigation among, homogeneous or heterogeneous, groups of

decision-making robots. The main contributions are as follows.

1) A method for cooperative collision avoidance, which

accounts for the interaction with other robots and

the kinematic model and dynamic constraints of the

robots.

2) A detailed discussion of convex and nonconvex, central-

ized, and distributed implementations of the method.

3) An extension of the method to cooperative distributed col-

lision avoidance where a prediction over future velocities

of the neighboring agents can be taken into account in the

computation of the velocity partition.

4) Extensive experimental evaluation of the proposed al-

gorithms, including various robot kinematics, such as

differential-drive, carlike, and boats.

This paper describes a method for planar robots that uni-

fies and generalizes our previous conference contributions [28],

[29], [37], and [38]. Additionally, we introduce the extension to

cooperative avoidance with a velocity prediction and show new

experimental results with boats and wheelchairs. Not discussed

in this paper, our method also extends to aerial vehicles [36].

C. Organization

The remaining part of this paper is organized as follows. In

Section II, we introduce the required definitions and problem

formulation. In Section III, we describe the motion constraints

that arise from the robot kinodynamic model. In Section IV, we

describe the collision avoidance constraints. In Section V, we

describe the εCCA method in detail. In Section VI, we present

experimental results with various robotic platforms followed by

a discussion of lessons learned. Finally, Section VII concludes

this paper.

II. PRELIMINARIES

We now provide the needed definitions, the problem formula-

tion for cooperative avoidance, and an overview of the method.

Throughout this paper, vectors are denoted in bold x, matrices

in capital M , and sets in mathcal X . The Minkowsky sum

of two sets is denoted by X ⊕ Y and x = ||x|| denotes the

Euclidean norm of vector x. The super index ·k indicates the

value at time tk , and the appropriate relative time t̃ = t − tk .

Subindex ·i indicates agent i and relative vectors are denoted by

xij = xi − xj . For ease of exposition, no distinction is made

between estimated and real states.

1) Agents, i.e., Robots and Dynamic Obstacles: Consider a set

of n agents, where one or more are controlled robots within the

system. All other agents are dynamic obstacles. In the remainder

of this paper, and for simplicity, we refer to all agents as robots,

which move on the plane W = R
2 . For each robot i ∈ I =

{1, . . . , n} ⊂ N, its position at time t is denoted by pi(t) ∈ R
2 ,

and its state, which may contain also its velocity vi(t) = ṗi(t)
and accelerationai(t) = v̇i(t), is denoted byzi(t). We model all

robots by the smallest enclosing disk (the method also applies to

arbitrary robot shapes with the assumption that they do not rotate

during the local planning horizon) of radius ri . Let D(p, r)
denote a disk centered at position p and of radius r. Further

denote the area occupied by robot i at position pi by Ai(pi) =
D(pi , ri) ⊂ R

2 .

2) Static Obstacles: Consider a set of static obstacles O ⊂ R
2

defining the global map. Further denote by Ōr the set O dilated

by radius r, i.e., the positions p for which a robot of size D(p, r)
would be in collision with any of the obstacles, formally

Ōr = {p ∈ R
2 | D(p, r) ∩ O �= ∅}. (1)

The set of dilated obstacles Ōr can be stored in an occupancy

grid map. Alternatively, they can be stored as a list of polytopes.

In both cases, given a position p, it is possible to compute

a convex polygon P (p, r) in its neighborhood, which is fully

contained in free space P (p, r) ⊂ W \Ōr , for example, with

the method of [39].

3) Time: We denote by the current time t0 and by the time

horizon τ of the motion planner. Further, denote t1 = t0 + τ . We

may employz0
i = zi(t0) andp0

i = pi(t0) for ease of exposition.

4) Preferred Velocity: For each controlled robot, we assume

that a preferred velocity ūi ∈ R
2 is available at time t0 . This

preferred velocity is typically given by a global guidance system.

To converge to a desired goal location, the preferred velocity can

be given by a proportional controller, saturated at a preferred

406 IEEE TRANSACTIONS ON ROBOTICS, VOL. 34, NO. 2, APRIL 2018

Fig. 1. Example of motions from the set of primitives. Each kinodynamically-
feasible trajectory (continuous line, (p, ṗ, p̈)) is given by a trajectory tracking
controller toward the straight-line reference of constant control velocity (dashed,
p(t0) + u(t − t0)).

speed [28]. To follow a predefined path, the preferred velocity

can be given by a trajectory tracking controller [29], such as the

one given in [40]. For shared control of a robot, the preferred

velocity can also be given by a human driver, e.g., proportional

to the driving wheel or joystick position in the relative frame of

the vehicle [38].

A. Motion Primitives

To model the kinematic and dynamic constraints of the robots,

we employ a continuous set of motion primitives, see Fig. 1. The

trajectory of the robot is given by a bijective mapping from a

control velocity u ∈ R
2 , which indicates the target direction and

velocity of the robot.

A control velocity u defines a constant-velocity reference,

which starts at the current position p(t0) of the robot

pref(t) = p(t0) + (t − t0)u, for t ≥ t0 . (2)

The associated trajectory for the robot is given by an appropri-

ate tracking controller p(t) = f(z(t0),u, t), which respects the

kinematic and dynamic constraints of the robot. This trajectory

shall be continuous in the initial state z(t0) = [p(t0), ṗ(t0),
p̈(t0), . . .] of the robot and converge to the control reference

of (2). Examples for typical robot kinematics are discussed in

Section III.

B. Velocity Utility

For cooperative collision avoidance, we consider that a utility

distribution φi : R
2 → R

+ over the control velocities of each

robot is available.1 Given the environment characteristics, for

each robot, we can compute a cost function χi

χi : R
2 → [0,∞)

ui �→ χi(ui)
(3)

where the cost χi(ui) is given by the sum of several terms,

which may include the following, with K∗ > 0 weights.

1) Deviation from current velocity: The robot is expected to

continue with its current velocity, K1 ||ui − vi(t0)||
2 .

2) Static obstacles: A high cost K4 >> 0 is added for ref-

erence trajectories in collision with a static obstacle, such

that pi(t1) + ui t̃ ∈ Or for some t̃ ∈ [0, τ].

1In Section IV-C, we show that the constant velocity model can be written as
a particular case of this utility distribution.

3) Deviation from preferred velocity: Velocities close to its

preferred velocity incur lower cost, K2 ||ui − ūi ||
2 .

4) Cost to go: Proportional to the distance from the robot’s

goal position to the expected position after the time

horizon of the local planner, pi(t1) = pi(t0) + uiτ . The

cost to go can be computed with a search algorithm such

as A∗ [3] or be obtained from a precomputed distance

transform map.

The first and second cost terms can be obtained by all robots

with common observations. If the goal positions are not shared,

for other robots, the third and fourth cost terms can only be

estimated. Additional cost terms, e.g., to account for congestion,

could be included.

The cost function is then transformed into a utility distri-

bution with a mapping [0,∞) → [0, 1]. To maintain the linear

characteristics for low cost, we define

φi(ui) =
max(0, 1 − χi(ui)/K0)

∫

u i ∈R2 max(0, 1 − χi(ui)/K0)
(4)

where K0 is the cutoff cost. An example this velocity utility is

shown in Fig. 6. If a cost function is not available, the method can

be employed with a reciprocal or constant velocity assumption,

see Sec. IV-C.

C. Problem Formulation

The objective of this paper is to compute collision-free tra-

jectories for a time horizon τ .

Definition 1 (Collision): A robot i at position pi is in colli-

sion with a static obstacle, if Ai(pi) ∩ O �= ∅. The robot is in

collision with a dynamic obstacle j at position pj and of area

Aj (pj) if Ai(pi) ∩ Aj (pj) �= ∅.

Definition 2 (Collision-free motion): A trajectory is said to

be collision-free if for all times between t0 and t1 there is no

collision between the robot and any static or dynamic obstacle

Ai(pi(t)) ∩

(

O ∪
j∈I \{ı}

Aj (pj (t))

)

= ∅ ∀t ∈ [t0 , t1]

(5)

which is equivalent to pi(t) ⊂ W \ Ōr i
and Ai(pi(t)) ∩

Aj (pj (t)) = ∅ for all t ∈ [t0 , t1] and ∀j ∈ I \ {i}.

In this paper, we discuss two scenarios, a centralized one

where a central unit computes the motion for all the robots si-

multaneously, and a distributed one where each robot computes

independently its motion. For the latter, we assume no commu-

nication between the robots.

Problem 1 (Centralized collision avoidance): Consider the

set of n robots and a centralized computing unit that controls all

the robots in the team. Given the kinodynamic model of each

robot in the team, compute collision-free trajectories for all the

robots in the team. The trajectories shall minimize the sum over

all robots of the deviation from a preferred direction of motion

and speed, given by the cost function of (20). This problem will

be formalized in Section V-A.

Problem 2 (Distributed collision avoidance): For robot i ∈
I , and given its kinodynamic model and the current po-

sition and velocity of all neighboring agents and obstacles,

compute a collision-free trajectory for the robot under the as-

ALONSO-MORA et al.: COOPERATIVE COLLISION AVOIDANCE FOR NONHOLONOMIC ROBOTS 407

Fig. 2. Local motion planning. Overview of the approaches for distributed and centralized collision avoidance.

sumption that all other agents follow the same algorithm for

collision avoidance or their velocity remains constant during

the planning horizon. The trajectory shall minimize the devia-

tion from a preferred direction of motion and speed, given by

the cost function of (19). This problem will be formalized in

Section V-B.

D. Approach

Fig. 2 shows a schema of our method for collision avoidance.

For each controlled robot, we assume that a preferred veloc-

ity ūi ∈ R
2 is available at time t0 . Since the optimal velocity

resulting from a velocity obstacle (VO)-based constrained op-

timization would lead to an avoidance maneuver where robots

get infinitely close, we add a repulsive term ůi to the preferred

velocity ūi to slightly push the robot away from static and mov-

ing obstacles. This term is inversely proportional to the distance

to the closest obstacle, for example,

ůi = max

(

0,Krma x

(

1 −
dobst − ri

Krdist

))

pi − pobst

dobst

(6)

where dobst = ||pi − pobst|| is the distance from the center of

the robot to the closest obstacle, pobst is the closest point on

that obstacle, Krma x
is the maximum repulsive velocity and

Krdist
is the distance from which a repulsive velocity is added.

Adding this repulsive velocity to the preferred velocity can help

the planner in finding feasible collision-free trajectories since it

aims at keeping a separation from obstacles, but, just by itself,

it does not guarantee collision-free motion. In the remainder of

this paper, we will consider ūi := ūi + ůi .

In our method, we consider three types of constraints.

1) For avoidance of static obstacles.

2) For avoidance of other robots or agents, via the velocity

obstacles [41] and the ORCA paradigm [23].

3) For respecting the kinodynamic model of the robot, for-

mulated as a constraint that limits the set of motion prim-

itives.

Given the preferred velocity ūi and the set of constraints, an

optimal control velocity u∗
i is computed, which minimizes the

deviation with respect to ūi and such that its associated local

trajectory f(zi(t0),u
∗
i , t) is collision-free. An advantage of our

method is that it allows for an efficient optimization in the

control velocity space (R2) to achieve collision-free motions.

This is achieved by enlarging the radius of the robots by a small

Fig. 3. Reference trajectory with constant control velocity (continuous) and
local trajectory (dotted) for a robot with kinematic and dynamic constraints.
The radius extension and error bounds are marked with ε.

value ε and restricting the motion primitives to those with an

error below ε, see Fig. 3 and the following section.

III. MOTION CONSTRAINTS

For robot i, the set of motion primitives is given by a trajectory

tracking controller pi(t) = f(z0
i ,ui , t) toward the reference

parameterized by control velocity ui , see Section II-A. The set

of feasible motion primitives is defined by

Ri(z
0
i) = {ui ∈ R

2 , such that the trajectory f(z0
i ,ui , t)

respects all dynamic constraints}.
(7)

Constraint 1 (Dynamic restrictions): For a maximum track-

ing error εi and current state z0
i = [p0

i , ṗ
0
i , p̈

0
i], the set of control

velocities ui that can be achieved with position error below εi

is denoted by Ri := R(zi , εi)

Ri := {ui ∈ Ri(z
0
i) | ||(p0

i + t̃ui) − f(z0
i ,ui , t̃)|| ≤ εi

∀t̃ > 0} (8)

which is invariant with respect to the initial position of the robot.

A mapping γ from initial state z0
i and control velocity ui to

maximum tracking error can be precomputed and stored in a

look-up table

γ(ui , z
0
i) = maxt̃>0‖(p

0
i + t̃ui) − f(z0

i ,ui , t̃)‖. (9)

An example of this precomputed set is shown in Fig. 4 for the

case of a robotic car, where the tracking error depends on the

initial speed and steering angle. A bounding box Hi can also be

computed such that Ri ⊂ Hi .

408 IEEE TRANSACTIONS ON ROBOTICS, VOL. 34, NO. 2, APRIL 2018

Fig. 4. Maximum tracking errors in [m], and saturated at 5 m, for a carlike
robot [29] and for varying values of the control velocity u. In this example, the
initial velocity is set to v0

i = 0 m/s and the initial steering angle to φ = 0◦. As
expected, the robot can easily track control velocities aligned with its orientation,
but experiences high tracking errors for control velocities in the perpendicular
direction (which would require the car to rotate).

We now provide an overview of robot models that have been

implemented and tested with this framework. These cover most

of the typical robotic platforms.

1) Unicycle (Differential Drive): The trajectories can be de-

fined by a circumference arc followed by a straight-line refer-

ence at control velocity ui . The angular and linear velocity over

the arc can be computed to achieve the correct orientation within

a fixed amount of time T , we employed three times the time-step

of the controller, and minimized the tracking error with respect

to the control reference [28]. In this formulation, robots had no

constraints in acceleration and the linear and angular velocities

showed a discontinuity.

2) Bicycle (Carlike): A trajectory tracking controller [42]

can be applied at the middle point of the vehicle to track the

control reference. This controller was obtained by applying full-

state linearization via dynamic feedback to the nonlinear sys-

tem. Additional constraints, such as maximum steering angle,

maximum angular and linear velocity, and maximum acceler-

ation, can be added as saturation limits [29]. This framework

guarantees continuity in both linear velocity and steering angle.

3) Unicycle With Dynamic Constraints: The method can

also be applied to other robot morphologies, such as robotic

wheelchairs with dynamic constraints, e.g., maximum linear

speed, maximum angular speed, and maximum acceleration

[38]. Since any reference point p to the front of the ve-

hicle rear axle is fully controllable [42], we controlled the

middle point of the robot via a second-order integrator [31]

toward the control reference defined by the control velocity u,

and added saturation limits.

4) Humanoid Robots: To apply the method to Aldebaran

NAO humanoid robots, we defined the motion primitives [46]

by a sequence of constant linear velocity and constant angular

velocity segments, similar to the case for simple unicycle robots,

with the additional option for in-place rotation.

5) Holonomic Boat With Dynamic Constraints: Alterna-

tively, one may employ an LQR-controller, or any other type

of controller, in position and velocity to track the reference

given by ui . This is the approach that we follow to control

omnidirectional boats, each driven by three rotating propellers.

Additional saturation limits are included to account for the boat

restrictions.

To sum up, the method can be applied to any kinody-

namic model by designing a specific trajectory tracking func-

tion f(z0
i ,ui , t) and precomputing the tracking errors. Yet, the

method is best suited for robots with fast dynamics, since the

set Ri is less restricted.

IV. PAIRWISE COOPERATIVE AVOIDANCE

We now describe the constraint for avoidance of other robots,

which builds on VOs [41], RVOs [22] and ORCA [23]. The

constraint is computed for robots of radius r̂i = ri + εi .

A. Velocity Obstacle in Relative Velocity Space

For a pair of robots, the VO [41] is given by the relative control

velocities uij = ui − uj that lead to a collision between the two

robots within a time horizon τ .

Constraint 2 (Inter-Robot Collision Avoidance): For every

pair of neighboring robots {i, j} ∈ I , where i �= j, the col-

lision avoidance constraint is given by the control velocities

leading to a future collision, i.e., ‖pi − pj + (ui − uj)t̃‖ ≥
r̂i+j = r̂i + r̂j , for all t̃ ∈ [0, τ].

This constraint can be rewritten [23] as ui − uj /∈ VOτ
ij =

⋃τ
t̃=0((D(pj , r̂)) ⊕ D(pi , r̂i)/t̃), a truncated cone as shown in

Fig. 5, which is only computed if the distance between the two

robots is below a threshold (pij = ||pij || < Kd).

The nonconvex constraint R
2 \VOτ

ij can be approximated by

three linear constraints of the form nl
ij · uij ≤ bl

ij , with l ∈
{1, 2, 3}, and given by

[

cos (γ+)
sin (γ+)

]

uij ≤ 0,

−
pij

pij
· uij ≤

pij − r̄i+j

τ
,

[

cos (γ−)
sin (γ−)

]

uij ≤ 0 (10)

where γ+ = α + β, γ− = α − β, α = atan2 (−pij) and β =
acos (r̄i+j/pij). The first and last constraints represent

avoidance to the right and to the left, respectively, and the mid-

dle constraint represents a head-on maneuver, which remains

collision-free up to t̃ = τ .

The constraint R
2 \VOτ

ij can be linearized directly from a

velocity [22] or linearized by selecting one of the three linear

constraints. Sensible choices include the following.

1) Fixed side for avoidance: If robots are moving toward each

other, i.e., vij · pij < 0, avoid on a predefined side, e.g.,

on the left (l∗ = 1) or on the right (l∗ = 3). If robots are not

moving toward each other, the constraint perpendicular to

ALONSO-MORA et al.: COOPERATIVE COLLISION AVOIDANCE FOR NONHOLONOMIC ROBOTS 409

Fig. 5. Given two robots in the configuration shown in (a), the constraint for avoidance (shown in (b) in gray) is computed in relative control velocity space. The
free space (white) is nonconvex and can be approximated by three linear constraints, of which at least one must be satisfied. (a) Configuration of two interacting
robots, with current position and velocity. (b) Constraint (gray) of relative reference velocities (ui − uj) leading to a future collision.

the apex of the cone (l∗ = 2) is selected to maximize

maneuverability.

2) Maximum constraint satisfaction with respect to the cur-

rent relative velocity

l∗ = arg min
l

(nl
ij · (vi − vj) − bl

ij) (11)

which maximizes the feasible area in a neighborhood of

the current velocities.

3) Maximum constraint satisfaction with respect to the pre-

ferred velocity, i.e.,

arg min
l

(nl
ij · (ūi − ūj) − bl

ij) if centralized.

arg min
l

(nl
ij · (ūi − vj) − bl

ij) if distributed.

This selection may provide faster progress toward the goal

position, yet the optimization can become infeasible if the

robot greatly deviates from its preferred trajectory.

The first option provides the best coordination results as it

incorporates a social rule. The second option maximizes the

feasible area of the optimization and the third option may pro-

vide faster convergence. We employ the second option.

B. Reciprocal Collision Avoidance

In the distributed case, the new reference velocity uj of the

neighboring robot is unknown. An assumption must be made.

Naive assumptions are to consider the robot static, uj = 0, or

that it follows a constant velocity, uj = vj . In both cases, de-

cision making is not taken into account and oscillations can

happen in multirobot scenarios.

In multirobot scenarios we may consider the case where all

robots employ the same algorithm. In this line, RVOs [22] ex-

tended the concept of VOs by shifting the velocity cone to share

the avoidance effort. To avoid reciprocal dances, the idea was

later extended to ORCA [23].

In reciprocal collision avoidance, the goal is to obtain two

sets Fi|j ⊂ R
2 and Fj |i ⊂ R

2 such that for every velocity ui ∈
Fi|j , and for every velocity uj ∈ Fj |i , the relative velocity is

collision free

ui ∈ Fi|j

uj ∈ Fj |i

}

⇒ ui − uj ∈ R
2 \ VOτ

ij (12)

equivalent to Fi|j ⊕ (−Fj |i) ⊂ R
2 \ VOτ

ij . If this holds, then

robots i and j can freely select a velocity within Fi|j and Fj |i ,

respectively.

To achieve this, first the centralized VO constraint R
2 \VOτ

ij

is linearized, resulting in a constraint uij ≤ bl∗

ij . Then, the par-

tition is given by a value bi|j ∈ R such that

Fi|j = {ui |n
l∗

ij · ui ≤ bi|j}
Fj |i = {uj | − nl∗

ij · uj ≤ bl∗

ij − bi|j}

}

⇒ nl∗

ij · uij ≤ bl∗

ij .

(13)

For reciprocal collision avoidance, bi|j was defined as a

function of the avoidance effort. Denote by ∆uij the mini-

mum change in relative velocity required to avoid a collision,

then the minimum required change in velocity for robot i is

∆ui = λi|j∆uij with λi|j a constant to indicate how the avoid-

ance effort is shared between both robots. For robot j, it is then

assumed ∆uj = −(1 − λi|j)∆uij , i.e., it reciprocates. From

(14), and following [23], we then have

bi|j = λi|j b
l∗

ij + nl∗

ij · ((1 − λi|j)vi + λi|jvj). (14)

The parameter λi|j defining the collaboration effort must be

fixed and know, typically considering that robots equally coop-

erate λi|j = 0.5 or that they are dynamic obstacles λi|j = 1.

C. Cooperative Avoidance

We now extend the method to remove the assumption of

known λi|j and take into account a utility function, or prediction,

over control velocities, see Section II-B, when computing the

sets Fi|j and Fj |i . Thus, producing a cooperative partition.

In particular, we maximize a cooperation measure, which is

a function of the utility functions φi(ui) and φj (uj) of both

interacting robots.

The cooperation measure Υ(l, bi|j) is defined for each lin-

earization option l ∈ {1, 2, 3} of the collision-free relative ve-

locities R
2 \ VOτ

ij and for each value bi|j defining the partition.

This measure is given by

Υ(l, bi|j) = Υ(l) + Υ(i, l, bi|j) + Υ(i, l, bj |i) (15)

where Υ(l) can favor a certain avoidance topology, e.g., to

encode preference for avoidance on the right, and Υ(i, l, bi|j) is

a function of the utility of the collision-free velocities within the

partition Fi|j of robot i (Υ(i, l, bj |i) for robot j). To bind the

problem, we consider disks Di and Dj centered at the current

velocity of each robot, e.g., of radius τamax
i representing the

velocities that can be achieved within the time horizon, and

limit the control velocities to this disk.

410 IEEE TRANSACTIONS ON ROBOTICS, VOL. 34, NO. 2, APRIL 2018

Fig. 6. Example of velocity utility for two robots (black/brown) navigat-
ing toward their goal (gray disk) in a corridor environment, and their recip-
rocal/cooperative partition for distributed collision avoidance (shadowed area
represents the unfeasible side of the constraint). The maximum of the velocity
utility is displayed in light blue, decreasing toward dark blue and with its min-
imum (zero value) red. Values are scaled and independent in both images. For
visualization, the axes are aligned with the map.

We define each robot’s term by the sum of utilities of all the

control velocities within a neighborhood of the current one

Υ(i, l, bi|j) =

∫

u i ∈D i ∩Fi |j
φi(ui)dui

∫

u i ∈D i
φi(ui)dui

(16)

with Fi|j and Fj |i following (14). For each robot, and fixed l,
this is a monotonically increasing/decreasing function of bi|j ,

valued in the range [0, 1].
The optimal partition and linearization are then given by

(l∗, b∗i|j) = arg maxl,bi |j
Υ(l, bi|j) (17)

obtained by first computing the value of Υ(l, bi|j) for each

l ∈ {1, 2, 3} and then selecting the maximum among them. An

example of this constraint is shown in Fig. 6.

Constraint 3 (Distributed Inter-Robot Collision Avoidance):

For every pair of neighboring robots {i, j} ∈ I , where i �= j,

the distributed cooperative collision avoidance constraint is

then given by Fi|j = {ui |n
l∗

ij · ui ≤ b∗i|j}.

In Fig. 7, we show schema of the computation of the inter-

robot collision avoidance constraint in the centralized and dis-

tributed cases.

We now show that the partitions of Section IV-B can be

obtained as particular cases of this approach. In particular,

1) Static robot assumption with

φj (uj) = 1, for uj = 0; φj (uj) = 0 otherwise.

2) Constant velocity assumption with

φj (uj) = 1, for uj = vj ; φj (uj) = 0 otherwise.

3) Constant preferred velocity assumption with

φj (uj) = 1, for uj = ūj ; φj (uj) = 0 otherwise,

where ūj is the preferred velocity of robot j, see

Section III.

4) The reciprocal partition is obtained, for λi|j = 0.5, by

employing the cooperation measure

Υr (l, bi|j)=max(nl
ij · vi−bi|j ,−nl

ij · vi − (bij − bi|j)).

V. METHOD

We now introduce the εCCA method for collision avoidance.

First, we need an additional constraint for avoiding static obsta-

cles. Recall r̂i = ri + εi .

Constraint 4 (Collision Avoidance Static Obstacles): For ro

bot i ∈ I , this constraint is given by the reference velocities

such that the new positions are not in collision with the enlarged

obstacle map, pi + ui t̃ /∈ Ōr̂ i
, for all t̃ ∈ [0, τ]. Let us denote

this constraint by ui /∈ Q̄i .

In each control loop, we compute the optimal control velocity

u∗
i via a constrained optimization, which can be centralized

or distributed, and consists of constraints for respecting the

kinodynamic model of the robot, avoiding other robots and

avoiding static obstacles.

We define the optimization cost J(ui) by a quadratic function,

given by a weighted sum of two terms: A regularizing term

penalizing changes in velocity and a minimizer of the deviation

with respect to the preferred velocity ūi .

J(ui) := Ko ||ui − vi ||
2 + (ui − ūi)

T DT
i LDi(ui − ūi)

(18)

where Ko is a design constant and the matrices Di and L produce

an elliptical cost to penalize changes in speed over changes in

orientation. This follows the observation that pedestrians prefer

to maintain a constant velocity in order to minimize energy [43].

The relative weighting is defined by

L =

[

Λ 0
0 1

]

and Di =

[

cos γi sin γi

− sin γi cos γi

]

where Λ > 0 is the relative weight and γi the orientation of ūi .

Let us denote by u1:n = [u1 , . . . ,un] the union of control ve-

locities for all robots. We can define the centralized cost J(u1:n)
as the weighted sum of the cost functions J(ui)

J(u1:n) :=
n

∑

i=1

ωiJ(ui) (19)

where ωi represents the weight of each individual robot in the

avoidance effort and can be used to define characteristics, such

as shy and aggressive behavior.

A. Centralized Collision Avoidance

Problem 1 can be solved via a single optimization where the

optimal control velocities of all robots u∗
1:n = [u∗

1 , . . . ,u
∗
n] are

jointly computed. This is

u∗
1:n = arg min

u1 :n

J(ui:n)

s.t. ||ui || ≤ umax ∀i ∈ I

ui ∈ Ri Constraint 1 ∀i ∈ I

ui ,uj /∈ VOτ
ij Constraint 2 ∀i, j ∈ I

ui /∈ Q̄i Constraint 4 ∀i ∈ I .

(20)

ALONSO-MORA et al.: COOPERATIVE COLLISION AVOIDANCE FOR NONHOLONOMIC ROBOTS 411

Fig. 7. Schema of the computation of the collision avoidance constraints for centralized and distributed collision avoidance.

We now describe two approaches to formulate and solve this

nonconvex optimization problem.

1) Convex Optimization: The centralized optimization of

(21) can be approximated by a convex problem, by lineariz-

ing all the constraints [37]. In particular, the set Ri of motion

constraints, see Section III, is approximated by an inscribed

polygon, and each VO, see Section IV-A and (11), is approxi-

mated by its linearization.

Static obstacles are accounted for via the convex poly-

gon P (p0
i , r̂i), which is fully contained in free space p0

i ∈
P (p0

i , r̂i) ⊂ W \Ōr̂ i
, recall (1). This polygon is converted to

velocity space by considering the straight-line control reference,

i.e., p0
i + uiτ ∈ P (p0

i , r̂i), which results in the constraint

ui ∈
P (p0

i , r̂i) − p0
i

τ
. (21)

From the convexity of P (p0
i , r̂i), and since p0

i ∈ P (p0
i , r̂i),

this constraint guarantees Constraint 4.

This optimization problem consists of 2n real-valued

variables and |VO| +
∑

i∈I
KR i

constraints, where |VO| ≤
min(n(n − 1)/2,Kcn) is the number of VO constraints, Kc

is the maximum number of neighbors taken into account in

the collision avoidance and KR i
is the number of faces in the

polygonal approximation of Ri . The computational complexity

is low and scalability is relatively good, but the solution space

is partially reduced due to the linearization of the constraints,

since an avoidance topology is fixed.

2) Nonconvex Optimization: To obtain the global optimum

of the original optimization problem, a nonconvex optimization

must be solved. An approach is to formulate the optimization

as a mixed integer quadratic program (MIQP) [37], where three

binary variables, βl
ij ∈ {0, 1}, are added for each inter-robot

collision avoidance constraint VOτ
ij and specify which one of

the three linear constraints is active. Each of these three linear

constraints, see (11), is then rewritten as

nl
ij · (ui − uj) − Mβl

ij ≤ bl
ij ∀l ∈ [1, 3] (22)

where M > 0 is a large scalar. If βl
ij = 0, then the original con-

straint is active. The additional constraint
∑3

l=1 βl
ij = 2 is in-

troduced to guarantee that at least one of the original constraints

is satisfied. This MIQP can be solved via standard branch-and-

bound methods.

With this method the complete solution space is explored

and anytime optimality is achieved. The optimization prob-

lem consists of 2n real-valued variables, 3|VO| binary variables

and 4|VO| +
∑

i∈I
KR i

constraints. Due to the relatively large

number of binary variables, this optimization can only be solved

Fig. 8. Optimization in velocity space for a unicycle robot i with current
orientation θi in a scenario with five robots. The optimal collision-free velocity
u∗

i satisfies the linear constraints (marked with a straight line with the light
blue side indicating the unfeasible half-plane) and minimizes the distance to the
preferred velocity ūi . The feasible region is highlighted in green.

inside a real-time control loop for a low number of robots and

the scalability is poor.

An alternative would be to solve the nonconvex optimization

problem directly, without additional binary variables. In [44],

we described an approach based on the alternating direction

method of multipliers algorithm. Yet, kinodynamic constraints

were not accounted for and the method did not guarantee global

optimality.

B. Distributed Collision Avoidance

In Problem 2, each robot i independently computes its opti-

mal reference velocity u∗
i . We assume that the position pj and

velocity vj of neighboring robots is known and solve

u∗
i = arg min

u i

J(ui)

s.t. ||ui || ≤ umax

ui ∈ Ri Constraint 1

ui ∈ Fi|j Constraint 3 ∀j ∈ I \{i}
ui /∈ Q̄i Constraint 4.

(23)

1) Convex Optimization: The distributed optimization of

(24) can be approximated by a convex problem, by linearizing

all the constraints [28], [29]. The set Ri of motion constraints

and the free space W \Q̄i are approximated by convex poly-

topes as described for the centralized case in Section V-A1. For

each neighboring robot j, the collision-avoidance constraint is

computed, linearized, and partitioned, see Section IV-B, leading

to a linear constraint ui ∈ Fi|j . An example of these constraints

is shown in Fig. 8.

This optimization problem consists of two real-valued vari-

ables and |VOi | + KR i
constraints, where |VOi | ≤ min((n −

1)/2,Kc) is the number of VO constraints. The computational

complexity of this method is very low and scalability is very

412 IEEE TRANSACTIONS ON ROBOTICS, VOL. 34, NO. 2, APRIL 2018

good, yet the solution space is greatly reduced due to the lin-

earization of the constraints and the partition of the reference

velocity space.

2) Search Within Convex Region: To reduce the problem to a

convex optimization, we had to approximate the sets Ri and W \
Q̄i by inscribed convex polytopes. We now describe a method,

see Fig. 9 for schema, which combines convex (linear) and

nonconvex (grid-based) constraints to explore a larger solution

space while keeping the computational cost low.

The set of convex constraints is formed by the inter-robot lin-

earized collision avoidance constraints Fi|j , i.e., Constraint 3,

and the bounding box Hi of the set Ri , see Section III. Denote

this set by Ci . The set of nonconvex constraints is formed by

the set Ri (Constraint 1), and the static obstacles (Constraint 4).

This set is denoted by C̃i . Both nonconvex constraints are given

by grid representations of identical resolution.

The optimization is divided in two parts. First, a convex sub-

problem is solved resulting in uc
i , followed by a search within

the grid-based constraints restricted to the convex area defined

by the linear constraints. Note that the cost function is not re-

quired to be quadratic any more. For robot i ∈ I , the algorithm

proceeds as follows.

Algorithm 1: Collision-free Trajectory for Robot i.

Data: z0
i , ūi and r̂i ; pj , vj and rj ∀j neighbor of i

Consider εj = εi ≤ (||pi − pj || − ri − rj)/2
Result: Collision-free trajectory for time horizon τ , given

by the controller f(z0
i ,u

∗
i , t) and optimal control

velocity u∗
i

Compute Constraints 1, 3, and 4 for robot i;
uc

i ← solution 2-dimensional convex optimization with

quadratic cost (19) and convex constraints Ci ;

// Wave expansion from uc
i within convex area Ci ;

Initialize sorted list L (increasing cost J(ui)) with uc
i ;

while L �= ∅ do

ui ← first point in L ; L := L \ ui ; feasible := ‘true’;

if feasibleDynamics(ui) = ‘false’ or

feasibleMap(ui) = ‘false’ then

L ← expandNeighbors(L , ui);

feasible := ‘false’;

end

if feasible = ‘true’ then

return u∗
i = ui ;

// This assumes that the cost J(ui) is convex ;

end

end

return 0;

Track u∗
i with controller f(z0

i ,u
∗
i , t);

Function feasibleDynamics(ui) checks in a precomputed grid

if the tracking error is below εi , given the initial state of the

vehicle.

if ui ∈ Ri [see (9)] then return ‘true’; else ‘false’;

Function feasibleMap(ui) checks if ui leads to a trajectory

in collision with static obstacles given by the grid map O . This

is efficiently checked in the precomputed dilated map Or̂ i
, see

Constraint 4.

if segment (pi ,pi + uiτ) ∩ Or̂ i
= ∅ then return ‘true’;

The function expandNeighbors(L , uin
i) adds the neighboring

grid points if they are within the convex region defined by the

convex constraints in C , and they were not previously explored.

Algorithm 2: Function expandneighbors(L , uin
i):

Data: List L , velocity uin
i

Result: Updated list L

for each 8-connected grid neighbor u
neighbor
i of uin

i do

if {uneighbor
i not previously added to L } and

{uneighbor
i satisfies convex constraints Ci} then

L ← L ∪ u
neighbor
i ;

Sort list L , increasing cost J(ui);

end
end

This optimization consists of two variables, 4 + |VOi | linear

constraints from the bounding box of Ri and the VOs, and a

2-D grid search within the bounded area defined by the con-

vex constraints. The computation complexity of this problem

is relatively low and scalability is good. The solution space is

larger than in the convex case, yet, it is still reduced due to the

linearization of the collision-avoidance constraints and the par-

tition of the reference velocity space to guarantee safety in the

distributed case.

C. Collision-Avoidance Guarantees and Remarks

Remark 1 (Radius Enlargement): Variable maximum track-

ing error εi and radius enlargement is required for feasibility.

At all times it must be satisfied that the extended radii of the

robots are not in collision, i.e., ri + rj + εi + εj ≤ ||pi − pj ||.
This is achieved by letting εi > 0 and εj > 0 decrease stepwise

when robots are close to each other, reaching zero in the limit,

which for differentially driven robots would imply rotating in

place [28].

Theorem 1: If the optimization problem is feasible, then the

planned local trajectories are collision-free up to time τ under

the assumption that other agents follow the same algorithm, or

maintain a constant velocity.

Proof: We first show that the planned trajectories are

collision-free up to time τ . The intuition is that the control

reference, defined by ui , is collision-free for a robot whose

radii is enlarged by ε and the robot stays within ε of this control

reference.

Consider two robots i and j controlled with the proposed

method. We show that the distance between their centers is

greater than the sum of their radii for all time instances up to

the time horizon. Let pi(t) denote the position of robot i at time

t ≥ t0 and recall t̃ = t − t0 , then avoidance of robot j follows

ALONSO-MORA et al.: COOPERATIVE COLLISION AVOIDANCE FOR NONHOLONOMIC ROBOTS 413

Fig. 9. Schema of the distributed method for nonconvex search within convex region.

from

||pi(t) − pj (t)|| = ||f(z0
i ,ui , t̃) − f(z0

j ,uj , t̃)|| ≥
u i ∈R i ,uj ∈R j

||(p0
i + ui t̃) − (p0

j + uj t̃)|| − εi − εj ≥
u i −uj /∈VOτ

i j

ri + εi + rj + εj − εi − εj = ri + rj

(24)

where the first inequality holds from Constraint 1, i.e., ui ∈
Ri and uj ∈ Rj . In the centralized case, the second inequality

holds directly from Constraint 2, i.e., ui − uj /∈ VOτ
ij . In the

distributed case, the second inequality holds from Constraint 2

and (14), i.e., ui ∈ Fi|j and uj ∈ Fj |i .

Avoidance of an obstacle j that moves with constant velocity

vj holds analogously

||pi(t) − pj (t)|| = ||f(z0
i ,ui , t̃) − (p0

j + vj t̃)|| ≥
u i ∈R i

||(p0
i + ui t̃) − (p0

j + vj t̃)|| − εi ≥
u i −vj /∈VOτ

i j

ri + εi + rj − εi = ri + rj .

(25)

In the case where multiple robots and moving obstacles are

present, (25) and (26) hold for each one of them from the pair-

wise avoidance constraints of the optimization problem. Ad-

ditionally, it is required that ||p0
i − p0

j || ≥ ri + εi + rj + εj .

This can be guaranteed by setting 0 ≤ εi ≤ (||p0
i − p0

j || − ri −
rj)/2.

Recalling Constraint 4, we can show that static obstacles are

avoided within the time horizon

ui /∈ Q̄i ⇒ (p0
i + ui t̃) /∈ Ōr i +ε ∀t̃ ∈ [0, τ]

⇒
u i ∈R i

f(z0
i ,ui , t̃) /∈ Ōr ∀t̃ ∈ [0, τ].

After each time-step a new collision-free trajectory is com-

puted. The trajectories of all robots, given as concatenation of

segments, are therefore collision-free. �

As will be discussed in Remark 4, it may happen that the

optimization is infeasible. If so, no collision-free solution exists

that respects all the constraints. If the time horizon is longer

than the required time to stop, safety is preserved if all in-

volved vehicles drive their last feasible trajectory with a time

re-parameterization to reach stop before a collision arises, sim-

ilar to [31]. This implies a slowdown of the robot, which in turn

typically renders the optimization feasible in future time steps.

Since this computation is performed at a high frequency, each

individual robot is able to adapt to changing situations.

Remark 2 (Dynamic Obstacles): The feasibility of the opti-

mization indicates if moving obstacles can be avoided, assuming

that they adhere to their predicted velocity, or a collision is im-

minent. A fast control loop is able to handle small deviations in

the prediction.

Remark 3 (Heterogeneous Robot Teams): In (25), we ob-

serve that the derivation does not depend on the kinodynamic

model of the robot, thanks to the abstraction provided by

f(z0
i ,ui , t̃), ε and the set Ri . The size of the robots can also be

different, since they appear directly in the proof. Therefore, the

proposed method applies to heterogeneous teams of robots as

long as their respective constraints Ri and Rj are computed for

their kinodynamic models. We note also that robot i does not

require any information about the kinodynamics of other robots

as long as they all respect that εi is less than half the clearance

between robots.

Remark 4 (Infeasibility): Under some circumstances the op-

timization problem can be infeasible, i.e., not all constraints can

be satisfied. In practice, this happens rarely and it is quickly re-

solved in subsequent iterations of the method as the robot slows

down.

Infeasibility can happen for example due to the following.

1) Not enough time to find the solution within the allocated

time.

2) Differences between the model and the real vehicle.

3) Large uncertainty in the localization and estimation of

vehicles’ state.

4) Limited local planning horizon and extreme restriction

on motion capabilities to the set of motion primitives de-

scribed in Section III.

If the method is distributed, infeasibility can also arise if a

robot has conflicting partitions with respect to different neigh-

bors, static obstacles, or kinematics. This is due to the use of

pairwise partitions of velocity space. In our experience, slowing

down is a good strategy when the problem is infeasible and these

situations are resolved quickly as the robot slows down and the

problem becomes feasible again.

An alternative is to relax the constraints by adding slack vari-

ables in the optimization problem. In this case, the optimization

would always be feasible but safety could be endangered. We

chose not to add slack variables and instead decelerate when the

problem becomes infeasible.

Remark 5 (Motion Continuity): The method guarantees by

construction, via Constraint 1, that the local trajectories respect

the kinematic constraints of the robot and its limits in actuators,

velocities, and accelerations, as long as the individual trajectory

tracking controllers do so. For details see Section III.

414 IEEE TRANSACTIONS ON ROBOTICS, VOL. 34, NO. 2, APRIL 2018

Fig. 10. Robots employed in the experiments. (a) Humanoid. (b) Wheelchair.
(c) Unicycle. (d) Boat.

Remark 6 (Deadlocks): Since the proposed method is for

collision avoidance and only considers local information dead-

locks where the robot cannot make progress toward its goal can

occur. For example, when the robot encounters a large obsta-

cle between its position and the goal. For each robot, and with

respect to static obstacles, we avoid deadlocks by employing

a, globally computed, cost to go, which for every point in the

map provides both the distance to the goal and the desired di-

rection of motion. This does not avoid deadlocks between two

or more robots. Multirobot deadlock situations can be resolved

by employing a global path planner that guides the robot toward

the goal [45] or a mission planner for global coordination and

mission satisfaction [46].

VI. EXPERIMENTAL RESULTS

We present experimental results with various robotic plat-

forms, ranging from wheelchairs to boats. First, we describe the

experimental setups, followed by results on trajectory smooth-

ness and experimental comparisons of the proposed algorithms.

For additional results on shared-control of semiautonomous

wheelchairs, we refer the reader to [38]. A video with repre-

sentative experiments accompanies this paper. The breadth of

these experiments is to provide validation of and exemplify the

generality of the proposed approach.

A. Experimental Setups

We have tested our method, εCCA, with several platforms,

see Fig. 10, of different motion characteristics: Two types of

small differentially driven robots [28], [47], simulated carlike

robots with bicycle kinematics [29], [37], robotic wheelchairs

[38], NAO humanoid robots [46], and omnidirectional boats

with slow dynamics. The time-horizon τ of εCCA was in

the range 5–8 s and the maximum enlargement ε was in the

range 10%–25% of the robot radii. The simulated cars, the

wheelchairs, and the boats where subject to maximum accel-

eration limits of 1–2m/s. Additional limits include the follow-

ing: For the simulated car, 30◦ maximum steering angle and

30◦/s maximum steering velocity; for the wheelchairs, 2 rad/s

maximum angular velocity and 1.5 m/s maximum sideways

acceleration. In our simulations, we introduce small measure-

ment noise in the robot positions.

In the experiments, unless noted differently, we linearized the

VO constraint with respect to the current relative velocity vi , see

Section IV. This prioritizes feasibility and gives good results in

general, but ignores symmetries. To avoid reciprocal dances and

minimize deadlocks, a small preference for left-side (+5%) and

Fig. 11. Experiment with four e-puck robots exchanging antipodal positions.
Time-lapse and trajectories. Trajectories are smooth and collision-free.

right-side (+7%) avoidance was typically added. In all cases,

if the optimization becomes unfeasible, the robot decelerates at

maximum deceleration rate, until it reaches a rest state or the

optimization becomes feasible again.

Tracking was performed with over-head cameras and com-

putation took place in distributed threads (one per robot) in a

central computer communicating with the robots. The update

frequency of the collision avoidance was typically 10 Hz, ex-

cept for the wheelchairs (30 Hz) and simulated cars (5 Hz).

The convex optimization was solved using OOQP [47] and the

mixed integer optimization using IBM CPLEX [48]. Computa-

tions were performed in a standard 2.66 GHz quadcore PC.

B. Quality of Trajectories

In all the experiments of this section, we employ a distributed

version of εCCA. The convex version of εCCA, described in

Section V-B1, is well suited for obstacle-free environments. On

the other hand, for complex environments and robot dynamics

the approach of Section V-B2 is better suited. In the following,

we present results with both approaches.

1) Obstacle-Free Environments: In Fig. 11, we show a rep-

resentative experiment of εCCA with four e-puck robots. We

observe that the trajectories are smooth and collision-free. The

scalability of the method is shown in the accompanying video

in an experiment with 14 e-pucks. Furthermore, in [47], we ap-

plied it to control 50 pixelbots. The method can be applied in

scenarios with varying number of robots without changes in the

parameters. We observe that the robots can successfully solve

crowded scenarios while avoiding collisions, yet a slowdown

can be noticed in areas of increased robot density. The method

applies to other robot physiologies. Fig. 12 shows the trajec-

tories of ten simulated carlike robots for three representative

experiments: antipodal position exchange, antipodal position

exchange with one nonreacting robot, i.e., dynamic obstacle,

and transition to randomized goal positions. Again, the method

achieves smooth and collision-free trajectories, even in this sce-

nario, where robots have a limited turning radius.

2) Complex Environments and Robot Dynamics: The pro-

posed method, in its distributed cooperative nonconvex form

of Section V-B2, is well suited for navigation in arbitrarily

complex environments and for robots of arbitrary kinodynamic

constraints. In Fig. 13, we present results of the method for

simulated wheelchairs navigating at high speeds in a complex

environment. Here, a 20 Hz control rate was maintained and

we observe that the paths are smooth and the distance between

ALONSO-MORA et al.: COOPERATIVE COLLISION AVOIDANCE FOR NONHOLONOMIC ROBOTS 415

Fig. 12. Trajectories of ten carlike robots moving from their initial to a goal (red circles) configuration. (a) Antipodal positions, cooperative. (b) With a dynamic
obstacle (red). (c) Randomized configurations.

Fig. 13. Two simulated wheelchairs navigate, at a preferred speed of 5 m/s,
between several goal positions in a complex environment and successfully
avoid collisions via cooperative εCCA. (a) Traces of the path of both robots and
obstacle map. (b) Histograms of border to border inter-robot distance (top) and
robot border to wall (below). No collisions are observed.

robots and between a robot and a static obstacle is never zero,

i.e., no collisions were observed.

C. Method Comparison

In the following, we provide a quantitative analysis of the

method. For clarity of explanation, we compare several aspects

and instances of the method independently. We first show the

value of motion constraints. This is followed by a comparison

of the centralized, convex and nonconvex, instantiations of the

method, and their scalability with the number of robots. Fi-

nally, we provide a comparative analysis of using a cooperative

partition of velocity space.

1) Value of Motion Constraints: In Fig. 14, we compare the

traditional ORCA [23] method for holonomic robots (top-right)

with the distributed version of εCCA (bottom-right), both

applied to simulated robots with carlike dynamics, identical

time horizon, and robot radii enlarged by ε. We present results

for different values of ε, ranging from zero to the robot radius.

The test scenario is the antipodal position exchange with ten

carlike robots shown in Fig. 12. For each value of ε, the

simulation is repeated 100 times with uniform noise in position.

Fig. 14. Performance comparison for four instances of the method in the
antipodal exchange scenario of Fig. 12 with ten simulated robots. We display
the percentage of trials that ended in collision, deadlock or succeeded, over
100 simulations for each radius enlargement ε. Top left: The preferred velocity
corrected with the repulsive velocity is applied directly to the robots. Top right:
The optimization method without motion constraints (ORCA). Bottom left: The
method with motion constraints (εCCA), but without correcting the preferred
velocity with the repulsive velocity. Bottom right: The method with motion
constraints and repulsive velocity (εCCA). The same parameters are used in all
simulations.

Each simulation is classified as: collision (if two or more

robots are closer than the sum of radii without considering the

ε enlargement), deadlock (one or more vehicles stop before

reaching the goal and do not make progress anymore), and

convergence (all vehicles reach their goals).

If the preferred velocity, corrected with the repulsive velocity,

is directly applied to the robots, then most of the simulations

ended in a collision (top-left). If collision avoidance constraints

are added but the motion constraints of the robots are ignored,

i.e., using ORCA directly, then collisions appear independently

of the value of ε and, in this particular scenario, in about 50%

of the simulations (top-right). When including the motion con-

straints, i.e., using εCCA (bottom figures), zero collisions ap-

pear in the simulations. Deadlock situations are observed for

low values of ε. These deadlocks appear because lower values

of ε imply higher restrictions in the motion of the vehicle in

order to guarantee safe motion, see Section III. We further ob-

serve that, when converged, convergence time was similar with

and without motion constraints. If we compare the bottom-right

and bottom-left figures, we observe that the addition of a small

416 IEEE TRANSACTIONS ON ROBOTICS, VOL. 34, NO. 2, APRIL 2018

Fig. 15. Representative position exchange with three boats, where paths are crossing. Start positions are displayed with X and goal positions with O. The arrows
indicate the commanded velocity at that time instance. (a) Three boats transition to antipodal positions. Representative frames equispaced in time. (b) Collision
avoidance with repulsive velocities. The paths of the boats are displayed at representative intervals. Total time is 30 s. (c) Collision avoidance with distributed
εCCA. Total time is 20 s.

repulsive velocity to the preferred velocity does indeed improve

convergence, lowering the number of deadlock scenarios.

In Fig. 15, we compare distributed εCCA (lower row) and

repulsive forces (middle row) when three robotic boats navigate

to goal positions. Both methods are tuned for best performance

with the system. First, this shows the applicability of εCCA to

a system with slow dynamics. Thanks to the identified model

of the boats, εCCA was able to successfully avoid collisions,

except in rare cases with strong unmodeled wind disturbances.

We observe that the resulting path was less smooth than for the

other platforms. This was due to wind disturbances, intermittent

detection failures, and slower dynamics.

Second, this representative example shows the superior

performance of εCCA over repulsive velocities—as also hinted

in Fig. 14 and in past experiments with small differential-drive

robots [49]. For the purely repulsive approach, oscillations

and “bouncing” behaviors are observed, since the velocities of

other robots are not taken into account, nor the dynamics of the

ago-robot. For instance, see the capture at t = 3 s, where the red

robot virtually bounces on the blue, followed by another virtual

bounce against the green robot at t = 11 s. The optimization

of εCCA with VOs successfully considers both the topology

of the avoidance and the velocity of other robots, leading to

smoother behaviors. Convergence to the goal positions was also

faster.

In general, another disadvantage of a potential field approach

with respect to εCCA is that, in order to guarantee collision-

free motion at high speeds (and with dynamic constraints), large

potentials may be required, which can result problematic when

passing through narrow doors or navigating in close proximity

to walls.

2) Convex Versus Nonconvex Optimization and Robustness:

Using the distributed version of εCCA, see Section V-B1, as

reference, the centralized convex (QP) optimization, see Sec-

tion V-A1, is compared to the centralized nonconvex (MIQP)

optimization, see Section V-A2. In Fig. 16, comparative results

of the three methods are shown for varying number of robots.

In all experiments, the same parameters are used.

In Fig. 16(a), we compare the computational time for all meth-

ods and up to 50 robots, for detailed timings of the distributed

approach refer to Table I. The centralized convex quadratic pro-

gram (QP) algorithm shows real-time performance (below 0.05 s

for 90% of the sample points) even for large teams of robots. On

the other hand, the computational cost of the nonconvex opti-

mization quickly grows with the number of robots, especially in

the worst case. Note that computational time strongly depends

on the number of neighbors considered in the collision avoid-

ance, thus, the difference between the worst case and the 90%

bar. Furthermore, timings of the MIQP approach are bounded

by the maximum number of explored nodes, which we set to

200 nodes.

In Fig. 16(b), we compare the time to convergence in an an-

tipodal position exchange, such as the one shown in Fig. 12.

The distributed approach performs the worst, with a deadlock

ALONSO-MORA et al.: COOPERATIVE COLLISION AVOIDANCE FOR NONHOLONOMIC ROBOTS 417

TABLE I
COMPUTATIONAL TIME [MEAN ± STANDARD DEVIATION (MINIMUM, MAXIMUM)], PER AGENT, FOR EACH STEP OF THE

DISTRIBUTED COLLISION AVOIDANCE ALGORITHM

Noncooperative [ms] Cooperative [ms]

Distributed velocity prediction − 4.946 ± 1.380 [1.597, 10.868]

Pairwise VO linearization 0.061 ± 0.021 [0.010, 0.225] 2.476 ± 0.886 [0.028, 6.906]

Distributed convex QP solver (1) 0.978 ± 0.414 [0.350, 6.235] 0.512 ± 0.097 [0.320, 2.010]
Distributed grid search within convex region 0.387 ± 0.519 [0.081, 6.282] 0.396 ± 0.654 [0.050, 5.888]

Total distributed collision avoidance (2) 1.661 ± 0.841 [0.541, 7.322] 5.260 ± 0.854 [3.757, 10.043]

(1) Displayed for three neighbors, slowly increases with the number of robots. (2) Displayed for three neighbors, the number of

pairwise VO linearizations equals the number of neighbors.

Fig. 16. Antipodal position exchange in a circle, for varying number of robots
with bicycle kinematics. Comparison of distributed εCCA (light green), cen-
tralized convex QP εCCA (dark red), and centralized nonconvex MIQP εCCA
(dark blue). (a) Computational time of the approach, where the green line is
below the red line. (b) Mean time to convergence to the antipodal positions in
the circle.

situation appearing for about 20 robots in our scenario. Both cen-

tralized approaches show similar performance for low number

of robots. Nevertheless, for a large number of robots, the convex

QP approach exhibits a deadlock behavior. The deadlock is due

to the pairwise convexification of the collision avoidance con-

straints, which does not impose a global coordination to rotate

clockwise or anticlockwise. On the other hand, the deadlock-

resolution behavior is achieved in the nonconvex MIQP opti-

mization thanks to the global exploration of pairwise avoidance

topologies.

3) Cooperative Versus Reciprocal εCCA: Our εCCA

method can be applied for both reciprocal, see Section IV-B,

and cooperative, see Section IV-C, avoidance. Although in open

spaces their performance is identical, the more general coop-

erative approach outperforms the reciprocal counterpart in sit-

uations where the “equal avoidance effort” assumption of the

former does not hold. A representative situation is shown in

Fig. 17, where the path and velocities of two robots navigating

toward their respective goals (gray circles) are depicted. In the

reciprocal case, the green robot blocks the red one, which re-

quires an abrupt slowdown and change in orientation to avoid

the collision. On the other hand, in the cooperative case, the

green robot reasons about the static obstacle blocking the red

robot and slightly slows down to let it pass in front in a more

cooperative manner. The velocity partitions for this example are

shown in Fig. 6.

In Table I, we show the computational times for the various

steps of the distributed collision avoidance algorithm for the

scenario of Fig. 17 with four robots. Both methods present low

computational cost, enabling high-frequency loops. This is be-

low 2 ms in mean for the noncooperative (constant velocity or

reciprocal assumption) approach and about 5 ms in mean for

the cooperative approach, due to the higher cost to compute

the optimal pairwise distributed avoidance constraint described

in Section IV-C. In the computation of the velocity prediction,

obtaining the cost to go takes 13 ms in this map and is only exe-

cuted, and stored for all start positions, when a new goal arrives.

Although more general, the cooperative approach presents the

challenge of computing a utility over the possible velocities that

the other robot may take.

D. Lessons Learned

In our deployments, the distributed and reciprocal εCCA ap-

proach was mostly employed, since it provides good perfor-

mance at a lower computational expense, as it scales better

with the number of robots. The centralized and, especially, the

nonconvex optimization can be beneficial in some particular sit-

uations where coordination is required, such as the antipodal

position exchange of Fig. 12. Yet, after the optimal avoidance

topology is chosen, both approaches perform similarly. In our

experience, the convex and reciprocal approach performed well

with relatively slow moving robots or in obstacle-free scenarios.

Yet, for the robotic wheelchairs, which move at higher speed and

in complex environments, the complete method of Section V-B2

is preferred, since it can take into account the nonconvexity in

both the environment and the motion constraints.

In summary, for high-performing systems, such as the fast

robotic wheelchairs, our recommended implementation is the

distributed search within a convex region of Section V-B2, with

cooperative avoidance. On the other hand, for large teams of

relatively slow robots, such as the e-pucks, our recommended

implementation is the distributed convex optimization of

Section V-B1, with reciprocal avoidance, due to its computa-

tional simplicity.

In some cases, especially with a large number of robots and

complex scenarios such as the antipodal position exchange, a

fair amount of suboptimal small movements can be required

418 IEEE TRANSACTIONS ON ROBOTICS, VOL. 34, NO. 2, APRIL 2018

Fig. 17. Comparison of the εCCA reciprocal and cooperative approaches for computing the pairwise distributed avoidance constraints. Two robots (blue/green
circles) navigate in a corridor (white = free space) toward their goals (gray circles). In the middle, path of the robots. In the sides, velocity profile and orientation
over time for both robots during the interaction (dashed green and solid blue). (a) Reciprocal collision avoidance. (b) Cooperative collision avoidance.

before the robots reach a configuration where the goal can be

reached relatively quickly. This is due to the localness of the

collision avoidance method and the kinematic constraints of the

robots, and can be observed in the accompanying experiment

with 12 robots. A solution to improve performance could be to

employ higher level reasoning or social norms.

VII. CONCLUSION

In this paper, we have described a method, namely εCCA,

for collision avoidance among multiple robots in planar envi-

ronments, which models inter-robot interaction and decision

making. In particular, we extended the traditional VOs method

to robots with nonholonomic kinematics and subject to arbitrary

dynamic constraints. The idea was to reduce the set of local mo-

tions to those generated with an adequate controller toward a

constant velocity reference trajectory. We discussed centralized

and distributed, convex and nonconvex, implementations of the

method and showed their tradeoffs in extensive experimental

evaluations. The presented methods allow for smooth and safe

navigation and good performance was observed in extensive

experimental tests with various robot types. Further, the low

computational cost of the algorithm allows for real-time control

of hundreds of robots, or a fast control loop for single-robot

navigation in dynamic environments.

Many challenges and avenues for future development still

remain. Future work should aim at further improving the mo-

tion planning toward global reasoning, adaptation, and uncertain

environments. In this paper, robots of arbitrary shape can be con-

sidered, but with the assumption of locally nonrotating during

the time horizon of the local planner. Seamless integration of

arbitrary shape, as well as on-board computation and sensing

remain as future works. We believe that εCCA is well suited

for onboard computation and sensing thanks to its low compu-

tational complexity, which allows for fast planning loops. The

effect of social rules could also be explored.

ACKNOWLEDGMENT

The authors would like to thank A. Breitenmoser and M.

Rufli for fruitful discussions and M. Del’Ambrogio, P. Gohl, L.

Limacher, and C. Gwerder for their help with experiments.

REFERENCES

[1] J.-C. Latombe, Robot Motion Planning. Boston, MA, USA: Kluver, 1991.
[2] H. Choset et al., Principles of Robot Motion: Theory, Algorithms, and

Implementations (Intelligent Robotics and Autonomous Agents Series).
Cambridge, MA, USA: MIT Press, 2005.

[3] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge Univ.
Press, 2006.

[4] S. Koenig and M. Likhachev, “Improved fast replanning for robot navi-
gation in unknown terrain,” in Proc. 2002 IEEE Int. Conf. Robot. Autom.,
2002, pp. 968–975.

[5] M. Pivtoraiko, R. A. Knepper, and A. Kelly, “Differentially constrained
mobile robot motion planning in state lattices,” J. Field Robot., vol. 26,
pp. 308–333, Mar. 2009.

[6] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”
Int. J. Robot. Res., vol. 20, no. 5, pp. 378–400, 2001.

[7] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” Int. J. Robot. Res., vol. 30, pp. 846–894, Jun. 2011.

[8] D. Hsu, R. Kindel, J.-C. Latombe, and S. M. Rock, “Randomized kin-
odynamic motion planning with moving obstacles,” Int. J. Robot. Res.,
vol. 21, no. 3, pp. 233–255, 2002.

[9] J. P. Gonzalez and M. Likhachev, “Search-based planning with provable
suboptimality bounds for continuous state spaces,” Proc. 4th Annu. Symp.

Combinatorial Search, May 2011, pp. 60–67.
[10] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile

robots,” Int. J. Robot. Res., vol. 5, no. 1, pp. 90–98, 1986.
[11] O. Brock and O. Khatib, “High-speed navigation using the global dynamic

window approach,” in Proc. 1999 IEEE Int. Conf. Robot. Autom., 1999,
pp. 341–346.

[12] S. Petti and T. Fraichard, “Safe motion planning in dynamic envi-
ronments,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2005,
pp. 2210–2215.

[13] J. Schulman et al., “Motion planning with sequential convex optimization
and convex collision checking,” Int. J. Robot. Res., vol. 33, pp. 1251–1270,
Aug. 2014.

[14] D. Morgan, S.-J. Chung, and F. Y. Hadaegh, “Model predictive control
of swarms of spacecraft using sequential convex programming,” J. Guid.,

Control, Dyn., vol. 37, pp. 1725–1740, Nov. 2014.
[15] M. Cap, P. Novák, A. Kleiner, and M. Selecký, “Prioritized planning

algorithms for trajectory coordination of multiple mobile robots,” IEEE

Trans. Autom. Sci. Eng., vol. 12, no. 3, pp. 835–849, Jul. 2015.

ALONSO-MORA et al.: COOPERATIVE COLLISION AVOIDANCE FOR NONHOLONOMIC ROBOTS 419

[16] G. Ferrer, A. Garrell, and A. Sanfeliu, “Robot companion: A social-
force based approach with human awareness-navigation in crowded en-
vironments,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2013,
pp. 1688–1694.

[17] D. Zhou, Z. Wang, S. Bandyopadhyay, and M. Schwager, “Fast, on-line
collision avoidance for dynamic vehicles using buffered voronoi cells,”
IEEE Robot. Autom. Lett., vol. 2, no. 2, pp. 1047–1054, Apr. 2017.

[18] L. Wang, A. D. Ames, and M. Egerstedt, “Safety barrier certificates for
collisions-free multirobot systems,” IEEE Trans. Robot., vol. 33, no. 3,
pp. 661–674, Jun. 2017.

[19] P. Trautman and A. Krause, “Unfreezing the robot: Navigation in dense,
interacting crowds,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
2010, pp. 797–803.

[20] D. Vasquez, B. Okal, and K. O. Arras, “Inverse reinforcement learn-
ing algorithms and features for robot navigation in crowds—An exper-
imental comparison,” IEEE/RSJ Int. Conf. Intell. Robots Syst., 2014,
pp. 1341–1346.

[21] M. Kuderer, H. Kretzschmar, C. Sprunk, and W. Burgard, “Feature-based
prediction of trajectories for socially compliant navigation,” in Proc.

Robot.: Sci. Syst. (RSS), Jul. 2012.
[22] J. van den Berg, M. Lin, and D. Manocha, “Reciprocal velocity obstacles

for real-time multi-agent navigation,” in Proc. IEEE Int. Conf. Robot.

Autom., May 2008, pp. 1928–1935.
[23] J. van den Berg, S. J. Guy, M. Lin, and D. Manocha, “Reciprocal n-body

collision avoidance,” in Proc. Int. Symp. Robot. Res., 2009, pp. 3–19.
[24] J. Snape, J. van den Berg, S. J. Guy, and D. Manocha, “Independent

navigation of multiple mobile robots with hybrid reciprocal velocity ob-
stacles,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Oct. 2009,
pp. 5917–5922.

[25] D. Wilkie, J. van den Berg, and D. Manocha, “Generalized velocity ob-
stacles,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Oct. 2009,
pp. 5573–5578.

[26] E. Lalish and K. A. Morgansen, “Decentralized reactive collision avoid-
ance for multivehicle systems,” in Proc. 47th IEEE Conf. Decis. Control,
Dec. 2008, pp. 1218–1224.

[27] J. Snape, J. van den Berg, S. J. Guy, and D. Manocha, “Smooth and
collision-free navigation for multiple robots under differential-drive con-
straints,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2010, pp. 4584–
4589.

[28] J. Alonso-Mora, A. Breitenmoser, M. Rufli, P. Beardsley, and R. Sieg-
wart, “Optimal reciprocal collision avoidance for multiple non-holonomic
robots,” Proc. Int. Symp. Distrib. Auton. Robot. Syst., 2010, pp. 203–216.

[29] J. Alonso-Mora, A. Breitenmoser, P. Beardsley, and R. Siegwart, “Recip-
rocal collision avoidance for multiple car-like robots,” in Proc. IEEE Int.

Conf. Robot. Autom., 2012, pp. 360–366.
[30] J. van den Berg, J. Snape, S. J. Guy, and D. Manocha, “Reciprocal collision

avoidance with acceleration-velocity obstacles,” IEEE Int. Conf. Robot.

Autom., 2011, pp. 3475–3482.
[31] M. Rufli, J. Alonso-Mora, and R. Siegwart, “Reciprocal collision avoid-

ance with motion continuity constraints,” IEEE Trans. Robot., Dec. 2013,
pp. 1–14.

[32] D. Bareiss and J. van den Berg, “Generalized reciprocal collision avoid-
ance,” Int. J. Robot. Res., vol. 34, pp. 1501–1514, Oct. 2015.

[33] A. Giese, D. Latypov, and N. M. Amato, “Reciprocally-rotating ve-
locity obstacles,” in Proc. IEEE Int. Conf. Robot. Autom., 2014,
pp. 3234–3241.

[34] D. Claes, D. Hennes, K. Tuyls, and W. Meeussen, “Collision avoidance
under bounded localization uncertainty,” in Proc. IEEE/RSJ Int. Conf.

Intell. Robots Syst., 2012, pp. 1192–1198.
[35] J. van den Berg, D. Wilkie, S. J. Guy, M. Niethammer, and D. Manocha,

“LQG-obstacles: Feedback control with collision avoidance for mobile
robots with motion and sensing uncertainty,” in Proc. IEEE Int. Conf.

Robot. Autom., 2012, pp. 346–353.
[36] J. Alonso-Mora, T. Naegeli, R. Siegwart, and P. Beardsley, “Collision

avoidance for aerial vehicles in multi-agent scenarios,” Auton. Robots,
vol. 39, pp. 101–121, Jun. 2015.

[37] J. Alonso-Mora, M. Rufli, R. Siegwart, and P. Beardsley, “Collision avoid-
ance for multiple agents with joint utility maximization,” IEEE Int. Conf.

Robot. Autom., Mar. 2013, pp. 1–6.
[38] J. Alonso-Mora, P. Gohl, S. Watson, R. Siegwart, and P. Beardsley, “Shared

control of autonomous vehicles based on velocity space optimization,” in
Proc. IEEE Int. Conf. Robot. Autom., 2014, pp. 1639–1645.

[39] R. Deits and R. Tedrake, “Efficient mixed-integer planning for UAVs in
cluttered environments,” in Proc. IEEE Int. Conf. Robot. Autom., 2015,
pp. 42–49.

[40] G. M. Hoffmann, S. L. Waslander, and C. J. Tomlin, “Quadrotor helicopter
trajectory tracking control,” AIAA Guid., Navig., Control Conf. Exhibit.,
2008, pp. 1–14.

[41] P. Fiorini and Z. Shillert, “Motion planning in dynamic environments
using velocity obstacles,” Int. J. Robot. Res., vol. 17, no. 7, pp. 760–772,
1998.

[42] A. De Luca, G. Oriolo, and C. Samson, “Feedback control of a nonholo-
nomic car-like robot,” in Robot Motion Planning and Control. Berlin,
Germany: Springer-Verlag, 1998, pp. 171–253.

[43] S. J. Guy, J. Chhugani, S. Curtis, P. Dubey, M. Lin, and D. Manocha,
“Pledestrians: A least-effort approach to crowd simulation,” Proc.

2010 ACM SIGGRAPH/Eurographics Symp. Comput. Animation, 2010,
pp. 119–128.

[44] J. Bento, N. Derbinsky, J. Alonso-Mora, and J. S. Yedidia, “A message-
passing algorithm for multi-agent trajectory planning,” in Proc. Neural

Inf. Process. Syst., 2013, pp. 521–529.
[45] S. J. Guy et al., “ClearPath: Highly parallel collision avoidance for

multi-agent simulation,” in Proc. 2009 ACM SIGGRAPH/Eurographics

Symp. Comput. Animation, New York, NY, USA, ACM, 2009,
pp. 177–187.

[46] J. Alonso-Mora, A. Breitenmoser, M. Rufli, R. Siegwart, and P. Beardsley,
“Image and animation display with multiple robots,” Int. J. Robot. Res.,
vol. 31, pp. 753–773, May 2012.

[47] OOQP, “Ooqp solver.” [Online]. Available: https://github.com/emgertz/
OOQP

[48] IBM CPLEX Optimizer, “IBM CPLEX optimizer.” [Online].
Available: https://www.ibm.com/analytics/data-science/prescriptive-
analytics/cplex-optimizer

[49] S. Hauri, J. Alonso-Mora, A. Breitenmoser, R. Siegwart, and P. Beardsley,
“Multi-robot formation control via a real-time drawing interface,” in Proc.

Int. Conf. Field Serv. Robot., 2012, pp. 175–189.

Javier Alonso-Mora (M’17) received the M.Sc. and
Ph.D. degrees in robotics from ETH Zurich, Zürich,
Switzerland, in 2010 and 2014, respectively.

He is currently an Assistant Professor
with Delft University of Technology, Delft, The
Netherlands. Until October 2016, he was a PostDoc-
toral Associate with the Computer Science and Ar-
tificial Intelligence Laboratory, Massachusetts Insti-
tute of Technology, Cambridge, MA, USA. He was
also a Member of Disney Research Zurich. His main
research interests include autonomous navigation of

mobile robots, with a special emphasis in multirobot systems and robots that
interact with other robots and humans. Toward the smart cities of the future, he
applies these techniques in various fields, including self-driving cars, automated
factories, aerial vehicles, and intelligent transportation systems.

Dr. Alonso-Mora is the recipient of an NWO Veni Grant from The
Netherlands Organisation for Scientific Research (2017), a Best Video Award
at IEEE/ACM HRI 2014, and a nomination for Best Student Paper Award at
DARS 2010.

420 IEEE TRANSACTIONS ON ROBOTICS, VOL. 34, NO. 2, APRIL 2018

Paul Beardsley received the Ph.D. degree in com-
puter vision from University of Oxford, Oxford, U.K.,
in 1992.

He produced foundational work in three-
dimensional computer vision with University of Ox-
ford. Armed with formal training and industry experi-
ence in software engineering and an interest in robust
real-time vision systems, he has crafted a research
agenda that ranges from applied to fundamental. On
the applied side, he uses vision for human interaction
and for human logistics such as crowd counting. His

more fundamental projects are in robotic vision, including the use of sensor
swarms of heterogeneous mobile sensors to recover models of complex indoor
and outdoor environments. His research work focuses on computer vision.

Dr. Beardsley was a corecipient of one of the R&D 100 Awards for the most
significant inventions of 2006 in connection with his work on live registration
of helicopter-mounted video with street maps, for use by emergency services.

Roland Siegwart (F’08) received the Doctoral de-
gree in mechanical engineering or mechatronics from
ETH Zurich, Zürich, Switzerland, in 1989.

He has been a Full Professor in autonomous sys-
tems with ETH Zurich since July 2006 and is cur-
rently a Founding Co-Director with Wyss Zurich,
Zürich, Switzerland. From January 2010 to Decem-
ber 2014, he was the Vice-President Research and
Corporate Relations in the Executive Board. He then
spent one year as a Postdoctoral Fellow with Stanford
University, Stanford, CA, USA. Back in Switzerland,

he worked part time from 1991 to 1996 as an R&D Director with MECOS Traxler
AG and as a Lecturer and a Deputy Head with the Institute of Robotics, ETH
Zurich. In 1996, he was appointed as a Professor in autonomous microsystems
and robots with the Ecole Polytechnique Fédérale de Lausanne. His research
interests include design and control of systems operating in complex and highly
dynamical environments.

