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Abstract In this paper, symbol-error-rate (SER) performance analysis and optimum power
allocation are provided for uncoded cooperative communications in wireless networks with
either decode-and-forward (DF) or amplify-and-forward (AF) cooperation protocol, in which
source and relay send information to destination through orthogonal channels. In case of the
DF cooperation systems, closed-form SER formulation is provided for uncoded coopera-
tion systems with PSK and QAM signals. Moreover, an SER upper bound as well as an
approximation are established to show the asymptotic performance of the DF cooperation
systems, where the SER approximation is asymptotically tight at high signal-to-noise ratio
(SNR). Based on the asymptotically tight SER approximation, an optimum power allocation
is determined for the DF cooperation systems. In case of the AF cooperation systems, we
obtain at first a simple closed-form moment generating function (MGF) expression for the
harmonic mean to avoid the hypergeometric functions as commonly used in the literature. By
taking advantage of the simple MGF expression, we obtain a closed-form SER performance
analysis for the AF cooperation systems with PSK and QAM signals. Moreover, an SER
approximation is also established which is asymptotically tight at high SNR. Based on the
asymptotically tight SER approximation, an optimum power allocation is determined for the
AF cooperation systems. In both the DF and AF cooperation systems, it turns out that an
equal power strategy is good, but in general not optimum in cooperative communications.
The optimum power allocation depends on the channel link quality. An interesting result
is that in case that all channel links are available, the optimum power allocation does not
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depend on the direct link between source and destination, it depends only on the channel
links related to the relay. Finally, we compare the performance of the cooperation systems
with either DF or AF protocol. It is shown that the performance of a systems with the DF
cooperation protocol is better than that with the AF protocol. However, the performance gain
varies with different modulation types and channel conditions, and the gain is limited. For
example, in case of BPSK modulation, the performance gain cannot be larger than 2.4 dB;
and for QPSK modulation, it cannot be larger than 1.2 dB. Extensive simulation results are
provided to validate the theoretical analysis.

Keywords Cooperative communications · Amplify-and-forward protocol · Decode-and-
forward protocol · Symbol error rate · Performance analysis · Optimum power allocation ·
Wireless networks

1 Introduction

In conventional point-to-point wireless communications, channel links can be highly uncer-
tain due to multipath fading and therefore continuous communications between each pair
of transmitter and receiver is not guaranteed [1]. Recently, the concept of cooperative com-
munications, a new communication paradigm, was proposed for wireless networks such as
cellular networks and wireless ad hoc networks [2–6]. The basic idea of the cooperative
communications is that all mobile users or nodes in a wireless network can help each other to
send signals to the destination cooperatively. Each user’s data information is sent out not only
by the user, but also by other users. Thus, it is inherently more reliable for the destination
to detect the transmitted information since from a statistical point of view, the chance that
all the channel links to the destination go down is rare. Multiple copies of the transmitted
signals due to the cooperation among users result in a new kind of diversity, i.e., cooperative
diversity, that can significantly improve the system performance and robustness. The discus-
sion of cooperative communications can be traced back in 1970s [7, 8], in which a basic
three-terminal communication model was first introduced and studied by van der Meulen in
the context of mutual information. A more thorough capacity analysis of the relay channel
was provided later in [9] by Cover and El Gamal, and there are more recent work that fur-
ther addressed the information-theoretic aspect of the relay channel, for example [10, 11]
on achievable capacity and coding strategies for wireless relay channels, [12] on capacity
region of a degraded Gaussian relay channel with multiple relay stages, [13] on capacity of
relay channels with orthogonal channels, and so on.

Recently, many efforts have also been focused on design of cooperative diversity protocols
in order to combat the effects of severe fading in wireless channels. Specifically, in [2, 3],
various cooperation protocols were proposed for wireless networks, in which when a user
helps other users to forward information, it serves as a relay. The relay may first decode
the received information and then forward the decoded symbol to the destination, which is
termed as a decode-and-forward (DF) cooperation protocol, or the relay may simply amplify
the received signal and forward it, which results in an amplify-and-forward (AF) cooperation
protocol. In both DF and AF cooperation protocols, source and relay send information to
destination through orthogonal channels. Extensive outage probability performance analysis
has been provided in [3] for such cooperation systems. The concept of user cooperation
diversity was also proposed in [4, 5], where a two-user cooperation scheme was investigated
for CDMA systems and substantial performance gain was demonstrated with comparison to
the non-cooperative approach.
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In this paper, we analyze the symbol-error-rate (SER) performance of uncoded cooperation
systems with either DF or AF cooperation protocol. For the DF cooperation systems, we
derive closed-form SER formulation explicitly for the systems with PSK and QAM signals.
Since the closed-form SER formulation is complicated, we establish an upper bound as well
as an approximation to show the asymptotic performance of the DF cooperation systems, in
which the approximation is asymptotically tight at high signal-to-noise ratio (SNR). Based
on the SER performance analysis, we are able to determine an asymptotic optimum power
allocation for the DF cooperation systems. It turns out that an equal power strategy [3] is in
general not optimum and the optimum power allocation depends on the channel link quality.
In case that all channel links are available, an interesting observation is that the optimum
power allocation does not depend on the direct link between source and destination and it
depends only on the channel links related to the relay.

For the AF cooperation systems, in order to analyze the SER performance, we have to
find the statistics of the harmonic mean of two random variables, which are related to the
instantaneous SNR at the destination [14]. The moment generating function (MGF) of the
harmonic mean of two exponential random variables was derived in [14] by applying the
Laplace transform and the hypergeometric functions [15]. However, the result involves an
integration of the hypergeometric functions and it is hard to use for analyzing the AF coop-
eration systems. In the second part of this paper, we first obtain a simple MGF expression for
the harmonic mean which avoids the hypergeometric functions. Then, by taking advantage of
the simple MGF expression, we are able to obtain a closed-form SER performance analysis
for the AF cooperation systems with PSK and QAM signals. Moreover, an asymptotically
tight SER approximation is established to reveal the performance of the AF cooperation sys-
tems. Based on the asymptotically tight SER approximation, we then determine an optimum
power allocation for the AF cooperation systems. Note that the optimum power allocation
for the AF cooperation systems is not modulation-dependent, which is different from that
for the DF cooperation systems in which the optimum power allocation depends on specific
M-PSK or M-QAM modulation. This is due to the fact that in the AF cooperation systems,
the relay amplifies the received signal and forwards it to the destination regardless what kind
of the received signal is.

Finally, we compare the performance of the cooperation systems with either DF or AF
cooperation protocol. It turns out that the performance of the cooperation systems with the
DF cooperation protocol is better than that with the AF protocol. However, the performance
gain varies with different modulation types and channel conditions, and the gain is limited.
For example, in case of BPSK modulation, the performance gain cannot be larger than 2.4 dB;
and for QPSK modulation, it cannot be larger than 1.2 dB. There are tradeoff between these
two cooperation protocols. Extensive simulation results are also provided to validate the
theoretical analysis.

The rest of the paper is organized as follows. In Sect. 2, we describe the cooperation
systems with either DF or AF cooperation protocol. In Sect. 3, we analyze the SER per-
formance and determine an asymptotic optimum power allocation for the DF cooperation
systems. We investigate the SER performance for the AF cooperation systems in Sect. 4.
First, we derive a simple closed-form MGF expression for the harmonic mean of two ran-
dom variables. Then, based on the simple MGF expression, closed-form SER formulations
are given for the AF cooperation systems. We also provide a tight SER approximation to
show the asymptotic performance determine an optimum power allocation. In Sect. 5, we
provide performance comparison between the cooperation systems with the DF and AF pro-
tocols. The simulation results are presented in Sect. 6, and some conclusions are drawn in
Sect. 7.
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Fig. 1 A simplified cooperation
model
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2 System Model

We consider a cooperation strategy with two phases in wireless networks which can be mobile
ad hoc networks or cellular networks [2–5]. In Phase 1, each mobile user (or node) in a wire-
less network sends information to its destination, and the information is also received by
other users at the same time. In Phase 2, each user helps others by forwarding the informa-
tion that it receives in Phase 1. Each user may decode the received information and forward
it (corresponding to the DF protocol), or simply amplify and forward it (corresponding to
the AF protocol). In both phases, all users transmit signals through orthogonal channels by
using TDMA, FDMA or CDMA scheme [3, 5]. For better understanding the cooperation
concept, we focus on a two-user cooperation scheme. Specifically, user 1 sends information
to its destination in Phase 1, and user 2 also receives the information. User 2 helps user 1
to forward the information in Phase 2. Similarly, when user 2 sends its information to its
destination in Phase 1, user 1 receives the information and forwards it to user 2s destination
in Phase 2. Due to the symmetry of the two users, we will analyze only user 1s performance.
Without loss of generality, we consider a concise model as shown in Fig. 1, in which source
denotes user 1 and relay represents user 2.

In Phase 1, the source broadcasts its information to both the destination and the relay. The
received signals ys,d and ys,r at the destination and the relay respectively can be written as

ys,d = √P1 hs,d x + ηs,d , (1)

ys,r = √P1 hs,r x + ηs,r , (2)

in which P1 is the transmitted power at the source, x is the transmitted information symbol, and
ηs,d and ηs,r are additive noise. In (1) and (2), hs,d and hs,r are the channel coefficients from
the source to the destination and the relay respectively. They are modeled as zero-mean, com-
plex Gaussian random variables with variances δ2

s,d and δ2
s,r respectively. The noise terms ηs,d

and ηs,r are modeled as zero-mean complex Gaussian random variables with variance N 0.
In Phase 2, for a DF cooperation protocol, if the relay is able to decode the transmitted

symbol correctly, then the relay forwards the decoded symbol with power P2 to the destina-
tion, otherwise the relay does not send or remains idle. The received signal at the destination
in Phase 2 in this case can be modeled as

yr,d =
√

P̃2 hr,d x + ηr,d , (3)

where P̃2 = P2 if the relay decodes the transmitted symbol correctly, otherwise P̃2 = 0.
In (3), hr,d is the channel coefficient from the relay to the destination, and it is modeled as
a zero-mean, complex Gaussian random variable with variance δ2

r,d . The noise term ηr,d is
also modeled as a zero-mean complex Gaussian random variable with variance N0. Note
that for analytical tractability, we assume in this paper an ideal DF cooperation protocol that
the relay is able to detect whether the transmitted symbol is decoded correctly or not, which
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is also referred as a selective-relaying protocol in literature. In practice, we may apply an
SNR threshold at the relay. If the received SNR at the relay is higher than the threshold, then
the symbol has a high probability to be decoded correctly. More discussions on threshold
optimization at the relay can be found in [16].

For an AF cooperation protocol, in Phase 2 the relay amplifies the received signal and for-
wards it to the destination with transmitted power P2. The received signal at the destination
in Phase 2 is specified as [3]

yr,d =
√

P2√
P1|hs,r |2 + N0

hr,d ys,r + ηr,d , (4)

where hr,d is the channel coefficient from the relay to the destination and ηr,d is an additive
noise, with the same statistics models as in (3), respectively. Specifically, the received signal
yr,d in this case is

yr,d =
√

P1 P2√
P1|hs,r |2 + N0

hr,d hs,r x + η′
r,d , (5)

where η′
r,d =

√
P2√

P1|hs,r |2+N0
hr,d ηs,r + ηr,d . Assume that ηs,r and ηr,d are independent, then

the equivalent noise η′
r,d is a zero-mean complex Gaussian random variable with variance

(
P2|hr,d |2

P1|hs,r |2+N0
+ 1
)

N0.

In both the DF and AF cooperation protocols, the channel coefficients hs,d , hs,r and hr,d

are assumed to be independent to each other and the mobility and positioning of the nodes
is incorporated into the channel statistic model. The channel coefficients are assumed to be
known at the receiver, but not at the transmitter. The destination jointly combines the received
signal from the source in Phase 1 and that from the relay in Phase 2, and detects the trans-
mitted symbols by using the maximum-ratio combining (MRC) [17]. In both protocols, we
assume the total transmitted power P1 + P2 = P .

3 SER Analysis for DF Cooperative Communications

In this section, we analyze the SER performance for the DF cooperative communication
systems. First, we derive closed-form SER formulations explicitly for the systems with
M-PSK and M-QAM1 modulations. Then, we provide an SER upper bound as well as
an approximation to reveal the asymptotic performance of the systems, in which the approx-
imation is asymptotically tight at high SNR. Finally, based on the tight SER approximation,
we are able to determine an asymptotic optimum power allocation for the DF cooperation
systems.

3.1 Closed-Form SER Analysis

With knowledge of the channel coefficients hs,d and hr,d , the destination detects the trans-
mitted symbols by jointly combining the received signal ys,d (1) from the source and yr,d (3)
from the relay. The combined signal at the MRC detector can be written as [17]

y = a1 ys,d + a2 yr,d , (6)

1 Throughout the paper, QAM stands for a square QAM constellation whose size is given by M = 2k with k
even.
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in which the factors a1 and a2 are determined such that the SNR of the MRC output is

maximized, and they can be specified as a1 = √
P1h∗

s,d/N0 and a2 =
√

P̃2h∗
r,d/N0. Assume

that the transmitted symbol x in (1) and (3) has average energy 1, then the SNR of the MRC
output is [17]

γ = P1|hs,d |2 + P̃2|hr,d |2
N0

. (7)

If M-PSK modulation is used in the system, with the instantaneous SNR γ in (7), the
conditional SER of the system with the channel coefficients hs,d , hs,r and hr,d can be written
as [18]

P
hs,d ,hs,r ,hr,d
PSK = �PSK(γ )

�= 1

π

∫ (M−1)π/M

0
exp

(
−bPSKγ

sin2 θ

)
dθ, (8)

where bPSK = sin2(π/M). If M-QAM (M = 2k with k even) signals are used in the system,
the conditional SER of the system can also be expressed as [18]

P
hs,d ,hs,r ,hr,d
QAM = �QAM(γ ), (9)

where

�QAM(γ )
�= 4K Q(

√
bQAMγ ) − 4K 2 Q2(

√
bQAMγ ), (10)

in which K = 1 − 1√
M

, bQAM = 3/(M − 1), and Q(u) = 1√
2π

∫∞
u exp

(
− t2

2

)
dt is the

Gaussian Q-function [19]. It is easy to see that in case of QPSK or 4-QAM modulation, the
conditional SER in (8) and (9) are the same.

Note that in Phase 2, we assume that if the relay decodes the transmitted symbol x from the
source correctly, then the relay forwards the decoded symbol with power P2 to the destination,
i.e., P̃2 = P2; otherwise the relay does not send, i.e., P̃2 = 0. If an M-PSK symbol is sent
from the source, then at the relay, the chance of incorrect decoding is �PSK(P1|hs,r |2/N0),
and the chance of correct decoding is 1 − �PSK(P1|hs,r |2/N0). Similarly, if an M-QAM
symbol is sent out at the source, then the chance of incorrect decoding at the relay is
�QAM(P1|hs,r |2/N0), and the chance of correct decoding is 1 − �QAM(P1|hs,r |2/N0).

Let us first focus on the SER analysis in case of M-PSK modulation. Taking into account
the two scenarios of P̃2 = P2 and P̃2 = 0, we can calculate the conditional SER in (8) as

P
hs,d ,hs,r ,hr,d
PSK = �PSK (γ ) |P̃2=0�PSK

(
P1|hs,r |2

N0

)

+�PSK (γ ) |P̃2=P2

[
1 − �PSK

(
P1|hs,r |2

N0

)]

= 1

π2

∫ (M−1)π/M

0
exp

(
−bPSK P1|hs,d |2

N0 sin2 θ

)
dθ

×
∫ (M−1)π/M

0
exp

(
−bPSK P1|hs,r |2

N0 sin2 θ

)
dθ

+ 1

π

∫ (M−1)π/M

0
exp

(

−bPSK
(
P1|hs,d |2 + P2|hr,d |2)

N0 sin2 θ

)

dθ

×
[

1 − 1

π

∫ (M−1)π/M

0
exp

(
−bPSK P1|hs,r |2

N0 sin2 θ

)
dθ

]

. (11)
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Averaging the conditional SER (11) over the Rayleigh fading channels hs,d , hs,r and hr,d ,
we obtain the SER of the DF cooperation system with M-PSK modulation as follows:

PPSK = F1

(

1 + bPSK P1δ
2
s,d

N0 sin2 θ

)

F1

(

1 + bPSK P1δ
2
s,r

N0 sin2 θ

)

+ F1

((

1 + bPSK P1δ
2
s,d

N0 sin2 θ

)(

1 + bPSK P2δ
2
r,d

N0 sin2 θ

))[

1 − F1

(

1 + bPSK P1δ
2
s,r

N0 sin2 θ

)]

,

(12)

where F1(x(θ)) = 1
π

∫ (M−1)π/M
0

1
x(θ)

dθ, in which x(θ) denotes a function with variable θ .
For DF cooperation systems with M-QAM modulation, the conditional SER in (9) with

the channel coefficients hs,d , hs,r and hr,d can be similarly determined as

P
hs,d ,hs,r ,hr,d
QAM = �QAM(γ )|P̃2=0�QAM

(
P1|hs,r |2

N0

)

+�QAM(γ )|P̃2=P2

[
1 − �QAM

(
P1|hs,r |2

N0

)]
. (13)

By substituting (10) into (13) and averaging it over the fading channels hs,d , hs,r and hr,d ,
the SER of the DF cooperation system with M-QAM modulation can be given by

PQAM = F2

(

1 + bQAM P1δ
2
s,d

2N0 sin2 θ

)

F2

(

1 + bQAM P1δ
2
s,r

2N0 sin2 θ

)

+ F2

((

1 + bQAM P1δ
2
s,d

2N0 sin2 θ

)(

1 + bQAM P2δ
2
r,d

2N0 sin2 θ

))

×
[

1 − F2

(

1 + bQAM P1δ
2
s,r

2N0 sin2 θ

)]

, (14)

where

F2(x(θ)) = 4K

π

∫ π/2

0

1

x(θ)
dθ − 4K 2

π

∫ π/4

0

1

x(θ)
dθ, (15)

in which x(θ) denotes a function with variable θ . In order to get the SER formulation
in (14), we used two special properties of the Gaussian Q-function as follows: Q(u) =
1
π

∫ π/2
0 exp

(
− u2

2 sin2 θ

)
dθ and Q2(u) = 1

π

∫ π/4
0 exp

(
− u2

2 sin2 θ

)
dθ for any u ≥ 0 [18, 20].

Note that for 4-QAM modulation,

F2(x(sin2(θ))) = 2

π

∫ π/2

0

1

x(sin2(θ))
dθ − 1

π

∫ π/4

0

1

x(sin2(θ))
dθ

= 1

π

∫ π/2

0

1

x(sin2(θ))
dθ + 1

π

∫ π/2

π/4

1

x(sin2(θ))
dθ

= 1

π

∫ 3π/4

0

1

x(sin2(θ))
dθ,

which shows that the SER formulation in (14) for 4-QAM modulation is consistent with that
in (12) for QPSK modulation.
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3.2 SER Upper Bound and Asymptotically Tight Approximation

Even though the closed-form SER formulations in (12) and (14) can be efficiently calculated
numerically, they are very complex and it is hard to get insight into the system performance
from these. In the following theorem, we provide an upper bound as well as an approxima-
tion which are useful in demonstrating the asymptotic performance of the DF cooperation
scheme. The SER approximation is asymptotically tight at high SNR.

Theorem 1 The SER of the DF cooperation systems with M-PSK or M-QAM modulation
can be upper-bounded as

Ps ≤ (M − 1)N 2
0

M2 · MbP1δ
2
s,r + (M − 1)bP2δ

2
r,d + (2M − 1)N0

(N0 + bP1δ
2
s,d)(N0 + bP1δ2

s,r )(N0 + bP2δ
2
r,d)

, (16)

where b = bPSK for M-PSK signals and b = bQAM/2 for M-QAM signals. Furthermore, if
all of the channel links hs,d , hs,r and hr,d are available, i.e., δ2

s,d �= 0, δ2
s,r �= 0 and δ2

r,d �= 0,
then for sufficiently high SNR, the SER of the systems with M-PSK or M-QAM modulation
can be tightly approximated as

Ps ≈ N 2
0

b2 · 1

P1δ
2
s,d

(
A2

P1δ2
s,r

+ B

P2δ
2
r,d

)

, (17)

where in case of M-PSK signals, b = bPSK and

A = M − 1

2M
+ sin 2π

M

4π
, B = 3(M − 1)

8M
+ sin 2π

M

4π
− sin 4π

M

32π
; (18)

while in case of M-QAM signals, b = bQAM/2 and

A = M − 1

2M
+ K 2

π
, B = 3(M − 1)

8M
+ K 2

π
. (19)

Proof First, let us show the upper bound in (16). In case of M-PSK modulation, the closed-
form SER expression was given in (12). By removing the negative term in (12), we have

PPSK ≤ F1

(

1 + bPSK P1δ
2
s,d

N0 sin2 θ

)

F1

(

1 + bPSK P1δ
2
s,r

N0 sin2 θ

)

+F1

((

1 + bPSK P1δ
2
s,d

N0 sin2 θ

)(

1 + bPSK P2δ
2
r,d

N0 sin2 θ

))

. (20)

We observe that in the right hand side of the above inequality, all integrands have their
maximum value when sin2 θ = 1. Therefore, by substituting sin2 θ = 1 into (20), we have

PPSK ≤ (M − 1)2

M2 · N 2
0

(N0 + bPSK P1δ
2
s,d)(N0 + bPSK P1δ2

s,r )

+ M − 1

M
· N 2

0

(N0 + bPSK P1δ
2
s,d)(N0 + bPSK P2δ

2
r,d)

= (M − 1)N 2
0

M2 · MbPSK P1δ
2
s,r + (M − 1)bPSK P2δ

2
r,d + (2M − 1)N0

(N0 + bPSK P1δ
2
s,d)(N0 + bPSK P1δ2

s,r )(N0 + bPSK P2δ
2
r,d)

,
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which validates the upper bound in (16) for M-PSK modulation. Similarly, in case of M-QAM
modulation, the SER in (14) can be upper bounded as

PQAM ≤ F2

(

1 + bQAM P1δ
2
s,d

2N0 sin2 θ

)

F2

(

1 + bQAM P1δ
2
s,r

2N0 sin2 θ

)

+F2

((

1 + bQAM P1δ
2
s,d

2N0 sin2 θ

)(

1 + bQAM P2δ
2
r,d

2N0 sin2 θ

))

. (21)

Note that, the function F2(x(θ)) defined in (15) can be rewritten as

F2(x(θ)) = 4K

π
√

M

∫ π/2

0

1

x(θ)
dθ + 4K 2

π

∫ π/2

π/4

1

x(θ)
dθ, (22)

which does not contain negative term. Moreover, the integrands in (21) have their maximum
value when sin2 θ = 1. Thus, by substituting (22) and sin2 θ = 1 into (21), we have

PQAM ≤
(

2K√
M

+ K 2
)2 N 2

0

(N0 + bQAM
2 P1δ

2
s,d)(N0 + bQAM

2 P1δ2
s,r )

+
(

2K√
M

+ K 2
) N 2

0

(N0 + bQAM
2 P1δ

2
s,d)(N0 + bQAM

2 P2δ
2
r,d)

= (M − 1)N 2
0

M2 · M bQAM
2 P1δ

2
s,r + (M − 1)

bQAM
2 P2δ

2
r,d + (2M − 1)N0

(N0 + bQAM
2 P1δ

2
s,d)(N0 + bQAM

2 P1δ2
s,r )(N0 + bQAM

2 P2δ
2
r,d)

,

in which K = 1− 1√
M

. Therefore, the upper bound in (16) also holds for M-QAM modulation.
In the following, we show the asymptotically tight approximation (17) with the assumption

that all of the channel links hs,d , hs,r and hr,d are available, i.e., δ2
s,d �= 0, δ2

s,r �= 0 and δ2
r,d �=

0. First, let us consider the M-PSK modulation. In the SER formulation (12), we observe that

for sufficiently large power P1 and P2, 1+ bPSK P1δ
2
s,d

N0 sin2 θ
≈ bPSK P1δ

2
s,d

N0 sin2 θ
, 1+ bPSK P1δ

2
s,r

N0 sin2 θ
≈ bPSK P1δ

2
s,r

N0 sin2 θ

and 1 + bPSK P2δ2
r,d

N0 sin2 θ
≈ bPSK P2δ2

r,d

N0 sin2 θ
, i.e., the 1s are negligible with sufficiently large power. Thus,

for sufficiently high SNR, the SER in (12) can be tightly approximated as

PPSK ≈ F1

(
bPSK P1δ

2
s,d

N0 sin2 θ

)

F1

(
bPSK P1δ

2
s,r

N0 sin2 θ

)

+F1

(
b2

PSK P1 P2δ
2
s,dδ2

s,r

N 2
0 sin4 θ

)[

1 − F1

(
bPSK P1δ

2
s,r

N0 sin2 θ

)]

≈ F1

(
bPSK P1δ

2
s,d

N0 sin2 θ

)

F1

(
bPSK P1δ

2
s,r

N0 sin2 θ

)

+ F1

(
b2

PSK P1 P2δ
2
s,dδ2

s,r

N 2
0 sin4 θ

)

,

= A2N 2
0

b2
PSK P2

1 δ2
s,dδ2

s,r

+ BN 2
0

b2
PSK P1 P2δ

2
s,dδ2

r,d

, (23)
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in which A = 1
π

∫ (M−1)π/M
0 sin2 θdθ = M−1

2M + sin 2π
M

4π
, and B = 1

π

∫ (M−1)π/M
0 sin4 θdθ =

3(M−1)
8M + sin 2π

M
4π

− sin 4π
M

32π
. Note that the second approximation is due to the fact that

1 − F1

(
bPSK P1δ

2
s,r

N0 sin2 θ

)

= 1 − N0

πbPSK P1δ2
s,r

∫ (M−1)π/M

0
sin2 θdθ ≈ 1

for sufficiently large P1. Therefore, the asymptotically tight approximation in (17) holds for
the M-PSK modulation. In case of M-QAM signals, similarly the SER formulation in (14)
can be tightly approximated at high SNR as follows

PQAM ≈ F2

(
bQAM P1δ

2
s,d

2N0 sin2 θ

)

F2

(
bQAM P1δ

2
s,r

2N0 sin2 θ

)

+ F2

(
b2

QAM P1 P2δ
2
s,dδ2

r,d

4N 2
0 sin4 θ

)

= 4A2N 2
0

b2
QAM P2

1 δ2
s,dδ2

s,r

+ 4BN 2
0

b2
QAM P1 P2δ

2
s,dδ2

r,d

, (24)

where

A = 4K

π
√

M

∫ π/2

0
sin2 θdθ + 4K 2

π

∫ π/2

π/4
sin2 θdθ = M − 1

2M
+ K 2

π
,

B = 4K

π
√

M

∫ π/2

0
sin4 θdθ + 4K 2

π

∫ π/2

π/4
sin4 θdθ = 3(M − 1)

8M
+ K 2

π
.

Thus, the asymptotically tight approximation in (17) also holds for the M-QAM signals. �

In Fig. 2, we compare the asymptotically tight approximation (17) and the SER upper
bound (16) with the exact SER formulations (12) and (14) in case of QPSK (or 4-QAM)
modulation. In this case, the parameters b, A and B in the upper bound (16) and the approx-
imation (17) are specified as b = 1, A = 3

8 + 1
4π

and B = 9
32 + 1

4π
. We can see that the

upper bound (16) (dashed line with ‘·’) is asymptotically parallel with the exact SER curve
(solid line with ‘
’), which means that they have the same diversity order. The approximation
(17) (dashed line with ‘◦’) is loose at low SNR, but it is tight at reasonable high SNR. It
merges with the exact SER curve at an SER of 10−3. Both the SER upper bound and the
approximation show the asymptotic performance of the DF cooperation systems. Specifi-
cally, from the asymptotically tight approximation (17), we observe that the link between
source and destination contributes diversity order one in the system performance. The term

A2

P1δ2
s,r

+ B
P2δ2

r,d
also contributes diversity order one in the performance, but it depends on the

balance of the two channel links from source to relay and from relay to destination. Therefore,
the DF cooperation systems show an overall performance of diversity order two.

3.3 Optimum Power Allocation

Note that the SER approximation (17) is asymptotically tight at high SNR. In this subsec-
tion, we determine an asymptotic optimum power allocation for the DF cooperation protocol
based on the asymptotically tight SER approximation.

Specifically, we try to determine an optimum transmitted power P1 that should be used at
the source and P2 at the relay for a fixed total transmission power P1 + P2 = P . According
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Fig. 2 Comparison of the exact SER formulation, the upper bound and the asymptotically tight approximation
for the DF cooperation system with QPSK or 4-QAM signals. We assumed that δ2

s,d = δ2
s,r = δ2

r,d = 1, N0 =
1, and P1 = P2 = P/2

to the asymptotically tight SER approximation (17), it is sufficient to minimize

G(P1, P2) = 1

P1δ
2
s,d

(
A2

P1δ2
s,r

+ B

P2δ
2
r,d

)

.

By taking derivative in terms of P1, we have

∂G(P1, P2)

∂ P1
= 1

P1δ
2
s,d

(

− A2

P2
1 δ2

s,r

+ B

P2
2 δ2

r,d

)

− 1

P2
1 δ2

s,d

(
A2

P1δ2
s,r

+ B

P2δ
2
r,d

)

.

By setting the above derivation as 0, we come up with an equation as follows:

Bδ2
s,r (P2

1 − P1 P2) − 2A2δ2
r,d P2

2 = 0.

With the power constraint, we can solve the above equation and arrive at the following result.

Theorem 2 In the DF cooperation systems with M-PSK or M-QAM modulation, if all of
the channel links hs,d , hs,r and hr,d are available, i.e., δ2

s,d �= 0, δ2
s,r �= 0 and δ2

r,d �= 0, then
for sufficiently high SNR, the optimum power allocation is

P1 =
δs,r +

√
δ2

s,r + 8(A2/B)δ2
r,d

3δs,r +
√

δ2
s,r + 8(A2/B)δ2

r,d

P, (25)

P2 = 2δs,r

3δs,r +
√

δ2
s,r + (8A2/B)δ2

r,d

P, (26)

where A and B are specified in (18) and (19) for M-PSK and M-QAM signals respectively.
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The result in Theorem 2 is somewhat surprising since the asymptotic optimum power
allocation does not depend on the channel link between source and destination, it depends
only on the channel link between source and relay and the channel link between relay and
destination. Moreover, we can see that the optimum ratio of the transmitted power P1 at the
source over the total power P is less than 1 and larger than 1/2, while the optimum ratio of
the power P2 used at the relay over the total power P is larger than 0 and less than 1/2, i.e.,

1

2
<

P1

P
< 1 and 0 <

P2

P
<

1

2
.

It means that we should always put more power at the source and less power at the relay. If the
link quality between source and relay is much less than that between relay and destination,
i.e., δ2

s,r << δ2
r,d , then from (25) and (26), P1 goes to P and P2 goes to 0. It implies that

we should use almost all of the power P at the source, and use few power at the relay. On
the other hand, if the link quality between source and relay is much larger than that between
relay and destination, i.e., δ2

s,r >> δ2
r,d , then both P1 and P2 go to P/2. It means that we

should put equal power at the source and the relay in this case.
We interpret the result in Theorem 2 as follows. Since we assume that all of the channel

links hs,d , hs,r and hr,d are available in the system, the cooperation strategy is expected to
achieve a performance diversity of order two. The system is guaranteed to have a performance
diversity of order one due to the channel link between source and destination. However, in
order to achieve a diversity of order two, the channel link between source and relay and
the channel link between relay and destination should be appropriately balanced. If the link
quality between source and relay is bad, then it is difficult for the relay to correctly decode
the transmitted symbol. Thus, the forwarding role of the relay is less important and it makes
sense to put more power at the source. On the other hand, if the link quality between source
and relay is very good, the relay can always decode the transmitted symbol correctly, so the
decoded symbol at the relay is almost the same as that at the source. We may consider the
relay as a copy of the source and put almost equal power on them. We want to emphasize that
this interpretation is good only for sufficiently high SNR scenario and under the assumption
that all of the channel links hs,d , hs,r and hr,d are available. Actually, this interpretation is
not accurate in general. For example, in case that the link quality between source and relay
is the same as that between relay and destination, i.e., δ2

s,r = δ2
r,d , the asymptotic optimum

power allocation is given by

P1 = 1 +√1 + 8A2/B

3 +√1 + 8A2/B
P, (27)

P2 = 2

3 +√1 + 8A2/B
P, (28)

where A and B depend on specific modulation signals. For example, if BPSK modulation
is used, then P1 = 0.5931P and P2 = 0.4069P; while if QPSK modulation is used, then
P1 = 0.6270P and P2 = 0.3730P . In case of 16-QAM, P1 = 0.6495P and P2 = 0.3505P .
We can see that the larger the constellation size, the more power should be put at the source.

It is worth pointing out that even though the asymptotic optimum power allocation in (25)
and (26) are determined for high SNR, they also provide a good solution to a realistic moder-
ate SNR scenario as in Fig. 3, in which we plotted exact SER as a function of the ratio P1/P
for a DF cooperation system with QPSK modulation. We considered the DF cooperation
system with δ2

s,r = δ2
r,d = 1 and three different qualities of the channel link between source
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Fig. 3 SER of the DF cooperation systems with δ2
s,r = 1 and δ2

r,d = 1: (a) δ2
s,d = 0.1; (b) δ2

s,d = 1; and (c)

δ2
s,d = 10. The asymptotic optimum power allocation is P1/P = 0.6270 and P2/P = 0.3730.

and destination: (a) δ2
s,d = 0.1; (b) δ2

s,d = 1; and (c) δ2
s,d = 10. The asymptotic optimum

power allocation in this case is P1/P = 0.6270 and P2/P = 0.3730. From the figures, we
can see that the ratio P1/P = 0.6270 almost provides the best performance for different total
transmit power P = 10, 20, 30 dB.

3.4 Some Special Scenarios

We have determined the optimum power allocation in (25) and (26) for the DF cooperation
systems in case that all of the channel links hs,d , hs,r and hr,d are available. In the following,
we consider some special cases that some of the channel links are not available.

Case 1 If the channel link between relay and destination is not available, i.e., δ2
r,d = 0,

according to (12), the SER of the DF system with M-PSK modulation can be given by

PPSK = F1

(

1 + bPSK P1δ
2
s,d

N0 sin2 θ

)

≤ AN0

bPSK P1δ
2
s,d

, (29)

where A is specified in (18). Similarly, from (14), the SER of the system with M-QAM
modulation is

PQAM = F2

(

1 + bQAM P1δ
2
s,d

2N0 sin2 θ

)

≤ 2AN0

bQAM P1δ
2
s,d

, (30)
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where A is specified in (19). From (29) and (30), we can see that for both M-PSK and
M-QAM signals, the optimum power allocation is P1 = P and P2 = 0. It means that we
should use the direct transmission from source to destination in this case.

Case 2 If the channel link between source and relay is not available, i.e., δ2
s,r = 0, from

(12) and (14), the SER of the DF system with M-PSK or M-QAM modulation can be upper
bounded as Ps ≤ 2AN0

bP1δ
2
s,d

, where in case of M-PSK modulation, b = bPSK and A is specified

in (18), while in case of M-QAM modulation, b = bQAM/2 and A is specified in (19).
Therefore, the optimum power allocation in this case is P1 = P and P2 = 0.

Case 3 If the channel link between source and destination is not available, i.e., δ2
s,d = 0,

according to (12) and (14), the SER of the DF system with M-PSK or M-QAM modulation
can be given by

Ps = Fi

(

1 + bP1δ
2
s,r

N0 sin2 θ

)

+ Fi

(

1 + bP2δ
2
r,d

N0 sin2 θ

)[

1 − Fi

(

1 + bP1δ
2
s,r

N0 sin2 θ

)]

, (31)

in which i = 1 and b = bPSK for M-PSK modulation, and i = 2 and b = bQAM/2 for
M-QAM modulation. If δ2

s,r �= 0 and δ2
r,d �= 0, then by the same procedure as we obtained

the SER approximation in (17), the SER in (31) can be asymptotically approximated as

Ps ≈ AN 2
0

b2

(
1

P1δ2
s,r

+ 1

P2δ
2
r,d

)

, (32)

where in case of M-PSK modulation, b = bPSK and A is specified in (18), while in case of
M-PSK modulation, b = bQAM/2 and A is specified in (19). From (32), we can see that with
the total power P1 + P2 = P , the optimum power allocation in this case is

P1 = δr,d

δs,r + δr,d
P (33)

P2 = δs,r

δs,r + δr,d
P (34)

for both M-PSK and M-QAM modulations.

Note that when the channel link between source and destination is not available
(i.e., δ2

s,d = 0), the system reduces to a two-hop communication scenario [21]. It is worth not-
ing that the optimum power allocation in (33) and (34), which is determined from minimizing
the SER approximation (32), is consistent with the result in [21], in which the optimum power
allocation was determined for multi-hop communication systems from a minimizing outage
probability point of view.

4 SER Analysis for AF Cooperative communications

In this section, we investigate the SER performance for the AF cooperative communication
systems. First, we derive a simple closed-form MGF expression for the harmonic mean of two
independent exponential random variables. Second, based on the simple MGF expression,
closed-form SER formulations are given for the AF cooperation systems with M-PSK and
M-QAM modulations. Third, we provide an SER approximation, which is tight at high SNR,
to show the asymptotic performance of the systems. Finally, based on the tight approximation,
we are able to determine an optimum power allocation for the AF cooperation systems.
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4.1 SER Analysis by MGF Approach

In the AF cooperation systems, the relay amplifies not only the received signal, but also the
noise as shown in (4) and (5). The equivalent noise η′

r,d at the destination in Phase 2 is a

zero-mean complex Gaussian random variable with variance
(

P2|hr,d |2
P1|hs,r |2+N0

+ 1
)

N0. There-

fore, with knowledge of the channel coefficients hs,d , hs,r and hr,d , the output of the MRC
detector at the destination can be written as [17]

y = a1 ys,d + a2 yr,d , (35)

where a1 and a2 are specified as

a1 =
√

P1h∗
s,d

N0
and a2 =

√
P1 P2

P1|hs,r |2+N0
h∗

s,r h∗
r,d

(
P2|hr,d |2

P1|hs,r |2+N0
+ 1
)

N0

. (36)

Note that to determine the factor a2 in (36), we considered the equivalent received signal
model in (5). By assuming that the transmitted symbol x in (1) has average energy 1, we
know that the instantaneous SNR of the MRC output is [17]

γ = γ1 + γ2, (37)

where γ1 = P1|hs,d |2/N0, and

γ2 = 1

N0

P1 P2|hs,r |2|hr,d |2
P1|hs,r |2 + P2|hr,d |2 + N0

. (38)

It has been shown in [14] that the instantaneous SNR γ2 in (38) can be tightly upper bounded
as

γ̃2 = 1

N0

P1 P2|hs,r |2|hr,d |2
P1|hs,r |2 + P2|hr,d |2 , (39)

which is the harmonic mean of two exponential random variables P1|hs,r |2/N0 and
P2|hr,d |2/N0. According to (8) and (9), the conditional SER of the AF cooperation sys-
tems with M-PSK and M-QAM modulations can be given as follows:

P
hs,d ,hs,r ,hr,d
PSK ≈ 1

π

∫ (M−1)π/M

0
exp

(
−bPSK(γ1 + γ̃2)

sin2 θ

)
dθ, (40)

P
hs,d ,hs,r ,hr,d
QAM ≈ 4K Q

(√
bQAM(γ1 + γ̃2)

)
− 4K 2 Q2

(√
bQAM(γ1 + γ̃2)

)
, (41)

where bPSK = sin2(π/M), bQAM = 3/(M − 1) and K = 1 − 1√
M

. Note that we used the

SNR approximation γ ≈ γ1 + γ̃2 in the above derivation.
Let us denote the MGF of a random variable Z as [18]

MZ (s) =
∫ ∞

−∞
exp(−sz)pZ (z)dz, (42)

for any real number s. By averaging over the Rayleigh fading channels hs,d , hs,r and hr,d in
(40) and (41), we obtain the SER of the AF cooperation systems in terms of MGF Mγ1(s)
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and Mγ̃2(s) as follows:

PPSK ≈ 1

π

∫ (M−1)π/M

0
Mγ1

(
bPSK

sin2 θ

)
Mγ̃2

(
bPSK

sin2 θ

)
dθ, (43)

PQAM ≈
[

4K

π

∫ π/2

0
− 4K 2

π

∫ π/4

0

]
Mγ1

(
bQAM

2 sin2 θ

)
Mγ̃2

(
bQAM

2 sin2 θ

)
dθ, (44)

in which, for simplicity, we use the following notation
[

4K

π

∫ π/2

0
− 4K 2

π

∫ π/4

0

]
x(θ)dθ

�= 4K

π

∫ π/2

0
x(θ)dθ − 4K 2

π

∫ π/4

0
x(θ)dθ,

where x(θ) denotes a function with variable θ .
From (43) and (44), we can see that the remaining problem is to obtain the MGF Mγ1(s)

and Mγ̃2(s). Since γ1 = P1|hs,d |2/N0 has an exponential distribution with parameter
N0/(P1δ

2
s,d), the MGF of γ1 can be simply given by [18]

Mγ1(s) = 1

1 + s P1δ
2
s,d

N0

. (45)

However, it is not easy to get the MGF of γ̃2 which is the harmonic mean of two exponen-
tial random variables P1|hs,r |2/N0 and P2|hr,d |2/N0. This has been investigated in [14] by
applying Laplace transform and a solution was presented in terms of hypergeometric function
as follows:

Mγ̃2 (s) = 16β1β2

3(β1 + β2 + 2
√

β1β2 + s)2

[
4(β1 + β2)

β1 + β2 + 2
√

β1β2 + s
2

+ F1

(
3,

3

2
; 5

2
; β1 + β2 − 2

√
β1β2 + s

β1 + β2 + 2
√

β1β2 + s

)

2F1

(
2,

1

2
; 5

2
; β1 + β2 − 2

√
β1β2 + s

β1 + β2 + 2
√

β1β2 + s

)]
,

(46)

in which β1 = N0/(P1δ
2
s,r ), β2 = N0/(P2δ

2
r,d), and 2F1(·, ·; ·; ·) is the hypergeometric

function2 Because the hypergeometric function 2F1(·, ·; ·; ·) is defined as an integral, it is
hard to use in an SER analysis aimed at revealing the asymptotic performance and optimizing
the power allocation. Using an alternative approach, we found a simple closed-form solution
for the MGF of γ̃2 as shown in the next subsection.

4.2 Simple MGF Expression for the Harmonic Mean

In this subsection, we obtain at first a general result on the probability density function (pdf)
for the harmonic mean of two independent random variables. Then, we are able to determine a
simple closed-form MGF expression for the harmonic mean of two independent exponential
random variables. The results presented are useful beyond this paper.

2 A hypergeometric function with variables α, β, γ and z is defined as [15]

2F1(α, β; γ ; z) = 
(γ )


(β)
(γ − β)

∫ 1

0
tβ−1(1 − t)γ−β−1(1 − t z)−αdt,

where 
(·) is the Gamma function.
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Theorem 3 Suppose that X1 and X2 are two independent random variables with pdf pX1(x)

and pX2(x) defined for all x ≥ 0, and pX1(x) = 0 and pX2(x) = 0 for x < 0. Then the pdf
of Z = X1 X2

X1+X2
, the harmonic mean of X1 and X2, is

pZ (z) = z
∫ 1

0

1

t2(1 − t)2 pX1

(
z

1 − t

)
pX2

( z

t

)
dt · U (z) , (47)

in which U (z) = 1 for z ≥ 0 and U (z) = 0 for z < 0.

Note that we do not specify the distributions of the two independent random variables in
Theorem 3. The proof of this theorem can be found in Appendix. Suppose that X1 and X2

are two independent exponential random variables with parameters β1 and β2 respectively,
i.e., pX1(x) = β1 e−β1x · U (x) and pX2(x) = β2 e−β2x · U (x). Then, according to Theorem
3, the pdf of the harmonic mean Z = X1 X2

X1+X2
can be simply given as

pZ (z) = z
∫ 1

0

β1β2

t2(1 − t)2 e−(
β1
1−t + β2

t )zdt · U (z). (48)

The pdf of the harmonic mean Z has been presented in [14] in term of the zero-order and
first-order modified Bessel functions [15]. The pdf expression in (48) is critical for us to
obtain a simple closed-form MGF result for the harmonic mean Z .

Let us start calculating the MGF of the harmonic mean of two independent exponential
random variables by substituting the pdf of Z (48) into the definition (42) as follows:

MZ (s) =
∫ ∞

0
e−sz z

∫ 1

0

β1β2

t2(1 − t)2 e−(
β1
1−t + β2

t )zdtdz

=
∫ 1

0

β1β2

t2(1 − t)2

(∫ ∞

0
z e−(

β1
1−t + β2

t +s)zdz

)
dt, (49)

in which we switch the integration order. Since
∫ ∞

0
z e−(

β1
1−t + β2

t +s)zdz =
(

β1

1 − t
+ β2

t
+ s

)−2

,

the MGF in (49) can be determined as

MZ (s) =
∫ 1

0

β1β2
[
β2 + (β1 − β2 + s)t − st2

]2 dt, (50)

which is an integration of a quadratic trinomial and has a closed-form solution [15]. For
notation simplicity, denote α = (β1 − β2 + s)/2. According to the results on the integration
over quadratic trinomial ([15], Eqs. 2.103.3 and 2.103.4), for any s > 0, we have

∫ 1

0

1

(β2 + 2αt − st2)2 dt = st − α

2(β2s + α2)(β2 + 2αt − st2)

∣
∣
∣
∣

1

0

+ s

4(β2s + α2)
3
2

ln

∣
∣
∣
∣
∣
−st + α −√β2s + α2

−st + α +√β2s + α2

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

1

0

= β2s + α(β1 − β2)

2β1β2(β2s + α2)
+ s

4(β2s + α2)
3
2

× ln

(
β2 + α +√β2s + α2

)2

β1β2
. (51)
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By substituting α = (β1 − β2 + s)/2 into (51) and denoting � = 2
√

β2s + α2, we obtain a
simple closed-form MGF for the harmonic mean Z as follows:

MZ (s) = (β1 − β2)
2 + (β1 + β2)s

�2 + 2β1β2s

�3 ln
(β1 + β2 + s + �)2

4β1β2
, s > 0, (52)

where � = √(β1 − β2)2 + 2(β1 + β2)s + s2. We can see that if β1 and β2 go to zero, then
� can be approximated as s. In this case, the MGF in (52) can be simplified as

MZ (s) ≈ β1 + β2

s
+ 2β1β2

s2 ln
s2

β1β2
. (53)

Note that in (53), the second term goes to zero faster than the first term. As a result, the MGF
in (53) can be further simplified as

MZ (s) ≈ β1 + β2

s
. (54)

We summarize the above discussion in the following theorem.

Theorem 4 Let X1 and X2 be two independent exponential random variables with param-
eters β1 and β2 respectively. Then, the MGF of Z = X1 X2

X1+X2
is

MZ (s) = (β1 − β2)
2 + (β1 + β2)s

�2 + 2β1β2s

�3 ln
(β1 + β2 + s + �)2

4β1β2
(55)

for any s > 0, in which

� =
√

(β1 − β2)2 + 2(β1 + β2)s + s2. (56)

Furthermore, if β1 and β2 go to zero, then the MGF of Z can be approximated as

MZ (s) ≈ β1 + β2

s
. (57)

We can see that the closed-form solution in (55) does not involve any integration. If X1

and X2 are i.i.d exponential random variables with parameter β, then according to the result
in Theorem 4, the MGF of Z = X1 X2

X1+X2
can be simply given as

MZ (s) = 2β

4β + s
+ 4β2s

�3
0

ln
2β + s + �0

2β
, (58)

where s > 0 and �0 = √4βs + s2. Note that we still do not see how the MGF expression in
(46) in terms of hypergeometric function can be directly reduced to the simple closed-form
solution (55) in Theorem 4. The approximation in (57) will provide a very simple solution
for the SER calculations in (43) and (44) as shown in the next subsection.

4.3 Closed-Form SER Expressions and Asymptotically Tight Approximation

Now let us apply the result of Theorem 4 to the harmonic mean of two random variables
X1 = P1|hs,r |2/N0 and X2 = P2|hr,d |2/N0 as we considered in Sect. 4.1. They are two
independent exponential random variables with parameters β1 = N0/(P1δ

2
s,r ) and β2 =

N0/(P2δ
2
r,d), respectively.
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With the closed-form MGF expression in Theorem 4, the SER formulations in (43) and
(44) for AF systems with M-PSK and M-QAM modulations can be determined respectively
as

PPSK ≈ 1

π

∫ (M−1)π/M

0

1

1 + bPSK
β0 sin2 θ

{
(β1 − β2)

2 + (β1 + β2)
bPSK
sin2 θ

�2

+ 2β1β2bPSK

�3 sin2 θ
ln

(β1 + β2 + bPSK
sin2 θ

+ �)2

4β1β2

}

dθ, (59)

PQAM ≈
[

4K

π

∫ π/2

0
− 4K 2

π

∫ π/4

0

]
1

1 + bQAM

2β0 sin2 θ

⎧
⎨

⎩

(β1 − β2)
2 + (β1 + β2)

bQAM

2 sin2 θ

�2

+ β1β2bQAM

�3 sin2 θ
ln

(β1 + β2 + bQAM

2 sin2 θ
+ �)2

4β1β2

⎫
⎬

⎭
dθ, (60)

in which β0 = N0/(P1δ
2
s,d), β1 = N0/(P1δ

2
s,r ), β2 = N0/(P2δ

2
r,d), and �2 = (β1 −β2)

2 +
2(β1 + β2)s +s2 with s = bPSK/ sin2 θ for M-PSK modulation and s = bQAM/(2 sin2 θ)

for M-QAM modulation. We observe that it is hard to understand the AF system perfor-
mance based on the SER formulations in (59) and (60), even though they can be numerically
calculated. In the following, we try to simplify the SER formulations by taking advantage
of the MGF approximation in Theorem 4 to reveal the asymptotic performance of the AF
cooperation systems.

We focus on the AF system with M-PSK modulation at first. Note that both β1 =
N0/(P1δ

2
s,r ) and β2 = N0/(P2δ

2
r,d) go to zero when the SNR goes to infinity. According to the

MGF approximation (57) in Theorem 4, the SER formulation in (59) can be approximated as

PPSK ≈ 1

π

∫ (M−1)π/M

0

1

1 + bPSK
β0 sin2 θ

· β1 + β2
bPSK
sin2 θ

dθ

= 1

π

∫ (M−1)π/M

0

(β1 + β2) sin4 θ

bPSK(sin2 θ + bPSK
β0

)
dθ (61)

≈ B

b2
PSK

β0(β1 + β2), (62)

where B = 1
π

∫ (M−1)π/M
0 sin4 θdθ = 3(M−1)

8M + sin 2π
M

4π
− sin 4π

M
32π

. To obtain the approximation in
(62), we ignore the term sin2 θ in the denominator in (61), which is negligible for sufficiently
high SNR. Similarly, for the AF system with M-QAM modulation, the SER formulation in
(60) can be approximated as

PQAM ≈
[

4K

π

∫ π/2

0
− 4K 2

π

∫ π/4

0

]
1

1 + bQAM

2β0 sin2 θ

· β1 + β2
bQAM

2 sin2 θ

dθ

=
[

4K

π

∫ π/2

0
− 4K 2

π

∫ π/4

0

]
4(β1 + β2) sin4 θ

bQAM(2 sin2 θ + bQAM
β0

)
dθ (63)

≈ 4B

b2
QAM

β0(β1 + β2), (64)
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where B =
[

4K
π

∫ π/2
0 − 4K 2

π

∫ π/4
0

]
sin4 θ dθ = 3(M−1)

8M + K 2

π
. Since for sufficiently high

SNR, the term 2 sin2 θ in the denominator in (63) is negligible, we ignore it to have the
approximation in (64). We summarize the above discussion in the following theorem.

Theorem 5 At sufficiently high SNR, the SER of the AF cooperation systems with M-PSK
or M-QAM modulation can be approximated as

Ps ≈ BN 2
0

b2 · 1

P1δ
2
s,d

(
1

P1δ2
s,r

+ 1

P2δ
2
r,d

)

, (65)

where in case of M-PSK signals, b = bPSK and

B = 3(M − 1)

8M
+ sin 2π

M

4π
− sin 4π

M

32π
; (66)

while in case of M-QAM signals, b = bQAM/2 and

B = 3(M − 1)

8M
+ K 2

π
. (67)

We compare the SER approximations (59), (60) and (65) with SER simulation result in
Fig. 4 in case of AF cooperation system with QPSK (or 4-QAM) modulation. It is easy to
check that for both QPSK and 4-QAM modulations, the parameters B in (66) and (67) are
the same, in which B = 9

32 + 1
4π

. We can see that the theoretical calculation (59) or (60)
matches with the simulation curve, except for a little bit difference between them at low
SNR which is due to the approximation of the SNR γ̃2 in (39). Furthermore, the simple SER
approximation in (65) is tight at high SNR, which is good enough to show the asymptotic
performance of the AF cooperation system. From Theorem 5, we can conclude that the AF
cooperation systems also provide an overall performance of diversity order two, which is
similar to that of DF cooperation systems.

It is interesting to note that the SER approximation in (65) is similar to a result in [22]
where an SER approximation was obtained by investigating the behavior of the probabil-
ity density function of γ around zero. Specifically, in case of BPSK modulation, the SER
approximation in (65) with B/b2 = 3/16 coincides with the result in [22]. However, for other
modulation, the SER approximation in (65) is slightly different from the result in [22] with a
constant factor. For example, in case of QPSK modulation, the factor B/b2 in (65) is 1.4433
while an equivalent factor in [22] is 1.5; in case of 16-QAM, the factor B/b2 in (65) is 53.06
while an equivalent factor in [22] is 56.25. Moreover, the approximation in [22] was obtained
only for some types of modulation that the conditional SER can be expressed as a Gaussian
Q-function like Q(

√
kγ ) with a modulation dependent constant k and instantaneous SNR γ .

4.4 Optimum Power Allocation

We determine in this subsection an asymptotic optimum power allocation for the AF coop-
eration systems based on the tight SER approximation in (65) for sufficiently high SNR.

For a fixed total transmitted power P1 + P2 = P , we are going to optimize P1 and P2

such that the asymptotically tight SER approximation in (65) is minimized. Equivalently, we
try to minimize

G(P1, P2) = 1

P1δ
2
s,d

(
1

P1δ2
s,r

+ 1

P2δ
2
r,d

)

.
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Fig. 4 Comparison of the SER approximations and the simulation result for the AF cooperation system
with QPSK or 4-QAM signals. We assumed that δ2

s,d = δ2
s,r = δ2

r,d = 1, N0 = 1, and P1/P = 2/3 and
P2/P = 1/3

By taking derivative in terms of P1, we have

∂G(P1, P2)

∂ P1
= 1

P1δ
2
s,d

(

− 1

P2
1 δ2

s,r

+ 1

P2
2 δ2

r,d

)

− 1

P2
1 δ2

s,d

(
1

P1δ2
s,r

+ 1

P2δ
2
r,d

)

.

By setting the above derivation as 0, we have δ2
s,r (P2

1 − P1 P2) − 2δ2
r,d P2

2 = 0. Together
with the power constraint P1 + P2 = P , we can solve the above equation and arrive at the
following result.

Theorem 6 For sufficiently high SNR, the optimum power allocation for the AF cooperation
systems with either M-PSK or M-QAM modulation is

P1 =
δs,r +

√
δ2

s,r + 8δ2
r,d

3δs,r +
√

δ2
s,r + 8δ2

r,d

P, (68)

P2 = 2δs,r

3δs,r +
√

δ2
s,r + 8δ2

r,d

P. (69)

From Theorem 6, we observe that the optimum power allocation for the AF cooperation
systems is not modulation-dependent, which is different from that for the DF cooperation
systems in which the optimum power allocation depends on specific M-PSK or M-QAM
modulation as stated in Theorem 2. This is due to the fact that in the AF cooperation systems,
the relay amplifies the received signal and forwards it to the destination regardless what kind
of received signal is. While in the DF cooperation systems, the relay forwards information to
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the destination only if the relay correctly decodes the received signal, and the decoding at the
relay requires specific modulation information, which results in the modulation-dependent
optimum power allocation scheme.

On the other hand, the asymptotic optimum power allocation scheme in Theorem 6 for the
AF cooperation systems is similar to that in Theorem 2 for the DF cooperation systems, in
the sense that both of them do not depend on the channel link between source and destination,
and depend only on the channel link between source and relay and the channel link between
relay and destination. Similarly, we can see from Theorem 6 that the optimum ratio of the
transmitted power P1 at the source over the total power P is less than 1 and larger than 1/2,
while the optimum ratio of the power P2 used at the relay over the total power P is larger
than 0 and less than 1/2. In general, the equal power strategy is not optimum. For example,
if δ2

s,r = δ2
r,d , then the optimum power allocation is P1 = 2

3 P and P2 = 1
3 P .

5 Comparison of DF and AF Cooperation Gains

Based on the asymptotically tight SER approximations and the optimum power allocation
solutions we established in the previous two sections, we determine in this section the overall
cooperation gain and diversity order for the DF and AF cooperation systems respectively.
Then, we are able to compare the cooperation gain between the DF and AF cooperation
protocols.

Let us first focus on the DF cooperation protocol. According to the asymptotically tight
SER approximation (17) in Theorem 1, we know that for sufficiently high SNR, the SER
performance of the DF cooperation systems can be approximated as

Ps ≈ N 2
0

b2 · 1

P1δ
2
s,d

(
A2

P1δ2
s,r

+ B

P2δ
2
r,d

)

, (70)

where A and B are specified in (18) and (19) for M-PSK and M-QAM signals, respectively.
By substituting the asymptotic optimum power allocation (25) and (26) into (70), we have

Ps ≈ �−2
DF

(
P

N0

)−2

, (71)

where

�DF = 2
√

2 bδs,dδs,r δr,d√
B

(
δs,r +

√
δ2

s,r + 8(A2/B)δ2
r,d

)1/2

(
3δs,r +

√
δ2

s,r + 8(A2/B)δ2
r,d

)3/2 , (72)

in which b = bPSK for M-PSK signals and b = bQAM/2 for M-QAM signals. From (71),
we can see that the DF cooperation systems can guarantee a performance diversity of order
two. Note that the term �DF in (72) depends only on the statistics of the channel links.
We call it the cooperation gain of the DF cooperation systems, which indicates the best
performance gain that we are able to achieve through the DF cooperation protocol with any
kind of power allocation. If the link quality between source and relay is much less than that
between relay and destination, i.e., δ2

s,r << δ2
r,d , then the cooperation gain is approximated as

�DF = bδs,dδs,r
A , in which A = M−1

2M + sin 2π
M

4π
→ 1

2 (M large) for M-PSK modulation, or A =
M−1
2M + K 2

π
→ 1

2 + 1
π

(M large) for M-QAM modulation. For example, in case of QPSK mod-
ulation, A = 3

8 + 1
4π

= 0.4546. On the other hand, if the link quality between source and relay
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is much larger than that between relay and destination, i.e., δ2
s,r >> δ2

r,d , then the cooperation

gain can be approximated as �DF = bδs,dδr,d

2
√

B
, in which B = 3(M−1)

8M + sin 2π
M

4π
− sin 4π

M
32π

→ 3
8

(M large) for M-PSK modulation, or B = 3(M−1)
8M + K 2

π
→ 3

8 + 1
π

(M large) for M-QAM
modulation. For example, in case of QPSK modulation, B = 9

32 + 1
4π

= 0.3608.
Similarly, for the AF cooperation protocol, from the asymptotically tight SER approxi-

mation (65) in Theorem 5, we can see that for sufficiently high SNR, the SER performance
of the AF cooperation systems can be approximated as

Ps ≈ BN 2
0

b2 · 1

P1δ
2
s,d

(
1

P1δ2
s,r

+ 1

P2δ
2
r,d

)

, (73)

where b = bPSK for M-PSK signals and b = bQAM/2 for M-QAM signals, and B is specified
in (66) and (67) for M-PSK and M-QAM signals respectively. By substituting the asymptotic
optimum power allocation (68) and (69) into (73), we have

Ps ≈ �AF−2
(

P

N0

)−2

, (74)

�AF = 2
√

2 bδs,dδs,r δr,d√
B

(
δs,r +

√
δ2

s,r + 8δ2
r,d

)1/2

(
3δs,r +

√
δ2

s,r + 8δ2
r,d

)3/2 , (75)

which is termed as the cooperation gain of the AF cooperation systems that indicates the
best asymptotic performance gain of the AF cooperation protocol with the optimum power
allocation scheme. From (74), we can see that the AF cooperation systems can also guarantee
a performance diversity of order two, which is similar to that of the DF cooperation systems.

Since both the AF and DF cooperation systems are able to achieve a performance diver-
sity of order two, it is interesting to compare their cooperation gain. Let us define a ratio
λ = �DF/�AF to indicate the performance gain of the DF cooperation protocol compared
with the AF protocol. According to (72) and (75), we have

λ =
⎛

⎝
δs,r +

√
δ2

s,r + 8(A2/B)δ2
r,d

δs,r +
√

δ2
s,r + 8δ2

r,d

⎞

⎠

1/2⎛

⎝
3δs,r +

√
δ2

s,r + 8δ2
r,d

δs,r +
√

3δ2
s,r + 8(A2/B)δ2

r,d

⎞

⎠

3/2

, (76)

A and B are specified in (18) and (19) for M-PSK and M-QAM signals respectively. We
further discuss the ratio λ for the following three cases.

Case 1 If the channel link quality between source and relay is much less than that between
relay and destination, i.e., δ2

s,r << δ2
r,d , then

λ = �DF

�AF
→

√
B

A
. (77)

In case of BPSK modulation, A = 1
4 and B = 3

16 , so λ = √
3 > 1. In case of QPSK

modulation, A = 3
8 + 1

4π
and B = 9

32 + 1
4π

, so λ = 1.3214 > 1. In general, for M-PSK

modulation (M large), A = M−1
2M + sin 2π

M
4π

→ 1
2 and B = 3(M−1)

8M + sin 2π
M

4π
− sin 4π

M
32π

→ 3
8 , so

λ →
√

6

2
≈ 1.2247 > 1.
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For M-QAM modulation (M large), A = M−1
2M + K 2

π
→ 1

2 + 1
π

and B = 3(M−1)
8M + K 2

π
→

3
8 + 1

π
,

λ →
√

3
8 + 1

π

1
2 + 1

π

≈ 1.0175 > 1.

We can see that if δ2
s,r << δ2

r,d , the cooperation gain of the DF systems is always larger than
that of the AF systems for both M-PSK and M-QAM modulations. The advantage of the DF
cooperation systems is more significant if M-PSK modulation is used.

Case 2 If the channel link quality between source and relay is much better than that between
relay and destination, i.e., δ2

s,r >> δ2
r,d , from (76) we have λ = �DF

�AF → 1. This implies

that if δ2
s,r >> δ2

r,d , the performance of the DF cooperation systems is almost the same as
that of the AF cooperation systems for both M-PSK and M-QAM modulations. Since the
DF cooperation protocol requires decoding process at the relay, we may suggest the use of
the AF cooperation protocol in this case to reduce the system complexity.

Case 3 If the channel link quality between source and relay is the same as that between relay
and destination, i.e., δ2

s,r = δ2
r,d , we have

λ =
(

1 +√1 + 8(A2/B)

4

)1/2 (
6

3 +√1 + 8(A2/B)

)3/2

.

In case of BPSK modulation, A = 1
4 and B = 3

16 , so λ ≈ 1.1514 > 1. In case of QPSK
modulation, A = 3

8 + 1
4π

and B = 9
32 + 1

4π
, so λ ≈ 1.0851 > 1. In general, for M-PSK

modulation (M large), A = M−1
2M + sin 2π

M
4π

→ 1
2 and B = 3(M−1)

8M + sin 2π
M

4π
− sin 4π

M
32π

→ 3
8 , so

λ →
(

1 + √
1 + 16/3

4

)1/2 ( 6

3 + √
1 + 16/3

)3/2

≈ 1.0635 > 1.

For M-QAM modulation (M large), A = M−1
2M + K 2

π
→ 1

2 + 1
π

and B = 3(M−1)
8M + K 2

π
→

3
8 + 1

π
,

λ →
⎛

⎝
1 +

√
1 + 8( 1

2 + 1
π
)2/( 3

8 + 1
π
)

4

⎞

⎠

1/2⎛

⎝ 6

3 +
√

1 + 8( 1
2 + 1

π
)2/( 3

8 + 1
π
)

⎞

⎠

3/2

≈ 1.0058.

We can see that if the modulation size is large, the performance advantage of the DF coopera-
tion protocol is negligible compared with the AF cooperation protocol. Actually, with QPSK
modulation, the ratio of the cooperation gain is λ ≈ 1.0851 which is already small.

From the above discussion, we can see that the performance of the DF cooperation pro-
tocol is always not less than that of the AF cooperation protocol. However, the performance
advantage of the DF cooperation protocol is not significant unless (i) the channel link quality
between the relay and the destination is much stronger than that between the source and the
relay; and (ii) the constellation size of the signaling is small. There are tradeoff between
these two cooperation protocols. The complexity of the AF cooperation protocol is less than
that of the DF cooperation protocol in which decoding process at the relay is required. For
high data-rate cooperative communications (with large modulation size), we may use the AF
cooperation protocol to reduce the system complexity while the performance is comparable.
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Fig. 5 Performance of the DF cooperation systems with BPSK signals: optimum power allocation versus
equal power scheme
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6 Simulation Results

To illustrate the above theoretical analysis, we perform some computer simulations. In all
simulations, we assume that the variance of the noise is 1 (i.e., N0 = 1), and the variance
of the channel link between source and destination is normalized as 1 (i.e., δ2

s,d = 1). The
performance of the DF and AF cooperation systems varies with different channel conditions.
We simulate two kinds of channel conditions: (a) δ2

s,r = 1 and δ2
r,d = 1; and (b) δ2

s,r = 1 and

δ2
r,d = 10. For fair comparison, we present average SER curves as functions of P/N0.

6.1 Performance of the DF Cooperation Systems

First, we simulate the DF cooperation systems with different modulation signals and different
power allocation schemes. We compare the SER simulation curves with the asymptotically
tight SER approximation in (17). We also compare the performance of the DF cooperation
systems using the optimum power allocation scheme in Theorem 2 with that of the systems
using the equal power scheme, in which the total transmitted power is equally allocated at
the source and at the relay (P1/P = P2/P = 1/2).

Figure 5 depicts the simulation results for the DF cooperation systems with BPSK modula-
tion. We can see that the SER approximations from (17) are tight at high SNR in all scenarios.
From the figure, we observe that in case of δ2

s,r = 1 and δ2
r,d = 1, the performance of the opti-

mum power allocation is almost the same as that of the equal power scheme, as shown in Fig.
5(a). In case of δ2

s,r = 1 and δ2
r,d = 10 in Fig. 5(b), the optimum power allocation scheme out-

performs the equal power scheme with a performance improvement of about 1 dB. According
to Theorem 2, the optimum power ratios are P1/P = 0.7579 and P2/P = 0.2421 in this case.

Figure 6 shows the simulation results for the DF cooperation systems with QPSK modu-
lation. In case of δ2

s,r = 1 and δ2
r,d = 1 in Fig. 6(a), the optimum power ratios in this case are

P1/P = 0.6270 and P2/P = 0.3730 by Theorem 2. From the figure, we observe that the
performance of the optimum power allocation is a little bit better than that of the equal power
case, and the two SER approximations are consistent with the simulation curves at high SNR
respectively. In case of δ2

s,r = 1 and δ2
r,d = 10, the optimum power ratios are P1/P = 0.7968

and P2/P = 0.2032 according to Theorem 2. From Fig. 6(b), we can see that the optimum
power allocation scheme outperforms the equal power scheme with a performance improve-
ment of about 1 dB. Note that if the ratio of the link quality δ2

r,d/δ2
s,r becomes larger, we will

observe more performance improvement of the optimum power allocation over the equal
power case. In all of the above simulations, we can see that the SER approximation in (17)
is asymptotically tight at high SNR.

6.2 Performance of the AF Cooperation Systems

We also simulate the AF cooperation systems to compare the asymptotic tight SER approx-
imation in (65) with the SER simulation curves. Moreover, we compare the performance of
the AF cooperation systems using the optimum power allocation scheme in Theorem 6 with
that of the systems using the equal power scheme.

Figure 7 provides the simulation results for the AF cooperation systems with BPSK mod-
ulation. In case of δ2

s,r = 1 and δ2
r,d = 1 in Fig. 7(a), we can see that the performance

of the optimum power allocation is a little bit better than that of the equal power case, in
which the optimum power ratios are P1/P = 2/3 and P2/P = 1/3 according to Theorem 6.
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Fig. 6 Performance of the DF cooperation systems with QPSK signals: optimum power allocation versus
equal power scheme
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In case of δ2
s,r = 1 and δ2

r,d = 10, the optimum power ratios are P1/P = 0.8333 and
P2/P = 0.1667 according to Theorem 6. We observe from Fig. 7(b) that the optimum power
allocation scheme outperforms the equal power scheme with a performance improvement of
more than 1.5 dB. Note that all SER approximations from (65) are respectively consistent
with the simulation curves at reasonable high SNR.

We show the simulation results of the AF cooperation systems with QPSK modulation in
Fig. 8. In case of δ2

s,r = 1 and δ2
r,d = 1 in Fig. 8(a), the optimum power ratios in this case are

P1/P = 2/3 and P2/P = 1/3 which are the same as those for the case of BPSK modulation.
From the figure, we can see that the performance of the optimum power allocation is better
than that of the equal power case, and the two SER approximations are consistent with the
simulation curves at high SNR respectively. In case of δ2

s,r = 1 and δ2
r,d = 10, the optimum

power ratios are P1/P = 0.8333 and P2/P = 0.1667 according to Theorem 6. From Fig.
8(b), we observe that the optimum power allocation scheme outperforms the equal power
scheme with a performance improvement of about 2 dB. If the ratio of the channel link quality
δ2

r,d/δ2
s,r becomes larger, we expect to see more performance improvement of the optimum

power allocation over the equal power case. Moreover, from the figures we can see that in
all of the above simulations, the SER approximations from (65) are tight enough at high
SNR.

6.3 Performance Comparison between DF and AF Cooperation Protocols

Finally, we compare the performance of the cooperation systems with either DF or AF
cooperation protocol. We demonstrate the performance comparison of the two cooperation
protocols with BPSK modulation in Fig. 9. In case of δ2

s,r = 1 and δ2
r,d = 1, the perfor-

mance of the DF cooperation protocol is better than that of the AF protocol about 1 dB, as
shown in Fig. 9(a). In this case, the optimum power ratios for the DF cooperation protocol
are P1/P = 0.5931 and P2/P = 0.4069 according to Theorem 2, while the optimum ratios
for the AF protocol are P1/P = 2/3 and P2/P = 1/3 according to Theorem 6. In case
of δ2

s,r = 1 and δ2
r,d = 10, from Fig. 9(b) we can see that the DF cooperation protocol

outperforms the AF protocol with a SER performance about 2 dB. In this case, the optimum
power ratios for the DF cooperation protocol are P1/P = 0.7579 and P2/P = 0.2421,
while the optimum ratios for the AF protocol are P1/P = 0.8333 and P2/P = 0.1667. It
seems that the larger the ratio of the channel link quality δ2

r,d/δ2
s,r , the more performance

gain of the DF cooperation protocol compared with the AF protocol. However, the perfor-
mance gain cannot be larger than λ = √

3 ≈ 2.4 dB as shown in (77) in case of BPSK
modulation.

Figure 10 shows the performance comparison of the two cooperation protocols with
QPSK modulation. In case of δ2

s,r = 1 and δ2
r,d = 1, the performance of the DF coop-

eration protocol is better than that of the AF protocol, but not significant as shown in
Fig. 10(a). In this case, the optimum power ratios for the DF cooperation protocol are
P1/P = 0.6270 and P2/P = 0.3730 according to Theorem 2, while the optimum ratios
for the AF protocol are P1/P = 2/3 and P2/P = 1/3 which are independent to the mod-
ulation types. In case of δ2

s,r = 1 and δ2
r,d = 10, from Fig. 10(b) we can see that the

DF cooperation protocol outperforms the AF protocol with a SER performance about 1 dB,
which is less than the performance gain of 2 dB in the case of BPSK modulation. The opti-
mum power ratios for the DF cooperation protocol in this case are P1/P = 0.7968 and
P2/P = 0.20321, while the optimum ratios for the AF protocol are P1/P = 0.8333 and
P2/P = 0.1667. As shown in (77), in case of QPSK modulation, the performance gain of
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Fig. 7 Performance of the AF cooperation systems with BPSK signals: optimum power allocation versus
equal power scheme
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Fig. 8 Performance of the AF cooperation systems with QPSK signals: optimum power allocation versus
equal power scheme
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Fig. 10 Performance comparison of the cooperation systems with either AF or DF cooperation protocol with
QPSK signals
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the DF cooperation protocol compared with the AF protocol is bounded by λ = 1.3214 ≈
1.2 dB.

From the simulation results, we can see that the performance of the DF cooperation proto-
col is better than that of the AF protocol, but the performance gain varies in different channel
situations and different modulation types. The larger the signal constellation size, the less the
performance gain. So the DF cooperation protocol shows the best performance gain in case
of BPSK modulation. Moreover, the larger the ratio of the channel link quality δ2

r,d/δ2
s,r , the

more performance gain of the DF cooperation protocol compared with the AF protocol. But
the performance gain is bounded by 2.4 dB in case of BPSK modulation, and 1.2 dB in case
of QPSK modulation.

7 Conclusion

We have analyzed the SER performances of the uncoded cooperation systems with DF
and AF cooperation protocols, respectively, and also compare their performances. From
the theoretical and simulation results, we can draw the following conclusions. First, the
equal power strategy is good, but in general not optimum in the cooperation systems with
either DF or AF protocol, and the optimum power allocation depends on the channel link
quality. Second, in case that all channel links are available in the DF or AF cooperation
systems, the optimum power allocation does not depend on the direct link between source
and destination, it depends only on the channel link between source and relay and that
between relay and destination. Specifically, if the link quality between source and relay is
much less than that between relay and destination, i.e., δ2

s,r << δ2
r,d , then we should put

the total power at the source and do not use the relay. On the other hand, if the link qual-
ity between source and relay is much larger than that between relay and destination, i.e.,
δ2

s,r >> δ2
r,d , then the equal power strategy at the source and the relay tends to be optimum.

Third, we observe that the performance of the cooperation systems with the DF protocol is
better than that with the AF protocol. However, the performance gain varies with different
modulation types. The larger the signal constellation size, the less the performance gain.
In case of BPSK modulation, the performance gain cannot be larger than 2.4 dB; and for
QPSK modulation, it cannot be larger than 1.2 dB. Therefore, for high data-rate coopera-
tive communications (with large signal constellation size), we may use the AF cooperation
protocol to reduce system complexity while maintains a comparable performance. Finally,
we want to emphasize that the discussion of the optimum power allocation and the per-
formance comparison in the paper is based on the asymptotically tight SER approxima-
tions that hold in sufficiently high SNR region, they may not be valid for low to moderate
SNR regions. However, from the simulation results, we observe that the results from the
high- SNR approximations also provide good match to the system performance in the
moderate-SNR region.

Acknowledgment This work was supported in part by U.S. Army Research Laboratory under Cooperative
Agreement DAAD 190120011.

Appendix: Proof of Theorem 3

In the following, we list two Lemmas which will be used in the proof of Theorem 3.

123



214 W. Su et al.

Lemma 1 ([23]): Let X be a random variable with pdf pX (x) for all x ≥ 0 and pX (x) = 0
for x < 0. Then, the pdf of Y = 1/X is

pY (y) = 1

y2 pX

(
1

y

)
· U (y). (78)

Lemma 2 ([23]): Let X1 and X2 be two independent random variables with pdf pX1(x) and
pX2(x) defined for all x. Then, the pdf of the sum Y = X1 + X2 is

pY (y) =
∫ ∞

−∞
pX1(y − x) pX2(x)dx, (79)

which is the convolution of pX1(x) and pX2(x).

Proof of Theorem 3 Since X1 and X2 are two random variables with pdf pX1(x) and
pX2(x) defined for all x ≥ 0, and pX1(x) = 0 and pX2(x) = 0 for x < 0, according
to Lemma 1, we know that the pdf of 1/X1 and 1/X2 are p 1

X1
(x) = 1

x2 pX1

( 1
x

) · U (x), and

p 1
X2

(x) = 1
x2 pX2

( 1
x

) · U (x), respectively. Therefore, by Lemma 2, we know that the pdf

of Y = 1
X1

+ 1
X2

can be given by

pY (y) =
∫ ∞

−∞
p 1

X1
(y − x) p 1

X2
(x)dx

=
∫ y

0
p 1

X1
(y − x) p 1

X2
(x)dx · U (y)

=
∫ y

0

1

x2(y − x)2 pX1

(
1

y − x

)
pX2

(
1

x

)
dx · U (y).

Note that Z = X1 X2
X1+X2

= 1
1

X1
+ 1

X2

. Thus, according to Lemma 1 again, the pdf of Z can be

determined as follows:

pZ (z) = 1

z2 p 1
X1

+ 1
X2

(
1

z

)
· U (z)

= 1

z2

∫ 1
z

0

1

x2( 1
z − x)2

pX1

(
1

1
z − x

)

pX2

(
1

x

)
dx · U (z)

= 1

z2

∫ 1

0

1

( t
z )

2( 1
z − t

z )
2

pX1

(
1

1
z − t

z

)

pX2

( z

t

)
d(

t

z
) · U (z)

= z
∫ 1

0

1

t2(1 − t)2 pX1

(
z

1 − t

)
pX2

( z

t

)
dt · U (z),

in which we change the variable x = t
z in the second equation to get the third equation. So,

we complete the proof of Theorem 3. �
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