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Cooperative Computation Offloading and Resource

Allocation for Blockchain-Enabled Mobile Edge

Computing: A Deep Reinforcement Learning

Approach
Jie Feng, F. Richard Yu, Fellow, IEEE, Qingqi Pei, Xiaoli Chu, Jianbo Du, and Li Zhu

Abstract—Mobile edge computing (MEC) is a promising
paradigm to improve the quality of computation experience
of mobile devices because it allows mobile devices to offload
computing tasks to MEC servers, benefiting from the powerful
computing resources of MEC servers. However, the existing
computation-offloading works have also some open issues: 1)
security and privacy issues, 2) cooperative computation offload-
ing, and 3) dynamic optimization. To address the security and
privacy issues, we employ blockchain technology that ensures the
reliability and irreversibility of data in MEC systems. Meanwhile,
we jointly design and optimize the performance of blockchain
and MEC. In this paper, we develop a cooperative computation
offloading and resource allocation framework for blockchain-
enabled MEC systems. In the framework, we design a multi-
objective function to maximize the computation rate of MEC
systems and the transaction throughput of blockchain systems
by jointly optimizing offloading decision, power allocation, block
size and block interval. Due to the dynamic characteristics
of the wireless fading channel and the processing queues at
MEC servers, the joint optimization is formulated as a Markov
decision process (MDP). To tackle the dynamics and complexity
of the blockchain-enabled MEC system, we develop an A3C-
based cooperation computation offloading and resource allocation
algorithm to solve the MDP problem. In the algorithm, deep
neural networks are optimized by utilizing asynchronous gradient
descent and eliminating the correlation of data. Simulation results
show that the proposed algorithm converges fast and achieves
significant performance improvements over existing schemes in
terms of total reward.

Index Terms—Mobile edge computing, blockchain, computa-
tion offloading, transaction throughput, A3C.
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I. INTRODUCTION

Mobile edge computing (MEC) is a promising technology

that can promote the computation capability of mobile de-

vices by offloading the computing tasks from mobile devices

to MEC servers [1]. Compared with the centralized cloud

computing system, the distributed structure of MEC systems

has many advantages, including reduced energy consump-

tion and decreased latency. Many efforts have been made

on computation offloading and resource allocation of MEC

systems [2]–[5]. However, the above existing methods are

not suitable for some specific environments because of the

following challenges.

1) Security and Privacy Issues: Most of the existing studies

[6], [7] pay little attention to the security and privacy of MEC.

The interaction between heterogeneous edge nodes and the

migration of service across edge nodes are likely to challenge

its security and privacy. To address these issues, blockchain

has been envisioned as a promising approach [8]. Different

from traditional digital ledger approaches, which depend on

a trusted central authority, blockchain employs community

verification to synchronize the decentralized ledgers that are

replicated across multiple nodes [9]. Blockchain can facilitate

the establishment of a trusted, secure, and decentralized MEC

systems. In blockchain-enabled MEC systems, MEC servers

not only handle their tasks but also deal with the task (e.g. gen-

erate blocks and perform consensus process) from blockchain

systems, which makes the design of the system more complex.

Therefore, the design and optimization of blockchain and MEC

should be implemented simultaneously.

2) Cooperative Computation Offloading: This approach has

been only considered by a few researchers in the previous

works. Most existing computation offloading schemes [6],

[7] assume that computing tasks can be directly offloaded to

MEC servers via wireless communications. However, a mobile

device may be experiencing weak or intermittent connectivity

and thus cannot directly offload computing tasks to MEC

servers. If computing tasks are forced to offload to MEC

servers directly, the computation offloading performance of

mobile devices may be affected due to signal loss. A mobile

device must offload computing tasks to MEC servers with the

help of neighbouring nodes. Therefore, it is necessary to study

cooperative computation offloading. Furthermore, if there exist

malicious nearby nodes, the data security and privacy of
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mobile devices will be susceptible to attacks. Therefore, the

trust model needs to be considered on cooperative computation

offloading.

3) Dynamic Optimization: Moreover, most of the existing

works [6], [10], [11] in the computation offloading decision

and resource allocation strategies are optimized based on

a one-time slot, and the long-term computation offloading

performance cannot be characterized [12], [13]. The design

and optimization of blockchain-enabled MEC systems should

account for the environmental dynamics, such as the time-vary

channel conditions and the task arrival.

To deal with the first two challenges, in this paper, we

propose to maximize the weighted sum of the computation

rate and the transaction throughput for blockchain-enabled

MEC systems by jointly optimizing the cooperative computa-

tion offloading decision and resource allocation. Specifically,

the computation tasks are offloaded from mobile devices to

MEC servers through cooperative communications, wherein

blockchain technology is applied to guarantee data security.

For the dynamic optimization issue, we formulate the joint

optimization as a Markov decision process (MDP) problem,

and develop an efficient deep reinforcement learning (DRL)

based offloading decision and resource allocation algorithm to

solve the problem.

The contributions of this paper are summarized as follows.

• In most existing works [10], [11], [14], [15], the design

and optimization of blockchain and MEC are done sepa-

rately, which will result in sub-optimal performance. We

propose a cooperative computation offloading framework

for blockchain-enabled MEC systems to enable the joint

analysis of the MEC computation rate and the blockchain

transaction throughput while considering the trust model.

• The study jointly considers the offloading decision, power

allocation, block size, and block interval to maximize

the weighted sum of computation rate of MEC sys-

tems and transaction throughput of blockchain system-

s. Considering the dynamic characteristics of wireless

channels and the available resources, the optimization

problem is formulated as an MDP. Since the action

space of the MDP problem has both continuous actions

and discrete actions, traditional learning algorithms, such

as Q-learning [16] and SARSA [17] and so on, are

powerless. An asynchronous advantage actor-critic (A3C)

reinforcement learning algorithm is introduced to solve

the MDP problem, in which deep neural networks are

optimized by using asynchronous gradient descent and

eliminating the correlation of data.

• The proposed algorithm and other baseline functions are

implemented by using Tensorflow on a Python-based

simulator. Extensive simulation results show that the pro-

posed algorithm has good convergence, and has signifi-

cant performance improvements over existing algorithms.

Furthermore, we observe that the proposed scheme can

achieve the optimal trade-off between the performance of

the MEC system and the blockchain system.

The rest of this paper is organized as follows. In Section

II, we discuss related research. We introduce the system

model in Section III. In Section IV, the trust calculation in

blockchain-enabled MEC systems is described. In Section

V, the joint problem of offloading decision and resource

allocation is formulated. We introduce the offloading decision

and resource allocation in A3C framework in Section VI.

The performance of the proposed algorithm is evaluated and

analyzed by simulations in Section VII. Finally, in Section

VIII, we conclude this paper and look forward to future work.

II. RELATED WORK

The cooperative computation offloading problem has been

widely studied for MEC and cloud computing systems [18].

Hong et al. [19] proposed a quality of service (QoS) co-

operative computation offloading problem for robots swarms

in clouding systems aimed at minimizing latency. Cao et al.

[20] studied a novel cooperative computation offloading based

on both computation and communication of MEC system-

s to improve the energy efficiency for latency-constrained

computation. Guo et al. [21] presented an efficient dynamic

offloading and resource scheduling strategy to decrease energy

consumption and latency. However, these approaches do not

take into account the security and privacy of data in coopera-

tive computation offloading.

The application of the blockchain in the MEC systems can

significantly improve the network security, data integrity and

computation validity of the system [22]. The computation

offloading problem has also been studied for the blockchain-

enabled MEC system [11], [14]. Liu et al. [10] proposed a

novel blockchain-based framework with an adaptive block size

in MEC systems, which considered two offloading models,

i.e., offloading to MEC servers or nearby device-to-device

users. Kang et al. [23] proposed a secure and distributed

vehicular blockchain for data management in vehicular edge

computing and networks. Based on the common decentral-

ization characteristic of MEC and blockchain technology, Xu

et al. [24] proposed a trustless crowd-intelligence ecosystem

to improve network congestion. However, these works only

consider blockchain as an overlay system above the MEC

system, which will give rise to sub-optimal performance.

Furthermore, these approaches utilize static optimization tech-

niques, which cannot characterize the long-term computation

offloading performance. Therefore, their methods cannot be

applied in practical dynamic systems.

Deep reinforcement learning (DRL) is emerging as one of

the efficient methods to obtain the optimal decision-making

policy and maximize long-term rewards. Therefore, the use of

DRL to solve computation offloading problems for blockchain-

enabled MEC systems has attracted considerable interest from

academia. Qiu et al. [25] proposed a model-free DRL-based

computation offloading scheme for blockchain-enabled MEC

systems while considering mining tasks and data process-

ing tasks. A computation offloading problem based on an

advanced deep Q-learning network (DQN) was presented to

minimize energy consumption and delay [26]. However, all of

the above-proposed algorithms can only handle discrete action

space and do not apply to continuous action cases. Therefore,

we develop an A3C-based cooperative computation offloading

and resource allocation algorithm to achieve the optimal trade-

off between the performance of the MEC system and the
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Fig. 1: The system model.

performance of the blockchain system while considering the

trust model.

III. SYSTEM MODEL

In this section, we first present the network model, then

depict the MEC model and the blockchain model in detail,

respectively.

A. Network Model

We consider a blockchain-enabled MEC system, as shown

in Fig. 1, which is composed of an MEC system and a

blockchain system. In the MEC system, a single macrocell

base station (MBS) is located in the center of the coverage

area. Several small base stations (SBS) are distributed around

the MBS, and all BSs are connected by wire links, each

of which is integrated with an MEC server. We consider

an interference-free system in the paper, which users utilize

orthogonal spectrums for data transmission [27]. Let N =
{1, 2, ..., N} denote the set of BSs. We assume that each BS

only serves one mobile device [28]. However, the scenario

in which each BS servers multiple mobile devices will be

discussed in our future work. Therefore, the set of mobile

devices is denoted by N ∗ = N = {1, 2, ..., N}, where mobile

device n is served by its corresponding BS n. We assume that

each mobile device is running independent and fine-grained

tasks [2], [29]. Since mobile devices have relatively weak

computing capability, the computing tasks of mobile devices

need to be completed with the help of MEC servers to improve

the quality of the user’s computation experience.

We adopt cooperative communications to offload tasks in

the MEC system, i.e., offloading computation tasks with the

help of relay nodes, to meet the computation requirements

of mobile devices that are far from MEC servers. Assume

that there are R relay nodes around each mobile device, and

each mobile device can only select one relay node to offload

computation tasks collaboratively. Let R = {1, 2, ...R} denote

the set of relay nodes within the coverage of each BS. When

offloading computation tasks by relaying, there may be selfish

and malicious nodes. Therefore, security plays an important

role in realizing cooperative communications [30]. In this

paper, we consider a trust-based secure computation offloading

scheme. Let Dtrust
n→r denote the trust value of mobile device n

to relay node r.

In the blockchain system, the blockchain nodes consist of

all BSs. These nodes have two types of roles: ordinary nodes

and consensus nodes. The blockchain system mainly deals

with transactions, i.e., offloading data records, from the MEC

network. To handle the transactions, the blockchain system

needs to complete two steps. One is the block generation,

and the other is the consensus process. Ordinary nodes only

transfer and accept ledger data, while consensus nodes produce

blocks and perform the consensus process. However, there

may be a security issue during the block generation process,

i.e., malicious consensus nodes may tamper with transaction

data. Therefore, the trust value of each candidate should

be considered when voting for consensus nodes. Consensus

nodes with high trust value are likely to ensure a secure

and reliable block generation process and consensus process

[14]. Meanwhile, the blockchain system can also store some

parameters for calculating the trust value of the interactive

nodes (i.e., relay nodes and consensus nodes), such as network

status, resources availability, and trustworthiness of interactive

nodes [31]. Note that there are K consensus nodes selected

out of N according to a certain rule (specified in Subsection

II-C). Let K = {1, 2, ...K} denote the set of consensus nodes.

Similar to many previous works [2], [15], time is slotted in

this paper and the length of a time slot is ∆t. All the notions

used are listed in Table I.

B. MEC System

1) Local Computing Mode: Let Ln denote the number

of CPU cycles required for mobile device n to process 1-

bit computing task, which is determined by the types of

applications and can be procured by off-line measurements

[32]. We let fn denote the CPU-cycle frequency of mobile

device n, which must meet the constraint fn ≤ fmax
n , by

using dynamic voltage and frequency scaling (DVFS). Let

tloc (0 ≤ tloc ≤ △t) denote the computing time of mobile

device. The computation rate for local computation (in bits

per second), denoted by rlocl, can be given by

rlocl =
fn
Ln

. (1)

2) Cooperative Offloading Mode: Cooperative offloading is

composed of two phases, as shown in Fig. 1. In the first

phase, the mobile device transmits wireless signals that contain

the offloaded data size to the BS, which is simultaneously

overheard by a relay node. The selected relay node forwards

the detected signals to BS by employing the regenerate and
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TABLE I: Notation Definitions

Symbol Definition

N ∗/N The set of all mobile devices or BSs

R The set of all relay nodes

Dtrust
n→r The trust value of mobile device n to relay node r

K The set of the block producers

Pn(t) The transmit power of mobile device n in slot t

Pr,n(t) The transmit power of relay node r to BS n in slot t

gn(t) The channel gain of mobile device n to BS n in slot t

gn,r(t) The channel gain of mobile device n to relay node r

in slot t
gr,n(t) The channel gain of relay node r to BS n in slot t

ψn The delay of mobile device n in offloading data

Cn The processing density

sn The CPU-cycle frequency

F ′ The total computation capability of the MEC server

σn(t) The noise variances of mobile device n to BS n in slot t

σn,r(t) The noise variances of mobile device n to relay node r

in slot t
σr,n(t) The noise variances of relay node n to BS n

in slot t
τn The tolerable maximum delay

Tmin The minimum computing capacity required by the

blockchain system
fmax
n The maximum CPU-cycle frequency of mobile device n

Sb(t) The block size in slot t

Tb(t) The block interval in slot t

forward scheme. The offloaded date received in both two

phases is combined at the BS using maximal ratio combining

(MRC) [33]. The transmit rate of mobile device n when the

relay node r is selected in time slot t is expressed as

Rn(t) =
1

2
min

{

log2(1 +
Pn(t)gn(t)

σ2
n(t)

),

log2(1 +
Pn(t)gn,r(t)

σ2
n,r(t)

+
Pr,n(t)gr,n(t)

σ2
r,n(t)

)

}

, (2)

where Pn(t) and Pr,n(t) are the transmit power of mobile

device n and relay node r to BS n in time slot t, respectively.

gn(t), gn,r(t), and gr,n(t) are the channel gain between mobile

device n and BS n, mobile device n and relay node r and relay

node r and BS n in slot t, respectively.

The total power of the mobile device and relay node in BS

n is given by

Ptot,n(t) = Pn(t) + Pr,n(t). (3)

When the direct channel conditions are less than the relay

channel conditions, i.e., gn(t)/σ
2
n(t) < gn,r(t)/σ

2
n,r(t), the

cooperative computation offloading is adopted. In the coop-

erative computation offloading, any increase of power has to

shared between the mobile device and relay node. Therefore,

the transmit rate can reach the maximum when the following

equation is satisfied.

Pn(t)gn(t)

σ2
n(t)

+
Pr,n(t)gr,n(t)

σ2
r,n(t)

=
Pn(t)gn,r(t)

σ2
n,r(t)

. (4)

According to (3), the transmit power of mobile device n

and relay node r to BS n is respectively given by

Pn(t) =
gr,n(t)Ptot,n(t)/σ

2
r,n(t)

gn,r(t)/σ2
n,r(t) + gr,n(t)/σ2

r,n(t)− gn(t)/σ2
n(t)

,

(5)

Pr,n(t) =
(gn,r(t)/σ

2
n,r(t)− gn(t)/σ2

n)Ptot,n(t)

gn,r(t)/σ2
n,r(t) + gr,n(t)/σ2

r,n(t)− gn(t)/σ2
n(t)

.

(6)

Substituting (5) and (6) to (2), we can have

Pn(t)gn(t)

σ2
n(t)

=

gr,n(t)gn(t)Ptot,n(t)/(σ
2
r,n(t)σ

2
n(t))

gn,r(t)/σ2
n,r(t) + gr,n(t)/σ2

r,n(t)− gn(t)/σ2
n(t)

. (7)

Pn(t)gn,r(t)

σ2
n,r(t)

+
Pr,n(t)gr,n(t)

σ2
r,n(t)

=

(gr,n(t)/σ
2
r,n(t))(2gn,r(t)/σ

2
n,r(t)− gn(t)/σ2

n)Ptot,n(t)

gn,r(t)/σ2
n,r(t) + gr,n(t)/σ2

r,n(t)− gn(t)/σ2
n(t)

.(8)

Since gn(t)/σ
2
n(t) < gn,r(t)/σ

2
n,r(t), then we have

gn(t)/σ
2
n(t) < 2gn,r(t)/σ

2
n,r(t) − gn(t)/σ

2
n(t). Then, the

transmit rate which mobile device n offloads the computation

tasks through relay node r is given by

Rn,r(t) =
BDtrust

n→r (t)

2

log2(1 +
gr,n(t)gn(t)Ptot,n(t)/(σ

2
r,n(t)σ

2
n(t))

gn,r(t)/σ2
n,r(t) + gr,n(t)/σ2

r,n(t)− gn(t)/σ2
n(t)

),

(9)

where B is bandwidth.

For secure communications, the trust value of relay node

should be considered when offloading data through the relay

node. Then, the selection of relay node is based on the transmit

rate Rn,r(t). When Rn,r∗(t) > Rn,r(t), r ∈ R, mobile device

n offloads computation tasks through relay node r∗. Then the

rate of mobile device n is given by

r′n(t) = max{Rn,r(t), ∀r ∈ R}. (10)

The delay for mobile device n to offload data is ψn. Then

the offloaded data size for mobile device n in slot t is given

by

Dn(t) = bn(t)υ(t) = r′n(t)ψn, (11)

where bn(t) and υ(t) are the amount of raw data and the com-

munication overhead in computation offloading, respectively.

Then, the computation rate of cooperation offloading, denoted

by roff (t), is given by

rn,off (t) =
r′n(t)ψn

△tυ(t) . (12)

After decoding the signals from mobile devices and relay

nodes, MEC servers can perform the offloaded tasks. The clock

speed of CPU consumed by the computing tasks of mobile

device n is represented by sn (in CPU cycles/s), which is a
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constant. Then the time when the MEC server performs mobile

device n is given by

τn(t) =
Dn(t)Ln

sn
=
r′n(t)ψnLn

sn
. (13)

Since the computation results are very small, we ignore

the return time of the computing results in this paper. The

computation rate of MEC server n is given by sn
Ln

. The time

that the computation tasks of mobile device n are successfully

executed is given by

t′n,off (t) = ψn + τn(t). (14)

Accordingly, the total computation rate and the total time

of mobile device n are respectively given by

rn(t) = an(t)rloc(t) + (1− an(t))(rn,off (t) +
sn
Ln

), (15)

ttot,n(t) = an(t)tloc + (1− an(t))t′n,off (t), (16)

where an(t) ∈ {0, 1} is the offloading decision of mobile

device n. When an(t) = 1, the computation tasks of mobile

device n are executed locally. Otherwise, the computation

tasks are offloaded to the MEC server.

C. Blockchain System

Any node in the blockchain can collect the transactions

from the MEC system. To improve the system performance,

some blockchain nodes with a high number of votes are

selected as consensus nodes to participate in generating blocks

and verifying blocks. The number of votes for a consensus

node candidate is determined by the number of stakes it

holds, its available resources and its trust value. We as-

sume that the stake and available computing resource of

blockchain node n in slot t are represented by Φn(t) and

Tn(t), respectively. The available computing resource of the

node is the remaining resource after processing the offloaded

tasks. Denote the sets of the stake and available computing

resource of nodes by Φs(t) = {Φ1(t),Φ2(t), ...,Φn(t)} and

T (t) = {T1(t), T2(t), ..., Tn(t)}, respectively. We assume that

the MEC server has a first in first out (FIFO) data buffer to

store the arrived but not yet executed offloaded tasks. Hence,

the dynamics of the processing queue at the beginning of the

t+ 1 time slot can be given by as follows.

Fn(t+ 1) = max{Fn(t)− sn + ρnrn(t), 0}, (17)

where ρn is the processing density (in CPU cycles/bit). Then,

the computing resource available to the blockchain system by

MEC server n in the slot t is given by

Tn(t) = max{F ′ − Fn(t), Tmin}, (18)

where F ′ and Tmin are the total computing capacity of MEC

servers and the minimum computing capacity required by the

blockchain system, respectively. Let Dtrust
n denote the trust

value of blockchain nodes. In the paper, we assume that these

K block producers, in turn, generate blocks [15]. Let Sb(t)
and Tb(t) denote the block size (in MB) and block interval (in

seconds) in slot t, respectively.

0

1

2

3

pre-prepare prepare persist

Fig. 2: The process of the consensus algorithm.

After generating a block, the block needed to be verified.

In the consensus process, we utilize the delegated Byzantine

fault tolerance (dBFT) consensus mechanism [34]. When there

are K consensus nodes in the consensus process, we assume

that K ≥ 3f + 1, where f is the maximum number of fault-

tolerant nodes. In the consensus process, the leader of the node

is called the speaker, and the others are called members. The

speaker is responsible for broadcasting new block proposals

to other nodes. The members are responsible for voting on the

new block proposal. When the number of votes is not less than

K−f , the proposal is passed. The speaker p of the consensus

process is determined by

p = (h− v) mod N, (19)

where h is the block height of the current consensus, and v is

the view number. Then, the process of the consensus algorithm

is shown in Fig. 2.

The algorithm can be divided into three phases: pre-prepare,

prepare, and persist. During the pre-prepare phase, the speaker

for this round is responsible for broadcasting a message to

other members. Meanwhile, the speaker launches a proposal.

In the prepare phase, the members broadcast the message and

vote. When a consensus node receives no less than K − f
signatures of the block, it enters the third phase, and a block

is successfully generated in the phase. Meanwhile, the block

is broadcasted the whole blockchain system, and then enter

the next round of the consensus process.

Let Tc(t) denote the time cost in the consensus process.

For simplicity, the consensus process is divided into two parts,

i.e., message propagating and message verification, including

signatures verification, message authentication codes (MAC)

generation, and MAC verification [35]. Then, the latency of

the consensus process in slot t is give by

Tc(t) = Tp(t) + Tv(t), (20)

where Tp(t) and Tv(t) are the time of message propagation

and the validation time in slot t, respectively.

Similar to [15], we utilize latency time to finality (LTF) as

the latency of the blockchain system. The LTF is given by

Ttotal(t) = Tc(t) + Tb(t). (21)

Then, the transaction throughput [15] can be expressed as

Ψ(t) =
⌊Sb(t)/χ⌋
Tb(t)

, (22)

where χ is the average size of transactions.
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IV. TRUST CALCULATION IN BLOCKCHAIN-ENABLED

MEC SYSTEMS

For secure communications, only relay nodes with high trust

values should be chosen to relay the offloaded data to the MEC

server. If computing tasks are relayed by a relay node with

low trust value, the relay node may take malicious actions,

e.g., dropping relaying data packets. Therefore, each mobile

device should interact with relay nodes with high trust value

to avoid potential security threats. Similarly, malicious block

producers may generate a fake block. Therefore, the consensus

nodes selected should have a higher trust value. To compute

the trust values of nodes (relay nodes and consensus nodes),

we jointly utilize two common ways to evaluate, i.e., direct

trust and indirect trust (recommendation) [36]. Direct trust

values of nodes are calculated based on subjective logic, while

indirect trust values are computed based on the third party’s

recommendations. In this work, we evaluate the trust value

of a node by a real number ranging from 0 to 1. Like most

literature, such as [14], [37], the trust threshold is set 0.5. In

other words, the node is trustworthy when its trust value is

higher than 0.5; otherwise, it is not trustworthy. Next, we first

calculate the trust value of relay nodes.

A. Calculation of Direct Trust

Similar to [36], we utilize node honesty and node capacity

to calculate direct trust. Since mobile communication channels

between mobile devices and relay nodes are unstable and

noisy, the communication behaviors in computation offloading

involves considerable uncertainty. We tackle the uncertain-

ty by using a Subjective Logic framework [38]. The trust

value of mobile device n to relay node r in the Subjective

Logic framework can be described as a triplet ωn→r =
{bn→r, dn→r, νn→r}, where bn→r, dn→r, and νn→r represent

belief, disbelief and uncertainty, respectively. Peculiarly, the

relationships among them are determined by

bn→r, dn→r, νn→r ∈ [0, 1],

bn→r + dn→r + νn→r = 1. (23)

Based on the trust model of [39], the node honesty (NH)

can be given by

NHn→r = bn→r + ξνn→r, (24)

where 0 ≤ ξ ≤ 1 is a constant indicating the degree of

influence of trust uncertainty [40] and

bn→r = (1− νn→r)
αn→r

αn→r + βn→r

,

dn→r = (1− νn→r)
βn→r

αn→r + βn→r

, (25)

νn→r = 1− sn→r,

where αn→r and βn→r are the number of successful and

unsuccessful communication, respectively. sn→r represents the

quality of communication link, which refers to the packet

success probability. The packet loss is not only caused by mo-

bile communication channels, but also induced by malicious

nodes [36]. Therefore, the value of αn→r and βn→r can be

respectively recast as

αnew
n→r = αn→r + P plr

n→r × (αn→r + βn→r), (26)

βnew
n→r = βn→r − P plr

n→r × (αn→r + βn→r), (27)

where P plr
n→r is the packet loss rate. Similar to [36], the packet

loss rate is estimated by the following equation.

P plr
n→r = 1−

∑c

b ω(b)× ω(b)
∑c

b ω(b)
, (28)

where ω(b) is the weight value of a historical link state and let

link = (ω(1), ω(2), ..., ω(b)) be a historical link state record.

The wight value is given by ω(b) = 2b
c(c+1) , where b and c are

the serial number of ω(b) in link and the number of the state

record, respectively.

On the other hand, we assume that all relay nodes have the

same initial energy consumption rate and energy level. When

malicious nodes launch malicious attacks, they can always

consume anomalous energy. Therefore, we utilize energy as

a quality of service (QoS) trust metric to measure whether a

relay node is malicious or not. Let P pen
n→r be the energy con-

sumption rate, which is achieved by using the Ray Projection

method [41] (P pen
n→r ∈ [0, 1]). Then the node competence (NC)

is given by

NCn→r =

{

1− P pen
n→r, if Eres

n→r ≥ θ,

0, otherwise,

(29)

where Eres
n→r and θ are the residual energy of one relay node

and the energy threshold, respectively.

As mentioned above, the node trust relies on the node

honesty and node competence. Then, the direct trust of a relay

node is defined as

Ddirect
n→r =

{

0.5 + (NHn→r − 0.5)×NCn→m, if NHn→r ≥ 0.5,

NHn→r ×NCn→r, otherwise.

(30)

B. Calculation of Recommendation

For calculation of trust value, we also consider the rec-

ommendation from the third party, i.e., blockchain systems.

We assume that some relay nodes are willing to contribute

their resources to help mobile devices offload computing tasks.

These relay nodes are called candidates. When a mobile device

needs to offload tasks via relay model, the candidates around

it send a request to the blockchain system and recommend

themselves to assist it in completing the tasks offloading.

Upon receiving the request, the blockchain system will select

a suitable candidate based on the recommended value of each

candidate stored in the system. We assume that the blockchain

system periodically updates and stores the candidate’s recom-

mended value. However, not every updated recommendation

is reliable. If only a single updated recommended value of a

candidate is considered, it is likely that an unreliable candi-

date’s recommendation is adopted, resulting in an unreliable
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trust evaluation. Therefore, we need to detect whether the

recommendation is reliable before calculating the trust value.

For this purpose, we present a simple way to detect the trust

value by defining the recommended reliability Rrel
n→r. To begin

with, we compute the average value of all updated recommen-

dations for candidate r, denoted by Rave
r . Then, we obtain the

difference between the recommendation value and the average

value. The greater the difference, the lower the reliability of

the recommendation. Therefore, the recommended reliability

Rrel
n→r is given by

Rrel
n→r = 1− | Rrec,i

n→r −Rave
r |, (31)

where Rrec,i
n→r represents the recommended value for the ith

update in the blockchain system.

If the recommended reliability of a recommender is less

than 0.5, even if it has a high recommended value, the recom-

mended value cannot be used to compute the recommended

trust. Therefore, we obtain the recommended trust based on

the recommended reliability and the recommended value as

follows.

Rrecom
n→r =

∑I

i=1R
rel
n→r ×Rrec,i

n→r

I
, (32)

where I is the number of updates. Therefore, the relay node

trust is given by

Dtrust
n→r =

{

Ddirect
n→r , if αnew

n→r ≥ Thnum,

ωdirectD
direct
n→r + ωrecomR

recom
n→r , otherwise,

(33)

where ωdirect, ωrecom, and Thnum are the weight values of

the direct value and the recommendation, and the number of

interaction between recommenders and the blockchain system,

respectively. ωdirect ∈ [0, 1], ωrecom ∈ [0, 1], and ωdirect +
ωrecom = 1. Similarly, the trust value of the nodes in the

blockchain system is evaluated using the same method.

V. PROBLEM FORMULATION

It is well known that wireless channels have the Markovian

property [42], [43]. Therefore, the blockchain-enabled MEC

system is formulated as a discrete MDP to maximize the sys-

tem reward. Since it is impossible to predict the state transition

probability and reward in advanced in mobile environment, we

propose a model-free approach based on deep reinforcement

learning to solve the above the MDP problem. The MDP is

defined by a tuple < S,A,P, r >, where S is the state set of

the system, A is the action set of the system, P is the state

transition probabilities, and r is the reward function.

A. State Space and State Transition Probability

We define the state space at the current decision epoch t
(t = 1, 2, ...) as a union of the wireless channels conditions

G(t) = (gn(t), gn,r(t), gr,n(t)), the available computing re-

source of the MEC server T (t) = {T1(t), T2(t), ..., Tn(t)},
the number of the stakes Φs(t) = {Φ1(t),Φ2(t), ...,Φn(t)},

and the trust value of relay nodes and blockchain nodes

D
trust(t) = {Dtrust

n→r (t), D
trust
n (t)}, which is denoted as

S(t) ,
{

G(t),T (t),Φs(t),D
trust(t)

}

. (34)

Since the state space is continuous, the probability of being

in a particular state is zero. The probability that the process

will leave the state s(t) to transition to the next state s(t+1)
after taking an action a(t) ∈ A can be expressed as

Pr(s(t+ 1) | s(t), a(t)) =
∫

St+1

f(s(t), a(t), s′)ds′, (35)

where f is the state transition probability density function.

B. Action Space

The action space includes offloading decision a(t), power

allocation P (t), block size Sb(t), and block interval Tb(t). We

utilize A(t) = [a(t),P (t), aSk
(t), aTk

(t)] to define the action

set.

Offloading Decision: The offloading decision is denoted by

a(t) , [a1(t), a2(t), ..., aN (t)]. (36)

Power Allocation Decision: The power allocation decision

will be obtained based on achieving a maximum reward. We

denote the power allocation decision by P (t), as shown below.

P (t) , [Ptotal,1(t), Ptotal,2(t), ..., Ptotal,N (t)] . (37)

Block Size and Block Interval: The delegators are elect-

ed by voting based on the number of stakes held by the

blockchain nodes, the trust value of blockchain nodes, and

available computing resource. After determining the delega-

tors, they take turns to produce blocks. By using the limits

fractional method, the block size and block interval decisions

are respectively given by

aSk
(t) ∈ [0.2, Ṡb], (38)

aTk
(t) ∈ [0.1, Ṫb], (39)

where Ṫb are the block size limit and the maximum block

interval, respectively.

C. Reward Function

In this paper, we formulate an optimization problem to

maximize the weighted sum of the computation rate of the

MEC system and the transaction throughput of the blockchain

system, which jointly optimizes offloading decision, power

allocation, block size, and block interval. Then, the joint

optimization problem is formulated as

max
At

E

[

T−1
∑

t=0

ω1ω2

N
∑

n=1

rn(t) + (1− ω1)Ψ(t)

]

s.t. (C1) : ttot,n(t) ≤ ε,
(C2) : Ttotal(t) ≤ ω × Tb(t), (40)

(C3) : 0 ≤ Ptot,n(t) ≤ PT ,

(C4) : an(t) ∈ {0, 1},
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where ω > 1, and ω1(0 < ω1 < 1) is a weight factor to

combine the objective function to a single one, and ω2 is a

mapping factor that ensures that the objective function is at

the same level. ε(ε ≤ ∆t) is the maximum tolerable average

delay in offloading tasks. PT is the sum of the power available

for all mobile devices and relay nodes in the network. Then,

we define the reward function as

rt =

{

O(t), if C1− C4 are satisfied,
0, otherwise,

(41)

where O(t) = ω1ω2

N
∑

n=1
rn(t) + (1− ω1)Ψ(t).

VI. OFFLOADING DECISION AND RESOURCE ALLOCATION

IN THE A3C FRAMEWORK

Compared with other DRL algorithms, such as actor-critic

learning (AC), advantage actor-critic learning (A2C), and

policy-based learning, the A3C is a faster, simpler, and more

robust parallel reinforcement learning algorithm proposed by

Google DeepMind in 2016 [44]. It can reliably train deep

neural network policies. Different from the underlying re-

inforcement learning algorithms, such as actor-critic that is

an on-policy search algorithm, and Q-learning that is an off-

policy value-based search algorithm, A3C combines the ben-

efits of the value-based method and the policy-based method

[44]. More importantly, it could work in discrete as well as

continuous action spaces. A3C utilizes asynchronous actor-

learners, i.e., employing multiple CPU threads on a single

machine, to learn more efficiently. Multiple actor-learners

running in parallel can interact with their environment and

obtain different exploration policies. Moreover, the exploration

policy of each actor-learner is independent of those of the

others. Hence, the overall exploration policy available for

training becomes more diverse.

In an A3C algorithm, we need to maintain a policy

π(at|st; θ) (a set of action probability outputs) with the

parameter θ and an estimate of the value function V (st; θv)
(how good a certain state is to be) with the parameter θv .

Compared with traditional policy gradient methods, A3C is

more intelligent because the agent utilizes the estimated value

function (the critic) to update the policy (the actor). The policy

and the value function are updated in the terminal state or after

maximum step tmax actions. In the policy-based methods, the

rule is updated by using the discounted returns, which is given

by

Rt(θv) = γ(r) =
k−1
∑

i=0

γirt+i + γkV (st+k; θv), (42)

where k is vary from state to state and is upper-bounded by

tmax, rt+i is immediate reward, and γ ∈ (0, 1] is the discount

factor.

However, the estimate can cause the variance. To reduce the

variance of the estimate, the advantage estimates is adopted,

which is given by

A(at, st) = Q(at, st)− V (st). (43)

Since the Q(at, st) value cannot be determined in A3C,

the discounted returns is used as the estimate of Q(at, st) to

generate an estimate of the advantage. Then, the advantage

function is given by

A(at, st; θ, θv) = Rt(θv)− V (st; θv)

=
k−1
∑

i=0

γirt+i + γkV (st+k; θv)− V (st; θv). (44)

The policy π(at|st; θ) and the value function V (st; θv) are

approximated by using a single convolutional neural network.

Especially, the policy function is output by a softmax layer,

and the estimate of the value function is output by a linear

layer. In A3C, all network weights are stored in a central

parameter server [45]. In the beginning, each actor-learner

sets its network parameters to those of the server. Then,

multiple actor-learners learn concurrently and optimize the

convolutional neural network through asynchronous gradient

descent. After computing the gradient, the actor-learners send

the updates to the server. Then, the server propagates new

weights to the actor-learners to ensure they share a common

policy.

Two loss functions are associated with the two convolutional

neural network outputs. For policy loss function, we have

fπ(θ) = log π(at | st; θ)(Rt − V (st; θv)) + βH(π(st; θ)),

(45)

where H(π(st; θ)) is the entropy. β is a hyperparameter that

controls the strength of the entropy regularization term.

Differentiating the policy loss function in (45) with respect

to the parameter θ, we have

∇θfπ(θ) = ∇θ log π(at | st; θ)(Rt − V (st; θv))

+ β∇θH(π(st; θ)). (46)

The loss function for estimated value function is given by

fv(θv) = (Rt − V (st; θv))
2. (47)

Similarly, differentiating the value loss function in (47) with

respect to θv yields

∇θvfv(θv) = 2(Rt − V (st; θv))∇θvV (st; θv). (48)

The loss function can be minimized by adopting RMSProp

algorithm that has been widely used in the deep learning

algorithms. Then, the estimate of the gradient under RMSProp

is given by

g = αg + (1− α)∆θ2, (49)

where α is the momentum, and ∆θ is the accumulated

gradients of the loss function.

Then, the RMSProp algorithm can be updated according to

the following estimated gradient downhill.

θ ← θ − η △θ√
g + ϵ

, (50)

where η is the learning rate, and ϵ is small positive number.

Based on (46) and (48), the detail of the A3C algorithm

used in our proposed approach is shown in Algorithm 1.
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Algorithm 1 A3C-Based Computation Offloading and Re-

source Allocation Algorithm

Initialization:

• Assume that θ and θv are parameters the actor network

and critic network in global network.

• Assume that θ′ and θ′v are parameters the actor network

and critic network in local network.

• Set global counter T = 0 and local step counter t = 1.

• Set Tmax, tg, γ, learning rate η, ϵ, and tmax.

• Set the number of agents W .

Iteration:

1: while T < Tmax do

2: for w = 1 to W do

3: Reset global gradient dθ = 0 and dθv = 0.

4: Synchronize local parameters θ′ = θ and θ′v = θv .

5: Set t0 = t and obtain system state S(t).
6: repeat

7: Obtain action A(t) according to policy

π(A(t)|S(t); θ′).
8: Execute action A(t), observe reward R(t), and

observe next state S(t+ 1).
9: t = t+ 1.

10: until t− t0 == tmax

11: if t%tg == 0 then

12: R = V (S(t); θ′v).
13: end if

14: for i = t− 1 to t0 do

15: R = R(t) + γR.

16: Compute policy gradient ∇θ′fπ(θ
′) according to

(46).

17: Compute accumulate gradient dθ = dθ +
∇θ′fπ(θ

′).
18: Compute value gradient ∇θ′

v
fv(θ

′
v) according to

(48).

19: Compute accumulate gradient dθv = dθv +
∇θ′

v
fπ(θ

′
v).

20: end for

21: Asynchronous update weight parameter θ and θv
according to (50).

22: end for

23: end while

VII. SIMULATION RESULTS AND ANALYSIS

In this section, we evaluate the performance of the proposed

algorithm under different parameter settings. Simulation is

performed using Tensorflow [46] on a Python-based simulator.

To verify the performance of the proposed algorithm, we

consider the following schemes: 1) Proposed scheme without

local computing (Only-offloading): the computation tasks are

only offloaded to MEC servers. 2) Proposed scheme with fixed

block size (FBS): the size of the blocks generated by the block

producers is the same. 3) Proposed scheme with fixed block

interval (FBT): the frequency of generating blocks is the same.

TABLE II: Summary of the Simulation Parameters

Parameters Definition Values

B Bandwidth 180 KHz [50]

PT Maximum power available 1 W [51]

φn Transmit time 0.4 s [47]

N0 Noise power density −174 dBm/Hz [3]

χ Average transaction size 200 KB

Ṡb Block size 8 MB [15]

ε Tolerable maximum delay 1 s [5]

Ln Processing density 737.5 cycle/bit [5]

F Computation capability 2.5 GHz [5]

ϖ2,ϖ1 The weighted values 0.2, 0.0001

ηa,ηc Learning rate 10−3,10−2

ξ Shadowing standard deviation 10 dB [52]

A. Simulation Parameters

We consider a network that consists of an MEC system

and a blockchain system, which comprises 30 mobile devices

scattering over a 2 × 2 km2 area [47]. The number of relay

nodes within the coverage of each BS is 5. The CPU-cycle

frequency of mobile devices and MEC servers is 1 GHz [5]

and 2.4 GHz [48], respectively. Other simulation parameters

are summarized in Table II, where the path loss models and

the shadowing fading are standard settings provided by 3GPP

[49]. In our simulations, we use a computer, which has 6

CPU cores. The CPU is Intel Core i5-8400 with 32G memory.

The software environment we used is Tensorflow 1.10.0 with

Python 3.6 on Ubuntu 18.04.2 LTS. For the blockchain sys-

tem, we used virtualization for distributed ledger technology

(vDLT) we developed, which is a service-oriented blockchain

system with virtualization and decoupled management/control

and execution. Different block sizes can be dynamically set in

vDLT by chaning the parameters in vDLT. For more details,

please go to http://vdlt.io/approach.html.

By using Tensorflow’s built-in module TensorBoard, we

show the visualization of our A3C architecture, as shown in

Fig. 3. In Fig. 3, the architecture of the proposed algorithm

consists of a global network and six worker agents. We can

observe that the proposed algorithm starts with constructing

the global network. Then, the parameters in the global network

are propagated synchronously to each worker agent. In Fig. 4,

we show the internal structure of one of the worker agents.

Every worker agent has its own network and environment. By

interacting with their own environment, worker agents update

the global network parameters.

B. Performance of the Proposed Algorithm

We first show the convergence of the proposed algorithm

under different actor’s learning rate ηa, which the critic’s

learning rate is set to a fixed value ηc = 10−1, as shown in Fig.

5. As can be seen from the figure, when the actor’s learning

rate is large, the proposed algorithm has a fast convergence rate

(i.e., ηa = 0.0001). Similarly, Fig. 6 shows the convergence

of the proposed algorithm under different critic’s learning rate

ηc, which we fix the actor’s learning rate ηa = 10−4. From



10

W_0 W_1 W_2 Global_Net W_3 W_4 W_5

sync sync_1 sync_2 sync_3 sync_4 sync_5

intintintintintintint

Fig. 3: Visualization of the proposed deep reinforcement learning algorithm using TensorBoard.
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Fig. 5: The total reward with different learning of the actor network.
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Fig. 6: The total reward with different learning of the critic network.

the figure, we can observe that when the critic’s learning rate

ηc = 0.1, the proposed algorithm first converges, followed by

ηc = 0.01 and ηc = 0.001.

In Fig. 7, we illustrate how the sum of the power available

PT affects the average reward. We can observe that the average

reward increases when PT increases. However, the proposed

algorithm performs better than other schemes. From the figure,

the average reward of all schemes grows slowly when the

value of the sum of power available, PT , is greater than 0.7.

The reason is that as the transmit power increases, although

the transmit rate increases, the overhead of communication

increases, such as energy consumption, which can affect the

computation rate.

Fig. 8 and Fig. 9 show the impact of the CPU-cycle

frequency of the MEC servers sn on average computation rate

and average transaction throughput, respectively. From the Fig.

8, we can observe that the average computation rate of all

schemes increases slowly with the increase in the CPU-cycle
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Fig. 10: Average reward versus number of mobile devices N

frequency sn. However, from Fig. 9, it is observed that the

average transaction throughput decreases with the increase in

the CPU-cycle frequency sn for all schemes. That is because

the computing resource of MEC servers is limited. When the

MEC server consumes more computing resource to perform

the offloading tasks, the computing resource available to the

blockchain system become less.

Fig. 10 shows the comparison of the average reward versus

the number of mobile devices. As can be seen from the figure,

with the number of mobile devices increases, the average

reward keeps increasing. Due to the joint optimization of

offloading decision, the allocation of transmit power, block

size, and block interval, the proposed algorithm can always

benefit compared with other algorithms that only optimize part

of the optimization items.

In Fig. 11, we examine the average reward under different

maximum block interval Ṫb. It can be observed that the average

reward of all the schemes decreases with the increase in

the maximum block interval. That is because the transaction

throughput decreases with the increase in maximum block

interval when other parameters are unchanged. To verify the

impact of the average transaction size χ on the average

reward, we evaluate the performance obtained by the proposed

scheme under different average transaction size, as shown in

Fig. 12. From the figure, we can observe that the average

reward for all schemes decreases with the increasing average

transaction size. The reason is that one block can only contain

a small number of transactions with large-size transactions.

Furthermore, we can also find that the proposed scheme can

obtain highest average reward with the variation of average

transaction size, and then follows the FBS, the Only-offloading

scheme, and the lowest scheme is the FBT. Similarly, we

also evaluate the impact of block size Ṡb on the average

reward, as shown in Fig. 13. Observe that, the average reward



12

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

Maximum block interval (s)

A
v
e

ra
g

e
 R

e
w

a
rd

 

 
Proposed

FBS

Only−offloading

FBT

Fig. 11: Average reward versus maximum block interval Ṫb.
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Fig. 14: The computing resource of the randomly chosen blockchain
nodes at the randomly selected 90 episode for the proposed algorithm.

slowly increase with the increase in block size except for

FBS. That is because the LTF constraint limits the maximum

number of transactions in a block. Another observation is

that the proposed scheme always performs the best, followed

by Only-offloading and FBT. Moreover, we randomly choose

a blockchain node in the blockchain system to display its

computing resource at randomly selected 90 episodes during

B = 150KHz, B = 300KHz, and B = 450KHz in Fig.

14. From the figure, the queue length of the blockchain nodes

at different episodes is finite and because the transmit rate is

different. Besides, we can observe that the computing resource

available of blockchain node decreases with the increase in

bandwidth B. That is because the transmit rate increases with

the increase in bandwidth.

In Figs. 15 and 16, we show the impact of the CPU-

cycle frequency sn on the average reward, computation rate

of the MEC system, and throughput of the blockchain system,

respectively. From Fig. 15, it is in accordance with our

intuition that the performance of the reward improves for a

given ϖ1 as CPU-cycle frequency sn increases. Besides, we

can observe that the average reward increase as ϖ1 increases.

That is because the performance of the MEC system is mainly

affected by changes in the CPU-cycle frequency, and the

performance of the blockchain system is almost constant, as

shown in Fig. 16. Then we can achieve the tradeoff between

the performance of the MEC system and the performance of

the blockchain system based on Fig. 16.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we studied a blockchain-enabled MEC system

and, considering the trust value of nodes (i.e., relay nodes

and consensus nodes), investigated the computation rate of

the MEC system and transaction throughput of the blockchain

system maximization problem. To satisfy the performance

requirements of the system, we jointly optimized cooperative

offloading decision, power allocation, block size, and block

interval. Due to the dynamic characteristics of the wireless

channels and available resources, the formulated optimization
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problem was modeled as an MDP. An A3C algorithm was

developed to cope with the MDP problem, which can stably

train neural networks. Simulation results have shown the

efficiency of our proposed algorithm, which has fast con-

vergence and better performance than other algorithms under

different parameter settings. Meanwhile, we can also observe

that the algorithm can achieve the optimal trade-off between

the computation rate of the MEC system and transaction

throughput in the blockchain system. In future work, we will

study interference management in blockchain-enabled MEC

systems.
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