Cooperative Control of Distributed Multi-Agent Systems

Edited by

Jeff S. Shamma Georgia Institute of Technology, USA

John Wiley & Sons, Ltd

Contents

List	of C	ontributors	sm
Prefa	ace		xv
Part	II	Introduction	1
1	Dim	nensions of cooperative control	3
	Jeff	S. Shamma and Gurdal Arslan	
	1.1	1.1.1 Motivation1.1.2 Illustrative example: command and control of networked	33
	1.2	vehicles 2 Dimensions of cooperative control 1.2.1 Distributed control and computation	4 5 5
		1.2.2 Adversarial interactions	11
		1.2.3 Uncertain evolution	14
		1.2.4 Complexity management	15
	1.3	3 Future directions	16
		Acknowledgements	17
		References	17
Part	II	Distributed Control and Computation	19
2		ign of behavior of swarms: From flocking to data fusion using microfilter works	21
	Reza	a Olfati-Saber	
	2.1		21
	2.2		22
	2.3	0	25
		2.3.1 Collective potential of flocks	27
		2.3.2 Distributed flocking algorithms	29
		2.3.3 Stability analysis for flocking motion	30

	2.4	2.3.4 Simulations of flocking Microfilter networks for cooperative data fusion Acknowledgements References	32 32 39 39
3	Conne	ectivity and convergence of formations	43
	Sonja	Glavaški, Anca Williams and Tariq Samad	
	3.1	Introduction	43
	3.2	Problem formulation	44
	3.3	Algebraic graph theory	46
	3.4	Stability of vehicle formations in the case of time-invariant	
		communication	48
		3.4.1 Formation hierarchy	48
	3.5	Stability of vehicle formations in the case of time-variant	5 4
	3.6	communication Stabilizing feedback for the time-variant communication case	54 57
	3.7	Graph connectivity and stability of vehicle formations	58
	3.8	Conclusion	60
	510	Acknowledgements	60
		References	61
4	Distri	buted receding horizon control: stability via move suppression	63
	Willian	n B. Dunbar	
	4.1	Introduction	63
	4.2	System description and objective	64
	4.3	Distributed receding horizon control	68
	4.4	Feasibility and stability analysis	72
	4.5	Conclusion	76
		Acknowledgement	76
		References	76
5	Distri	buted predictive control: synthesis, stability and feasibility	79
	Tamás	Keviczky, Francesco Borrelli and Gary J. Balas	
	5.1	Introduction	79
	5.2	Problem formulation	81
	5.3	Distributed MPC scheme	83
	5.4	DMPC stability analysis	85
		5.4.1 Individual value functions as Lyapunov functions	87
		5.4.2 Generalization to arbitrary number of nodes and graph	89 90
		5.4.3 Exchange of information5.4.4 Stability analysis for heterogeneous unconstrained LTI sub-	90
	\bigcap	systems	91
	5.5	Distributed design for identical unconstrained LTI subsystems	93
		5.5.1 LQR properties for dynamically decoupled systems	95

		Contents	vii
		5.5.2 Distributed LQR design	98
	5.6	Ensuring feasibility	102
	5.0	5.6.1 Robust constraint fulfillment	102
		5.6.2 Review of methodologies	102
	5.7	Conclusion	106
		References	107
6	Task	assignment for mobile agents	109
	Brand	on J. Moore and Kevin M. Passino	
	6.1	Introduction	109
	6.2	Background	111
		6.2.1 Primal and dual problems	111
		6.2.2 Auction algorithm	113
	6.3	Problem statement	115
		6.3.1 Feasible and optimal vehicle trajectories	115
		6.3.2 Benefit functions	117
	6.4	Assignment algorithm and results	118
		6.4.1 Assumptions	118
		6.4.2 Motion control for a distributed auction	119
		6.4.3 Assignment algorithm termination	120
		6.4.4 Optimality bounds	124
	02502	6.4.5 Early task completion	128
	6.5	Simulations	130
		6.5.1 Effects of delays	130
		6.5.2 Effects of bidding increment	132
		6.5.3 Early task completions	133
		6.5.4 Distributed vs. centralized computation	134
	6.6	Conclusions	136
		Acknowledgements	137
		References	137
7		e value of information in dynamic multiple-vehicle routing	100
	probl		139
		undro Arsie, John J. Enright and Emilio Frazzoli	
	7.1	Introduction	139
	7.2	Problem formulation	141
	7.3	Control policy description	144
		7.3.1 A control policy requiring no explicit communication: the unlimited sensing capabilities case	144
		7.3.2 A control policy requiring communication among closest neighbors: the limited sensing capabilities case	145
		7.3.3 A sensor-based control policy	148
	7.4	Performance analysis in light load	150
	1007-000	7.4.1 Overview of the system behavior in the light load regime	150
		7.4.2 Convergence of reference points	152

		7.4.3 Convergence to the generalized median	156
			157
		7.4.5 A comparison with algorithms for vector quantization and cen-	
			160
	7.5	A performance analysis for sTP, mTP/FG and mTP policies	161
			161
			167
	7.6	Some numerical results	169
		7.6.1 Uniform distribution, light load	169
		7.6.2 Non-uniform distribution, light load	169
		7.6.3 Uniform distribution, dependency on the target generation rate	170
		7.6.4 The sTP policy	171
	7.7		172
	Refere	ences	175
8	Optima	al agent cooperation with local information	177
	Eric Fe	eron and Jan DeMot	
	8.1	Introduction	177
	8.2	Notation and problem formulation	179
	8.3	Mathematical problem formulation	181
		8.3.1 DP formulation	181
		8.3.2 LP formulation	182
	8.4	Contraction of the second s	184
			184
			185
	8.5		193
			193
			194
			198
			199
		8.5.5 Computation of the optimal value function at small separations	
	8.6		205
	8.7		209
		5	209
		References	210
9	Multia	gent cooperation through egocentric modeling	213
	Vincent	Pei-wen Seah and Jeff S. Shamma	
	9.1	Introduction	213
	9.2		215
	1.1430		215
		9.2.2 Fully centralized optimization	218
		- 영상 것은 제품 가지	219
	9.3		220
	9.4		222
		ADAV VERV	

	9.5	 9.4.1 Idealized iterations and main result 9.4.2 Proof of Theorem 9.4.2 Conclusion Acknowledgements References 	222 224 227 228 228
Part	III A	dversarial Interactions	231
10		vehicle cooperative control using mixed integer linear mming	233
	Matthe	w G. Earl and Raffaello D'Andrea	
	10.2 10.3	RoboFlag problems 10.4.1 Defensive Drill 1: one-on-one case	233 235 238 241 242
		10.4.2 Defensive Drill 2: one-on-one case 10.4.3 N_D -on- N_A case Average case complexity	247 250 251
		Discussion Appendix: Converting logic into inequalities 10.7.1 Equation (10.24) 10.7.2 Equation (10.33) Acknowledgements References	254 255 256 257 258 258
11	LP-bas	sed multi-vehicle path planning with adversaries	261
		os C. Chasparis and Jeff S. Shamma	
	11.1		261 263 263 264 265 265 265
	11.3		267 267 268 268
	11.4	LP-based path planning 11.4.1 Linear programming relaxation 11.4.2 Suboptimal solution	269 269 269 269 270
	11.5	11.4.3 Receding horizon implementationImplementation11.5.1 Defense path planning	270 271 271

		11.5.2 Attack path planning	274
		11.5.3 Simulations and discussion	276
	11.6	Conclusion	278
		Acknowledgements	278
		References	279
12	Charae	cterization of LQG differential games with different	
		ation patterns	281
	Ashitos	h Swarup and Jason L. Speyer	
	12.1	Introduction	281
	12.2	Formulation of the discrete-time LQG game	282
	12.3	Solution of the LQG game as the limit to the LEG Game	283
		12.3.1 Problem formulation of the LEG Game	284
		12.3.2 Solution to the LEG Game problem	285
		12.3.3 Filter properties for small values of θ	288
		12.3.4 Construction of the LEG equilibrium cost function	290
	12.4	LQG game as the limit of the LEG Game	291
		12.4.1 Behavior of filter in the limit	291
		12.4.2 Limiting value of the cost	291
		12.4.3 Convexity conditions	293
		12.4.4 Results	293
	12.5	Correlation properties of the LQG game filter in the limit	294
		12.5.1 Characteristics of the matrix $\overline{P_i}^{-1}P_i$	295
		12.5.2 Transformed filter equations	295
		12.5.3 Correlation properties of ε_i^2	296
		12.5.4 Correlation properties of ε_i^1	297
	12.6	• • • • •	297
	12.7	00	298
	12.8	Comparison with the Willman algorithm	299
	12.9	Equilibrium properties of the cost function: the saddle interval	299
	12.10	Conclusion	300
		Acknowledgements	300
		References	301
Part	IV U	ncertain Evolution	303
13	Modal	estimation of jump linear systems: an information theoretic	
	viewpo	1. Stradier und state in a warde grant warde and a state - or entering and a state state and a state warde and a	305
	Nuno C	C. Martins and Munther A. Dahleh	
	13.1	Estimation of a class of hidden markov models	305
		13.1.1 Notation	307
	13.2	Problem statement	308
		13.2.1 Main results	308
		13.2.2 Posing the problem statement as a coding paradigm	309

		13.2.3 Comparative analysis with previous work	309
	13.3	Encoding and decoding	310
		13.3.1 Description of the estimator (decoder)	311
	13.4	Performance analysis	312
		13.4.1 An efficient decoding algorithm	312
		13.4.2 Numerical results	314
	13.5	Auxiliary results leading to the proof of theorem 13.4.3	316
		Acknowledgements	319
		References	320
14	Condi	tionally-linear filtering for mode estimation in jump-linear systems	323
	Daniel	Choukroun and Jason L. Speyer	
	14.1	Introduction	323
	14.2	Conditionally-Linear Filtering	324
		14.2.1 Short review of the standard linear filtering problem	324
		14.2.2 The conditionally-linear filtering problem	326
		14.2.3 Discussion	330
	14.3	Mode-estimation for jump-linear systems	333
		14.3.1 Statement of the problem	333
		14.3.2 State-space model for \mathbf{y}_{k}	335
		14.3.3 Development of the conditionally-linear filter	337
		14.3.4 Discussion	340
		14.3.5 Reduced order filter	341
		14.3.6 Comparison with Wonham filter	343
		14.3.7 Case of noisy observations of \mathbf{x}_{k}	345
	14.4	Numerical Example	350
		14.4.1 Gyro failure detection from accurate spacecraft attitude mea-	1713113
		surements Description	350
	14.5		354
		Appendix A: Inner product of equation (14.14)	355
	14.7	Appendix B: Development of the filter equations (14.36) to (14.37)	356
	1,	Acknowledgements	358
		References	358
15	Cohesi	ion of languages in grammar networks	359
	Y. Lee,	T.C. Collier, C.E. Taylor and E.P. Stabler	
	15.1	Introduction	359
	15.2	Evolutionary dynamics of languages	360
	15.3	Topologies of language populations	361
	15.4	Language structure	363
	15.5	Networks induced by structural similarity	365
		15.5.1 Three equilibrium states	366
		15.5.2 Density of grammar networks and language convergence	368
		15.5.2 Bensity of grammar networks and ranguage convergence 15.5.3 Rate of language convergence in grammar networks	370
	15.6	Conclusion	372
	10.0		512

		Acknowledgements	374
		References	374
Part	V C	omplexity Management	377
16	Comp	elexity management in the state estimation of multi-agent systems	379
	Domit	illa Del Vecchio and Richard M. Murray	
	16.1	Introduction	379
	16.2	Motivating example	381
	16.3	Basic concepts	384
		16.3.1 Partial order theory	384
		16.3.2 Deterministic transition systems	386
	16.4	Problem formulation	387
	16.5	Problem solution	388
	16.6	Example: the RoboFlag Drill	391
		16.6.1 RoboFlag Drill estimator	392
		16.6.2 Complexity of the RoboFlag Drill estimator	394
		16.6.3 Simulation results	395
	16.7	Existence of discrete state estimators on a lattice	395
	16.8	Extensions to the estimation of discrete and continuous variables	399
		16.8.1 RoboFlag Drill with continuous dynamics	404
	16.9	Conclusion	405
		Acknowledgement	406
		References	406
17	Abstr	action-based command and control with patch models	409
	V. G.	Rao, S. Goldfarb and R. D'Andrea	
	17.1	Introduction	409
	17.2		411
	17.3		415
	17.4	Human and artificial decision-making	419
	171.0.000	17.4.1 Example: the surround behavior	421
	17.5		423
		17.5.1 Information content and situation awareness	426
	17.6		429
		References	431
Inde	x		433