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To my family.



"From a hundred rabbits you can’t make a horse, and a hundred suspicions don’t make a
proof..."

—Fyodor Dostoyevsky: Crime and Punishment (Chapter II of Part VI).

"To begin well is common;
To end well is rare indeed."

—The Ancient Chinese Classic of Poetry 1 (Shi-jing, published c. 600 BC).

1Translated from old Chinese by Arthur Waley.
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Abstract

The primary aim of this thesis is to study cooperative coordination control and for-
mation control for multi-agent systems, with a focus on distributed stabilization con-
trol of rigid formation shapes. We consider several problems in the field, ranging
from the equilibrium and stability of formation control systems, some practical con-
siderations in formation control, and cooperative coordination control when agents
have general dynamical models.

In the first part of the thesis, we study in detail the equilibrium property of rigid
formation control systems. A rank-preserving property is established for this coor-
dination control system, and with this property we further prove the instability of a
special equilibrium set (termed degenerate equilibria) at which agents’ positions only
span an affine space with dimension less than that of the full space. The exponential
stability of rigid formation control systems for a large family of formation controllers
is also proved, with the property applying for both minimally rigid formations and
non-minimally rigid formations. This approach provides a general and unified way
for stability analysis of formation control systems.

In the second part, we investigate several practical issues on formation control,
including robustness issues, rigid shape stabilization with a prescribed orientation,
and formation control with quantized measurements. From the exponential stability
proved in the first part, we discuss the convergence and robustness property for 3-D
rigid formation control systems with distance mismatches, and identify a helical rigid
motion induced by mismatched distances. In addition, we propose a feasible forma-
tion controller to achieve a desired rigid shape and a prescribed formation orientation in
ambient 2-D and 3-D spaces, with minimal knowledge of the global coordinate frame
orientation. Furthermore, quantization effects on rigid formation shape stabilization
are discussed in detail in the case that the cooperative formation control only uses
quantized distance measurements.

In the third part, we extend some main results considered in previous chapters
on formation control systems modelled by single integrators to systems modelled by
more general dynamics, including double integrator models and nonlinear control sys-
tems. First, two types of double-integrator cooperative control systems (i.e. formation
stabilization systems and flocking control systems with a target rigid shape) are thor-
oughly investigated. By using a family of parameterized Hamiltonian-like systems,
we further establish certain invariance principles concerning the equilibrium set and
local stability, which build the link between the stability analysis for formation sys-
tems modelled by single integrators and those modelled by double integrators. In
addition, we consider a fundamental problem termed formation feasibility in multi-
agent cooperative control. The problem concerns general forms of both formation
constraints and individual agent’s kinematics constraints. In this cooperative control
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framework, we assume each agent is modelled by an affine system with possible
drift terms, and the network consists of multiple heterogeneous agents which could
have totally different dynamics. Via tools from nonlinear control and differential
geometry, an algebraic condition is provided to determine the existence of feasible
formations for such heterogeneous networked systems, and a systematic procedure
is proposed to generate feasible formations if they exist.
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Chapter 1

Introduction

1.1 Research background: cooperative control and networked

systems

The research problems to be discussed in this thesis fall into the broad scope of co-
operative control and networked systems, which have gained considerable attention
in the last decade in the control community. According to the recently published
Encyclopedia of Systems and Control [Baillieul and Samad, 2015], networked systems
can be loosely defined as "a system of systems", or "a collection of agents that interact
with each other" 1. The word agent can refer to autonomous robots, unmanned aerial
vehicles (UAVs), or mobile sensors, depending on the different control context (see
also [Ren and Cao, 2010]).

The central themes in the study of cooperative control for networked multi-agent
systems include the understanding of the role of cooperation, the mechanism of infor-
mation sharing between distributed agents, the stability and achievement of a global
task arising from local interactions, the robustness against measurement/commu-
nication perturbations, and the fundamental limitations or tradeoffs between local
tasks and global tasks, among others. In contrast to centralized control systems, dis-
tributed networked systems and cooperative control enjoy several nice advantages,
including flexible scalability to the system size and change of agent number, strong
adaptivity to the change of environment, and low operational cost without increasing
the complexities of the whole system. Some excellent surveys for recent progress on
distributed multi-agent coordination and networked systems can be found in [Cao
et al., 2013; Zhang et al., 2013; Knorn et al., 2016].

We mainly consider coordination and formation control for multi-agent systems
in this thesis. Formation control and shape stabilization is typically a distributed and
cooperative control task, in that each agent uses only local information/measure-
ments to achieve a cooperative formation task. Roughly speaking, formation con-
trol aims to design distributed controllers such that a group of spatially distributed
agents could reach some pre-defined formations involving geometric relationships
between them. Such geometric relationships can be described by relative positions,
bearings, distances, or a mix of different geometric variables, depending on the con-

1See [Baillieul and Samad, 2015, Page 849]: the entry networked systems contributed by J. Cortés.
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text and control requirement. In this thesis, we will focus in particular on rigid
formation shape control 2, in which the formation shape is defined by a certain set of
inter-agent distances.

1.2 Introduction and literature review

In this section, some relevant and recent papers for each research theme will be
briefly reviewed. We remark that in the beginning of each main chapter, a more
detailed literature review will be provided for each research topic.

1.2.1 Different approaches on formation shape control

Formation control for a group of autonomous mobile agents has attracted much
research interest due to its broad applications in many areas including both civil
and military fields. According to several surveys, most approaches on formation
control in the literature can be classified as leader-follower strategy, virtual structure
approach and behavior-based method (see e.g. the review in [Fahimi, 2008]). A key
problem in formation control that receives particular interest is how to stabilize and
maintain a geometrical formation shape in a distributed manner, and this will be
one of the central focuses of this thesis. In the recent survey paper [Oh et al., 2015],
different types of formation shape control strategies are reviewed and compared in
terms of the sensing capability and the interaction topology, among which two most
commonly-used approaches are

• The displacement-based approach, in which the desired formation is specified by
a certain set of inter-agent relative positions and linear controllers turn out to be
possible;

• The distance-based approach, in which the desired formation is specified by a
certain set of inter-agent distances and nonlinear control laws are required.

There are several distinct properties for the above two approaches. For the first ap-
proach, all the agents must have their coordinate bases with the same orientation
(while the origins may be different); this means that the desired relative position vec-
tors can be well defined and controlled between agents (see e.g. [Ren and Beard, 2008;
Xiao et al., 2009]). In turn, this means that all the agents should be equipped with
a compass or equivalent to guarantee their coordinate orientation alignments, which
may not be practical in real world applications since having consistency among the
compass readings would be a challenging task due to instrument bias and/or local
variations caused by, e.g., the earth’s magnetic field. We will review the require-
ment of coordinate frame alignment in formation control in the following section,
together with some other recently proposed formation control algorithms that were
not reviewed in [Oh et al., 2015].

2Relevant concepts of graph rigidity theory will be provided in Chapter 2.
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1.2.2 Coordinate frame requirement in formation control

The coordinate frame requirement was largely ignored in early works on formation
control (as reviewed in [Oh et al., 2015]). It is only in recent years that the impor-
tance of coordinate frame alignment has been recognized in formation controller
design and implementation. It has also been shown in [Meng et al., 2016] that the
assumption that all the agents have coordinate systems with the same orientation
may not be realistic in practice, since small perturbations in their local coordinate
systems will cause unexpected behaviors for the displacement-based formation sys-
tem. Thus in practice, a coordinate-free formation control system is almost always
preferable. In [Aranda et al., 2015], a coordinate-free formation control strategy was
proposed by including a rotation matrix in the formation controller. The advan-
tage of the coordinate-free property of the proposed formation controller in [Aranda
et al., 2015] is offset by the requirement that the relative position measurements
from all other agents should be available to each individual agent, which implies
that the coordinate-free formation control in [Aranda et al., 2015] is effectively not
a distributed one. A graph Laplacian-based approach has been proposed in [Lin
et al., 2016b] which enables coordinate-free formation stabilization of target shapes
(defined as an affine formation). Recent efforts also show that the bearing-based
approach is another promising strategy to achieve a desired formation [Zhao and
Zelazo, 2016] which is translation- and scaling-invariant. We note that such an ap-
proach however still does not resolve the strict requirement for global knowledge of
coordinate frame orientation among all agents.

In the case that a common coordinate orientation is required for all the agents and
initially they have different local coordinate frames, one needs to design a combined
control establishing coordinate frame direction alignment and formation shape sta-
bilization to ensure the convergence to a target shape. This idea has been developed
and discussed in detail in e.g. [Cortés, 2009; Oh and Ahn, 2014b; Zhao and Zelazo,
2016; Montijano et al., 2016; Tron et al., 2016] in different control scenarios.

The requirement on the coordinate frame alignment can be avoided in the distance-
based formation setup. This is because in the distance-based setup a global coor-
dinate system defining a common orientation for all individual agents’ coordinate
frames is not required, and each agent can use its local coordinate basis to achieve a
rigid formation shape. 3 Partly because of this, the distance-based control approach
attracts particular interest in the field of formation control.

3A very nice result on how to determine the coordinate-free property (termed SE(N) invariance
property) in networked control system has been established in [Vasile et al., 2015]. The main result in
[Vasile et al., 2015] indicates that a pairwise interaction system is SE(N) invariant if and only if it is quasi-
linear. We refer the readers to [Vasile et al., 2015] for more discussions on the SE(N) invariance property.
It can be proven that formation controllers derived from the distance-based control framework satisfy
this quasi-linear property and thus the implementation of a distance-based formation control system is
coordinate-free.
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1.2.3 Equilibrium and stability analysis on rigid formation control sys-
tems

For distance-based formation control, graph rigidity theory [Asimow and Roth, 1979]
plays a central role. The first paper that considered rigidity-based formation control
is probably [Olfati-Saber and Murray, 2002], in which a graph theoretical framework
was proposed to employ rigidity theory [Asimow and Roth, 1979] to define a target
formation shape and to construct a formation potential. A comprehensive study of
the equilibrium and stability for gradient-based rigid formation control system was
performed in [Krick et al., 2009], in which the authors proved the local asymptot-
ical stability of the equilibrium manifold by assuming that the target formation is
infinitesimally rigid 4.

Several recent papers including [Dimarogonas and Johansson, 2009; Oh and Ahn,
2014a; Cai and De Queiroz, 2015] have studied distance-based formation control for
different formation shapes described by undirected graphs, mostly focusing on local
convergence. Formation shape stabilization with communications and interactions
modeled by directed graphs has been reported in [Dörfler and Francis, 2010; Cao
et al., 2011; Summers et al., 2011] and [Yu et al., 2009].

Since the rigid formation control system involves nonlinear control terms, a com-
plete analysis of the equilibrium sets and their stability property is very challenging.
For this reason, some recent efforts have been devoted to understanding formation
systems with a simple shape like triangular shape [Cao et al., 2011], tetrahedral shape
[Park et al., 2014] and rectangular shape [Dasgupta et al., 2011]. In order to better
understand (and estimate) the bounds of numbers of different types of equilibrium
sets, Morse theory was applied in the study of rigid formation control systems [An-
derson, 2011; Helmke and Anderson, 2013; Anderson and Helmke, 2014]. In later
chapters, we will give a more comprehensive review on this topic.

1.2.4 Some practical issues in rigid formation control

In order to achieve a rigid target formation shape, each agent needs to acquire the
real-time relative information (in terms of relative positions) from its neighboring
agents, and should agree on what the global task is. In [Belabbas et al., 2012], a
key robustness issue in rigid formation control systems was first identified, by con-
sidering that some neighboring agents may have different views on what the target
distances between them should be, or they may have biases in their distance measure-
ments. A more comprehensive investigation on this robustness issue for undirected
2-D rigid formations was reported in [Mou et al., 2016], which shows that the forma-
tion shape may converge to an approximated one close to the target formation shape,
while additional circular motion would occur almost always due to mismatched dis-
tances. A further study on 3-D rigid formations via a tetrahedral formation as an
example was shown in [Sun et al., 2013], which indicates that generically a helical
motion will occur for 3-D rigid formations with distance mismatches. In this the-

4The definition of infinitesimal rigidity will be given in Chapter 2.
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sis, we will further discuss this problem, and give a more complete report on the
robustness issue for general 3-D rigid formations.

As mentioned earlier, in a rigid formation control problem, the aim is to stabi-
lize and maintain a rigid target formation shape, while the orientation is not well
defined and not controlled. To stabilize a target formation shape with a prescribed
orientation, one may turn to the displacement-based formation control approach (as
shown in [Oh et al., 2015]), or adopt other control approaches which may require
all the agents to have knowledge of the global coordinate frame. We will devote
one chapter in this thesis to addressing the control problem of stabilizing both for-
mation shapes and orientations, and will show how minimal knowledge of a global
coordinate orientation is required by a small subset of agents to achieve this control
task.

Apart from the mismatches in distance measurements or perceived distances, an-
other practical issue is on the effect of information inaccuracy in the measurement
or actuation caused by the intrinsic property of sensors or actuators. Quantization
is a typical case to cause such information inaccuracy. In recent years, the study of
networked control systems with quantized measurements has been an active topic
in the control community [Cao et al., 2013; You et al., 2015]. Formation control with
quantized measurements has been discussed in e.g. [De Persis et al., 2010; Liu et al.,
2014; Jafarian and De Persis, 2015], while a complete analysis of the quantization
effects on rigid formation control system is still lacking. This motivates us to fur-
ther investigate the dynamics and convergence property for rigid formation control
systems with quantized measurements.

1.2.5 Agent dynamical model: beyond single-integrator models

As reviewed in [Cao et al., 2013; Oh et al., 2015; Knorn et al., 2016], most papers on
formation control assume that the agents in a formation control system are modelled
by single integrators. This assumption allows one to focus on the dynamics and
convergence property at the formation control task level, however it may hinder
the issue of design and convergence analysis when agents have their own (linear
or nonlinear) system dynamics. Apart from single-integrator models, more realistic
models that have also been adopted extensively in the literature include double-
integrator models [Cao et al., 2013] particulary in linear consensus research, and
unicycle models on rendezvous control of distributed robotics [Francis and Maggiore,
2016]. Other models on formation control have also been reported in the literature;
see e.g. [Abdessameud and Tayebi, 2013] on VTOL (vertical take-off and landing)
models for attitude synchronization and formation control of a group of UAVs, and
[Dong, 2015] for higher-order linear models on formation and containment control.

Double-integrator models have been used extensively for flocking control of multi-
agent systems in recent years, partly triggered by the pioneering works [Olfati-Saber,
2006] and [Tanner et al., 2007]. For rigid formation control systems modelled by dou-
ble integrators, the results only appear sparsely in the literature, with some recent
investigations in e.g. [Oh and Ahn, 2014a; Zhang et al., 2015; Deghat et al., 2016].
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This motivates us to consider the double-integrator rigid formation control system
in full detail, which will be reported in a later chapter in this thesis.

A fundamental problem in cooperative control is to understand the effect of each
agent’s local dynamic constraint on the global task achievement. A concept termed
motion feasibility was developed in [Tabuada et al., 2005], in which an elegant crite-
rion was proposed to guarantee the existence of feasible trajectories for all the agents
under both formation constraints and kinematics constraints. The agent’s model
used in [Tabuada et al., 2005] is a drift-free control system, which however cannot
encompass some commonly-used agent models in this framework. For example, a
particular constraint in the cooperative formation control design is that on occasions
UAVs used in the control task (e.g. Aerosonde UAVs or other types of fixed-wing
aircraft) usually fly most efficiently at fixed, nominal speeds [Anderson et al., 2008a].
The control problem of coordinating constant-speed agents is a research problem
posed to us by the Australian Defence Science and Technology Group (DSTG) on the
practical use of such UAVs. To this purpose, agent’s dynamics described by affine
nonlinear control systems with possible drifts [Isidori, 1995] are more reasonable and
will provide more insight to understand the interplay between individual agent’s
kinematic constraints and formation task constraints. Based on this, we will devote
a chapter in this thesis to developing a formation feasibility theory and motion gen-
eration technique in this scenario, which aims to address a fundamental problem in
the field of coordination control of multi-agent systems.

1.3 Thesis outline and statements of collaborations

This thesis consists of ten chapters, including the current chapter, the next chapter on
theoretical preliminaries, followed by seven main chapters showing main technical
results, and the last chapter providing conclusions. The following is a brief outline
of the thesis structure as well as the content in each chapter. According to the dif-
ferent emphases of research topics and proposed research problems, the seven main
chapters (Chapters 3-9) are divided into three parts as shown in the list.

Also, after the introduction of each main chapter (Chapters 3-9), a brief sum-
mary of the nature of the collaboration is reported when appropriate. The author is
primarily responsible for the contribution of research outcomes in each main chapter.

1. Chapter 1 presents a general introduction to the research background, state-of-
art results in the research field, as well as research problems to be discussed in
this thesis.

2. Chapter 2 provides certain theoretical preliminaries on graph theory, rigidity
theory, gradient systems that will be frequently applied in the discussions of
technical results in later chapters.

Part I: Formation control systems: equilibrium and stability analysis

This part consists of Chapter 3 and Chapter 4.
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3. Chapter 3 focuses on equilibrium analysis of the standard rigid formation con-
trol system, and establishes a rank-invariant property which provides more
insights on the stability and dynamics property of such systems.

This is joint work with U. Helmke (University of Würzburg, Germany), and B. D. O.
Anderson. Part of the research in this chapter was preformed during a research visit at
University of Würzburg, Germany.

4. Chapter 4 aims to establish the exponential stability of the distance error system
(definitions will become clear in the context) arising in rigid formation control.
The results in this section will be theoretical basis for the robustness analysis
for rigid formation control systems in the presence of mismatched distances, as
discussed in Chapter 5.

This is joint work with B. D. O. Anderson, S. Mou (Purdue University, USA) and M.
Cao (University of Groningen, The Netherlands).

Part II: Formation control systems: some practical considerations

This part consists of Chapter 5, Chapter 6 and Chapter 7.

5. In Chapter 5, we discuss the robustness issues in 3-D rigid formation control
systems 5 with mismatched distances, investigate the rigid motion property
induced by distance mismatches, and explore how such mismatches can be
used to steer a rigid formation.

This is joint work with A. S. Morse (Yale University), B. D. O. Anderson, S. Mou
(Purdue University, USA). Part of the research in this chapter was done during a
research visit at Yale University.

6. Chapter 6 discusses the stabilization control problem of rigid formations with
desired shapes and prescribed orientations. The main contributions are a de-
scription of the formation controller, the proof of the minimum number of
agents with knowledge of global coordinate orientation, and the stability anal-
ysis.

This work is a collaboration of B. D. O. Anderson, M.-C. Park and H.-S. Ahn from
Gwangju Institute of Science and Technology (GIST), South Korea. Part of the research
in this chapter was preformed during a research visit to GIST.

7. Chapter 7 explores the quantization effect on rigid formation control, motivated
by the fact that many distributed control systems are equipped with digital sen-
sors and actuators which only produce quantized measurements or feedbacks.

This work is a collaboration with H. Garcia de Marina (École nationale de l’aviation
civile, France), B. D. O. Anderson, and M. Cao (University of Groningen, The Nether-
lands). Part of the research in this chapter was finished during a research visit at
University of Groningen.

5The robustness issues for 2-D rigid formation control systems are discussed in a joint paper [Mou
et al., 2016].



8 Introduction

Chapter 3 Chapter 4 Chapter 5 Chapter 6 

Chapter 9 Chapter 8 Chapter 7 

Figure 1.1: An overview of relations between the main chapters.

Part III: Distributed coordination control: general system models

This part consists of Chapter 8 and Chapter 9.

8. Chapter 8 extends several results on equilibrium analysis of single-integrator
formation systems discussed in previous chapters (in particular in Chapter 3)
to rigid formation systems modelled by double integrators. To be specific,
we consider two types of double-integrator formation systems in this chapter,
namely, formation stabilization systems and flocking control systems. Some in-
variance principles and links between single-integrator formation systems and
double-integrator formation systems will be established, such that the results
in previous chapters on single-integrator systems can be applied to the study
of double-integrator systems.

The results in this chapter are from joint work with B. D. O. Anderson, M. Deghat
(University of New South Wales) and H.-S. Ahn (GIST, South Korea).

9. Chapter 9 considers a very general yet fundamental problem in multi-agent
coordination control, namely the formation feasibility of distributed control
in the presence of both formation constraints from the global task level, and
kinematic constraints from each agent. The agents’ dynamics are modelled by
affine control systems with possible drift terms, which include single-integrator
models and double-integrator models as special cases. Some control problems
in previous chapters can also fit in this general framework. We derive an alge-
braic condition to guarantee the existence of feasible formations for such group
of agents, and propose a systematic way to generate feasible trajectories for a
group of heterogeneous agents.

The results are from close collaboration and extensive discussions with B. D. O. An-
derson. We also appreciate insightful discussions with S. Drake (Australian Defence
Science and Technology Group) on this problem, and his feedbacks on how this control
framework can be used in the coordination control of multiple constant-speed UAVs.

10. Chapter 10 presents a short summary of the main results and contributions of
this thesis, and also indicates some possible directions for future research.

In addition to the above structure outline, an overview of relations between each
main chapter is shown in Figure 1.1.



Chapter 2

Theoretical preliminaries

This chapter introduces several essential concepts and theoretical foundations on
graph theory, rigidity theory and gradient systems that will be frequently applied in
later chapters. We also review gradient descent formation control for stabilization of
rigid formation shapes [Krick et al., 2009] in the last section of this chapter, which
will be revisited in several chapters in this thesis.

2.1 Notations

The notations used in this thesis are fairly standard. A real valued function f is
called a Cr function if it has continuous first r derivatives. We use R

n to denote the
n-dimensional Euclidean space, and R

m×n to denote the set of m × n real matrices.
The transpose of a matrix or vector M is denoted by M⊤. The rank, determinant,
image (i.e., column space) and null space of a matrix M are denoted by rank(M),
det(M), Im(M) and null(M), respectively. For a vector v, the symbol ‖v‖ denotes
its Euclidean norm. We use span{v1, v2, · · · , vk} to represent the subspace spanned
by a set of k vectors v1, v2, · · · , vk. We denote the n × n identity matrix and zero
matrix as In×n and 0n×n, respectively. Let 1n and 0n be the n-dimensional vectors of
all ones and all zeros. When the subscripts for In×n, 0n×n, 1n or 0n are omitted, their
dimensions should be clear in the context.

The inertia of a matrix M ∈ R
n×n is given by the triple {ν+, ν−, ν0}, where ν+

(respectively, ν−) denotes the number of unstable (respectively, stable) eigenvalues
of M in the open right (respectively, left) complex half plane, and ν0 denotes the
number of eigenvalues with zero real part (see e.g. [Carlson and Schneider, 1963]).
The symbol ⊗ denotes Kronecker product. SE(d) and SO(d) denote the special
Euclidean group and the special orthogonal group, respectively.

Note in later chapters we may use additional notations that will be solely used in
that particular chapter. This will be made clear in the corresponding chapter.

9
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2.2 Preliminary on graph theory

Consider an undirected graph with m edges and n vertices (or nodes), denoted by
G = (V , E) with vertex set V = {1, 2, · · · , n} and edge set E ⊂ V × V . The neighbor
set Ni of node i is defined as Ni := {j ∈ V : (i, j) ∈ E}. The matrix relating the
nodes to the edges is called the incidence matrix H = {hij} ∈ R

m×n, whose entries
are defined as (with arbitrary edge orientations)

hij =







1, the i-th edge sinks at node j;
−1, the i-th edge leaves node j;
0, otherwise.

Another important matrix representation of a graph G is the Laplacian matrix L(G)
[Mesbahi and Egerstedt, 2010]. For an undirected graph, the associated Laplacian
matrix can be written as L(G) = H⊤H. For a connected undirected graph, one has
rank(L) = n − 1 and null(L) = null(H) = span{1n}. For more introductions on
algebraic graph theory and their applications in distributed and networked control,
we refer the readers to [Bapat, 2010] and [Mesbahi and Egerstedt, 2010].

2.3 Preliminary on rigidity theory

2.3.1 Definitions and properties

Let pi ∈ R
d denote a point that is assigned to i ∈ V in the d-dimensional Euclidean

space R
d. 1 The stacked vector p = [p⊤1 , p⊤2 , · · · , p⊤n ]

⊤ ∈ R
dn represents the realiza-

tion of G in R
d. The pair (G, p) is said to be a framework (or a formation, in our context

of formation control) of G in R
d. By introducing the matrix H̄ := H ⊗ Id ∈ R

dm×dn,
one can construct the relative position vector as an image of H̄ from the position
vector p:

z = H̄p (2.1)

where z = [z⊤1 , z⊤2 , · · · , z⊤m ]
⊤ ∈ R

dm, with zk ∈ R
d being the relative position vector

for the vertex pair defined by the k-th edge.
Consistent with the assumed ordering of the edges in E , the distance function

rG(p) : R
dn → R

m associated with the framework (G, p) is given as:

rG(p) =
1
2

[
· · · , ‖pi − pj‖2, · · ·

]⊤
, (i, j) ∈ E (2.2)

in which the k-th component in rG(p), 1
2‖pi − pj‖2, corresponds to half of the squared

length of the relative position vector zk which connects the vertices i and j. We first
show the definitions of congruence and equivalence of two frameworks (G, p) and (G, q)
(see e.g. [Asimow and Roth, 1978], [Eren et al., 2003]).

1In this thesis we will mostly consider d ∈ {2, 3}. Some results obtained in the following chapters
can also be extended to arbitrary dimensional spaces. This will be made clear in the context.
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Definition 1. (G, p) and (G, q) are equivalent if they have the same edge lengths, i.e., ‖pi −
pj‖ = ‖qi − qj‖, ∀(i, j) ∈ E .

Definition 2. (G, p) and (G, q) are congruent if ‖pi − pj‖ = ‖qi − qj‖, ∀i, j ∈ V .

We refer the readers to [Connelly and Guest, 2015] for more discussions and
examples on framework equivalence and framework congruence. The rigidity of
frameworks is then defined as follows.

Definition 3. ([Asimow and Roth, 1979]) A framework (G, p) is rigid in R
d if there exists a

neighborhood U of p such that r−1
G (rG(p)) ∩ U = r−1

K (rK(p)) ∩ U where K is the complete
graph with the same vertices as G.

The above definition may seem to be too technical, but there is an intuitive inter-
pretation by using concepts from joints and bars in a structure. The notion of rigidity
then corresponds to the undeformability of a structure of joints and bars [Hendrick-
son, 1992]. In other words, when the only allowed smooth motions are those that
preserve the distance between every pair of joints, the framework is said to be rigid.
Otherwise it is flexible. Figure 2.1 shows several examples of two-dimensional rigid
and non-rigid formations. The definition of minimal rigidity that is also shown in
Figure 2.1 will be given in the next section.

2.3.2 Rigidity matrix and related results

In the following, the set of all frameworks (G, p) which satisfies the distance con-
straints is referred to as the target formation. One useful tool to characterize the
rigidity property of a framework is the rigidity matrix R ∈ R

m×dn, which is defined
as

R(p) =
∂rG(p)

∂p
(2.3)

It is not difficult to see that each row of the rigidity matrix R takes the following form

[01×d, · · · , (pi − pj)
⊤, · · · , 01×d, · · · , (pj − pi)

⊤, · · · , 01×d] (2.4)

Each edge gives rise to a row of R, and, if an edge links vertices i and j, then the
nonzero entries of the corresponding row of R are in the columns from di − (d − 1)
to di and from dj − (d − 1) to dj.

We indicate a simple expression for the rigidity matrix which involves both the
network topology and position configuration. Recall (2.1), which shows that the
relative position vector lies in the image of H̄. The distance function is a map from
the node positions to the squared edge lengths. Thus we can redefine the distance
function, gG(z) : Im(H̄) → R

m as gG(z) = 1
2

[
‖z1‖2, ‖z2‖2, · · · , ‖zm‖2

]⊤. From (2.1)
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and (2.3), one can obtain the following simple form for the rigidity matrix

R(p) =
∂rG(p)

∂p
=

∂gG(z)
∂z

∂z
∂p

(2.5)

=






z⊤1 · · · 0
...

. . .
...

0 · · · z⊤m




 H̄

= Z⊤H̄ (2.6)

where Z = diag{z1, z2, · · · , zm} ∈ R
dm×m. It is obvious that the entries of R(p) are

also functions of z, and we will also write it as R(z).
Now we introduce an important concept in graph rigidity theory called infinites-

imal rigidity. In order to understand infinitesimal rigidity, we first introduce the
notion of infinitesimal motion. Consider the position of each vertex as a differen-
tiable function of t (which can be the time) and suppose ‖pi(t)− pj(t)‖2 = constant
for every (i, j) ∈ E . By differentiating the edge length constraints one can obtain
(vi − vj)

⊤(pi − pj) = 0, where vi is the instantaneous velocity of vertex i. An as-
signment of velocities that satisfies such an equation for a particular framework is
called an infinitesimal motion of that framework [Hendrickson, 1992]. The definition
of infinitesimal rigidity for a framework is given as follows (see e.g., [Hendrickson,
1992; Hendrickx, 2008]).

Definition 4. A framework is infinitesimally rigid if all its infinitesimal motions are special
Euclidean motions.

The rigidity matrix is useful to determine the infinitesimal rigidity of a frame-
work, as shown in the following theorem.

Theorem 1. ([Hendrickson, 1992]) Consider a framework (G, p) in the d-dimensional space
with n ≥ d vertices and m edges. It is infinitesimally rigid if and only if

rank(R(p)) = dn − d(d + 1)/2 (2.7)

Specifically, under the condition that n ≥ d as shown in Theorem 1, the frame-
work (G, p) is infinitesimally rigid in R

2 (resp. R
3) if and only if rank(R(p)) = 2n− 3

(resp. rank(R(p)) = 3n − 6). Obviously, in order to have an infinitesimally rigid
framework, the graph should have at least 2n − 3 (resp. 3n − 6) edges in R

2 (resp.
R

3). If the framework is infinitesimally rigid in R
2 (resp. R

3) and has exactly 2n − 3
(resp. 3n− 6) edges, then it is called a minimally and infinitesimally rigid framework.

In the examples shown in Figure 2.1, two of which are rigid and one of which is
non-rigid. In a non-rigid formation, part of the formation can flex or move, while
the rest of the formation remains stationary, and all distance constraints remain satis-
fied. Examples of a non-infinitesimally-rigid framework and an infinitesimally rigid
framework are shown in Figure 2.2.

From the definition of infinitesimal rigidity, the following result is obvious.
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Figure 2.1: Examples of rigid and non-rigid formations. (a) non-rigid formation (a
deformed formation with dashed lines is shown); (b) minimally rigid formation; (c)

rigid but non-minimally rigid formation.

2 
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(a) 

Figure 2.2: Examples of a non-infinitesimally-rigid framework and an infinitesimally
rigid framework. (a) A rigid but not infinitesimally rigid framework. The collinear
positions of the three nodes lead to rank(R) = 1 < 3. The red arrow indicates a

non-trivial infinitesimal motion. (b) An infinitesimally rigid framework.
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Lemma 1. If the framework (G, p) is minimally and infinitesimally rigid in the d-dimensional
space, then the matrix R(z(p))R(z(p))⊤ is positive definite.

The following result will be useful for later analysis, which shows that there exists
a smooth function which maps the distance set of the minimally rigid framework to
the distance set of its corresponding framework modeled by a complete graph.

Lemma 2. Let rG(q) be the distance function for a given infinitesimally minimally rigid
framework (G, q) with agents’position vector q. Further let r̂Ĝ(q) denote the distance function
for an associated framework (Ĝ, q), in which the vertex set remains the same as (G, q) but the
underlying graph is a complete one (i.e. there exist n(n − 1)/2 edges which link all vertices).
Then there exists a continuously differentiable function f : rG(q) → R

n(n−1)/2 for which
r̂Ĝ(q) = f (rG(q)) holds locally.

The proof of Lemma 2 is omitted here and can be found in [Mou et al., 2016].
In later chapters, we will frequently revisit Lemma 2 and apply it in the stability
analysis for formation control systems with different properties.

We also refer to the paper [Anderson et al., 2008b] and the thesis [Hendrickx,
2008] for a detailed survey on using graph rigidity theory in modelling autonomous
formations, and the extensions of graph rigidity theory for undirected graphs to
graph persistence theory for directed graphs.

2.4 Gradient systems

2.4.1 Definitions and properties

In this section we briefly review the definition and properties of gradient systems.
Let V : R

n → R≥0 be a scalar valued function that is Cr with r ≥ 2. Consider the
following continuous-time system

ẋ = −∇V(x) (2.8)

The above system is usually called a gradient system, and the corresponding function
V(x) is referred to as a potential function.

Gradient system enjoys several convergence properties due to the special struc-
ture of the gradient vector field in the right-hand side. Firstly, it should be clear that
equilibrium points of (2.8) are critical points of V(x). Moreover, at any point except
for an equilibrium point, the vector field (2.8) is perpendicular to the level sets of
V(x). In fact, it is obvious to observe that V̇(x) = ∇V(x)⊤ ẋ = −‖∇V(x)‖2 ≤ 0,
which indicates that the potential V(x) is always nonincreasing along the trajectory
of (2.8). The following results are also obvious.

Lemma 3. Consider the gradient system (2.8) with the associated potential V(x).

• V̇(x) ≤ 0 and V̇(x) = 0 if and only if x is an equilibrium point of (2.8).
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• Suppose x̄ is an isolated minimum of a real analytic V(x), i.e., there is a neighbor-
hood of x̄ that contains no other minima of V(x). Then x̄ is an asymptotically stable
equilibrium point of (2.8).

The proof of the above lemma can be found in e.g. [Wiggins, 2003, Chapter 15].
Note that in the second statement we have emphasized the condition isolated mini-
mum in the convergence property. As we will see in later chapters, for most formation
control systems, their equilibrium points are not isolated but are continuum equilib-
ria that form equilibrium orbits, which complicates the stability analysis. These will
be made clear in the context.

We also refer the readers to the book [Wiggins, 2003, Chapter 15] and the thesis
[Lageman, 2007] for more introductions and properties on gradient vector fields and
gradient systems.

2.4.2 Real analyticity and local minimum

Note that a local minimum of V is not necessarily a stable equilibrium point of (2.8),
unless some more properties on the potential V are imposed (while the smoothness
of the potential V is not enough). In [Absil and Kurdyka, 2006], several examples
(and counterexamples) are carefully constructed to show the relationship between
local minima of V and stable equilibrium points of (2.8). In particular, it is shown
in [Absil and Kurdyka, 2006] that with the analyticity 2 of the potential V, local
minimality becomes a necessary and sufficient condition for stability.

Theorem 2. ([Absil and Kurdyka, 2006]) Let V be real analytic in a neighborhood of an
equilibrium x̄ ∈ R

n. Then, x̄ is a stable equilibrium point of (2.8) if and only if it is a local
minimum of V.

2.5 Gradient descent control law for rigid formation stabi-

lization

The control goal in formation shape stabilization is to drive all the agents to reach
a configuration such that a certain set of inter-agent distances can be achieved. We
denote the target distance between agent i and its neighboring agent j as dkij

, for
which the agent pair i and j should work cooperatively to achieve. The typical
structure of the formation potential function is defined by

V(p1, · · · , pn) =
1
4 ∑

{i,j}∈E
(‖pi − pj‖2 − d2

kij
)2 (2.9)

It is obvious that the value of the above potential function for a formation is invari-
ant if the given formation undergoes translation, rotation or reflection. By assuming

2A real function is analytic if it possesses derivatives of all orders and agrees with its Taylor series
in the neighborhood of every point.
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that each agent’s dynamics are described by a simple kinematic model in the form
ṗi = ui, i ∈ {1, 2, · · · , n}, where ui ∈ R

d is the control input for agent i, an ex-
tensively studied formation control system is described by the following gradient
descent control law

ṗi = ui = −∇pi V(p) = ∑
j∈Ni

(pj − pi)(‖pj − pi‖2 − d2
kij
) (2.10)

Note that in implementing the above control, each agent needs to measure the relative
positions, denoted by zkij

:= (pj − pi). We further define

ekij
= ‖pi − pj‖2 − (dkij

)2 (2.11)

to denote the squared distance error for edge k. In order to simplify the notation,
we may use ek and ekij

interchangeably in this thesis. This will also apply to dk and
dkij

, zk and zkij
in later chapters when the dropping out of the dummy subscript ij

in each vector causes no confusion. The squared distance error vector is denoted by
e = [e1, e2, · · · , em]⊤.

This potential function (2.9) for rigid shape stabilization and the associated gra-
dient flow (2.10) have been extensively studied in the literature; see e.g. [Krick et al.,
2009; Anderson and Helmke, 2014; Cortés, 2009; Dörfler and Francis, 2010; Dimarog-
onas and Johansson, 2010; Cao et al., 2011; Anderson, 2011; Oh and Ahn, 2014a].

In several later chapters of this thesis, we will revisit the above formation control
system (2.10), and investigate its convergence property as well as its variations.
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Formation Control Systems:

Equilibrium and Stability Analysis
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Chapter 3

Invariance principles and

equilibrium analysis for formation

shape control systems

Chapter summary

This chapter establishes a rank-invariance principle of the formation shape stabiliza-
tion systems, which provides additional insights to the equilibrium analysis for such
control systems. We further show some properties of the degenerate critical forma-
tions that live in a lower dimensional space, and prove that they are unstable. The
implication of these results is that if all the agents start with generic initial positions,
then their trajectories will be strictly bounded away from the set of degenerate for-
mations at any finite or infinite time. These results are obtained from a joint analysis
of rank-preserving flow theory, graph rigidity theory and invariant manifold theory.

3.1 Introduction

3.1.1 Background and related work

In the distance-based formation control framework, the global stability analysis be-
yond a local convergence for formation control systems with general shapes (other
than the simple shapes such as triangular shapes or tetrahedral shapes) has been an
open problem ([Krick et al., 2009; Anderson and Helmke, 2014]). The stability anal-
ysis of a formation control system usually involves an interplay of graph topology
concepts and nonlinear analysis tools. On the one hand, there have been several
papers focusing on the role of graph topology in formation control systems. In [Di-
marogonas and Johansson, 2010] the authors discussed the convergence property for
the distance-based formation control system when the underlying graph is a tree,
and showed that with this assumption the commonly-used gradient descent control
derived from a potential function can stabilize the formation system to the desired
relative distances. However in this tree graph case the formation is not a rigid one
and thus the shape is not well defined. Recently a vast amount of literature has
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emerged for analyzing formation control systems with certain simple and specific
shapes, such as the 2-D triangular formation [Cao et al., 2011; Dörfler and Francis,
2010], the 2-D four-agent rectangular formation [Anderson et al., 2010] and the 3-D
tetrahedral formation [Park et al., 2014]. For formation control systems with general
shapes, however, a full understanding of the convergence properties for different
equilibria has not yet been explored.

On the other hand, some other approaches have been reported recently to gain
a further understanding of the bounds and properties of critical points of nonlinear
formation control systems, including the semidefinite programming viewpoints for
solving semialgebraic problems in [Summers et al., 2013] and Morse theory meth-
ods [Anderson, 2011; Helmke and Anderson, 2013; Anderson and Helmke, 2014].
The application of Morse theory to robot navigation control can be traced back to
an early paper [Koditschek and Rimon, 1990]. It was recently shown in [Anderson,
2011] by using this theory that multiple equilibria, including incorrect equilibria, are
a consequence of any formation shape control algorithm which evolves in a steep-
est descent direction using a smooth cost function that is invariant under translations
and rotations. The existence of multiple equilibria of the potential function adds con-
siderable complexity to the convergence analysis of formation control systems. We
refer the readers to the recent thesis [Chen, 2014] for more discussions on applying
Morse theory to the rigid formation control problem.

In this chapter, we aim to explore more invariance properties in formation control
system and to provide additional insights on the stability analysis of critical forma-
tions. We will show a rank-preserving property for formation systems described by
a gradient flow, which means that the dimension of the smallest affine space that
contains all agents’ positions is an invariant under the gradient flow. Furthermore,
this rank-preserving property also indicates certain invariance properties for 2-D and
3-D formation systems.

In the second main part of this chapter, we will show that any incorrect equilib-
ria which lie in a degenerate space (definitions will become clear later) are unstable.
This is a consequence of the rank-preserving property of the formation gradient sys-
tem and an eigenvalue result relating to the Hessian matrix of the potential function.
The results hold for formation systems in any higher dimensions, which also have
applications in other fields such as multidimensional scaling studies [Borg and Groe-
nen, 2005]. Actually, the optimization problem involving minimizing certain stress
functions in multidimensional scaling has a similar problem description as in the
formation control field with similar forms of cost functions.

3.1.2 Chapter organization

The rest of this chapter is organized as follows. Section 3.2 presents formation equa-
tions and the problem setup. The rank-preserving property for formation systems in
arbitrary dimensions is proved in Section 3.3. In Section 3.4, we discuss the stability
property of degenerate equilibria (definitions will be clear in that section) and show
they are unstable. Conclusions are provided in Section 3.5, which closes this chapter.
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In the Appendix 3.6, we briefly review some background on rank-preserving flow
theory.

3.2 Problem setup and motion equations

We consider the standard formation control system for stabilizing a rigid target for-
mation shape, as reviewed in Section 2.5 in Chapter 2. For the convenience of analysis
we rewrite the formation control system as follows

ṗi = − ∑
j∈Ni

(‖pi − pj‖2 − d2
kij
)(pi − pj), i = 1, . . . , n (3.1)

which defines the steepest descent gradient flow of the potential function

V(p) =
1
4 ∑

(i,j)∈E
(‖pi − pj‖2 − d2

kij
)2 (3.2)

In this chapter, we will revisit this formation control system, and establish several
novel results involving a rank-invariance principle 1 and their applications in the
equilibrium analysis.

3.3 Rank-preserving property for formation systems

This section aims to show a rank-preserving property of the gradient system (3.1).
The results hold for formation systems in general dimensions, and we will later
specialize them to d ∈ {2, 3} cases.

By the definition of the incidence matrix H and the rigidity matrix R, we can
write the position system (3.1) in a compact form

ṗ(t) = −R⊤(z)e = −(H⊤ ⊗ Id×d)Z(z)e (3.3)

Then the dynamics for the relative position vector z can be written as

ż(t) = (H ⊗ Id×d) ṗ = −(H ⊗ Id×d)R⊤e

= −
(

(HH⊤)⊗ Id×d

)

Z(z)e (3.4)

3.3.1 Proof of the rank-preserving property

In this section we aim to prove the following rank-preserving property of the formation
system (3.3).

Theorem 3. Denote P := [p1, p2, · · · , pn] ∈ R
d×n with the i-th column being agent i’s

position vector pi, and denote Q := [z1, z2, · · · , zm] ∈ R
d×m with the k-th column being

1In this chapter, the dimension of the ambient space can be arbitrary and is not confined to the case
d ∈ {2, 3}.
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the relative position vector zk. Then rank(P) and rank(Q) are constant along any finite time
solution p(t) of (3.3).

Proof. Note that R⊤(z)e = (H⊤ ⊗ Id×d)Ze according to the expression of the rigidity
matrix (as shown in Section 2.3.2 of Chapter 2). By defining a diagonal matrix Ē =
diag(e1, e2, · · · , em) ∈ R

m×m, one can show that

(Ē ⊗ Id×d)(H ⊗ Id×d)p = (Ē ⊗ Id×d)z = Ze (3.5)

Hence, there holds

R⊤(z)e =(H⊤ ⊗ Id×d)Ze

=(H⊤ ⊗ Id×d)(Ē ⊗ Id×d)(H ⊗ Id×d)p

:=(E ⊗ Id×d)p (3.6)

where the matrix E is defined as

E = H⊤ĒH (3.7)

Note that E is a symmetric matrix, which has the same structure as the stress matrix

in graph rigidity theory [Connelly, 2005]. In later sections we will see the matrix E
plays an important role in the stability analysis of equilibrium sets.

By using the above matrix operations, the gradient flow for the formation control
system (3.1) can be rewritten as

ṗ(t) = −R⊤(p)e(p) = −(E(p)⊗ Id×d)p (3.8)

The vector differential equation (3.8) can be equivalently stated as the following
differential flow on the matrix space R

d×n (without the Kronecker product term)

Ṗ(t) = −P(t)E⊤(p(t)) = −P(t)E(p(t)) (3.9)

Since the solution of (3.1) is well defined and can be extended to t → ∞ which
excludes the case of finite escape time (see e.g. Krick et al. [2009]), the existence and
uniqueness of the solution to (3.9) is well guaranteed. Actually, the matrix E can be
written as E(P), i.e. a smooth matrix-valued function E(P) of the variable P. Then
according to Lemma 8 (see the appendix in Section 3.6), the rank-preserving property
of the matrix flow (3.9) follows by observing B(t) = −E(p(t)) and A(t) = 0.

Similarly, the relative position z system (3.4) can be written as

ż(t) = −
(

(HH⊤)⊗ Id×d

)

Ze

= −
(

(HH⊤)⊗ Id×d

)

(Ē ⊗ Id×d)z

= −
(

(HH⊤Ē)⊗ Id×d

)

z (3.10)

The vector differential equation (3.10) can be equivalently stated as the following
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differential flow on the matrix space R
d×m (without the Kronecker product term)

Q̇(t) = −Q(t)(HH⊤Ē(t))⊤ = −Q(t)
(

Ē(t)HH⊤
)

(3.11)

The existence and uniqueness of the solution to (3.11) is also guaranteed by the
solution property of (3.4). Then according to Lemma 8 (see the appendix in Sec-
tion 3.6), the rank-preserving property relating to rank(Q(t)) is proved by observing
B(t) = −Ē(t)HH⊤ and A(t) = 0.

3.3.2 Consequences of the rank-preserving property

If one restricts the discussion for the case of d = 2, 3 (i.e. the 2-D formation control
and the 3-D formation control), one can obtain the following invariance properties
which are direct consequences of Theorem 3.

Corollary 1. The set of collinear positions is invariant for 2-D formation systems, and the
sets of collinear or coplanar positions are invariant for 3-D formation systems. That is, for
2-D formations, if all the agents start with collinear positions, they will always be in collinear
positions under the gradient flow (3.3). Similarly, for 3-D formations, if all the agents start
with coplanar (resp. collinear) positions, then they will always be in coplanar (resp. collinear)
positions under the gradient flow (3.3).

For the formation control system in the presence of distance mismatches (which
is termed a mismatched formation flow [Mou et al., 2016]), the rank-preserving
property still holds; see the proof in [Helmke et al., 2014].

Remark 1. A similar result on a dimension-invariant property for formation control systems
is shown in a recent paper [Chen and Brockett, 2014], which is termed a path-connected

property. The authors in [Chen and Brockett, 2014] used Lie group and Lie algebra ideas for
proving the property. Here we are using a simpler method based on rank-preserving flow for
the proof.

Note that the limiting rank-invariant property of the gradient flow (3.3) for t → ∞

is not guaranteed. Since any solution p(t) of the real analytic gradient flow con-
verges to an equilibrium point p̄, the limit P(∞) (as well as Q(p(∞))) exists with
rank(P(∞)) ≤ rank(P(0)) and rank(Q(∞)) ≤ rank(Q(0)). 2 In the case of d = 2, 3,
this corresponds to the convergence analysis of collinear/coplanar equilibria for the
2-D (and 3-D) formations. These will be discussed in the following sections.

2One typical example of rank(Q(∞)) < rank(Q(0)) comes from the formation control problem with
unrealizable shapes [Sun et al., 2014c]: If the triangle inequality does not hold for a triangular shape
control, then all the agents will converge to a stable collinear equilibrium for which rank(Q(∞)) = 1,
even if they start with non-collinear positions with rank(Q(0)) = 2. Note that for such flows the
rank-preserving property still holds for any finite time but at the limit t = ∞ the rank is lost.
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3.4 Stability analysis for degenerate equilibria

The results in this section are extended from some previous works [Cao et al., 2011]
and [Park et al., 2014]. In [Cao et al., 2011] it shows that for a 2-D triangular formation
with achievable shapes, all the agents will globally converge to the correct shape
if they start with non-collinear positions. In another paper [Park et al., 2014] we
proved that for the 3-D tetrahedral formation, if all the agents start with non-coplanar
positions, then they will globally converge to the correct shape. In this section we
will continue the analysis to show the convergence property of collinear/coplanar
equilibria for general 2-D and 3-D formations when t → ∞, with the intention to
obtain more general results for formation systems with general target shapes that
live in an arbitrary dimension.

In this section, we suppose that the formation control system under discussions
lives in a d-dimensional space in which the target formation shape can be realized in
the ambient d-dimensional space but not at an ambient space with a lower dimension.
We call an equilibrium point p̄ with rank(Q̄( p̄)) < d an incorrect degenerate equilibrium,
according to the fact that the affine space that embeds p̄ has dimension less than d
and at such a degenerate equilibrium the potential function is not zero (i.e. the target
formation shape is not achieved). First we show a result concerning the existence of
such incorrect degenerate equilibria.

Lemma 4. For a formation control system (3.3) with a desired target shape achievable in the
d-dimensional space but not in an ambient space with a dimension less than d, there exist
incorrect equilibria p̄ for which rank(Q̄( p̄)) < d. Consequently, there always exist collinear
equilibria for 2-D formation systems and collinear/coplanar equilibria for 3-D formation sys-
tems.

Proof. Note that in Theorem 3 and Corollary 1, we have shown the rank-invariant
properties of the trajectories which start in an affine space with lower dimensions.
Also note that the potential function is lower bounded (because the formation centroid
is invariant and the potential function is always non-increasing along the solution of
the gradient flow). Thus, there exist limit values 3 of p̄(∞) which lies in an affine
space with lower dimensions, which proves the existence of incorrect degenerate
equilibria. For d = 2, this indicates the existence of collinear equilibria for the for-
mation control system; for d = 3, this indicates the existence of collinear/coplanar
equilibria for the formation control system.

Note that the above Lemma 4 also shows that degenerate equilibria p̄ for the d-
dimensional formation system can be attractive when agents start at degenerate initial
positions p(0) with rank(Q(p(0))) < d. The aim of this section is to show that such
equilibria are generically unstable when agents start with generic initial positions
with rank(Q(p(0))) = d.

Remark 2. One needs to distinguish the set of degenerate equilibria and the set of flip/flex
formations. According to the definition of degenerate equilibrium in (3.15), the set of such

3A gradient system cannot have limit cycles or periodic orbits; see e.g. [Wiggins, 2003, Chapter 15].
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Figure 3.1: An example of a pair of flip/flex formations. (a) A target formation
defined by five inter-agent distances. (b) A flip version of the target formation with
the same set of five desired distances. In rigid formation control, they are both
considered as correct equilibria for a target formation specified by given desired

distances.

equilibrium points is defined by the condition that the agents’ positions at such an equilibrium
point span an affine space of less than full dimension of its containing space. However, the
term flip/flex formations refers to the existence of different realizations (up to translation,
rotation and reflection) of a target formation with a given set of distances. Thus, these two
concepts are not related. We provide two examples in Figure 3.1 and Figure 3.2 to illustrate
these two concepts. Actually, in the distance-based formation setup, a target formation is
defined by a set of inter-agent distances, which do not distinguish flip/flex formations. This is
because the sets of edges and corresponding distance constraints do not necessarily uniquely
define the relative positions of the agents. In other words, the distance constraints do not
specify the formation shape up to a rotation, translation, or reflection [Krick et al., 2009;
Anderson et al., 2008b]. Since we only focus on local convergence of a gradient-type system,
flip/flex ambiguity can be avoided by assuming that the initial formation is closer to the
desired shape than the flip/flex version; this guarantees that the formation will converge to the
desired shape instead of a flip/flex formation due to the gradient-descent property (see relevant
discussions in [Krick et al., 2009]). If one wants to always avoid the flip/flex ambiguity,
then the target formation should be globally rigid (for definitions, see e.g. [Anderson et al.,
2008b]), or the potential function should be defined in a different way by including constraints
on flip/flex formations. Consequently, the corresponding formation controllers should also
include additional terms involving the avoidance of flip/flex ambiguity.
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Figure 3.2: An example of a correct equilibrium and a degenerate equilibrium for
a four-agent formation shape with five given distances. (a) The correct formation
shape, in which all the five distances are achieved. (b) An example of collinear de-
generate equilibrium in R

2, in which all the four agents converge to a line formation.

3.4.1 The equilibrium set

In this subsection we provide notations to denote different sets of equilibria of (3.3)
(i.e. the critical points of V). 4 The set for all equilibria is described as

M = {p ∈ R
dn|R(p)⊤e(p) = (E(p)⊗ Id×d)p = 0} (3.12)

while the set of correct equilibria is denoted by

Mc = {p ∈ R
dn|e = 0} (3.13)

and the incorrect equilibria set is denoted by

Mi = {p ∈ R
dn|R(p)⊤e(p) = (E(p)⊗ Id×d)p = 0, e 6= 0} (3.14)

with M = Mc ∪Mi.

According to Lemma 4, a subset of Mi is the set of degenerate equilibria denoted
by

Md = {p ∈ R
dn|R(p)⊤e(p) = (E(p)⊗ Id×d)p = 0,

rank(P) < d} (3.15)

Our particular interest will be the case of d ∈ {2, 3}, i.e. 2-D and 3-D forma-
tions. In this case, the set of collinear equilibria (for both 2-D and 3-D formations) is

4The equilibria form sets, with each set obtainable by translation and rotation of any point in the
set (see discussions in e.g. [Summers et al., 2013; Helmke and Anderson, 2013]). For example, for
all equilibria for the 2-D formations, there will always be three zero eigenvalues of the Hessian of the
potential V, corresponding to the rotational and translational invariance. This point will be presented
in more detail in Chapter 8.
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denoted by

Mcollinear = {p ∈ R
dn|R(p)⊤e(p) = (E(p)⊗ Id×d)p = 0,

rank(Q) = 1} (3.16)

and the set of incorrect coplanar equilibria (for 3-D formations) is denoted by

Mcoplanar = {p ∈ R
dn|R(p)⊤e(p) = (E(p)⊗ Id×d)p = 0,

rank(Q) = 2} (3.17)

Note that for a general 2-D formation with n ≥ 4 agents, one has Mcollinear ⊂
Mi, and for a general 3-D formation with n ≥ 5 agents, there holds (Mcollinear ∪
Mcoplanar) ⊂ Mi ⊂ M. Since we have assumed that the target formation shape is
realized in the given d-dimensional ambient space but cannot be realized in an am-
bient space with a dimension less than d, the above analysis means that for a 2-D/3-
D general formation there exists an additional incorrect equilibrium set containing
the collinear/coplanar equilibria (see [Helmke and Anderson, 2013; Anderson and
Helmke, 2014]). It is an open problem to determine analytically the existence and
properties of stable incorrect equilibria in rigid formation control. 5 The following
analysis can be seen as a further step towards tackling this problem, and we will
show that all the degenerate equilibria are unstable.

3.4.2 Eigenvalue property of E and the Hessian

We first show a result on the eigenvalue property of E which holds for formation
systems in arbitrary dimensions.

Lemma 5. The matrix E( p̄) has at least one negative eigenvalue at an incorrect equilibrium
p̄ ∈ Mi.

Proof. Suppose to obtain a contradiction that E( p̄) is positive semidefinite, which
means that p⊤ (E( p̄)⊗ Id×d) p ≥ 0 for all p ∈ R

dn. According to the structure of the
matrix E, there holds

p⊤ (E( p̄)⊗ Id×d) p = p⊤(H⊤ ⊗ Id×d)(Ē ⊗ Id×d)(H ⊗ Id×d)p

= ∑
(i,j)∈E

ekij
( p̄)‖pi − pj‖2 (3.18)

Note that

p̄⊤ (E( p̄)⊗ Id×d) p̄ = 0 (3.19)

because (E( p̄)⊗ Id×d) p̄ = 0 at an equilibrium p̄. Choose p = p∗ ∈ Mc. Then there

5Numerical examples on stable incorrect equilibria indeed exist; [Park et al., 2016].
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holds

‖p∗i − p∗j ‖2 − ‖ p̄i − p̄j‖2 = −ekij
( p̄) (3.20)

Thus, one can obtain

p∗⊤ (E( p̄)⊗ Id×d) p∗ = p∗⊤ (E( p̄)⊗ Id×d) p∗ − p̄⊤ (E( p̄)⊗ Id×d) p̄

= ∑
(i,j)∈E

ekij
( p̄)

(

‖p∗i − p∗j ‖2 − ‖ p̄i − p̄j‖2
)

= − ∑
(i,j)∈E

|ekij
( p̄)|2 < 0 (3.21)

which contradicts the assumption that E( p̄) is positive semidefinite. Note that the
above strict inequality holds because p̄ is an incorrect equilibrium point resulting in
at least one nonzero distance error. Hence the statement is proved.

Some further properties of E can be obtained for other particular equilibrium sets.
For example, E(p∗) is a zero matrix for p∗ ∈ Mc. Also at the local maximum (where
all the agents are collocated at one point), E is negative semidefinite.

In the sequel, we will use Lemma 5 to study the stability of degenerate equilibria
for a general formation system, which includes the stability properties of collinear
equilibria for 2-D formations and collinear/coplanar equilibria for 3-D formations.
Note that the closed-loop formation control system (3.3) describes a gradient descent
flow of the potential function V defined in (3.2), and the equilibrium points of (3.3)
are the same as the critical points of V. The Jacobian of the right-hand side of the
formation system (3.3) is the same as the negative of the Hessian of V, which is
denoted as HV(p). We show that there is a nice and very useful expression for the
Hessian HV(p) (see e.g. [Anderson and Helmke, 2014; Sun et al., 2014c]):

HV(p) = 2R⊤(p)R(p) + (E(p)⊗ Id×d) (3.22)

The core idea is the eigenstructure analysis of the Hessian HV(p) of the potential
function V, which will be detailed in next subsection.

3.4.3 Degenerate equilibria are unstable

The nature of an equilibrium (of being a local minimum, a saddle point or a local
maximum) for system (3.3) can be determined by the signs of the eigenvalues of
the Hessian at that equilibrium. Firstly, we introduce a transformation matrix T ∈
R

dn×dn, which is used to transform the rigidity matrix into another form:

RT = [R1 R2 · · · Rl · · · Rd] = R̄

where Rl ∈ R
m×n is the sub-matrix of R whose columns consist of the columns of

R corresponding to the l-th coordinate. Taking 2-D formation case as an example, T
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is constructed to transform the rigidity matrix: RT = [Rx, Ry] = R̄, where Rx and
Ry are the sub-matrices whose columns consist of the columns of R corresponding
to the coordinates x and y, respectively. By doing this, one can obtain a transformed
Hessian matrix H̄V(p) as

H̄V(p) = T⊤HV(p)T

= 2








R⊤
1

R⊤
2
...

R⊤
d







[R1 R2 · · · Rd] + Id×d ⊗ E(p) (3.23)

Since T is a permutation matrix which is orthogonal, the eigenvalues of HV(p) and
H̄V(p) are the same; thus in the following we shall consider the eigenvalues of H̄V(p).

In the following analysis, without loss of generality, we will study the stability
of the degenerate equilibria p̄ with rank(Q̄) = d − 1; the case for rank(Q̄) < d − 1
can be handled similarly. Further note that the stability of an equilibrium point is
independent of the action of SE(d). In particular, only relative positions matter. We
further suppose, again without loss of generality, that the degenerate equilibrium
formation lives in the (d − 1)-dimensional subspace spanned by the basis of the first
d − 1 coordinates. That is, Rd = 0 and one obtains the special expression of the
Hessian as follows:

H̄V =










2R⊤
1 R1 + E 2R⊤

1 R2 · · · 2R⊤
1 Rd−1 0

2R⊤
2 R1 2R⊤

2 R2 + E · · · 2R⊤
2 Rd−1 0

...
...

. . .
...

...
2R⊤

d−1R1 2R⊤
d−1R2 · · · 2R⊤

d−1Rd−1 + E 0

0 0 · · · 0 E










(3.24)

which will be the key to identify the property of degenerate equilibria.
The following result is a consequence of Lemma 5.

Lemma 6. The matrix H̄V( p̄) and consequently the Hessian HV( p̄) have at least one nega-
tive eigenvalue at an incorrect degenerate equilibrium p̄ ∈ Md. Thus the degenerate equilib-
ria are unstable saddle points.

Proof. It can be seen from the block-diagonal structure of the matrix H̄V in (3.24) that
the eigenvalues of E are a part of the eigenvalue set of H̄V , and the eigenvalues of H̄V

are the same to those of HV . Since in Lemma 5 we have proved that E has at least one
negative eigenvalue at any incorrect equilibrium in the set Mi which includes the set
of (incorrect) degenerate equilibria Md, HV( p̄) has at least one negative eigenvalue
at the (incorrect) degenerate equilibrium p̄ ∈ Md. 6 Thus the incorrect degenerate
equilibria are actually saddle points which are unstable.

6The case for rank(Q̄) < d − 1 can be handled similarly and the results remain unchanged. This is
because the degenerate equilibria with rank(Q̄) < d − 1 will introduce more negative eigenvalues in
the Hessian, and the dimension for the unstable subspaces associated with these negative eigenvalues
of the linearized system at such degenerate equilibria will be increasing.
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Similar to the definition of degenerate equilibrium, we define agents’ degenerate
positions in the ambient d-dimensional space as positions satisfying rank(Q(p)) < d,
i.e., the set of agents’ positions that span an affine space with dimension less than d.
All the above lemmas then lead to the following main result.

Theorem 4. Starting with generic initial positions in the d-dimensional space, agents’ tra-
jectories will not converge to any degenerate equilibria and their positions will be bounded
away from any degenerate positions.

Proof. The linearized version of the formation system (3.8) at an equilibrium point p̄
can be described as

ṗ = −HV( p̄)p

= −TH̄V( p̄)T⊤p (3.25)

In Lemma 6 it was proved that there exists at least one negative eigenvalue for the
Hessian HV( p̄) at a degenerate equilibrium p̄. We denote the corresponding eigen-
vector as v−(HV), where the unstable subspace of the linearized system (3.25) at p̄
associated with the eigenvector v−(HV) can be described as p = p̄ + span(v−(HV)).
This indicates that the stable subspace, with initial positions chosen in this subspace
converging to p̄, will have dimension at most d − 1, let alone the fact that there could
be more negative eigenvalues in HV( p̄). It follows that such a set of initial positions
is a thin set and actually has measure zero in the d-dimensional space. In fact, the
Center Manifold Theorem [Carr, 1981] implies for the nonlinear system (3.8) that in
a small open neighborhood of a degenerate equilibrium p̄ there exists an invariant
and locally stable (resp. unstable) manifold tangent to the stable (resp. unstable)
subspace of (3.25). The set of initial points which lie in the invariant stable manifold
and converge to p̄ does not contain an interior point of R

d and is a set of first cat-
egory. By the Baire category theorem [Abraham et al., 1988, Page 34], the union of
the stable manifolds of the finitely many incorrect degenerate equilibria is nowhere
dense, i.e. it is contained in the complement of a residual set. This shows that the
gradient flow (3.8) for generic initial conditions does not converge to an incorrect
degenerate equilibrium point.

By combining the results from Theorem 3 and the above arguments, one can
conclude that a generic trajectory that starts with a generic initial position p(0) in R

d

will always be bounded away from any degenerate positions for which rank(Q(t)) <
d.

The following results are direct consequences of the above main theorem.

Corollary 2. For 2-D formations, agents’ trajectories with generic initial positions in the
2-D space will not approach an incorrect collinear equilibrium.

Corollary 3. For 3-D formations, agents’ trajectories with generic initial positions in the
3-D space will not approach an incorrect collinear/coplanar equilibrium.

Figures 3.3 and 3.4 show intuitive explanations of the above two corollaries.
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A 2-D formation  

Initially collinear positions 

A 3-D formation  

Initially coplanar positions 

(a) (b) 

Figure 3.3: The sets of collinear or coplanar positions are invariant for 2-D/3-D rigid
formation systems.

Non-collinear initial positions 

A 2-D formation  

Non-coplanar initial positions 

A 3-D formation  

x 

(a) (b) 

Figure 3.4: If all agents start at non-collinear (non-coplanar) positions, then their
positions will be non-collinear (non-coplanar) at any finite or infinite time.
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Remark 3. One may be concerned with the physical interpretations and applications of the
above result for the case of d > 3, as the real-life implementable formation systems are always
in the physical space that has d = 1, 2, 3 dimension(s). Here we mention that the results
may have implications in other fields. One closely related area is the multidimensional scal-
ing research using an s-stress function [Borg and Groenen, 2005]. Multidimensional scaling
problems aim to find a desired configuration with a specific embedding dimension to minimize
a stress function, where the stress function usually takes the same form of potential function
described in (3.2) as what people in control community often use for formation control. Thus,
the results obtained in this chapter can also be employed to determine some equilibrium prop-
erties in multidimensional scaling problems.

3.5 Concluding remarks

In this chapter we have shown two main results for rigid formation control systems
in arbitrary dimensions. The first one is a rank-preserving property, which indicates
that if all the agents’ positions start in an affine space with a specific dimension,
then their trajectories will live in that space with the same dimension. The second
main result is on the stability of the degenerate equilibria, which are proven to be
unstable. The consequence is that if all the agents start with generic positions in the
full dimensional space, then their trajectories will be strictly bounded away from the
set of degenerate formations at any finite or infinite time. The results established
in this chapter also have applications in other fields, such as equilibrium analysis in
multidimensional scaling research.

3.6 Appendix: background on rank-preserving matrix flow

In this section we will briefly review some background on rank-preserving flow the-
ory [Helmke and Moore, 1994, Chapter 5].

For integers 1 ≤ n ≤ min(M, N), let

M(n, M × N) = {X ∈ R
M×N |rank(X) = n}

denote the set of real M × N matrices of fixed rank n. The following results will be
useful in the analysis of some main results in this chapter.

Lemma 7. M(n, M × N) is a smooth and connected manifold of dimension n(M + N − n),
if max(M, N) > 1. The tangent space of M(n, M × N) at an element X is

TXM(n, M × N) = {∆1X + X∆2|∆1 ∈ R
M×M, ∆2 ∈ R

N×N} (3.26)

A matrix differential equation Ẋ = F(t, X) evolving on the matrix space R
M×N is

said to be rank-preserving if the rank of every solution X(t) is constant as a function
of finite t, that is, rank(X(t)) = rank(X(0)) for all t ≥ 0. The following lemma
characterizes such rank-preserving flows (cf. Lemma 1.22 in Chapter 5 of [Helmke
and Moore, 1994]).
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Lemma 8. Let I ⊂ R be an interval and let A(t) ∈ R
M×M, B(t) ∈ R

N×N , t ∈ I, be a
continuous time-varying family of matrices. Then

Ẋ(t) = A(t)X(t) + X(t)B(t), X(0) ∈ R
M×N (3.27)

is rank-preserving. Conversely, every rank-preserving differential equation on R
M×N is of

the form (3.27) for matrices A(t) and B(t).

The proof of Lemma 8 is based on the fact that (3.27) defines a time varying vector
field on the subset of the tangent space of M(n, M × N) described by (3.26). The full
proof can be found in [Helmke and Moore, 1994, Page 139].

Remark 4. Note that the above lemma on rank-preserving flows also implies that the limit
value X(∞) (if it exists) has rank less than or equal to rank(X(0)).
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Chapter 4

Exponential stability for formation

control systems with generalized

controllers

Chapter summary

This chapter discusses generalized controllers for distance-based rigid formation
shape stabilization and aims to provide a unified approach for the convergence anal-
ysis. We consider two types of formation control systems according to different
characterizations of target formations: minimally rigid target formations and non-
minimally rigid target formations. For the former case, we firstly prove the expo-
nential stability for rigid formation systems when using a general form of shape con-
troller with certain properties. From this viewpoint, different formation controllers
proposed in the previous literature can be included in a unified framework. We
then extend the result to the case that the target formation is non-minimally rigid,
and show that exponential stability of the formation system is still guaranteed with
generalized controllers.

4.1 Introduction

4.1.1 Background and related work

As reviewed in [Oh et al., 2015], the existing results on formation control can be
characterized into position-, displacement-, and distance-based control strategies ac-
cording to different types of sensed and controlled variables. Among these formation
control strategies, distance-based formation control receives particular interest as it
does not require all the agents to have the global knowledge of a common coordinate
frame and they can measure the relative position to neighboring agents using their
own coordinate frames. Thus, in this chapter we focus on distance-based formation
control. In particular, we confine our attention to undirected rigid formations, while
relevant discussions on directed formation control can be found in e.g. [Mou et al.,
2015].

35
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With underpinnings from rigid graph theory (see Chapter 2), it has been estab-
lished that the formation shape can be achieved by controlling a certain set of inter-
agent distances [Olfati-Saber and Murray, 2002; Anderson et al., 2008b; Krick et al.,
2009]. In the rigid formation stabilization problem, one typical controller that has
been studied extensively in the literature takes the following form (see e.g. [Krick
et al., 2009]):

ṗi = ∑
j∈Ni

(pj − pi)(‖pj − pi‖2 − d2
ij) (4.1)

The above controller (4.1), which is derived from a well-defined potential function
shown in (2.9), serves as a standard control law for stabilizing rigid formations. The
dynamics of the formation control system (4.1) have been investigated in several suc-
ceeding papers, e.g. [Dörfler and Francis, 2010; Belabbas et al., 2012; Anderson and
Helmke, 2014]. We mention that alternative kinds of formation controllers other than
the one in (4.1) are also available, which have been reported sparsely in the literature
(see e.g. [Smith et al., 2006; Anderson et al., 2007; Dimarogonas and Johansson, 2010;
Tian and Wang, 2013]).

The main objective of this chapter is to analyze general forms of formation con-
trollers to stabilize rigid shapes. The main contributions of this chapter include a
unified approach to discuss the convergence and controller performance of gener-
alized formation controllers, and the associated exponential stability of general for-
mation systems when certain properties of the potential function are satisfied. We
show that for a large family of formation control systems which generalizes most
existing formation controllers proposed in the literature, the exponential stability of
the distance error system can be guaranteed. As is well-known in the control field,
exponential stability has a robustness property against small perturbations [Khalil,
2002]. Such a robustness property has been employed in recent papers [Mou et al.,
2016; Sun et al., 2015b; Garcia de Marina et al., 2015] to study the behavior of rigid
undirected formations when there are mismatches or discrepancies between neigh-
bor agents’ distance measurements. Exponential stability ensures that the derived
distance error system under controller (4.1) with small distance perturbations still
converges to a bounded neighbor set of the origin. Note that in the analysis of the
formation robustness issue in [Mou et al., 2016; Sun et al., 2015b; Garcia de Marina
et al., 2015], the formation control system is limited to the case of the controller in
(4.1). To this end, this chapter shows that formation distance error systems with
generalized controllers, which include many special forms of formation controllers
studied in the literature, also inherit this robustness property as a consequence of the
exponential stability.

In this chapter, we first consider formation stabilization control when the target
formation is minimally rigid, which is a common assumption in the literature. We
list several requirements of the potential function and its gradient function associated
with the distributed control for each agent which render an exponential convergence
of the formation system. We give an explicit lower bound on the convergence rate,
and also discuss several properties of the generalized formation control systems. By
deriving a reduced distance error system via the decomposition principle of a rigid
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framework, we then extend the analysis from the minimally rigid case to the non-
minimally rigid case, and further prove that the exponential convergence still holds
for non-minimally rigid formation control system.

4.1.2 Chapter organization

The rest of this chapter is organized as follows. In Section 4.2, we provide detailed
analysis on generalized controllers and prove the exponential stability property for
minimally rigid formations. Section 4.3 discusses exponential convergence for for-
mation control systems when the target formation is non-minimally rigid. In Section
4.4, two sets of simulation examples are provided to demonstrate the controller per-
formance. Finally, Section 4.5 concludes this chapter.

4.2 Exponential stability for minimally rigid formations

In the coordination control of multi-agent systems, the potential-function-based gra-
dient control law is a popular approach to generate distributed controllers for each
individual agent for achieving a global task [Sakurama et al., 2015]. We also follow
this framework and construct distance potential functions for stabilizing rigid for-
mation shapes. This section aims to provide a unified analysis for the convergence
property when generalized controllers are constructed for stabilizing minimally rigid
formations. One of the key results in this section is that exponential convergence can
be derived for a large family of distributed formation controllers if certain properties
are satisfied. To this end, most current results in the literature on formation shape
control with different controllers can be included as special cases and studied in a
unified framework. In this section, we assume that the target formation is minimally
rigid, while this minimal rigidity assumption will be relaxed in the next section.

Let us define a general potential function Vk : (−d2
kij

, ∞) → R≥0 with the follow-
ing properties:

1. Vk(ϕ) is non-negative and continuously differentiable on (−d2
k , ∞);

2. Vk(ϕ) and its gradient gk(ϕ) := ∂Vk(ϕ)
∂ϕ are zero if and only if ϕ = 0;

3. gk(ϕ) is continuously differentiable over its domain and its first derivative is
strictly positive around a small neighborhood of the origin 1.

1In the journal paper Sun et al. [2016a], we have used the term strictly monotone increasing function
to refer to a scalar valued function whose first derivative is strictly positive over its domain. We later
realized this terminology is not appropriate and is not consistent with the usual definition of strictly
monotone increasing functions. For example, the function g(x) = x3 is strictly monotone increasing
but its derivative at x = 0 is zero. We thank Raik Suttner from University of Würzburg for pointing out
this terminology issue.
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For each agent i, the local potential is constructed as

Θi =
1
2 ∑

j∈Ni

Vk(ekij
) (4.2)

We assume each agent is modelled by a single integrator, in the form of ṗi = ui where
ui is the control input to be designed. According to the gradient control law, each
agent moves via the following gradient flow to minimize its local potential function:

ṗi = ui = −∇pi Θi = − ∑
j∈Ni

(pi − pj)gk(ekij
) (4.3)

We note that for stabilizing different inter-agent distances, the function gk in the
controller can take different forms.

4.2.1 Review of special controllers in the literature

The general potential function and the gradient-based controller (4.3) defined above
include many formation control strategies proposed in the literature. For example,
in [Anderson et al., 2007] the controller is a special case of (4.3) which takes the
following form 2

ṗi = − ∑
j∈Ni

pi − pj

‖pi − pj‖
(‖pi − pj‖ − dk) (4.4)

where the gradient function gk(ek) is described as

gk(ek) = 1 − dk
√

(ek + d2
k)

(4.5)

In [Smith et al., 2006], the designed controller takes the following form

ṗi = − ∑
j∈Ni

pi − pj

‖pi − pj‖2 (‖pi − pj‖2 − d2
k) (4.6)

where gk(ek) is

gk(ek) = 1 − d2
k

(ek + d2
k)

(4.7)

2We note that the paper [Anderson et al., 2007] considered a control problem of stabilizing a three-
coleader formation, which is modelled by a directed cyclic triangle graph. As proved in [Dörfler and
Francis, 2009], such a formation graph is a special case of the so-called cooperative graphs, in which
all agents act cooperatively and optimize the same potential function in the sense that they behave as
if the sensor graph were undirected. One of the main results of [Dörfler and Francis, 2009] states as
follows: "(in formation control) every undirected graph, every directed cycle, and every directed open chain is
a cooperative graph".
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In [Dimarogonas and Johansson, 2008, 2010] and [Tian and Wang, 2013], the follow-
ing formation system was studied

ṗi = − ∑
j∈Ni

pi − pj

‖pi − pj‖4 (‖pi − pj‖4 − d4
k) (4.8)

where gk(ek) in this case is described by

gk(ek) = 1 − d4
k

(ek + d2
k)

2
(4.9)

Note that the above control functions (4.5), (4.7) and (4.9) have the attractive property
of ensuring collision avoidance for the formation system, provided the agents are not
collocated initially.

The most commonly-used gradient control law for stabilizing rigid formations
involves the potential function in the form of Vk = 1/2e2

k , with the derived gk in a
simple form:

gk(ek) = ek (4.10)

This controller was proposed in [Krick et al., 2009] and was further studied in e.g.
[Dörfler and Francis, 2010; Belabbas et al., 2012; Anderson and Helmke, 2014; Cai
and de Queiroz, 2014; Cai and De Queiroz, 2015].

Figure 4.1 shows the curves of several typical controller functions mentioned
above. As can be observed from Figure 4.1, all the functions gk(ek) satisfy the de-
sired properties: they are continuously differentiable and have strictly positive first
derivative over the domain, and are zero if and only if ek is zero.

In this section we will show that all such controller functions including those men-
tioned above guarantee an exponential convergence of the formation control system.

4.2.2 Convergence analysis

Define a vector Φ to denote the gradients of the potential functions in each edge:

Φ(e) = [g1(e1), g2(e2), · · · , gm(em)]
⊤

By noting that ∂Vk(ek)
∂pi

= gk(ek)
∂ek
∂pi

and comparing the expression of the single agent
system (4.3) with the definition of rigidity matrix (2.3) in Chapter 2, one can derive
the following compact form of the overall formation system:

ṗ = −R⊤(z)Φ(e) (4.11)

where R(z) is the rigidity matrix. We first note that because the right-hand side of the
formation control system (4.11) with generalized controllers is Lipschitz continuous
due to the continuous differentiability of both (pi − pj) for all (i, j) ∈ E and gk(ek(p))
for all k, the solution of (4.11) exists globally.

According to the definition of the error vector e and the derivation of R, one can



40 Exponential stability for formation control systems with generalized controllers

e
k

-15 -10 -5 0 5 10 15

g
k1

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

g
k1

e
k

-15 -10 -5 0 5 10 15

g
k2

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

g
k2

e
k

-15 -10 -5 0 5 10 15

g
k3

-30

-25

-20

-15

-10

-5

0

5

g
k3

e
k

-15 -10 -5 0 5 10 15

g
k4

-15

-10

-5

0

5

10

15

g
k4

Figure 4.1: Several examples of controller functions gk studied in the literature (which
correspond to the controller functions (4.5), (4.7), (4.9) and (4.10) discussed above).

In all plots, we let dk = 4 and thus ek ∈ (−16, ∞).



§4.2 Exponential stability for minimally rigid formations 41

obtain the following compact equation for the distance error vector

ė =
∂e
∂p

ṗ = 2R(z) ṗ = −2R(z)R⊤(z)Φ(e) (4.12)

Remark 5. It has been proved in [Mou et al., 2016] that when the formation shape is close to
the desired one, the entries of the matrix R(z)R⊤(z) are continuously differentiable functions
of e (see Lemma 2 in Chapter 2). We also denote Q(e) := R(z)R⊤(z) to reflect this fact. So
the system described in (4.12) is a self-contained system, and we will call it the distance
error system in the sequel.

The main result in this section is stated in the following theorem which concerns
the exponential stability of the distance error system (4.12).

Theorem 5. Consider the gradient control law (4.3) derived from the general potential func-
tions with the listed properties. Then the distance error system (4.12) has an exponentially

stable equilibrium at the origin.

Proof. We divide the whole proof into three main steps.
(I) Proof of asymptotic stability. Define the overall potential function: V =

1
2 ∑

m
k=1 Vk(‖zk‖2 − d2

k) which also serves as a Lyapunov function candidate. Further
define a sub-level set Ψ(ρ) = {e : V(e) ≤ ρ} for some sufficiently small ρ, such that
for all the points in the set Ψ(ρ) the formation is infinitesimally minimally rigid and
close to the target formation. Thus the rigidity matrix is of full row rank, and further
Q(e) = R(z)R⊤(z) is positive definite (see Lemma 1). By calculating the derivative
of V along the trajectories of the distance error system (4.12), one can show

V̇(e) = −Φ⊤(e)Q(e)Φ(e) (4.13)

Further let λ denote the minimum singular value of the rigidity matrix when e is in
the set Ψ: λ = min

e∈Ψ
eig(Q(e)) > 0. Note that the set Ψ(ρ) is compact and the existence

of such λ is guaranteed. Then one has

V̇(e) ≤ −λ‖Φ(e)‖2 (4.14)

which indicates that V̇(e) is negative definite for e ∈ Ψ\{0}. Thus the asymptotic
stability of the equilibrium e = 0 in the error system (4.12) is proved.

(II) Proof of two inequalities. To show the exponential convergence of the er-
ror system (4.12), it suffices to prove the following comparison inequalities (see e.g.
Theorem 4.10 of [Khalil, 2002]):

‖Φ(e)‖2 ≥ ̺‖e‖2 (4.15)

c1‖e‖2 ≤ V(e) ≤ c2‖e‖2 (4.16)

where ̺, c1 and c2 are positive constants which need to be determined. The key prop-
erties to derive the above inequalities are that the gradient function gk(ek) is locally
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Lipschitz continuous (due to its continuous differentiability) and its first derivative
is strictly positive on (−d2

k , ∞). We follow a similar approach as that in the previous
paper [Cao et al., 2011] to show the above inequalities (4.15) and (4.16).

Recall the definition of the Lyapunov function candidate:

V =
1
2

m

∑
k=1

Vk(‖zk‖2 − d2
k) =

1
2

m

∑
k=1

∫ ek

0
gk(s)ds

Let ǫ be a positive number, which should satisfy

ǫ ≤ min{d2
1, d2

2, · · · , d2
m} (4.17)

We note that for all e which satisfies e ∈ Ψ(ρ)\{0}, the existence for such ǫ can be
guaranteed.

Let

ζk = inf
|s|≤√

ǫ

dgk(s)
ds

, k ∈ {1, 2, · · · , m} (4.18)

Each ζk is positive because each gk has strictly positive first derivative on a neighbor
of the origin, which is a subset of the interval (−d2

k , ∞). From this and the fact that
gk(0) = 0 it follows that

|gk(s)| ≥ ζk|s|, |s| ≤
√

ǫ, k ∈ {1, 2, · · · , m} (4.19)

Therefore ∫ ek

0
gk(s)ds ≥ ζk

2
e2

k , |ek| ≤
√

ǫ (4.20)

Choose

2c1 = min{ ζ1

2
,

ζ2

2
, · · · ,

ζm

2
} (4.21)

One has V(e) ≥ c1‖e‖2. Then the left inequality of (4.16) is true.
Since each gk is Lipschitz continuous and satisfies gk(0) = 0, there exist positive

constants δk such that |gk(s)| ≤ δk|s| for |s| ≤ √
ǫ. Then it follows that

∫ ek

0
gk(s)ds ≤ δk

2
e2

k , |ek| ≤
√

ǫ (4.22)

Choose

2c2 = max{δ1

2
,

δ2

2
, · · · ,

δm

2
} (4.23)

One has V(e) ≤ c2‖e‖2. Then the right part of (4.16) is proved.
From (4.19) it is obvious that |gk(ek)|2 ≥ ζ2

k |ek|2. By choosing

ζ2 = min{ζ2
1, ζ2

2, · · · , ζ2
m} (4.24)

one has ‖Φ(e)‖2 ≥ ζ2‖e‖2. Let ̺ = ζ2, which proves the inequality in (4.15).
(III) Proof of exponential stability. This step is standard from the results of the
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above two steps. By combining the inequalities in (4.14), (4.15) and (4.16), one obtains
that

V̇(e) ≤ −λ̺‖e‖2 ≤ −λ̺

c2
V(e) (4.25)

Thus, it follows that

‖e(t)‖ ≤
(

V(e(t))
c1

) 1
2

≤
(

V(e(0))
c1

exp(−λ̺

c2
t)
) 1

2

≤
(

c2‖e(0)‖2

c1
exp(−λ̺

c2
t)
) 1

2

(4.26)

which indicates the following

‖e(t)‖ ≤ (
c2

c1
)

1
2 exp(−γt)‖e(0)‖ (4.27)

with the exponential convergence rate no less than γ = λ̺
2c2

.

Remark 6. A recent paper [Oh and Ahn, 2014a] also discussed general controllers to sta-
bilize rigid formation shapes. In [Oh and Ahn, 2014a], the potential function is assumed to
be positive definite and analytic (see Assumption 3.1 in [Oh and Ahn, 2014a]), from which
the authors proved the local asymptotic convergence of the formation system by exploring
the Łojasiewicz inequality [Chill, 2003] for gradient systems. We also note that finite-time
convergence can be obtained for formation control systems with another set of potential func-
tions and gradient controllers. Relevant discussions on finite-time convergence can be found
in [Sun et al., 2016b].

Note that the convergence of inter-agent distance errors of itself does not directly
guarantee the convergence of agents’ positions p(t) to some fixed points, even though
it does guarantee convergence to a correct formation shape. A sufficient condition for
this strong convergence of the position system (4.11) to a stationary formation is guar-
anteed by the boundedness of the control function and the exponential convergence
as proved above, which indicates that the right-hand side of (4.11) is exponentially
decaying. This ensures that the solution of (4.11) exists and is finite when t → ∞. To
sum up, one has the following lemma on the convergence of (4.11) as a consequence
of Theorem 5.

Lemma 9. Suppose the initial formation shape is close to the target formation shape. The
generalized control law (4.3) guarantees the convergence of p(t) to a fixed point.

The above Theorem 5 and Lemma 9 show local convergence to the target forma-
tion shape, by assuming that the initial formation shape is close to the target forma-
tion shape. In general, the formation control system (4.11) exhibits multiple equilib-
ria. The set for all equilibria is described as M = {p ∈ R

dn|R(p)⊤g(e(p)) = 0}. We
call the set of equilibria at which the correct shape is attained the correct equilibrium
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set 3, and we denote it by Mc = {p ∈ R
dn|g(e(p)) = 0}. Correspondingly, the set of

equilibria at which the correct shape is not attained is referred to as incorrect equilib-
rium set, and it is denoted by Mi = {p ∈ R

dn|R(p)⊤g(e(p)) = 0, g(e(p)) 6= 0}.
In the case that the target formation shape is minimally and infinitesimally rigid,

one can show the following result which partly characterizes a converged formation
at an equilibrium.

Lemma 10. Suppose the target formation is minimally and infinitesimally rigid. Then the
formation system (4.3) with generalized controllers converges to either a correct equilibrium
in Mc, or an incorrect equilibrium in Mi at which the converged formation shape is not
infinitesimally rigid.

Proof. Note that M = Mc ∪Mi. Theorem 5 actually proves that an equilibrium
point in the set of correct equilibrium Mc is locally exponentially convergent. Note
that according to the property of the gradient control function g(e), the condition
g(e(p)) = 0 (resp. g(e(p)) 6= 0) to characterize a correct equilibrium (resp. an
incorrect equilibrium) is equivalent to the condition e(p) = 0 (resp. e(p) 6= 0). At an
incorrect equilibrium in Mi, the transpose of the rigidity matrix, R⊤, has a non-trivial
null vector g(e(p)) 6= 0. Thus, at such an equilibrium R is not of full row rank, which
violates the rank condition shown in Theorem 1 on infinitesimal rigidity in Chapter
2. Hence, at an incorrect equilibrium characterized by e(p) 6= 0 (or equivalently,
g(e(p)) 6= 0), the formation shape is not infinitesimally rigid.

Remark 7. We mention here three significant aspects of the above result stated in Theorem
5. First, it generalizes many existing controllers reviewed in Subsection 4.2.1 in a unified
framework and for the first time it proves the exponential convergence for a large family of
formation control systems via a unified approach. Second, the exponential stability obtained
from the generalized controller has important robustness consequences in case of distance
perturbations, which extends the robustness behavior analysis in formation systems observed
in [Mou et al., 2016; Sun et al., 2015b], where the controllers were confined to be the one
of (4.10). In the next chapter, we will then discuss in detail the robustness issue for 3-D
rigid formation systems. Third, we note that for stabilizing different inter-agent distances,
the function gk in the controller can take different forms. This implies one can use a group
of heterogeneous agents for implementing a formation control strategy in the sense that
each agent may have different sensing/controlling performances for controlling different inter-
agent distances as reflected by different gk.

4.2.3 Properties of the formation control system with generalized con-
trollers

We show some intrinsic properties of the formation system with the generalized
controllers.

3Note that the realization of a target formation may not be unique due to e.g. flip ambiguity
[Hendrickson, 1992]. Thus the correct formation shape may not be unique.
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Lemma 11. The formation stabilization system designed in (4.3) (and in the compact form
(4.11)) with the generalized controller has the following properties:

1. The controller is distributed and each agent requires only relative position measure-
ments with respect to its neighboring agents.

2. The center of the mass of the formation is stationary.

3. The measurement and control for each agent are independent of any global coordinates.
That is, each agent can use its own coordinate system to measure the necessary relative
positions and to implement the control.

The proof is omitted here, as it follows similar ideas to [Cao et al., 2011] and in
particular to the proof of [Sun et al., 2014b, Lemma 4]. Note that Part 3 of Lemma 11
implies the proposed formation system (4.3) with generalized controllers guarantees
the SE(N) invariance (i.e. translational and rotational invariance) of the controller,
which is a nice property to enable convenient implementation for networked control
systems without coordinate alignment for each individual agent [Vasile et al., 2015].

Remark 8. The result in this section also provides insights to design other types of formation
controllers with guaranteed exponential stability which are not covered in the literature.
For example, we can show that by using the following controller

ṗi(t) = ui(t)

= ∑
j∈Ni

pj(t)− pi(t)
‖pj(t)− pi(t)‖

(‖pj(t)− pi(t)‖2 − d2
k) (4.28)

the distance error system is (locally) exponentially stable. The formation control system
(4.28) has the property that the bearing information and range information are decoupled in
the controller. In this case, the function gk is constructed as

gk(ek) =
ek

(ek + d2
k)

1
2
= (ek + d2

k)
1
2 − d2

k

(ek + d2
k)

1
2

(4.29)

which is continuously differentiable and has strictly positive first derivative on (−d2
k , ∞).

Thus all the conditions stated in the beginning of Section 4.2 are satisfied, and the exponential
convergence then follows.

As another example, one can consider the following distributed formation controller

ṗi(t) = ui(t) = ∑
j∈Ni

(pj(t)− pi(t))(‖pj(t)− pi(t)‖ − dk) (4.30)

which also guarantees that the distance error system is (locally) exponentially stable. In this
case, the function gk is constructed as

gk(ek) =
ek

‖pj(t)− pi(t)‖+ dk
=

ek
√

(ek + d2
k) + dk

(4.31)
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Figure 4.2: Two novel controller functions gk with guaranteed exponential con-
vergence of the distance error system. In both plots, we let dk = 4 and thus
ek ∈ (−16, ∞). The left figure shows the proposed function in (4.29), and the right

figure shows the proposed function in (4.31).

which satisfies all the conditions stated above. The curves of these two novel control functions
are depicted in Figure 4.2.

Remark 9. We note that there are also other forms of formation controllers that cannot be
described by (4.3). For example, in [Bishop et al., 2015], the controller takes the form of

ṗi = −Ω(θi) ∑
j∈Ni

(pi − pj)ekij

where Ω(θi) is a matrix (constructed from some rotation matrices) which should be positive
definite, and this relaxed controller also leads to exponential convergence for the formation
system.

4.3 Exponential stability for non-minimally rigid formations

In this section we aim to extend the results from minimally rigid case to non-minimally
rigid case, and prove that the exponential convergence of the distance error system
still holds. The analysis in this section is partly motivated by [Mou et al., 2016] and
[Park and Ahn, 2014].

Before starting the analysis, we recall the following result which is rephrased
from Theorem 2.3 of [Hendrickson, 1992].

Lemma 12. ([Hendrickson, 1992]) Every rigid framework (G, p) has a rigid subframework
with exactly dn − d(d + 1)/2 edges.

An example for the graph decomposition of a 4-agent non-minimally rigid frame-
work is shown in Figure 4.3.

Suppose the framework (G, p) is infinitesimally rigid but not minimally rigid.
According to Lemma 12, there exists a subframework which is minimally rigid with
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Figure 4.3: An example of graph decomposition of a non-minimally rigid framework.
The dashed lines in the decomposed subgraphs indicate the removed edges.

exactly dn − d(d + 1)/2 edges. We choose one such minimally rigid subframeworks
and denote it by (Ḡ, p), where Ḡ = (V , Ē) with |Ē | = dn − d(d + 1)/2 is a subgraph
of G. The remaining part of the framework with m − (dn − d(d + 1)/2) edges is
denoted as (G̃, p) where G̃ = (V , Ẽ) with |Ẽ | = m − (dn − d(d + 1)/2). Note that
E = Ē ∪ Ẽ .

We denote ē ∈ R
|Ē | as the sub-vector of e whose |Ē | entries are the entries in e

corresponding to the edges in Ḡ. Similarly, we write ẽ ∈ R
|Ẽ | as the sub-vector of e

whose |Ẽ | entries are the entries in e corresponding to the edges in G̃. There exist
two selection matrices, P̄ ∈ R

|Ē |×m and P̃ ∈ R
|Ẽ |×m, such that the partition can be

described as

ē = P̄e, ẽ = P̃e (4.32)

Note that according to the structure of P̄ and P̃, the matrix P := [P̄⊤ P̃⊤] is a permu-
tation matrix. Therefore, there hold P̄P̄⊤ = I|Ē |×|Ē |, P̃P̃⊤ = I|Ẽ |×|Ẽ |, P̄P̃⊤ = 0|Ē |×|Ẽ |
and e = P̄⊤ ē + P̃⊤ ẽ because P̄⊤P̄ + P̃⊤P̃ = Im×m. Following a similar procedure,
we can also partition the gradient vector Φ into two sub-vectors Φ̄(ē) := P̄Φ and
Φ̃(ẽ) := P̃Φ, corresponding to the subframeworks (Ḡ, p) and (G̃, p), respectively.

We also denote the rigidity matrix for the subframework (Ḡ, p) as R̄ ∈ R
Ē×dn, and

the rigidity matrix for (G̃, p) as R̃ ∈ R
Ẽ×dn. By following similar arguments as above,

there holds R̄ = P̄R and R̃ = P̃R. Then one can derive the dynamical equation for ē:

˙̄e = P̄ė = −2P̄RR⊤(P̄⊤Φ̄(ē) + P̃⊤Φ̃(ẽ))

= −2R̄R̄⊤Φ̄(ē)− 2R̄R̃⊤Φ̃(ẽ) (4.33)

According to Lemma 2 in Chapter 2, there exists a smooth function ψ such that
ẽ = ψ(ē) holds locally around ē = 0. Note that ψ(ē) = 0 if and only if ē = 0. Also
R̃ = ∂ẽ

∂p = ∂ψ
∂ē

∂ē
∂p = FR̄ where F := ∂ψ

∂ē . Furthermore, Lemma 2 implies that all entries

of R̄R̄⊤ and R̄R̃⊤ = R̄R̄⊤F⊤ are functions of ē. Thus, the reduced-order distance
error system (4.33) is self-contained, and can be rewritten as

˙̄e = −2Q̄(ē)Φ̄(ē)− 2Q̄(ē)F⊤Φ̃(ψ(ē)) (4.34)
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where Q̄(ē) = R̄R̄⊤.
The main result in this section concerns the following exponential stability state-

ment.

Theorem 6. Consider the gradient control (4.3) derived from the general potential func-
tions with the listed properties. The distance error system (4.34) for the non-minimally rigid
formation has an exponential stable equilibrium at the origin.

Proof. The proof for the local exponential stability of the equilibrium point ē = 0
is through the linearization approach, which follows similarly to the proof of [Mou
et al., 2016, Theorem 2].

The calculation of the Jacobian matrix of the reduced-order error system (4.34) at
the equilibrium ē = 0 reveals

J(ē) :=
∂
(
−2Q̄(ē)Φ̄(ē)− 2Q̄(ē)F⊤Φ̃(ψ(ē))

)

∂ē

∣
∣
∣
∣
∣
ē=0

= −2
(

∂Q̄(ē)
∂ē

Φ̄(ē) +
∂(Q̄(ē)F⊤)

∂ē
Φ̃(ψ(ē))

)∣
∣
∣
∣
ē=0

−2
(

Q̄(ē)
∂Φ̄(ē)

∂ē
+ Q̄(ē)F⊤ ∂Φ̃(ψ(ē))

∂ē

)∣
∣
∣
∣
ē=0

(4.35)

Let Ψ = {ē ∈ R
|Ē ||‖ē‖2

< r} with a small positive r > 0 denote a small neigh-
borhood set around the desired equilibrium ē = 0. We first note in Ψ the solution
to the system (4.34) is bounded. Furthermore, the Jacobian matrix J(ē) is bounded
and Lipschitz continuous on the same set Ψ (due to the smoothness of the function ψ,
and continuous differentiability of the gradient function gk). These system properties
allow us to employ the Linearization Theorem [Khalil, 2002, Theorem 4.13] to prove
the local exponential convergence of (4.34).

By noting that Φ̄(ē)|ē=0 = 0 and Φ̃(ψ(ē))|ē=0 = 0, the expression of the above
Jacobian matrix can be simplified to

J(ē) := −2Q̄(ē)
(

∂Φ̄(ē)
∂ē

+ F⊤ ∂Φ̃(ψ(ē))
∂ψ

F
)∣
∣
∣
∣
ē=0

(4.36)

Note that ∂Φ̄(ē)
∂ē |ē=0 is a diagonal matrix, with the kth diagonal entry being dgk(s)

ds .
Because of the third property of the potential listed in the beginning of Section 4.2,
the derivative dgk(s)

ds evaluated at s = 0 is positive. Thus ∂Φ̄(ē)
∂ē |ē=0 is a positive def-

inite diagonal matrix. The same reasoning implies that ∂Φ̃(ψ(ē))
∂ψ |ē=0 is also a posi-

tive definite diagonal matrix. Thus ∂Φ̄(ē)
∂ē + F⊤ ∂Φ̃(ψ(ē))

∂ψ F is positive definite evaluated
at ē = 0. Note that Q̄(0) is positive definite due to the infinitesimal and minimal
rigidity of the subframework (Ḡ, p) of the target formation. According to [Horn
and Johnson, 2012, Corollary 7.6.2, Page 486], all eigenvalues of the product ma-
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trix Q̄(ē)
(

∂Φ̄(ē)
∂ē + F⊤ ∂Φ̃(ψ(ē))

∂ψ F
)∣
∣
∣
ē=0

are real and positive. Thus, the Jacobian matrix

J(ē)|ē=0 is a stability matrix with all of its eigenvalues being negative real, which
implies that ē = 0 is an exponentially stable equilibrium for the linearized system
˙̄e = J(ē)ē of (4.34). According to [Khalil, 2002, Theorem 4.13], the equilibrium point
ē = 0 is locally exponentially stable for the nonlinear system (4.34). The proof is thus
complete.

4.4 Simulation examples

In this section we provide two simulations to show the behavior of certain formation
systems with generalized controllers. Firstly consider a 4-agent formation shape in
the 2-D space modelled by a complete graph. The desired distances are given by
d12 = d34 = 3, d23 = d14 = 4, d13 = d24 = 5, which correspond to a rectangular
target shape. Note that in this case the underlying graph for the target formation
has 6 edges, while the maximum rank of the associated rigidity matrix is 5. Thus the
formation graph is not minimally rigid, but it contains a minimally rigid subgraph.
By the analysis in Section 4.3, the local exponential convergence of the formation
system with generalized controllers can be shown.

In the simulation, the initial conditions for each agent are chosen as p1(0) =
[0, 0]⊤, p2(0) = [−1, 4]⊤, p3(0) = [5, 3]⊤ and p4(0) = [3, 0]⊤, so that the initial
formation is close to the target one. We assume that for different edges the agents
are using different controller forms. Specifically, for the edges (1,3) and (2,4) the
controller contributions in the related agents are based on (4.5), for the edges (1,2)
and (3,4) the controller contributions are based on (4.7), and for edges (2,3) and (1,4)
the agents use the control function of (4.10). The trajectories of each agent and the
final shape are depicted in Figure 4.4. The trajectories of each distance error are
depicted in Figure 4.5, which shows an exponential convergence to the origin.

We then consider a formation control example in the 3-D space. The target
formation shape is supposed to be a double tetrahedron formation with 9 edges,
with the desired distances for each edge being 2. Note that in this case the un-
derlying graph for the target formation shape is minimally rigid, since the max-
imum rank of the associated rigidity matrix, which equals the number of edges,
can be attained by a realization of the target formation. For the controller de-
sign, we assume that all the agents adopt the novel control function of (4.30) pro-
posed in Remark 8. In the simulation, the initial conditions for each agent are cho-
sen as p1(0) = [0,−1.0, 0.5]⊤, p2(0) = [1.8, 1.6,−0.1]⊤, p3(0) = [−0.2, 1.8, 0.05]⊤,
p4(0) = [1.2, 1.9, 1.7]⊤ and p5(0) = [−1.0,−1.5,−1.2]⊤, so that the initial formation
is close to the target one. Figure 4.6 illustrates the trajectories of each agent, together
with the initial shape and final shape. The trajectories of each distance error are
depicted in Figure 4.7, which also shows an exponential convergence to the origin.
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Figure 4.4: Simulation on stabilization control of an 4-agent rectangular formation
shape. The initial and final positions are denoted by circles and squares, respectively.
The initial formation is denoted by dotted blue lines, and the final formation is de-
noted by red solid lines. The black star denotes the formation centroid, which is

stationary.
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Figure 4.5: Exponential convergence of the distance errors for 2-D rectangular for-
mation control.
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Figure 4.6: Simulation on stabilization control of a double tetrahedron formation
in 3-D space. The initial and final positions are denoted by circles and squares,
respectively. The initial formation is denoted by dashed lines, and the final formation
is denoted by red solid lines. The black star denotes the formation centroid, which is
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Figure 4.7: Exponential convergence of the distance errors for 3-D tetrahedron for-
mation control.



52 Exponential stability for formation control systems with generalized controllers

4.5 Concluding remarks

In this chapter we show a unified approach to analyze the convergence of distance-
based rigid formation control systems with distributed formation controllers. The
general forms of the formation controllers encompass most controllers with special
forms proposed in the literature for stabilizing formation shapes. Furthermore, in
the framework studied in this chapter, the stabilization control of each distance can
be assigned with different distance potentials which also enables an implementation
with heterogenous agents in formation control. Two cases of target formations are
discussed in detail: minimally rigid formations and non-minimally rigid formations.
For both cases, we prove the exponential convergence property of the formation system
with generalized controllers. One significant consequence of the exponential stability
is that the robustness properties of formation control analyzed in [Mou et al., 2016;
Sun et al., 2015b] can be extended to a large family of rigid formation systems with
generalized controllers obtained in this chapter. The robustness issue for 3-D rigid
formation control systems in the presence of mismatched distances will be discussed
in the next chapter.
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Chapter 5

Robustness issues for 3-D

undirected formations with

distance mismatches

Chapter summary

This chapter discusses a key robustness issue of 3-D undirected rigid formations:
what happens in the case that neighboring agent pairs have slight biases in their
distance measurements or have slightly differing views of the desired inter-agent
distances they are tasked to maintain? The main aim in this chapter is to examine
the collective motion behavior induced by mismatched distances. We show that the
formation shape will converge exponentially fast to a rigid one, while additional rigid
helical motions of the final formation will occur. We further discuss the convergence
to the equilibrium motions, and derive certain motion parameter formulas to describe
the rigid formation movements by employing the angular momentum concept from
classical mechanics. Finally, we explain how the idea can be used for steering a rigid
formation to move as a rigid body.

5.1 Introduction

5.1.1 Background and related work

The stabilization control of multi-agent rigid formation shapes is a typical distributed
and cooperative task, in which each agent pair associated with one prescribed inter-
agent distance needs to work cooperatively to achieve that desired distance. This
cooperative task requires that agent pairs should have the same view of the desired
distance and need to measure consistently, if not correctly, the actual distance be-
tween them. The accuracy in measuring some key variables is crucial for achieving
the desired formations. In many cases if sensors are located on each agent, they may
produce measurement errors or biases, which may result in discrepancies between
the estimates of the same actual distance. This problem is also equivalent to one
arising when one or more agent pairs may have differing views of the desired inter-
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agent distance that they are tasked to maintain. We use the word mismatch, to refer to
the inconsistence of the desired distances between any two adjacent (i.e. neighboring)
agents, or the occurrence of differing systematic biases between the actual distances
and the measured distances.

It has been briefly mentioned in [Baillieul and Suri, 2003] that such distance mis-
matches may lead to formation control failure. The concept information-based instabil-
ity was introduced in [Baillieul and Suri, 2003] to illustrate such a control scenario
with conflicting interpretation of information arising in distributed control; see also
the review in [Baillieul and Antsaklis, 2007]. Recently, the papers [Belabbas et al.,
2012; Sun et al., 2013; Helmke et al., 2014; Mou et al., 2016] have presented more
elaborate discussions on these robustness issues in the context of undirected rigid for-
mation shape control in the presence of distance mismatches. It has been shown
that the formation shape will converge but additional motions will occur due to
mismatched distances. Certain interesting formation movements for 2-D triangular
formations and 3-D tetrahedral formations have been discussed in [Belabbas et al.,
2012] and [Sun et al., 2013], respectively. In this chapter, we first show, by extending
the exponential stability result obtained in [Belabbas et al., 2012] and [Mou et al.,
2016], that a 3-D infinitesimally rigid formation system with distance mismatches
will still converge to a rigid one. We then give detailed analysis to show the prop-
erties of rigid motions induced by small distance mismatches. In this respect, we
further generalize the discussions raised in [Baillieul and Suri, 2003], [Baillieul and
Antsaklis, 2007] and address the problem of what form of information-based instability
would result for the shape stabilization problem of a 3-D rigid formation.

The first focus of this chapter is on the stability issues of 3-D rigid formations
with mismatched distances, which partially extend the results in [Belabbas et al.,
2012; Mou et al., 2016; Sun et al., 2013] in several aspects. On the one hand, this
chapter focuses on rigid motions in 3-D undirected rigid formations, which can be
seen as parallel work to the robustness issue work for 2-D rigid formations discussed
in [Belabbas et al., 2012] and [Mou et al., 2016]. Note that the extension from 2-D
to 3-D is non-trivial and presents totally different outcomes on the rigid motions
induced by mismatched distances. Furthermore, compared with [Belabbas et al.,
2012; Mou et al., 2016], we develop new methodologies in this chapter based on rigid
body dynamics and elementary differential geometry to explain the properties of
such rigid motions. On the other hand, this chapter also generalizes the discussions
and results from the preliminary version [Sun et al., 2013] which only considered the
tetrahedron formation shape.

The second focus of this chapter is to identify the properties and parameters of
the rigid formation movements caused by distance mismatches. We note that this
formula derivation method for characterizing rigid motions is applicable for both 2-
D formations and 3-D formations, while this issue was not discussed in the parallel
work [Mou et al., 2016] on 2-D formations. Collective movement for a formation in
a 2-D ambient space as discussed in [Mou et al., 2016] means that in steady state
the formation exhibits either circular motion around a fixed point common to all
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agents, or translation with each agent moving at the same velocity 1. Two examples
of such planar collective motions have also been studied in [Sepulchre et al., 2008]
(for a different problem) in which agents are assumed to have constant unit speed.
The collective motion in the 3-D space has an additional degree of freedom, and thus
a helical motion becomes possible.

A similar collective helical motion (with parallel motion or circular motion as
special cases) for a group of unit-speed agents was discussed in some previous pa-
pers; see e.g. [Justh and Krishnaprasad, 2005; Scardovi et al., 2008]. However the
problem formulation and motion generation mechanism discussed in [Justh and Kr-
ishnaprasad, 2005; Scardovi et al., 2008] are very different to that arising in rigid
formation control to be discussed here. These differences include (i) that in contrast
to the system model used in [Justh and Krishnaprasad, 2005; Scardovi et al., 2008],
we do not assume constant unit speed in agents’ kinematics; (ii) that the collective
helical motion discussed here must be consistent with the existence of a rigid for-
mation shape; and (iii) that the rigid motion discussed in this chapter is caused by
distance mismatches.

Also, the results in this chapter indicate one interesting mechanism on how to
generate rigid motions with specified rigid formation shapes, which may have po-
tential applications for controlling and generating rigid motions for undirected rigid
formations with inter-agent distance constraints. We also note that in the literature,
helical and spiral motions have been considered as useful motions with particular
applications, e.g. for gliding robotic fish [Zhang et al., 2014] and [Zhang et al., 2016]
(although the mechanism for generating helical motions discussed in [Zhang et al.,
2014] and [Zhang et al., 2016] is different to the result in this chapter).

5.1.2 Chapter organization

The remaining parts of this chapter are organized as follows. Section 5.2 presents
the problem description and then sets up some key equations of agent motions. In
Section 5.3 we focus on the property and convergence of formation shapes, and a rel-
ative equilibrium analysis for the additional rigid motion. Section 5.4 shows motion
formulas to describe the formation movements in terms of distance mismatches and
their applications on steering and controlling rigid formation motions. Section 5.5
concludes this chapter.

5.2 Motion equations with distance mismatches

We recall some notations from Chapter 2. Let dkij
denote the desired distance of

edge k which links agent i and j. The control goal in formation shape stabilization is
to drive all the agents to reach a configuration such that a certain set of inter-agent
distances can be achieved. We assume that from agent i’s perspective, the specified

1The research group led by Prof. Ming Cao at the University of Groningen performed several exper-
iments using a group of ground robots to verify such rigid motions in rigid formation control. Videos
are available at ❤tt♣s✿✴✴✇✇✇✳②♦✉t✉❜❡✳❝♦♠✴✉s❡r✴♥♦❡t❤✸r performed by Héctor Garcia de Marina.
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Figure 5.1: An undirected rigid tetrahedron formation.

target distance between agent i and neighbor j is dij where dij is a positive number
which is approximately equal to dkij

. Following the gradient descent control law
in Section 2.5 of Chapter 2, we consider the following formation control system in
which the control law for agent i is described as 2

ẋi = ui = ∑
j∈Ni

(xj − xi)(‖xj − xi‖2 − d2
ij) (5.1)

Note that the above gradient control is distributed in the sense that its implementa-
tion only requires measurements of relative positions of neighboring agents, denoted
by xj − xi.

Example: We show an example of a 3-D tetrahedron formation to illustrate the
derivation of the system equations described above. Consider a tetrahedron for-
mation in the 3-D space, which consists of four agents labeled by 1, 2, 3, 4. For the
purpose of writing an oriented incidence matrix, suppose that the edges are oriented
from i to j just when i < j. Then we can number the edges in the following order:
12, 23, 34, 13, 24, 14; see Figure 5.1. Thus, the following oriented incidence matrix for
the undirected graph in Figure 5.1 can be obtained

H =












−1 1 0 0
0 −1 1 0
0 0 −1 1
−1 0 1 0
0 −1 0 1
−1 0 0 1












(5.2)

The relative position vector z is then defined according to (2.1) (in Chapter 2).
As an example, one has z1 = x2 − x1, i.e., the vector z1 at edge 1 is defined by the
relative position between agent 2 and agent 1. Also, from (5.1) one can further obtain

2Note that in this chapter, we use x instead of p to denote agents’ positions. This is for the consis-
tency with the notations used in the paper [Mou et al., 2016] which studied the same topic.
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the dynamical system for each agent in the tetrahedron formation control. Again, as
an example, the dynamical system for agent 1 can be written as

ẋ1 = u1 = ∑
j∈N1

(xj − x1)(‖xj − x1‖2 − d2
1j), j = 2, 3, 4. (5.3)

and the equations for other agents can be obtained similarly. �

Unlike the problem settings in [Krick et al., 2009; Dimarogonas and Johansson,
2010; Cortés, 2009; Dörfler and Francis, 2010; Oh and Ahn, 2014a], we assume in
this chapter that the perceived distances dij and dji for neighboring agents i and j,
respectively, are not necessarily equal. The following formulation follows similarly
from [Mou et al., 2016]. The distance inconsistency is assumed to satisfy |dij − dji| ≤
β ji where β ji is a small nonnegative number bounding the discrepancy from the
two agents’ understanding of what the desired distance between them should be.
Furthermore, the misbehavior actually stems from the mismatch (the difference, or
discrepancy) between dij and dji rather than the assumption that both dij and dji are
only approximately equal to dkij

. In other words, only the difference between mutual
distances in each edge matters in the modelling of distance mismatch. Without loss of
generality and to simplify the equations in the sequel, we will henceforth assume that
dij exactly equals dkij

for all adjacent vertex pairs (i, j) for which i is the head of edge
kij. Next, denote µkij

= d2
ij − d2

ji as the constant distance mismatch corresponding to
edge kij; clearly, one has

d2
ij = d2

kij
, d2

ji = d2
kij
− µkij

(5.4)

Let ekij
denote the distance error of the k-th edge:

ekij
(z) = ‖zkij

‖2 − d2
kij

We denote by N+
i the set of all j ∈ Ni for which vertex i is the head of the oriented

edge kij, and denote by N−
i the complement of N+

i in Ni. Then the equation for
agent i’s motion in the presence of distance mismatch can be written as (see also
[Sun et al., 2013; Mou et al., 2016])

ẋi = − ∑
j∈Ni

(xi − xj)ekij
(z)

= − ∑
j∈N+

i

zkij
ekij

(z) + ∑
j∈N−

i

zkij
(ekij

(z) + µkij
) (5.5)

where zkij
refers to the kth block entry of the relative position vector z for the edge kij.

As noted earlier, for ease of notation we will occasionally use zkij
and zk interchange-

ably; this will apply to dkij
and dk, µkij

and µk, ekij
and ek in the following context when

the dropping out of the dummy double subscript ij in each vector causes no confu-
sion. The error vector, distance vector and mismatched value vector are constructed
as e = [e1, e2, · · · , em]⊤, d = [d1, d2, · · · , dm]⊤ and µ = [µ1, µ2, · · · , µm]⊤, respectively.
In the following, we will use similar techniques as in [Sun et al., 2013] to obtain some
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compact forms of the system equations. First note that the rigidity matrix is given as
R(z) = Z⊤H̄, where Z = diag{z1, z2, · · · , zm} (for the derivation, see Section 2.3 in
Chapter 2). Define J and J̄ to be the matrices obtained from −H and −H̄ by replacing
all −1 entries by zeros, which also means that J̄ = J ⊗ I3. With the definition of J̄,
we can define a m × 3n matrix S(z) by S(z) = Z⊤ J̄. By doing this, we are led to the
following compact equation:

ẋ = −R(z)⊤e + S⊤(z)µ (5.6)

which, together with (2.1), implies

ż = −H̄R⊤(z)e(z) + H̄S⊤(z)µ (5.7)

Note that ė = 2Rẋ. In conjunction with (5.6), one obtains

ė = −2R(z)R⊤(z)e + 2R(z)S⊤(z)µ (5.8)

In the sequel, we shall refer to (5.6) as the overall system, (5.7) as the z system, and (5.8)
as the error system.

Example continued: Following the example of a 3-D tetrahedron formation and
the discussions above, we now derive the motion equation for the tetrahedron for-
mation case in the presence of distance mismatches. As an example, the dynamical
system for agent 1 in (5.3) with mismatched distances in edges 1, 4 and 6 can be
modified as

ẋ1 = u1 = ∑
j∈N1

(xj − x1)(‖xj − x1‖2 − d2
1j + µk),

j = 2, 3, 4; k = 1, 4, 6. (5.9)

where the edge index k = 1, 4, 6 is associated with adjacent agent pairs (1, 2), (1, 3), (1, 4),
respectively; see Figure 5.1. The matrix J in this example can be obtained by replac-
ing all −1 entries of −H in (5.2) by zeros, and the rigidity matrix R and the matrix
S(z) can be written as

R(z) =












−z1 z1 0 0
0 −z2 z2 0
0 0 −z3 z3

−z4 0 z4 0
0 −z5 0 z5

−z6 0 0 z6












, S(z) =












z1 0 0 0
0 z2 0 0
0 0 z3 0
z4 0 0 0
0 z5 0 0
z6 0 0 0












By doing this, one can obtain compact equations of system dynamics in the compact
form of (5.6) and (5.8), respectively. �
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5.3 Analysis of convergence and formation movements

5.3.1 Self-contained distance error equation and exponential convergence

This subsection aims to show that the distance error system (5.8) for a 3-D formation
is self-contained, as is the case for a 2-D formation discussed in [Mou et al., 2016].

Firstly, one can show that the entries of both R(z)R⊤(z) and R(z)S⊤(z) are linear
functions of the entries of the Gramian [z1, z2, · · · , zm]⊤[z1, z2, · · · , zm]. By the con-
struction of the relative position vector z as shown in (2.1), it is then obvious that the
entries of R(z)R⊤(z)|z=H̄x and R(z)S⊤(z)|z=H̄x can be written as a linear combination
of inner product terms of the form (xi − xj)

⊤(xk − xl) for i, j, k, l ∈ V . Let {G, y} be a
target formation. Then there exists an open subset A ⊂ R

3n containing y for which
the following is true. For each function f (x) defined as x 7→ R(z(x))R⊤(z(x)), there
exists a smooth function η f with domain e(H̄A) such that f (x) = η f (e(H̄A)), x ∈ A
and the formation {G, x} with x ∈ A is infinitesimally rigid and there are values of
x ∈ A for which e(x) = 0. A proof for triangular formations and tetrahedral forma-
tions can be found in [Belabbas et al., 2012] and [Sun et al., 2013], respectively. The
more involved proof for infinitesimally rigid formations with four or more vertices
can be found in [Mou et al., 2016]. Note that the proof in [Mou et al., 2016] assumes
an underlying 2-D ambient space, but this result can be readily extended to 3-D in-
finitesimally rigid formations by following the same line of argument, which makes
no essential use of the fact that the ambient space is R

2 as opposed to R
3.

A key step in the convergence analysis is to show that along trajectories of the
overall system (5.6), the error system (5.8) satisfies a self-contained differential equa-
tion. Let the set A be the open set as mentioned above. Arguing just as in [Mou
et al., 2016], it follows that for the distance error system (5.8), there exists a smooth
function g for which g(e, µ) = −2RR⊤e + 2RS⊤µ, x ∈ A. Moreover, if x(t) is a solu-
tion to the overall system (5.6) for which x(t) ∈ A on some interval [t0, t1], then on
the same time interval, the error vector e = e(H̄x(t)) satisfies a self-contained differ-
ential equation ė = g(e, µ). This self-contained error system has an equilibrium close
to e = 0 for each µ which takes values from a sufficiently small open neighborhood
of µ = 0 in R

m. We refer the readers to [Mou et al., 2016, Section III.A] for a more
detailed and rigorous analysis of the above argument. The following results can be
seen as direct extensions from the 2-D case to the 3-D case.

Lemma 13. The equilibrium state e = 0 of the unperturbed error system ė = g(e, 0) is
locally exponentially stable.

Theorem 7. Let {G, y} be a target formation and let A be the open set referred to above. For
each value of µ in any sufficiently small open neighborhood of µ = 0 in R

m, and initial state
x(0) ∈ A for which the error e(H̄x(0)) is sufficiently close to the equilibrium ē(µ) of the
error system ė = g(e, µ), the following statements hold:

1. The trajectory of the overall system starting at x(0) exists for all time and lies in A.

2. The error e = e(H̄x(0)) converges exponentially fast to ē(µ).
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The proofs of Lemma 13 and Theorem 7 are special cases and extensions of the
exponential stability result discussed in Chapter 4, obtained by simply choosing the
controller function gk(ek) = ek (see Section 4.2.1 in Chapter 4). We denote the equilib-
rium of the error system as ē(µ), or shortly as ē, which is a continuously differentiable
function of µ. Thus, for small µ, all the agents will form a formation shape which is
close to the desired one. We also note that, as proved in Chapter 4, the exponential
stability still holds for a large family of formation controllers derived from general
forms of potential functions, and the following analysis of the robustness issues and
motion properties can also be extended to other formation control systems with gen-
eral controllers. In the sequel, we will still focus on the formation control system
(5.6) to present the main results on rigid motion properties.

5.3.2 Convergence to a rigid formation

From the convergence of the error vector e to ē, it follows by the argument in Section
5.3.1 that all inner products with the form (xi − xj)

⊤(xk − xl), where i, j, k, l are agent
labels, also converge to limits which are continuously differentiable functions of ē. 3

Hence the distance between any pair of agents, i and j say, whether or not there is an
edge between them, converges to a constant. We summarize the results as below.

Lemma 14. Given the convergence of the distance error e(t) to the equilibrium state ē, the
inner product term, z⊤k zk for all k and z⊤i zj for i 6= j, will also converge to constants.

We emphasize here that the convergence of z⊤k zk for all k and z⊤i zj for i 6= j does
not mean that each zk itself converges to a constant. Also, in general the formation
will not actually come to rest when the error system converges to ē. We call the
formation motion at the equilibrium state e(H̄x(t)) = ē an equilibrium motion. We
further denote by x̄ and z̄ the solutions to the overall system and to the z system,
respectively, when the equilibrium state ē is reached. The study of the dynamics
of the z system (5.7) will reveal quite unexpected motions for a mismatched rigid
formation, which will be discussed in later sections.

5.3.3 Rigid motions induced by distance mismatches

The starting point for the analysis is that all inter-agent distances have reached a
steady state, and the formation, given its rigidity property, therefore moves as a
rigid body. As such, elementary kinematic principles allow one to define a unique
instantaneous angular velocity for the rigid body (and applicable to all points in the
rigid body), which indicates how agents move relative to any reference point of the
rigid body [Gregory, 2006, Chapter 16].

3Note that from Section 5.3.1 one concludes that any inner product of the form z⊤i zj converges to
limits when e(H̄x(t)) = ē. Thus due to the infinitesimal rigidity of the target formation, all the inner
products with the form (xi − xj)

⊤(xk − xl) will also converge to limits, whether or not there exists an
actual edge between agents i and j (or between agents k and l). A detailed proof for this statement in
the 2-D case can be found in [Mou et al., 2016].
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In the following analysis we pick the centroid of the formation, denoted as x̄c ∈
R

3 (i.e. x̄c = 1
n ∑

n
i=1 x̄i), as the reference point in the rigid body. Denote by r̄i the

vector r̄i = x̄i − x̄c, and by ω the unique instantaneous angular velocity vector of
the rigid formation. With this definition and according to rigid body kinematics
[Gregory, 2006], one has

˙̄xi = ˙̄xc + ω × (x̄i − x̄c) = ˙̄xc + ω × r̄i (5.10)

where × denotes the cross product operation.
We will now show that ω is constant in the additional motion caused by distance

mismatches. We use the fact observed earlier that since e(H̄x(t)) = ē, the norm of
each relative position vector, ||z̄k||, and the inner product terms, z̄⊤i z̄j, are constants.
Firstly, we show two results in the following two lemmas dealing with the norm of
the velocity for each agent and for the formation centroid.

Lemma 15. The norm of each agent’s velocity, i.e. ‖ ˙̄xi‖, is constant when e(H̄x(t)) = ē.

Proof. To prove this statement, we rewrite (5.5) by replacing e and z as ē and z̄ at the
equilibrium motion:

˙̄xi = − ∑
j∈N+

i

z̄kij
ēkij

(z) + ∑
j∈N−

i

z̄kij
(ēkij

(z) + µkij
) (5.11)

One can verify that ˙̄x⊤i ˙̄xi involves the terms of µ, ē, z̄⊤k z̄k, z̄⊤i z̄j for i 6= j and their
linear combinations and a certain set of products. According to Lemma 14, these
terms are all constant at the equilibrium motion e(t) = ē. These facts lead to ˙̄x⊤i ˙̄xi

and ‖ ˙̄xi‖ being constant when e(t) = ē.

Lemma 16. The norm of the formation centroid’s velocity, i.e. ‖ ˙̄xc‖, is constant at the
equilibrium motion when e(H̄x(t)) = ē.

Proof. Since ˙̄xc =
1
n ∑

n
i=1 ˙̄xi, we obtain easily the expression of ˙̄xc from (5.5):

˙̄xc =
1
n

n

∑
i=1

∑
j∈N−

i

z̄kij
µkij

(5.12)

Then the same argument as in the proof of the previous lemma applies.

By using the above two lemmas, in the following we will show that ω is constant
at the equilibrium motion. For notational convenience, we introduce a 3 by 3 skew-
symmetric matrix Ω to perform the cross product operation. That is, Ωr̄i := ω × r̄i.

Lemma 17. The angular velocity vector ω in the 3-D rigid body motions is constant when
e(H̄x(t)) = ē.

Proof. First observe that

˙̄zkij
= ˙̄xi − ˙̄xj = ω × (r̄i − r̄j) = Ωz̄kij

(5.13)
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We recall from (2.1) that the usual expression for the relative position system is ˙̄z =
H̄ ˙̄x. From the expression of ˙̄xi in (5.11), one knows that the expression of ˙̄zkij

involves
the linear combinations of different edges z̄l , l ∈ {1, 2, · · · , m}, with constant weights.
Let us consider two arbitrary relative position vectors, say z̄α and z̄β. From Lemma 14
and the observation just made about the expression of ˙̄zkij

, it is obvious that z̄⊤α ˙̄zβ =

constant = z̄⊤α Ωz̄β. Then one has

˙̄z⊤α Ωz̄β + z̄⊤α Ω̇z̄β + z̄⊤α Ω ˙̄zβ = 0 (5.14)

Note that

˙̄z⊤α Ωz̄β + z̄⊤α Ω ˙̄zβ = z̄⊤α Ω⊤Ωz̄β + z̄⊤α ΩΩz̄β

= z̄⊤α (Ω
⊤Ω + ΩΩ)z̄β = 0 (5.15)

which implies
z̄⊤α Ω̇z̄β = 0 (5.16)

In any 3-D rigid formations, one can always choose three different vectors z̄α such
that they span the R

3 space. Similarly, a certain set of z̄β can be chosen such that
they can also span the R

3 space. Hence the only circumstance in which the above
equation (5.16) holds for all relative position vectors z̄α, z̄β is Ω̇ = 0, or equivalently,
Ω and ω are constant.

In the following we further show that the trajectory for each moving agent and
the whole rigid formation is in general a helix. In special cases, the rotation-only
movement and translation-only movement can also occur, which will be discussed in
Section 5.4.

Lemma 18. The motion of each agent, and the motion of the whole rigid formation, will
undergo a helical movement.

Proof. We prove the claim of the helical movement by showing that the tangent of
each agent’s trajectory curve makes a constant angle with a fixed vector, and the
fixed vector is in fact the rotational axis ω. To prove the statement in this lemma, it
suffices to show

˙̄x⊤i ω = ˙̄x⊤c ω + (ω × r̄i)
⊤ω = ˙̄x⊤c ω = constant, i = 1, 2, · · · , n (5.17)

By using (5.12), one can restate the above equation (5.17) as

1
n





n

∑
i=1

∑
j∈N−

i

µkij
z̄kij





⊤

ω = constant (5.18)

which is equivalent to showing that

µkij
˙̄z⊤kij

ω + µkij
z̄⊤kij

ω̇ = 0 (5.19)
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To prove that (5.19) holds, first note that µkij
z̄⊤kij

ω̇ = 0 because ω̇ = 0 from Lemma

17. Furthermore, from (5.13) it is obvious that ˙̄z⊤kij
ω = (ω × (r̄i − r̄j))

⊤ω = 0. Hence
(5.19) is proved, and further (5.18) and (5.17) hold.

In [Sun et al., 2013], we proved the helical motion property for a mismatched
tetrahedron formation via a long analysis involving the overall system. We note that
the above approach for proving the rigid motion property for any mismatched rigid
3-D formation is much simpler and more general.

5.3.4 Convergence of the equilibrium motion

This section aims to establish some convergence results based on a relative equilib-
rium analysis. In the following, we shall rewrite the z system, which was originally
stated in (5.7), in another compact form to facilitate the stability analysis. Define
E = diag[e1, e2, ..., em], U = diag[µ1, µ2, ..., µm] and observe that Ze = (E ⊗ I3)z and
likewise Zµ = (U ⊗ I3)z. One has

ż = −H̄R⊤(z)e(z) + H̄S⊤(z)µ

= −H̄H̄⊤Ze(z) + H̄ J̄⊤Zµ

= −(HH⊤E ⊗ I3)z + (HJ⊤U ⊗ I3)z

=
(

(−HH⊤E + HJ⊤U)⊗ I3

)

z

(5.20)

For ease of notation, we define F(t) :=
(
(−HH⊤E + HJ⊤U)⊗ I3

)
. Observe that there

holds
ż = F(t)z and ˙̄z(t) = (Im ⊗ Ω)z̄(t) (5.21)

In Section 5.3.3 we have shown that the relative position vector zi(t) in the non-
equilibrium system will asymptotically obey the equation ˙̄zi = ω× z̄i which describes
the equilibrium system, when the rigid formation converges exponentially fast to a
rigid body. To be precise, we have

M(t) := F(t)− Im ⊗ Ω → 0 (5.22)

with convergence at an exponential rate. It is now straightforward to identify a
relation between the initial conditions for the two equations in (5.21) that ensures the
two solutions approach one another.

Lemma 19. Suppose initial conditions for the equilibrium equation for the relative positions,
viz. (5.21), are chosen so that

z̄(0) = z(0) +
∫ ∞

0
exp(−(Im ⊗ Ω)s)M(s)z(s)ds (5.23)

Then ||z(t)− z̄(t)|| → 0 exponentially fast.
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Proof. Note that because the solution of the non-equilibrium equations is bounded
and M(t) is exponentially decaying, the integral in (5.23) is well defined. Let z̃(t) =
z(t)− z̄(t) and observe that

˙̃z(t) = (Im ⊗ Ω)z̃(t) + M(t)z(t) (5.24)

We shall exhibit exponential convergence to zero of z̃(t). The solution can be ex-
pressed as

z̃(t) = exp((Im ⊗ Ω)t)z̃(0) (5.25)

+
∫ t

0
exp((Im ⊗ Ω)(t − s))M(s)z(s)ds

Given the initial condition in (5.23), we see that the above equation can be rewritten
as

z̃(t) = −
∫ ∞

t
exp((Im ⊗ Ω)(t − s))M(s)z(s)ds (5.26)

The exponential convergence is immediate, given the boundedness of the trajectory
z(s) and the exponential decay of M(s).

The above lemma parallels the non-equilibrium analysis conducted in [Mou et al.,
2016] for mismatched 2-D rigid formations. Just as one can carefully select an initial
condition to ensure that the non-equilibrium relative position trajectory converges
to an equilibrium relative position trajectory, so one can do the same thing for the
equations for the overall systems (5.5). This is omitted here.

By combining the results from the above lemmas, we summarize the following
theorem which is the second main result of this chapter.

Theorem 8. In the presence of small and constant µ in the modified distributed gradient
control law (5.5), the formation shape converges exponentially fast to a rigid one, and x(t)
converges exponentially fast to a helical orbit of the overall system along which e(H̄x(t)) =
ē.

Example continued: We use numerical simulations on the tetrahedron formation
as an example to demonstrate rigid motions induced by distance mismatches. For
ease of demonstration we consider a regular tetrahedron shape with the target dis-
tance for each edge as 4. However, there exist small mismatch values in perceived
distances (or equivalently in target distances, as defined in (5.4)) for some edges,
which are µ1 = µ2 = 0 (i.e., no distance mismatch in edges 1 and 2), µ3 = 0.05, µ4 =
0.05, µ5 = −0.1, µ6 = 0.05. The convergence of the distance errors is depicted in Fig-
ure 5.2, which shows that the six distance errors do not actually converge to zero, but
converge quickly to some small values very close to zero. This implies that an approx-
imate formation is obtained which is close to the target one. Figure 5.3 shows that all
agents quickly form an approximate regular tetrahedron shape and then perform a
rigid helical motion as a whole (i.e. moving like a rigid body). �



§5.3 Analysis of convergence and formation movements 67

time
0 1 2 3 4 5 6 7 8 9 10

di
st

an
ce

 e
rr

or

-4

-3

-2

-1

0

1

2

e
1

e
2

e
3

e
4

e
5

e
6

8.5 9 9.5 10

-0.4

-0.2

0

0.2

0.4

0.6

Figure 5.2: Convergence of distance errors.
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Figure 5.3: Rigid motions (helical motions) induced by distance mismatches in a
tetrahedron formation.
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5.4 Further analysis of the rigid helical motions

This section aims to provide another perspective of the rigid helical motions caused
by distance mismatches. By assuming that µk for each edge k is known and constant,
we will derive some formulas for the motion parameters including the angular ve-
locity and the rotational radius in terms of µ. The derivation of motion formulas in
this section is inspired by the angular momentum concept in rigid body dynamics
[Gregory, 2006]. This may have implications in understanding how to actively steer
a rigid formation (change of orientation, control of rotation motion, etc) by using a
small number of inputs.

5.4.1 Determining helical motion parameters

Our starting equation is (5.10). By using basic formulas from rigid body motions
involving (5.10) and attributing a unit mass to each agent, the angular momentum
of the converged rigid formation measured relative to the formation centroid can be
obtained as

n

∑
i=1

r̄i × ˙̄xi =
n

∑
i=1

r̄i × ˙̄xc +
n

∑
i=1

r̄i × (ω × r̄i) =
n

∑
i=1

r̄i × (ω × r̄i) (5.27)

(Note that ∑
n
i=1 r̄i = 0 by the definition of the centroid). An important observation is

that the left-hand side of (5.27) does not involve the error vector e. In fact, one can
easily verify using (5.11) that

n

∑
i=1

r̄i × ˙̄xi =
n

∑
i=1

∑
j∈N−

i

r̄i × z̄kij
µkij

(5.28)

We will examine the last term in the right-hand side of (5.27). To this end we
follow a typical approach to define the inertia matrix [Gregory, 2006, Chapter 18]
by introducing a skew-symmetric matrix Pi, which is constructed from the vector
r̄i = [r̄i,1, r̄i,2, r̄i,3]

⊤:

Pi =





0 −r̄i,3 r̄i,2

r̄i,3 0 −r̄i,1

−r̄i,2 r̄i,1 0



 (5.29)

The above skew-symmetric matrix Pi is used to perform the cross product operation:
r̄i × ω = Piω. Thus one has

n

∑
i=1

r̄i × (ω × r̄i) = −
n

∑
i=1

Pi(r̄i × ω) =
n

∑
i=1

Iiω (5.30)

where Ii = P⊤
i Pi. The following lemma shows the non-singularity of the matrix

I := ∑
n
i=1 Ii.

Lemma 20. The matrix I is a positive definite symmetric matrix and its inverse exists for
generic 3-D rigid formations.
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Proof. The proof is based on the property of the null space of the matrix P2
i =

−P⊤
i Pi. Note that the matrix P2

i is negative semidefinite and null(P2
i ) = null(P⊤

i Pi) =
null(Pi). Note that the null space of the skew symmetric matrix Pi is spanned by the
vector r̄i. Further note that the matrices P2

i and P2
j do not share the same null space

if the vectors r̄i and r̄j are linearly independent. In any generic 3-D rigid formation
that can form a rigid body with positive volume, there always exist three linearly in-
dependent vectors r̄i, r̄j, r̄k which span the whole 3-D space. Hence the null space of
the matrix I is trivial, i.e., I is positive definite and its inverse exists.

By using the above results, the angular velocity at the equilibrium motion can be
calculated as

ω = I−1(
n

∑
i=1

∑
j∈N−

i

r̄i × z̄kij
µkij

) (5.31)

which involves the shape geometrical information and mismatch terms µ, but not e,
as shown in (5.28).

Remark 10. The above equations (5.27) and (5.30) resemble the angular-momentum formula
in mechanics, while these two different calculations, (5.27) and (5.30), for the angular mo-
mentum are equated. Here each agent can be seen as a particle with unit mass. The left-hand
side of (5.27) sums the contribution from each of the point masses to the overall angular mo-
mentum, and the right-hand side of (5.30) is the usual expression of the angular momentum
involving the inertia matrix I . This provides the interpretation of (5.31) from a physics point
of view.

In a helical motion, since the axis along which the agents rotate is also the same
direction in which all the agents translate, we can find the translational part of the
velocity by projecting the velocity onto the rotational axis. By recalling the velocity
for the centroid in (5.12), the translational velocity component can be obtained as
vtranslation = ωω⊤

ω⊤ω
˙̄xc ( and if ω = 0, then vtranslation = ˙̄xc). The tangential rotational

velocity vrotation and the radius rc
radius of the rotation with respect to the centroid are

vrotation = ˙̄xc − vtranslation, rc
radius =

‖vrotation‖
‖ω‖ .

Remark 11. (Special motions: translation-only movement) The helical motion also includes
the rotation-only movement and translation-only movement as special cases. To guarantee
a translation-only movement, the values of µ should be chosen such that ω = 0 which
corresponds to requiring µ to satisfy the following constraints

n

∑
i=1

∑
j∈N−

i

r̄i × z̄kij
µkij

= 0 (5.32)

where r̄i and z̄kij
are also smooth functions of µ. It is clear that if ω = 0, then z̄k for all k will

be constant. By observing that

r̄i × z̄kij
= r̄i × (x̄j − x̄i) = r̄i ×

(
(x̄j − x̄c)− (x̄i − x̄c)

)

= r̄i × (r̄j − r̄i) = r̄i × r̄j (5.33)
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one can see that the condition for translation-only movement shown in (5.32) is equivalent
to the statement of Lemma 4 in [Mou et al., 2016]. By using the regular value theorem [Lee,
2009, Proposition 2.42] and following similar arguments as in Lemma 6 of [Mou et al., 2016],
one can show that such values of µ ensuring the special translational motions lie in a thin

set.

Remark 12. (Special motions: rotation-only movement) To guarantee a rotation-only move-
ment, the values of µ should be chosen such that ω 6= 0 and

˙̄x⊤c ω = 0 (5.34)

where ˙̄xc and ω depend smoothly on µ as can be seen from (5.12) and (5.31). To guar-
antee a rotation-only motion, one needs to either ensure h(µ) := ˙̄x⊤c = 0 (equivalently
∑

n
i=1 ∑j∈N−

i
z̄kij

µkij
= 0), or choose values of µ such that the two vectors ˙̄xc 6= 0 and ω 6= 0

are orthogonal. By following the same argument as that in Lemma 6 of [Mou et al., 2016], the
values of µ ensuring ∑

n
i=1 ∑j∈N−

i
z̄kij

µkij
= 0 can be seen to lie in a thin set, i.e., for generic

values of µ there holds ˙̄x⊤c 6= 0. By inserting the equations from (5.12) and (5.31), the second
(orthogonality) condition is rewritten as h(µ)I−1(∑n

i=1 ∑j∈N−
i

r̄i × z̄kij
µkij

) = 0. Again, by
following the same argument as that in Lemma 6 of [Mou et al., 2016], the non-zero solutions
µ for the above equation can be shown to lie in a thin set. We conclude that such values of µ

ensuring the special translational motions also lie in a thin set. For a simple tetrahedron for-
mation, the conditions for guaranteeing rotation-only or translation-only movement require
certain integer-weighted combinations of µ to be zero; see e.g. [Sun et al., 2013, 2014a].

5.4.2 Steering formations by manipulating mismatches

From the above analysis, one can conclude that the final rigid motion with a spe-
cific rigid formation shape can be determined by the values of µ. Furthermore,
some special choices of µ are possible which ensure rotation-only movements or
translation-only movements. These observations suggest that if indeed values of µ

can be deliberately manipulated, then one can assign different values of µ to achieve
control objectives in relation to formation orientations, angular velocity, translation
direction, etc.

We give some brief and intuitive ideas here. In generic 3-D rigid formations, every
agent has at least three edges connecting to its neighbors. Let us pick one agent i
and its three non-coplanar adjacent relative position vectors, denoted by z̄ki1

, z̄ki2
, z̄ki3

(see Lemma 22 in Chapter 6 for the existence of such vectors). We choose three
µki1

, µki2
, µki3

corresponding to these three edges and set all other µk in other edges to
be zero. Then according to (5.31), one has

ω = I−1 (µki1
r̄i × z̄ki1

+ µki2
r̄i × z̄ki2

+ µki3
r̄i × z̄ki3

)

= I−1 (r̄i × (µki1
z̄ki1

+ µki2
z̄ki2

+ µki3
z̄ki3

)
)

(5.35)

The three vectors r̄i × z̄kij
where j = 1, 2, 3 can be proven to be linearly independent;

thus one can always choose the values of three µk to achieve any desired vector
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ω ∈ R
3. A special case is that the sum of the three vectors µkij

z̄kij
, i.e. µki1

z̄ki1
+

µki2
z̄ki2

+ µki3
z̄ki3

, can be determined to be parallel to the vector r̄i, which results in
ω = 0 and the whole formation will be translating along the direction of r̄i defined
in the rigid body coordinates. The same reasoning can also be applied to achieve
specific translational and rotational velocities, but we note that because of the linear
independence of the three vectors r̄i × z̄kij

, at least four edges will be needed for
obtaining a desired vector ω and a translational velocity. Of course, changing µ can
be expected to change the values of the z̄kij

. However, for small µ, these values are
approximatable by those of the target formation. Hence a linear equation calculation
will deliver values of µ which at least approximately achieve a desired ω. Similar
considerations apply in respect of translation. Thus by using a single agent and its
adjacent edges by manipulating mismatches, one can achieve a variety of movements
of the formation.

A recent paper [Garcia de Marina et al., 2016a] has provided detailed discussions
to explore the application of distance mismatches as motion design parameters to
generate desired rigid motions in rigid formation control 4. We also remark that in
[Garcia de Marina et al., 2016a] the formation and motion control can achieve an
accurate formation shape (i.e. e = ē = 0) with desired rigid motions, at the price of
carefully choosing mismatch parameters in both adjacent agents for each edge.

5.5 Concluding remarks

The popular gradient descent law for stabilizing rigid formation shapes is a typical
distributed control approach which requires that neighboring agents should share
non-conflicting local information to work cooperatively for a global goal. In this
chapter, we have shown some unexpected motion behaviors for this gradient flow
when there exist distance mismatches between neighboring agent pairs. We have
examined in detail the motion behavior in the 3-D rigid formation shape control
problem in the presence of distance mismatches when the gradient control law is
employed. The main result shows that in general the formation trajectory at the
steady state is a helix, which is a combination of a rotation movement with fixed
rotational vector and a translation movement in the direction parallel to that vector.
We further show movement properties and formulas to characterize such rigid mo-
tions caused by distance mismatches, which reveals an interesting mechanism for
generating desired formation movements.

In the case that such rigid motions are regarded as undesirable in formation
control, the standard gradient control law should be combined with additional miti-
gating approaches, e.g. introduction of integral control or inclusion of an estimation
loop, to secure a robust formation system. Some recent efforts toward this direction
have been proposed in [Mou et al., 2014; Garcia de Marina et al., 2015].

4Intuitive explanation on how this works can be found in a news report from University of
Groningen titled Sensor noise guides flexible robots; see ❤tt♣✿✴✴✇✇✇✳r✉❣✳♥❧✴s❝✐❡♥❝❡❧✐♥①✴♥✐❡✉✇s✴✷✵✶✻✴✵✻✴
✷✵✶✻✵✻✷✶❴r♦❜♦ts.
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Chapter 6

Distributed stabilization control of

rigid formations with prescribed

orientations

Chapter summary

Most rigid formation controllers reported in the literature aim to only stabilize a
rigid formation shape, while the formation orientation is not controlled. This chap-
ter studies the problem of controlling rigid formations with prescribed orientations
in both 2-D and 3-D spaces. The proposed controllers involve the commonly-used
gradient descent control for shape stabilization, and an additional term to control the
directions of certain relative position vectors associated with certain chosen agents.
In this control framework, we show the minimal number of agents which should
have knowledge of a global coordinate system (2 agents for a 2-D rigid formation
and 3 agents for a 3-D rigid formation), while all other agents do not require any
global coordinate knowledge or any coordinate frame alignment to implement the
proposed control. The exponential convergence to the desired rigid shape and for-
mation orientation is also proved. Typical simulation examples are shown to support
the analysis and performance of the proposed formation controllers.

6.1 Introduction

6.1.1 Background and related work

Rigid formation control has been discussed extensively in the literature, most of
which have focused on the convergence analysis of formation shapes (see e.g. [Krick
et al., 2009], [Anderson and Helmke, 2014], [Cortés, 2009], [Dörfler and Francis, 2010],
[Oh and Ahn, 2011], [Tian and Wang, 2013], [Cai and De Queiroz, 2015]). Note how-
ever that in many applications involving multi-agent coordination, a formation with
both a desired shape and a particular orientation is required. For distance-based rigid
formation control, the orientation of the final formation is not controlled and actu-
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ally not well defined, 1 which may limit the practical application of shape controllers
discussed in these previous works. In this chapter, we aim to design distributed for-
mation controllers to achieve a desired rigid formation with a prescribed formation
orientation.

The stabilization control of rigid formations with a desired orientation was dis-
cussed in [Pais et al., 2009] by using tensegrity theory and a projected collinear struc-
ture. However, the approach, which is essentially adopted from the displacement-
based control framework, requires all the agents to have knowledge of the orientation
of a common reference frame. The problem of stabilizing only the orientation of rigid
objects subject to distance constraints was studied in [Wang et al., 2011], [Markdahl
et al., 2012], by assuming that the rigid shapes have been achieved before applying
the orientation control. Thus, the approaches in [Wang et al., 2011] and [Markdahl
et al., 2012] cannot be applied to solve the formation stabilization control task in
question. In our previous paper [Sun et al., 2014a] we showed a feasible approach to
move or re-orient a rigid formation to a desired orientation by introducing distance
mismatches; however, such an orientation control approach, which is a by-product
of the mismatched formation control problem, indicates that the final formation is
slightly distorted compared to the desired formation. Furthermore, the orientation
control in [Sun et al., 2014a] also requires global information in terms of all other
agents’ positions, which is contrary to the aim of using a distributed approach for
the formation control task.

In this chapter, we propose feasible and distributed controllers to achieve both
rigid shape stabilization and formation orientation control with minimal knowledge
of global coordinate orientation for the agent group. The basic idea underlying the
controller design is to choose certain agents as orientation agents (definitions will be-
come clear in the context), for which some of the associated relative position vectors
should achieve both desired distances and directions specified in the global coordi-
nate frame. We note that a very general control framework for stabilizing an affine
formation was recently proposed in [Lin et al., 2016a], in which a strict assumption
that the target formation should be globally rigid was imposed to generate a rigid
shape with orientation constraints. Such an assumption is not required in the control
strategy proposed in this chapter.

Furthermore, by exploring several novel observations concerning the rigidity ma-
trix from graph rigidity theory, we will also prove an exponential convergence to the
desired formation shape with specified orientations. Note that the exponential sta-
bility implies the robustness property of the proposed formation control system in
the presence of small measurement errors or perturbations. 2 Also note that the

1We need to distinguish different meanings of orientation in the context of formation control. By
regarding a rigid formation as a rigid body, the formation orientation relates to the overall rigid forma-
tion. The orientation concept in e.g. [Oh and Ahn, 2014b; Montijano et al., 2014] refers to the orientation
of the local coordinate frame for each agent. We will distinguish different meanings by referring explic-
itly to either formation orientation or coordinate orientation. Another orientation concept refers to the
definition of signed area for a closed curve formed by a formation shape with a specific ordering of all
agents (e.g. a triangle with positive/negative area). This concept will not be used in this chapter.

2The problem of securing robustness given massive measurement errors induced by sensor failure
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formation orientation problem discussed here is a stabilization control problem (i.e.,
the aim is to achieve a static formation with a desired orientation), while a motion
generation problem involving rigid formation orientation was discussed in [Garcia
de Marina et al., 2016a] with a totally different control architecture.

6.1.2 Chapter organization

The remaining parts of this chapter are organized as follows. In Section 6.2, we
introduce some results relating to the null space of a rigidity matrix as well as the
problem formulation. Section 6.3 provides the main result. Typical simulation results
are shown in Section 6.4. Finally, Section 6.5 concludes this chapter. Proofs for some
key lemmas are given in the Appendix Section 6.6.

6.2 Preliminaries and problem setup

6.2.1 Rigidity matrix and its null space

We refer the readers to Section 2.3 of Chapter 2 for background on graph rigidity
theory. From Theorem 1 in Chapter 2, one knows that the dimension of the null space
of R(p) for an infinitesimally rigid framework (G, p) in the d-dimensional space is
d(d + 1)/2. The following lemma characterizes the structure of its null space.

Lemma 21. (Null space of the rigidity matrix) Suppose the framework (G, p) is infinitesi-
mally rigid with the associated rigidity matrix denoted as R(p).

• The d = 2 case: The null space of R(p) is of dimension 3 and is described as null(R(p)) =
span(q1, q2, q3), where

q1 = 1n ⊗
[

1
0

]

; q2 = 1n ⊗
[

0
1

]

;

q3 = [(K3 p1)
⊤, (K3 p2)

⊤, · · · , (K3 pn)
⊤]⊤,

and the matrix K3 is defined as

K3 =

[
0 1
−1 0

]

• The d = 3 case: The null space of R(p) is of dimension 6 and is described as null(R(p)) =
span(q1, q2, q3, q4, q5, q6), where

q1 = 1n ⊗




1
0
0



 ; q2 = 1n ⊗




0
1
0



 ; q3 = 1n ⊗




0
0
1



 ;

qi = [(Ki p1)
⊤, (Ki p2)

⊤, · · · , (Ki pn)
⊤]⊤, i = 4, 5, 6;

is different, and is discussed in [Yu and Anderson, 2009].
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and the matrix Ki is defined as

K4 =





0 0 0
0 0 −1
0 1 0



 ; K5 =





0 0 1
0 0 0
−1 0 0



 ; K6 =





0 −1 0
1 0 0
0 0 0





Lemma 21 is a reformulation of some well known results on the rigidity matrix
discussed in Tay and Whiteley’s early paper (see [Tay and Whiteley, 1985, Page 31]).
We also note that the structure of the null space of a rigidity matrix for 3-D formations
was re-stated in [Zelazo et al., 2015, Theorem 2.16]. The clear structure on the null
space analysis, as shown in Lemma 21, will be particularly helpful in the controller
design and the stability analysis, as will be shown in the main part of this chapter.

The infinitesimal rigidity also guarantees the following property for a framework.

Lemma 22. Suppose the framework (G, p) is infinitesimally rigid. Then for any node i, the
set of relative position vectors pj − pi, j ∈ Ni cannot all be collinear (in the 2-D case) or all
be coplanar (in the 3-D case).

The proof can be found in the online version of the related paper [Sun et al., 2017].
Lemma 22 will be useful for defining a feasible target formation by choosing some
adjacent edges associated with certain agents (which will be discussed in Section
6.3.1).

6.2.2 Gradient-based formation controller and problem formulation

We recall the following formation control system from Chapter 2:

ṗi = − ∑
j∈Ni

(‖pi − pj‖2 − d2
kij
)(pi − pj), i = 1, . . . , n (6.1)

As mentioned before, the above control and its variations studied in these previous
papers only stabilize a rigid formation shape, while the orientation of the formation is
not specified. In this chapter we will consider the problem of how to simultaneously
stabilize a rigid shape and achieve a desired orientation for a target formation.

6.3 Main result

6.3.1 Target formation and control framework

Before describing the controller design, we first discuss how to define a target for-
mation with given inter-agent distances and formation orientation constraints. As
mentioned in the above section, the commonly-used gradient-based controller (6.1)
does not control the orientation and there are certain degrees of freedom relating
to rotations for a converged formation. Intuitively, by regarding the rigid formation
as a rigid body and specifying certain directions of some chosen edges in a global
coordinate frame, the orientation of the overall rigid formation can be fixed. This
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will be the basic idea in the definition of a target formation and the controller design
discussed in the sequel.

For simplifying the controller design and implementation, we choose one agent
and a certain number of its neighboring agents as the specified agents to implement
the additional orientation control task, with the associated edges between them be-
ing assigned with both distance constraints and orientation constraints. We term these
agents with the additional orientation control task as orientation agents, and other
agents as non-orientation agents. Thus, the target formation is defined with inter-
agent distance constraints applying to all the agents, and orientation constraints only
for the chosen edges between orientation agents.

For the convenience in later analysis, we denote Go as the underlying graph of
the orientation control to distinguish it from the underlying graph G of the formation
shape control. If the edge (i, j) associated with agent i and j is chosen in the orienta-
tion control in Go, we denote it as (i, j) ∈ Eo. The set of neighboring agents for orienta-
tion agent i chosen in the orientation control is defined as N o

i := {j ∈ V : (i, j) ∈ Eo}.
Note that Go includes all vertices as G, but it only contains the edges Eo. The desired
direction for the relative position vector pj − pi for edge (i, j) ∈ Eo is described by
a given vector p̂ji. For later analysis, we also introduce some associated fake po-
sition vectors p̂j, p̂i ∈ R

d that realize the specified relative position vector p̂ji, i.e.
p̂ji := p̂j − p̂i. 3 The relative position constraint should also be consistent with the
distance constraint associated with the chosen edge (see Definition 5). Thus, the ori-
entation control is used to additionally stabilize the relative position pj − pi to the
desired one p̂j − p̂i with (i, j) ∈ Eo. Due to the rigid body property of a desired
rigid formation, the formation orientation can be determined by the directions of a
certain set of desired relative position vectors. We show two examples, a 2-D four-
agent rectangular formation and a 3-D tetrahedral formation depicted in Figure 6.1,
to illustrate the formation control framework.

Note that any two agents associated with one edge can be chosen as orientation
agents, and there is no need to design a centralized algorithm for the selection of
the orientation agents. To define a target formation with prescribed orientation, one
can first choose one agent and then select one of its non-collinear relative position
vectors (for 2-D formations) or two of its non-coplanar relative position vectors (for
3-D formations) to specify the desired formation orientation. According to Lemma
22, such non-collinear or non-coplanar adjacent edges are guaranteed to exist for any
agent to define a target formation. To sum up, we give a formal definition of a target
formation.

Definition 5. (Target formation) The target formation is defined as (G, p̃) which satisfies the
following constraints

• Distance constraints: ‖ p̃i − p̃j‖ = dkij
, ∀(i, j) ∈ E ;

3The introduction of such vectors is for the convenience of analysis and for writing a compact form
of formation system equations, which will be given later in (6.3). This is a commonly-used approach in
the analysis of displacement-based formation control; see e.g. [Mesbahi and Egerstedt, 2010, Chapter
6] and [Oh et al., 2015].
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Figure 6.1: Example of controlling a 2-D rectangular formation and a 3-D tetrahedral
formation with prescribed orientation. (a) Agent 1 and one of its neighbors, agent 2,
are chosen as orientation agents. The relative position vector p2 − p1 associated with
edge (1,2) is used to describe the desired orientation, which is denoted by red color
(in this example (1, 2) ∈ Eo). (b) Agent 1 and two of its neighbors, agents 2 and 4,
are chosen as orientation agents. The relative position vectors p2 − p1 and p4 − p1
associated with edges (1,2) and (1,4) are used to describe the desired orientation,

which are denoted by red color (in this example (1, 2), (1, 4) ∈ Eo).

• Orientation constraints: p̃i − p̃j = p̂i − p̂j, ∀(i, j) ∈ Eo;

Note that there should hold ‖( p̂j − p̂i)‖ = dkij
so that the orientation constraint is

consistent with the formation shape constraint.

In order to well define the orientation constraint, we need the following alignment
assumption.

Assumption 1. All orientation agents should be equipped with coordinate systems with the
same coordinate axis directions parallel with those of the global coordinate system.

Take the formation control formulation in Figure 6.1(a) as an example. Since
agents 1 and 2 are chosen as orientation agents, their coordinate systems should be
aligned with the global coordinate system denoted by ∑g. Such a global coordinate
system is required to define the desired relative position vector ( p̂j − p̂i) for (i, j) ∈ Eo.
Thus Assumption 1 provides a necessary condition for the controller design and
implementation. 4

4We comment that, as shown with more details in [Sun et al., 2017], specification of a single orienta-
tion edge does not deal with the problem of reflection ambiguity in determining the formation using a
set of prescribed distances.
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6.3.2 Controller design

We propose the following formation stabilization controller:

ṗi(t) = ∑
j∈Ni

(pj(t)− pi(t))(‖pj(t)− pi(t)‖2 − d2
kij
)

︸ ︷︷ ︸

shape control term, if (i,j)∈E

+ ∑
j∈N o

i

(
(pj(t)− pi(t))− ( p̂j − p̂i)

)

︸ ︷︷ ︸

orientation control term, if (i,j)∈Eo

(6.2)

It is obvious from Eq. (6.2) that the proposed control is distributed since only local
information from neighboring agents in terms of relative positions is needed. In
the later analysis we will also show that the overall system consisting of n agents
described by (6.2) is a gradient system associated with a cost function.

The above formation control system (6.2) can be written in a compact form

ṗ = −R⊤e − (Lo ⊗ Id) p̄ (6.3)

where Lo is the Laplacian matrix of the underlying undirected graph Go for the ori-
entation control, and the vector p̄ = [ p̄⊤1 , p̄⊤2 , · · · , p̄⊤n ]

⊤ is defined as p̄i = pi − p̂i if i
is a chosen orientation agent 5, or p̄i = 0 otherwise.

For the formation control system (6.3), the set of the desired equilibria is described
as

M = {p ∈ R
dn|e(p) = 0, pi − pj = p̂i − p̂j, ∀(i, j) ∈ Eo} (6.4)

which satisfies the constraints in Definition 5.
Example: We show an example to illustrate the above controller design. Suppose

a group of four agents is tasked to achieve a rigid shape, with the additional orien-
tation control assigned to edge (1, 2) ∈ Eo , which is illustrated in Figure 6.1(a). The
formation control system takes the following form

ṗ1 =e12(p2 − p1) + e13(p3 − p1) + e14(p4 − p1)

+ (p2 − p1)− ( p̂2 − p̂1)

ṗ2 =e12(p1 − p2) + e23(p3 − p2) + (p1 − p2)− ( p̂1 − p̂2)

ṗ3 =e13(p1 − p3) + e23(p2 − p3) + e34(p4 − p3)

ṗ4 =e14(p1 − p4) + e34(p3 − p4) (6.5)

(note that in the above equations the subscript notation for e is slightly different to
previous sections, in that eij here denotes the squared distance error associated with
the edge (i, j) ∈ E ). The Laplacian matrix Lo for the underlying graph of orientation

5Note that the vector p̄i is not an actual control input as p̂i may not be available for agent i (the
actual control term is p̂ji := p̂j − p̂i). The introduction of p̄i is for the convenience of analysis and for
writing a compact form of the formation system as in (6.3).
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control is constructed as

Lo =







1 −1 0 0
−1 1 0 0
0 0 0 0
0 0 0 0







and the vector p̄ is constructed as p̄ = [(p1 − p̂1)
⊤, (p2 − p̂2)⊤, 0⊤, 0⊤]⊤. The forma-

tion system (6.5) can then be written in the compact form shown in (6.3). �

6.3.3 Properties of the formation control system

In the following, we show several properties of the proposed control (6.2).

Lemma 23. The position of the formation centroid is preserved by the above control law (6.2).

The proof can be found in the appendix. Lemma 23 corresponds to the statement
of invariant centroid in rigid formation control without orientation control, as proved
in e.g. [Krick et al., 2009].

Lemma 24. For all non-orientation agents, their local coordinate systems are sufficient to
implement the control law.

The proof is omitted here as it follows similarly to the proof in e.g. [Cao et al.,
2011; Oh and Ahn, 2014a]. This controller property has been illustrated in Figure 6.1.
In the example shown in Figure 6.1(a), agent 3 or 4 is not an orientation agent and its
coordinate system orientation does not need to be aligned with the global coordinate
system. As a consequence of Lemma 24, the minimum number of orientation agents
is 2 for a 2-D rigid formation and 3 for a 3-D rigid formation. Hence the minimum
number of agents requiring knowledge of the global coordinate frame for the multi-
agent formation group is 2 or 3, according as the 2-D or 3-D case being considered.

6.3.4 Convergence analysis

We will first show the gradient property of the proposed controller and a general
result on the convergence.

Theorem 9. The formation control system with the proposed controller (6.2) describes a
gradient control system and the formation system converges to the largest invariant set in the
set O(z) defined as

O(z) = {z|R(z)⊤e(z) + (Lo ⊗ Id) p̄(z) = 0} (6.6)

Proof. We choose the same potential function in (2.9), denoted by V1, as the potential
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for the shape control, and the following potential function

V2 =
1
2 ∑

(i,j)∈Eo

‖(pj(t)− pi(t))− ( p̂j − p̂i)‖2

=
1
2

p̄⊤(Lo ⊗ Id) p̄ (6.7)

for the orientation control. The composite potential function is then defined as
V(p) = V1(p) + V2(p). Note also that both V1 and V2 can be regarded as func-
tions of z, and we will also write them for later analysis as V1(z) and V2(z), as well
as V(z).

The dynamical system for the relative position z is described as

ż = (H ⊗ Id) ṗ

= −(H ⊗ Id)R⊤e − (H ⊗ Id)(Lo ⊗ Id) p̄ (6.8)

and the distance error system is described by

ė = 2Rṗ = −2RR⊤e − 2R(Lo ⊗ Id) p̄ (6.9)

Note that (6.8) is a self-contained system since both e and p̄ are expressible as func-
tions of z. Note further that the potential functions V1 and V2 are functions involving
only relative position vectors in terms of z and e rather than the absolute position
vector p. 6 Thus, we can write the potential as V(z) for the self-contained z system
(6.8). We then calculate the derivative of the potential V1 and V2 along the trajectories
of system (6.8) and (6.9):

V̇1 =
1
2

e⊤ ė = e⊤(−RR⊤e − R(Lo ⊗ Id) p̄)

= −e⊤RR⊤e − e⊤R(Lo ⊗ Id) p̄ (6.10)

and

V̇2 = p̄⊤(Lo ⊗ Id) ˙̄p

= p̄⊤(Lo ⊗ Id)(−R⊤e − (Lo ⊗ Id) p̄)

= − p̄⊤(Lo ⊗ Id)R⊤e − p̄⊤(Lo ⊗ Id)(Lo ⊗ Id) p̄ (6.11)

where in the second equality we have used the non-trivial result (Lo ⊗ Id) ˙̄p = (Lo ⊗

6Also note that the distance error vector e can be written in terms of z according to the definition of
e in (2.11).
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Id) ṗ. The derivative of V can be computed as

V̇ =V̇1 + V̇2

=− e⊤RR⊤e − e⊤R(Lo ⊗ Id) p̄

− p̄⊤(Lo ⊗ Id)R⊤e − p̄⊤(Lo ⊗ Id)(Lo ⊗ Id) p̄

=− e⊤RR⊤e − 2e⊤R(Lo ⊗ Id) p̄

− p̄⊤(Lo ⊗ Id)(Lo ⊗ Id) p̄

=−
(

R⊤e + (Lo ⊗ Id) p̄
)⊤ (

R⊤e + (Lo ⊗ Id) p̄
)

≤0 (6.12)

The above derivative calculation thus implies that the formation system (6.2) de-
scribes a gradient descent flow for the composite potential V. Furthermore, the
sub-levels set of the potential V(z) are compact with respect to the self-contained z
system (6.8). By the LaSalle Invariance Principle [Khalil, 2002], the solution of the for-
mation system (6.8) converges to the largest invariant set in the set O(z) = {z|V̇ = 0}
described in (6.6).

The above Theorem 9 focuses on the convergence of the z system (6.8) and its
invariant set property, while the convergence of the z system (6.8) to the invariant
set (6.6) does not directly guarantee the convergence of the position system (6.3) to
a point. We remark that this stronger convergence result (the convergence of the
position system (6.3) to a point) can be shown by using the convergence property of
the gradient system (see Theorem 2 of Chapter 2, or [Absil and Kurdyka, 2006]) and
the real analyticity of the potential V(p), considered as a function of p.

Remark 13. In general, a global picture of the convergence analysis for a rigid formation con-
trol system is hard to obtain due to the frequent existence of multiple equilibria corresponding
to different formation shapes (see discussions in e.g. [Anderson and Helmke, 2014]). Because
the proposed control is a gradient descent law, the set O(z) also describes the set of equi-
librium points for (6.2). One may consider a subset of the equilibrium set O(z), described
by

O(z) = {z|R(z)⊤e(z) = 0, (Lo ⊗ Id) p̄ = 0} (6.13)

In the equilibrium subset O(z) the orientation(s) of the chosen edge(s) is(are) achieved but
the overall rigid formation is only described by the equation R(z)⊤e(z) = 0. If one assumes
that the target formation is minimally and infinitesimally rigid, and the formation converges
to an equilibrium formation in O(z) with an incorrect shape (i.e. e 6= 0), then the converged
incorrect formation is not infinitesimally rigid since R(z) at that equilibrium point has non-
zero left null vectors (i.e. the e vector) and thus loses maximum rank (for a detailed discussion
on this issue, see [Sun et al., 2016a, Lemma 4]). Since we assume only infinitesimal rigidity
of the target formation, one cannot say much about the formation property in the equilibrium
set O(z) or O(z).
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Note that the desired equilibria set M is a subset of O(z) (and accordingly a sub-
set of O(z)). Similar to most works on rigid formation stabilization, in the following
we will focus on local convergence analysis. In particular, we aim to show that the
convergence to the target formation with desired distances and the prescribed orien-
tation is exponentially fast. The analysis is based on the linearization technique. We
first compute the Jacobian of the vector field in the right-hand side of (6.3) around a
desired equilibrium p̃ ∈ M:

J f =
∂(−R⊤e − (Lo ⊗ Id) p̄)

∂p

∣
∣
∣
∣

p= p̃

= −∂R⊤

∂p
e
∣
∣
∣
∣

p= p̃
− R⊤ ∂e

∂p

∣
∣
∣
∣

p= p̃
− ∂(Lo ⊗ Id) p̄

∂p

∣
∣
∣
∣

p= p̃

= −(R⊤R + (Lo ⊗ Id))

∣
∣
∣
∣

p= p̃
(6.14)

where ∂R⊤
∂p e(p)|p= p̃ = 0 due to the fact that e(p) = 0 for a point p in the equilibrium

set M, and ∂e
∂p |p= p̃ = R according to the definition of the rigidity matrix.

Thus, the linearization equation of (6.3) is described as

δ ṗ = −(R⊤R + Lo ⊗ Id)δp (6.15)

In the following, we prove that the convergence is exponentially fast.

Theorem 10. Suppose the target formation is infinitesimally rigid and initial positions of all
the agents are chosen such that the initial formation is close to the desired formation. With
the proposed control law (6.2), the convergence to the correct formation shape and orientation
is exponentially fast.

Before giving the proof of the above result, we first show a key lemma on the
property of the linearization matrix.

Lemma 25. Suppose the target formation is infinitesimally rigid and the orientation edges
are selected according to Section 6.3.1. Then the linearization matrix F := R⊤R + Lo ⊗ Id

is positive semidefinite and has d zero eigenvalues. Furthermore, there holds null(F ) =
null(H ⊗ Id) = span(1n ⊗ Id).

The proof can be found in the appendix.
Proof of Theorem 10 As shown in Lemma 23, the formation centroid is sta-

tionary. We construct an orthogonal matrix Q ∈ R
dn×dn whose first d rows are

1√
n (1n ⊗ Id)

⊤. With Q, one can perform the coordinate transform on p as

p̃ = Qp =

[
po

pr

]

(6.16)

where po =
√

npc according to the definition of pc in (6.20) and the structure of Q.
From Lemma 23, one has ṗo =

√
nṗc = 0. We also define a reduced transformation
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matrix Qr ∈ R
d(n−1)×dn, obtained from Q by removing the first d rows. Note that

there holds p = Q−1 p̃ = QT p̃ and pr = Qr p. For the linearized system (6.15), one
can obtain the following coordinate-transformed system

[
δ ṗo

δ ṗr

]

= Qδ̇p = −Q(R⊤R + Lo ⊗ Id)δp

:= −QFQ−1δ p̃ (6.17)

According to the structure of the matrix Q, there holds

QFQ−1 =

[
1√
n (1n ⊗ Id)

⊤

Qr

]

F
[

1√
n
(1n ⊗ Id) Q⊤

r

]

=

[
0 0

0 QrFQ⊤
r

]

(6.18)

Therefore,

δ ṗo = 0

δ ṗr = −QrFQ⊤
r δpr (6.19)

According to the definition of Qr, the range space of Q⊤
r is the orthogonal comple-

ment of the subspace span(1n ⊗ Id). This, together with Lemma 25, implies that
the linearization matrix −QrFQ⊤

r is negative definite. Thus the convergence to the
origin for the system (6.19) is locally exponentially fast. Since the system (6.19) is
obtained from the system (6.15) by a linear coordinate transformation described in
(6.16), the above statement also implies that the convergence to a point in the desired
equilibrium M for the original system (6.3) is locally exponentially fast ([Khalil, 2002,
Theorem 4.13]). For the linearized system, the guaranteed exponential convergence
rate obtained in the linearization analysis is γ = λmin(QrFQ⊤

r ). Note that by the
Courant-Fischer Theorem [Zhang, 2011, Theorem 8.9], the rate γ = λmin(QrFQ⊤

r ) is
the same as the smallest positive eigenvalue of F .

Remark 14. Here we do not confine the discussion to the minimal rigidity case (which is a
commonly-used assumption in most literature on rigid formation control). Also we prove the
local exponential convergence if the target formation is infinitesimally rigid (a more relaxed
assumption than minimal rigidity). It is obvious from the above proof that choosing different
orientation edges indeed directly affects the convergence rate, as shown in the expression of the
rate γ. An interesting future problem is to optimize the selection of orientation edges/agents
so as to speed up the convergence rate.

Remark 15. Exponential stability brings about several nice properties such as the robust-
ness to small system perturbations (e.g. measurement errors) (similar research direction on
robustness issues in rigid formation control was discussed in [Mou et al., 2016]). Note that
the exponential convergence cannot be directly extended to the general convergence to a set
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O(z) stated in Theorem 9. This is because, as indicated in the proof of Theorem 10, the local
exponential convergence to a target formation depends on the maximum rank condition of
the rigidity matrix of a target formation, and for other formations defined in the set (6.6) one
cannot guarantee that they are infinitesimally rigid.

6.4 Illustrative examples

In this section we provide several simulations to show formation behaviors and con-
troller performance of the proposed control. Consider a four-agent formation sys-
tem, with the desired distances given as d∗12 = d∗34 = 3, d∗23 = d∗14 = 4, d∗13 = 5
corresponding to a rectangular shape. The initial positions for each agent are chosen
as p1(0) = [0, 0]⊤, p2(0) = [−1, 4]⊤, p3(0) = [5, 3]⊤ and p4(0) = [3, 0]⊤, so that the
initial formation shape is close to the target shape. When the conventional controller
(6.1) is used, the trajectories of each agent and the final shape are depicted in Fig-
ure 6.2, from which it can be seen that although the desired shape is achieved, the
formation orientation is undefined.

We then consider the simulation using the proposed controller (6.2). We suppose
the target formation should be the one with the rigid rectangular shape as above, in
addition that the relative position vector p2 − p1 associated to edge (1, 2) should be
aligned with the direction of the y-axis and the relative position vector p4 − p1 asso-
ciated with the edge (1, 4) should be aligned with the direction of the x-axis in the
global coordinate (which thus defines the unique formation orientation). The desired
relative vector for edge (1, 2) is set as p̂2 − p̂1 = (0, 3)⊤ and the initial positions are
chosen as the same as the above simulation setting, which can avoid the reflected
formation. The trajectories of each agent and the final shape are depicted in Figure
6.3, which clearly show that the desired formation shape with the correct orientation
is achieved and the formation centroid is preserved. The trajectories of each distance
error and the orientation error for the edge (1, 2) are depicted in Figure 6.4, which
shows an exponential convergence to the desired formation shape.

Lastly we show an example of stabilizing a rigid 3-D formation with a desired
orientation. The target formation is a tetrahedron, with the desired distances given by
d∗12 = d∗13 = d∗14 = 2, d∗23 = d∗34 = d∗24 = 2

√
2. The desired orientation is that the edges

(1, 3) and (1, 4) should be aligned with the the x-axis and the z-axis, respectively,
which defines the orientation for the target tetrahedron formation. Following the
control strategy in Section 6.3.2, the desired relative position vectors for edges (1, 3)
and (1, 4) are defined as p̂1 − p̂2 = (2, 0, 0)⊤ and p̂1 − p̂4 = (0, 0, 2)⊤, in which agents
1, 2 and 4 are chosen as orientation agents. The formation convergence is depicted
in Figure 6.5, which shows the successful achievement of the formation control task
with both desired rigid shape and formation orientation.
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Figure 6.2: Stabilization of a rigid rectangular formation without orientation control.
The initial and final positions are denoted by circles and squares, respectively. The
initial formation is denoted by dotted blue lines, and the final formation is denoted

by red solid lines. The black star denotes the formation centroid.
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Figure 6.3: Stabilization of a rigid rectangular formation with prescribed orientation.
The initial and final positions are denoted by circles and squares, respectively. The
initial formation is denoted by dotted blue lines, and the final formation is denoted

by red solid lines. The black star denotes the formation centroid.
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Figure 6.5: Stabilization of a 3-D rigid formation with prescribed orientation. The
initial and final positions are denoted by circles and squares, respectively. The initial
formation is denoted by dotted blue lines, and the final formation is denoted by red

solid lines. The black star denotes the formation centroid.
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6.5 Concluding remarks

In this chapter we have discussed the formation control problem to achieve both a
desired rigid shape and a formation orientation in ambient 2-D and 3-D spaces. The
designed controller combines the advantages of the displacement-based approach
and the distance-based approach, by specifying a small number of agents as ori-
entation agents which are tasked to control associated relative position vectors to
desired directions. The proposed controllers are distributed in that only relative po-
sition measurements from neighboring agents are required. For all non-orientation
agents, no information about the global coordinate system is required for them to
implement their respective controls, which guarantees a minimal requirement of the
global knowledge of the global coordinate system. Certain simulation examples are
provided to demonstrate the effectiveness of the proposed formation controllers.

6.6 Appendix: proofs of several lemmas

We first show a useful result on the dimension of the null space for two matrices and
their product.

Lemma 26. Consider two matrices A ∈ R
m×n and B ∈ R

n×k and the matrix product
C := AB. Then there holds dim(null(C)) = dim(null(B)) + dim((null(A) ∩ Im(B)).

The above lemma can be easily proved via the Sylvester Rank Theorem [Zhang,
2011, Theorem 2.6]. The following corollary is a consequence of Lemma 26 which
will be used in the proof of Lemma 25.

Corollary 4. Consider two matrices A ∈ R
m×n and B ∈ R

n×k and the matrix product
C := AB. If dim((null(A) ∩ Im(B)) = 0, then null(C) = null(B).

Proof of Lemma 23 Denote by pc ∈ R
d the center of the mass of the formation,

i.e.,

pc =
1
n

n

∑
i=1

pi =
1
n
(1n ⊗ Id)

⊤p (6.20)

One has

ṗc =
1
n
(1n ⊗ Id)

⊤ ṗ

=− 1
n
(1n ⊗ Id)

⊤(R⊤e + (Lo ⊗ Id) p̄)

=− 1
n
(1n ⊗ Id)

⊤(Lo ⊗ Id) p̄

− 1
n

(

Z⊤(H ⊗ Id)(1n ⊗ Id)
)⊤

e (6.21)

Note that (1n ⊗ Id)
⊤(Lo ⊗ Id) p̄ = ((1⊤n Lo)⊗ Id) p̄ = 0 and

(
Z⊤(H ⊗ Id)(1n ⊗ Id)

)⊤
e =

0 because null(H) = span{1n}. Thus ṗc = 0, which indicates that the position of the
formation centroid remains constant.
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Proof of Lemma 25 First note that both R⊤R and Lo ⊗ Id are symmetric and
positive semidefinite. From Lemma 21 one knows that span(1n ⊗ Id) is a subspace
of the null space of R. Also, span(1n ⊗ Id) is a subspace of the null space of Lo ⊗ Id.
Thus, there holds span(1n ⊗ Id) ⊂ null(F ). We then show that there does not exist
other null vectors in null(F ).

We introduce a selection matrix, denoted by J ∈ R
m×m, whose k-th row is a row

vector with 1 in the k-th position and 0 in every other position if the k-th edge is
selected as an orientation edge, or the k-th row is an all-zero vector otherwise. Note
that J⊤ = J. Denote the incidence matrix for the underlying graph of orientation
control as Ho. By doing this, there holds Ho = JH and thus Lo = H⊤

o Ho = H⊤ J JH
since the underlying graph of orientation control is assumed to be undirected. Thus
F = (H ⊗ Id)

⊤ZZ⊤(H ⊗ Id) + (H ⊗ Id)
⊤(J J ⊗ Id)(H ⊗ Id) = (H ⊗ Id)

⊤(ZZ⊤ + J J ⊗
Id)(H ⊗ Id). Following the proof of Lemma 21 (in [Sun et al., 2017]), we define

Qj := [(Kjz1)
⊤, (Kjz2)

⊤, · · · , (Kjzm)
⊤]⊤

where j = 3 for the 2-D formation case and j = 4, 5, 6 for the 3-D formation case. It
is obvious that Qj is a null vector of Z⊤. Also note that

Qj = (Im ⊗ Kj)z = (Im ⊗ Kj)(H ⊗ Id)p

= (H ⊗ Kj)p = (H ⊗ Id)(In ⊗ Kj)p (6.22)

We now divide the proof into the following two parts, according to the space dimen-
sions:

• The case of d = 2:
From Lemma 21, Q3 is a null vector of Z⊤ and q3 is a null vector of R. By direct
calculation, it holds (ZZ⊤ + J J ⊗ I2)Q3 6= 0, i.e. Q3 is not a null vector of the
matrix (ZZ⊤ + J J ⊗ I2), which together with Corollary 4 implies that q3 is not
a null vector to the matrix F . Thus, there holds null(F ) = span(1 ⊗ I2), which
implies that the null space of F is of dimension 2 and F has 2 zero eigenvalues.

• The case of d = 3:
We fix j = 4, 5, 6. In this case, there are at least two non-zero rows in J, cor-
responding to at least two adjacent edges selected in the orientation control.
From Lemma 21, each Qj is a null vector of Z⊤ and each qj is also a null vector
of R. Following similar steps as above for the 2-D case and by direct calcu-
lation, it holds that (ZZ⊤ + J J ⊗ I3)Qj 6= 0. Thus Qj’s are not null vectors of
(ZZ⊤ + J J ⊗ I3), which together with Corollary 4 implies qj’s are not null vec-
tors of the matrix F . Thus, there holds null(F ) = span(1 ⊗ I3), which implies
that the null space of F is of dimension 3 and F has 3 zero eigenvalues.

By summarizing the above arguments, the statements in the lemma are proved.
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Chapter 7

Quantization effects in rigid

formation control

Chapter summary

In this chapter we discuss quantization effects in rigid formation control systems
when target formations are described by inter-agent distances. Because of practi-
cal sensing and measurement constraints, we consider in this chapter distance mea-
surements in their quantized forms. We show that under gradient-based formation
control, in the case of uniform quantization, the distance errors converge locally to
a bounded set whose size depends on the quantization error, while in the case of
logarithmic quantization, all distance errors converge locally to zero. A special quan-
tizer involving the signum function is then considered with which all agents can only
measure coarse distances in terms of binary information. In this case the formation
converges locally to a target formation within a finite time. Lastly, we also discuss
the effect of asymmetric uniform quantization on rigid formation control.

7.1 Introduction

7.1.1 Background, motivation and related work

Quantized control has been an active research topic in the recent decade, motivated
by the fact that digital sensors and numerous industrial controllers can only generate
quantized measurements or feedback signals [Brockett and Liberzon, 2000; Liberzon,
2003]. Recent years have also witnessed extensive discussions on quantized control
for networked control systems. This is because data exchange and transmission over
networks often occurs in a digitally quantized manner, thus giving rise to coarse and
imperfect information; see e.g., [Kashyap et al., 2007; Cai and Ishii, 2011; Ceragioli
et al., 2011; Liu et al., 2012; Frasca, 2012; Guo and Dimarogonas, 2013; Liu et al.,
2015].

In this chapter, we aim to discuss the quantization effect on rigid formation con-
trol. Formation control based on graph rigidity is a typical networked control prob-
lem involving inter-agent measurements and cooperations. There have been many

91
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papers in the literature focusing on control performance and convergence analysis
for rigid formation control systems (see e.g. [Krick et al., 2009; Oh et al., 2015; Sun
et al., 2016a]), with virtually all assuming that all agents can acquire the relative
position measurements to their neighbors perfectly. We remark that there are some
recent works on linear-consensus-based formation control with quantized measure-
ments. An exemplary paper along this line of research is [Jafarian and De Persis,
2015], which showed that by using very coarse measurements (i.e., measurements in
terms of binary information) the formation stabilization task can still be achieved.
The case of coarse measurements can be seen as a special (or extreme) quantizer,
which generates quantized feedbacks in the form of binary signals. However, in [Ja-
farian and De Persis, 2015] and similar works on linear-consensus-based formation
control, a common knowledge of the global coordinate frame orientation is required
for all the agents to implement the control law. This is a strict assumption and is not
always desirable in practical formation control systems. Actually, it has been shown
in [Meng et al., 2016] that coordinate orientation mismatch may also cause undesired
formation motions in linear-consensus-based formation systems. All these restric-
tions and disadvantages can be avoided in rigid formation control systems, in which
any common knowledge of the global coordinate system is not required.

In the framework of quantized formation control, we also consider in the latter
part of this chapter a special quantizer described by the signum function. This part is
motivated by the previous work [Liu et al., 2014] which discussed triangular forma-
tion control with coarse distance measurements involving the signum function. In
this chapter we will consider a more general setting, which extends the discussions
from the triangular case in [Liu et al., 2014] to more general rigid formations.

The aim of this chapter is to explore whether the introduction of quantized mea-
surement and feedback can still guarantee the success of formation control, and to
what extent the controller performance limits exist. Our broad conclusion is that
quantization is not fatal, but may reduce performance in achieving a target forma-
tion.

7.1.2 Chapter organization

The remaining parts are organized as follows. Section 7.2 introduces additional no-
tations for this chapter and briefly reviews some background on quantizer functions
and non-smooth analysis. Section 7.3 discusses the convergence of the formation
systems under two quantized formation controllers. In Section 7.4 we show a special
quantized formation controller with binary distance information. Section 7.5 focuses
on the case of asymmetric uniform quantizer and its performance. Some illustrative
examples are provided in Section 7.6. Section 7.7 concludes this chapter. More tools
on non-smooth analysis are provided as appendix in Section 7.8.
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7.2 Preliminaries

7.2.1 Additional notations in this chapter

In addition to the notations presented in Chapter 2, we now introduce some extra
notations that will be solely used throughout this chapter. For a given matrix A ∈
R

n×m, define A := A ⊗ Id×d ∈ R
nd×md, where the symbol ⊗ denotes the Kronecker

product and Id×d is the d-dimensional identity matrix with d = {2, 3}. We denote
by ||x|| the Euclidean norm of a vector x, by x̂ := x

||x|| the unit vector of x 6= 0,

and by x̃ := 1
||x|| the reciprocal of the norm of x 6= 0. For a stacked vector x :=

[
x⊤1 , x⊤2 , . . . , x⊤k

]⊤
with xi ∈ R

l , i ∈ {1, . . . , k}, we define the block diagonal matrix
Dx := diag{xi}i∈{1,...,k} ∈ R

kl×k. The symbol col(·) defines the column vector by
collecting all its arguments as the vector’s components.

We define an orientated incidence matrix B ∈ R
n×m for the undirected graph G

by assigning an arbitrary orientation for each edge. Note that for a rigid formation
modelled by an undirected graph considered here, the orientation of each edge for
writing the incidence matrix can be defined arbitrarily and the stability analysis in
the next sections remains unchanged. By doing this, we define the entries of B as

bik :=







+1, if i = E tail
k

−1, if i = Ehead
k

0, otherwise

(7.1)

where E tail
k and Ehead

k denote the tail and head nodes, respectively, of the edge Ek, i.e.
Ek = (E tail

k , Ehead
k ).

7.2.2 Quantizer functions

In this chapter, we mainly consider two types of quantizers: the uniform quantizer
and the logarithmic quantizer ([Carli et al., 2010; Cai and Ishii, 2011; Frasca, 2012;
Guo and Dimarogonas, 2013; Liu et al., 2012; Ceragioli et al., 2011]).

7.2.2.1 Definition of the quantizers

The symmetric uniform quantizer is a map qu : R → R such that

qu(x) = δu

(⌊
x
δu

⌉)

, (7.2)

where δu is a positive number and ⌊a⌉, a ∈ R denotes the nearest integer to a. We
also define ⌊ 1

2 + h⌉ = h for any h ∈ Z.
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Figure 7.1: Logarithmic quantizer function with the gain δu = 0.5, defined in (7.3).

The logarithmic quantizer is an odd map ql : R → R such that

ql(x) =







exp(qu(lnx)) when x > 0;
0 when x = 0;

−exp(qu(ln(−x))) when x < 0.
(7.3)

where exp(·) denotes the exponential function.

7.2.2.2 Properties of the quantizers

For the uniform quantizer, the quantization error is always bounded by δu/2, namely
|qu(x)− x| ≤ δu

2 for all x ∈ R.

For the logarithmic quantizer, it holds that ql(x)x ≥ 0, for all x ∈ R, and the
equality holds if and only if x = 0. The quantization error for the logarithmic quan-
tizer is bounded by |ql(x) − x| ≤ δl |x|, where the parameter δl is determined by
δl = exp( δu

2 )− 1 (note that δl > 0 because δu > 0).

The above definitions for scalar-valued uniform and logarithmic quantizers can
be generalized to vector-valued quantizers for a vector in a component-wise manner.

For a graph illustration of a logarithmic quantizer function, see Figure 7.1. Note
that in Section 7.5 we will further consider an asymmetric uniform quantizer, and
will provide some comparisons between symmetric uniform quantizer and asymmetric
uniform quantizer. Thus, for the reason of comparisons we will defer the graph
illustration of a symmetric uniform quantizer function in Section 7.5 (which is given
in Figure 7.2). We also refer the readers to [Carli et al., 2010] for more motivations,
comparisons as well as graph illustrations of these two quantizers.
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7.2.3 Nonsmooth analysis

Consider a differential equation

ẋ(t) = X(x(t)), (7.4)

where X : R
d → R

d is a vector field which is measurable but discontinuous. The
existence of a continuously differentiable solution to (7.4) cannot be guaranteed
due to the discontinuity of X(x(t)). Also, as shown in [Ceragioli et al., 2011], the
Caratheodory solutions (for definitions, see [Cortés, 2008]) may not exist from a set
of initial conditions of measure zero in quantized control systems. Therefore, we
understand the solutions to the quantized rigid formation system in the sense of
Filippov ([Filippov, 1988]). We first introduce the Filippov set-valued map.

Definition 6. Let D(Rd) denote the collection of all subsets of R
d. The Filippov set-valued

map F[X] : R
d → D(Rd) is defined by

F [X](x) ,
⋂

δ>0

⋂

µ(S)=0

co{X(B(x, δ)\S)}, x ∈ R
d (7.5)

where co denotes convex closure, S is the set of x at which X(x) is discontinuous, B(x, δ) is
the open ball of radius δ centered at x, and

⋂

µ(S)=0 denotes the intersection over all sets S of
Lebesgue measure zero.

Because of the way the Filippov set-valued map is defined, the value of F [X]
at a discontinuous point x is independent of the value of the vector field X at x.
Filippov solutions are absolutely continuous curves that satisfy almost everywhere
the differential inclusion ẋ(t) ∈ F [X](x) defined above. Some properties of the
Filippov solution and examples of how to compute a Filippov set-valued map can be
found in the review [Cortés, 2008]. In the appendix, we also list some useful rules
relevant to the computation of a Filippov set-valued map.

7.3 Formation control with quantized measurements

7.3.1 Quantized formation controllers

In rigid formation control each agent is required to measure the relative position
(i.e. bearing and range) to its neighbors via a bearing sensor and a range sensor.
If one assumes perfect measurements, a commonly-used formation controller can
be written as (see e.g. [Anderson et al., 2007; Garcia de Marina et al., 2016b] and
discussions in Section 4.2.1 of Chapter 4)

ṗi = −
m

∑
k=1

bik(||zk|| − dk) ẑk, (7.6)

while more general forms of formation controllers to stabilize rigid formations are
discussed in Chapter 4 and [Sun et al., 2016a].
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In the presence of quantized sensing and measurement, the right-hand side of the
above formation control system (7.6) needs modification. Here we assume that the
distance measurement (with an offset, see the following equation (7.7)) is quantized,
and the bearing measurement is unquantized. This assumption is reasonable because
the bearing measurement is always bounded (described by a unit vector or by an
angle in [−π, π) in the 2-D case). A normal digital sensor, say a 10-bit uniform quan-
tizer, applying to bearing measurements gives rather accurate measurement with
very small error to the true bearing. This is not the case for distance measurements
which may have larger magnitudes. We use quantized distance measurement in the
formation controller design, while in the future work this may be relaxed by con-
sidering both quantized range and bearing measurements. A quantized formation
control system can be written as

ṗi = −
m

∑
k=1

bik q(||zk|| − dk) ẑk, (7.7)

where q is a quantization function, which can be the uniform quantizer or the log-
arithmic quantizer. We also assume that all the agents use the same quantizer q(·),
and their initial positions start with non-collocated positions (i.e. zk(0) 6= 0 for all k).

Remark 16. One may wonder why there is not use of the quantization feedback in the form
of q(||zk||), i.e. the direct quantized distance measurement, in the control (7.7). We note
three reasons for choosing q(||zk|| − dk) instead of q(||zk||):

• In rigid formation control, the control objective is to stabilize the actual distances be-
tween neighboring agents to prescribed values. If one chooses the quantization strategy
in the form of q(||zk||), then this control objective may not be achieved. To this end,
the quantization strategy q(||zk|| − dk) used in (7.7) can be interpreted as a digital
distance sensor with an embedded or prescribed offset (where the offset is the desired
distance dk).

• In the case of non-uniform quantizers (e.g., logarithmic quantizer), the quantization
accuracy usually increases when the quantizer input approaches the desired state (which
is the origin in this case). Thus, when the formation approaches closer to the target
formation, a higher quantization accuracy (if possible) is required, and this cannot be
achieved if one uses the quantization function (e.g., logarithmic quantization) on the
actual distance in the form of q(||zk||).

• We will further show in Section 7.4 that the chosen quantization strategy q(||zk|| −
dk) will specialize to a simple and effective quantizer with coarse binary distance
measurement.

In the presence of quantized measurement and feedback, the right-hand side of
(7.7) is discontinuous and we will consider the following differential inclusion

ṗi ∈ F
[

m

∑
k=1

bik q(||zk|| − dk) ẑk

]

. (7.8)
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In the following, we define the distance error for edge k as ek = ||zk|| − dk. 1 We
then calculate the differential inclusion F (q(ek)) which will be used in later analysis.
In the case of a symmetric uniform quantizer, the differential inclusion F (qu(ek)) can
be calculated as

F (qu(ek)) =

{
hδu, ek ∈

(
(h − 1

2 )δu, (h + 1
2 )δu

)
, h ∈ Z;

[hδu, (h + 1)δu], ek = (h + 1
2 )δu, h ∈ Z.

Note that ekF (qu(ek)) ≥ 0 for all ek, and ekF (qu(ek)) = 0 if and only if ek ∈ [− δu
2 , δu

2 ].
In the case of a logarithmic quantizer, the differential inclusion F (ql(ek)) can be

calculated as

F (ql(ek)) =

{

sign(ek)exp(qu(ln|ek|)), ek 6= e(h+
1
2 )δu , h ∈ Z;

[exp(hδu), exp((h + 1)δu)], ek = e(h+
1
2 )δu , h ∈ Z.

Also note that ekF (ql(ek)) > 0 for all ek 6= 0, and ekF (qu(ek)) = 0 if and only if
ek = 0.

We define the distance error vector as e = [e1, e2, . . . , em]⊤. Then in a compact
form, one can rewrite the dynamics of (7.8) as

ṗ ∈ F
[

− BDẑ q
(

e(col
k

(
‖zk‖

))]

. (7.9)

In order not to overload the notation, here by ẑ we exclusively mean the vector-wise
normalization of z, therefore Dẑ in the above equation and in the sequel is defined as
Dẑ = diag{ẑ1, ..., ẑm}. This notation rule will also be applied to z̃ in the sequel. Note
that the differential inclusion F (q(e)) with the vector e is defined according to the
product rule of Filippov’s calculus properties; see Appendix 7.8.

7.3.2 Properties of quantized formation control systems

We first discuss the solution issue of the formation control system (7.8). However, it
is more convenient to focus on the dynamics of the relative position vector z, which
can be derived from (7.8) as follows

ż = B
⊤

ṗ ∈ F
[

− B
⊤

BDẑ q
(

e(col
k

(
‖zk‖

))]

. (7.10)

First note that at any non-collocated finite initial point p(0), the right-hand side of
(7.8) and of (7.10) is measurable and locally essentially bounded. Thus, the existence
of a local Filippov solution of (7.8) and of (7.10) starting at such initial points is
guaranteed.

We then derive a dynamical system from (7.9) to describe the evolution of the
distance error vector e. According to the definition of the distance error ek, ek is a
smooth function of zk. Thus, by using the calculus property shown in (7.30) and

1Note that the definition of the distance error is different to the one defined in Chapter 2.
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Theorem 14 (in the Appendix), one can show ėk exists and ėk = 1
‖zk‖z⊤k żk holds al-

most everywhere. The dynamics for the distance error vector e can be obtained in a
compact form as

ė = −Dz̃R(z) ṗ, a. e.

∈ −F
[

Dz̃R(z)R⊤(z)Dz̃q(e)
]

, a. e. (7.11)

Again, the existence of a local Filippov solution of (7.11) starting with a non-collocated
finite initial point p(0) is guaranteed. In the next section, we will also show that the
solutions to (7.11) (as well as the solutions to (7.8) and (7.10)) are bounded and can
be extended to t → ∞ when agents’ initial positions are chosen non-collocated and
close to a target formation shape. Also, as shown in Lemma 2 in Chapter 2, when the
formation shape is close to the desired one, the entries of the matrix R(z)R⊤(z) are
continuously differentiable functions of e. Since the nonzero entries of the diagonal
matrix Dz̃ are of the form 1

‖zk‖ which are also continuously differentiable functions
of e, we conclude that the system described in (7.11) is a self-contained system, and
we will call it the distance error system in the sequel.

Finally, we show some additional properties of the formation control system with
quantized information. Note that through this chapter we assume that the underly-
ing graph modelling inter-agent interactions is undirected.

Lemma 27. In the presence of the uniform/logarithmic quantizer, the formation centroid
remains stationary.

Proof. Denote by pc ∈ R
d the center of the mass of the formation, i.e., pc =

1
n ∑

n
i=1 pi =

1
n (1n ⊗ Id×d)

⊤p. By applying the calculus property shown in (7.30) (in the Appendix),
one has

ṗc =
1
n
(1n ⊗ Id×d)

⊤ ṗ

∈− 1
n
(1n ⊗ Id×d)

⊤R⊤(z)Dz̃F [q(e(z))] for a.e. t. (7.12)

Note that (1n ⊗ Id×d)
⊤R⊤(z) = 0. Therefore,

ṗc ∈− 1
n
(1n ⊗ Id×d)

⊤R⊤(z)Dz̃F [q(e(z))] = {0} for a.e. t. (7.13)

Thus ṗc = 0 for a.e. t, which indicates that the position of the formation centroid
remains constant.

Lemma 28. To implement the control, each agent can use its own coordinate system to
measure the relative position (quantized distance and unquantized bearing) and a global co-
ordinate system is not involved.

Proof. The proof is omitted but it can be inferred by following similarly the proof in
e.g. [Krick et al., 2009], [Sun et al., 2016a] (or the SE(d) invariance principle in [Vasile
et al., 2015])
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7.3.3 Convergence analysis

In this section we aim to prove the following convergence result.

Theorem 11. Suppose the target formation is infinitesimally and minimally rigid and the
initial formation shape is close to the target formation shape.

• In the case of a uniform quantizer, the formation converges locally to an approximate
and static shape defined by the set Fapprox = {e|ek ∈ [− δu

2 , δu
2 ], k ∈ {1, . . . , m}};

• In the case of a logarithmic quantizer, the formation converges locally to a static target
formation shape.

In the proof we will use the Lyapunov theory of nonsmooth analysis, for which
we construct a Lyapunov function candidate as

V(e) =
m

∑
k=1

Vk(ek), with Vk(ek) =
∫ ek

0
q(s)ds. (7.14)

Before giving the proof of Theorem 11, we first show some properties of the function
V defined in (7.14). For the definition of function regularity in nonsmooth analysis,
see Appendix 7.8.

Lemma 29. The function V constructed in (7.14) is positive semidefinite, and is regular
everywhere.

Proof. The positive semidefiniteness of V is obvious from the property of the quanti-
zation functions qu and ql . Note that V(e) = 0 if and only if e ∈ {e|ek ∈ [− δu

2 , δu
2 ], k ∈

{1, . . . , m}} for a uniform quantizer qu, or when e = 0 for a logarithmic quantizer ql .
The proof for the regularity is quite long; it is omitted here but follows similarly to
the proof of [Liu et al., 2012, Lemma 6].

An observation that supports the regularity statement of V is that V is continu-
ously differentiable almost everywhere, while at the nondifferentiable points V has
corners of convex type (see discussions in [Clarke, 2013, Page 200]). Furthermore,
according to the definition of generalized derivative in the appendix Section 7.8, one
can calculate the generalized derivative of Vk (for the case of a uniform quantizer) as

∂Vk =

{
[hδu, (h + 1)δu], ek = (h + 1

2 )δu, h ∈ Z

q(ek), elsewise

Similarly, one can also calculate the generalized derivative of Vk(ek) for the case of
a logarithmic quantizer (which is omitted here). The generalized derivative of V(e)
can be obtained by the product rule (see [Cortés, 2008]). Now we are ready to prove
Theorem 11.

Proof. We choose the Lyapunov function constructed in (7.14) for the distance error
system (7.11) with discontinuous right-hand side. Note that R(z)R⊤(z) and Dz̃ are
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positive definite matrices at the desired formation shape. Similarly to the analysis
in [Sun et al., 2016a] (or in [Garcia de Marina et al., 2016b]), we define a sub-level
set B(ρ) = {e : V(e) ≤ ρ} for some suitably small ρ, such that when e ∈ B(ρ)
the formation is infinitesimally minimally rigid, and R(z)R⊤(z) and Dz̃ are positive
definite. Note that the defined sub-level set B(ρ) is compact. Note also that the
matrix Q(e) := Dz̃R(z)R⊤(z)Dz̃ is also positive definite when e ∈ B(ρ), and we
rewrite the distance error system as ė ∈ F [−Q(e)q(e)].

The regularity of V shown in Lemma 29 allows us to employ the nonsmooth
Lyapunov theorem (shown in Appendix 7.8) to develop the stability analysis. We
calculate the set-valued derivative of V along the trajectory of the distance error
system (7.11). By applying (7.30), one can obtain

V̇(e)(7.11) ∈ L̃(7.11)V(e) = {a ∈ R|∃v ∈ ė(7.11),

such that ζ⊤v = a, ∀ζ ∈ ∂V(e)}. (7.15)

Note that the set L̃(7.11)V(e) could be empty, and in this case we adopt the convention
that max(∅) = −∞. When it is not empty, there exists v ∈ −Q(e)q(e) such that
ζ⊤v = a for all ζ ∈ ∂V(e). A natural choice of v is to set v ∈ −Q(e)ζ, with which
one can obtain a = −q⊤(e)Q(e)q(e). Let λ̄min denote the smallest eigenvalue of Q(e)
when e(p) is in the compact set B (i.e. λ̄min = min

e∈B
λ(Q(e)) > 0). Then if the set

L̃(7.11)V(e) is not empty, one can show

max(L̃(7.11)V(e)) ≤ −λ̄minq(e)⊤q(e) (7.16)

and if the set L̃(7.11)V(e) is empty, one has max(L̃(7.11)V(e)) = −∞. Note that both
cases imply that V is non-increasing, and consequently the Filippov solution e(t) of
(7.11) is bounded. Thus, all solutions to (7.11) (as well as the solutions to (7.8)) are
bounded and can be extended to t = ∞ (i.e., there is no finite escape time).

We now divide the rest of the proof into two parts, according to different quan-
tizers:

• The case of uniform quantizers: it can be seen that max(L̃(7.11)V(e)) ≤ 0 for
all e ∈ B(ρ) and 0 ∈ max(L̃(7.11)V(e)) if and only if e ∈ Fapprox. Also note that
Fapprox is compact, and is positively invariant for the distance error system (7.11)
(i.e. if the initial formation is such that e(0) ∈ Fapprox, then all agents are static
and e(t) ∈ Fapprox for all t). According to the nonsmooth invariance principle
shown in Theorem 15 (in Appendix 7.8), the first part of the convergence result
is proved. Since this is a convergence to a bounded set, the convergence is
achieved within a finite time. Note from (7.7) the final formation is stationary.

• The case of logarithmic quantizers: it can be seen that max(L̃(7.11)V(e)) ≤ 0
for all e ∈ B(ρ) and 0 ∈ max(L̃(7.11)V(e)) if and only if e = 0. According to
the nonsmooth invariance principle shown in Theorem 15, the second part of
the convergence result is proved. Also note from (7.7) the final formation is
stationary.
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The proof is thus completed.

7.4 A special quantizer: formation control with binary dis-

tance information

7.4.1 Rigid formation control with coarse measurements

In this section we consider the special case in which each agent uses very coarse
distance measurements, in the sense that it only needs to detect whether the current
distance to each of its neighbors is greater or smaller than the desired distance. This
gives rise to a special quantizer defined by the following signum function:

sign(x) =







1 when x > 0;
0 when x = 0;
−1 when x < 0.

Accordingly, we obtain the following rigid formation control system with binary
distance measurements:

ṗi = −
m

∑
k=1

biksign(||zk|| − dk) ẑk (7.17)

Remark 17. Formation control using the signum function has been discussed in several
previous papers. In [Zhao et al., 2014], a finite-time convergence was established for stabi-
lization of cyclic formations using binary bearing-only measurements. The paper [Liu et al.,
2014] studied the stabilization control of a cyclic triangular formation with the controller
(7.17). Here we extend such controllers to stabilize general undirected formation which are
minimally and infinitesimally rigid. The above controller (7.17) can also be seen as a high-
dimensional extension of the one-dimensional formation controller studied in [De Persis et al.,
2010]. Also, note that the right-hand side of (7.17) is composed of the sum of a unit vector
multiplied by a signum function. This implies that the formation controller (7.17) is of special
interest in practice since the control action is explicitly upper bounded by the cardinality of
the set of neighbors for each agent i, which prevents potential implementation problems due
to saturation.

Again, we consider the Filippov solution to the formation control system (7.17).
The differential inclusion F (sign(ek)) can be calculated as

F (sign(ek)) =







1 ‖zk‖ > dk,
[−1, 1], ‖zk‖ = dk,
−1 ‖zk‖ < dk.

In a compact form, the rigid formation system (7.17) can be rewritten as

ṗ ∈ F [−R⊤(z)Dz̃sign(e)], (7.18)
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where sign(e) is defined in a component-wise way.
Note that the right-hand side of (7.18) is measurable and essentially bounded at

any non-collocated and finite point p, and the existence of a local Filippov solution
to (7.18) is guaranteed from such an initial point p(0). In the following analysis we
will also show that the solutions are bounded and complete.

Similar to the analysis in deriving the distance error system shown in Section
7.3.2, the distance error system with binary distance information can be obtained as

ė ∈ F [−Dz̃R(z)R⊤(z)Dz̃sign(e)], a. e. (7.19)

Again, similar to the analysis for (7.11), one can also show that (7.19) is a self-
contained system when e takes values locally around the origin.

7.4.2 Convergence analysis

The main result in this section is stated in the following convergence theorem for the
formation controller (7.18) with binary distance information.

Theorem 12. Suppose the target formation is infinitesimally and minimally rigid, the initial
formation shape is close to the target formation shape, and the formation controller (7.17)
with binary distance information is applied.

• The formation converges locally to a static target formation shape;

• The convergence is achieved within a finite time upper bounded by T∗ = ‖e(0)‖1
λ̄min

where

λ̄min is defined in the proof.

Proof. Part of the proof for this theorem is similar to the proof of Theorem 11. Choose
the Lyapunov function defined as V = ∑

m
k=1 Vk(ek) with Vk(ek) = |ek| for the distance

error system (7.19). Note that V is a convex and regular function of e. Also V is
locally Lipschitz at e = 0 and is continuously differentiable at all other points. The
generalized derivative of Vk(ek) can be calculated as

∂Vk =







1, ek > 0;
[−1, 1], ek = 0;
−1, ek < 0.

and the generalized derivative of V can be calculated similarly via the product rule
(see [Cortés, 2008]). We define a sub-level set B(ρ) = {e : V(e) ≤ ρ} for some suitably
small ρ, such that when e ∈ B(ρ) the formation is infinitesimally minimally rigid and
R(z)R⊤(z) and Dz̃ are positive definite. Now the matrix Q(e) := Dz̃R(z)R⊤(z)Dz̃ is
also positive definite when e ∈ B(ρ). Let λ̄min denote the smallest eigenvalue of Q(e)
when e(p) is in the compact set B (i.e. λ̄min = min

e∈B
λ(Q(e)) > 0).

In the following, we calculate the set-valued derivative of V along the trajectory
described by the differential inclusion (7.19). The argument follows similarly to the
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analysis in the proof of Theorem 11. By applying (7.30), the set-valued derivative is
described by

V̇(e)(7.19) ∈ L̃(7.19)V(e) = {a ∈ R|∃v ∈ ė(7.19),

such that ζ⊤v = a, ∀ζ ∈ ∂V(e)}. (7.20)

If the set L̃(7.19)V(e) is not empty, there exists v ∈ −Q(e)sign(e) such that ζ⊤v = a
for all ζ ∈ ∂V(e). A natural choice of v is to set v ∈ −Q(e)ζ, with which one can
obtain a = −sign⊤(e)Q(e)sign(e). Then one can further show

max(L̃(7.19)V(e)) ≤ −λ̄minsign(e)⊤sign(e), (7.21)

if the set is not empty, while if it is empty we adopt the convention max(L̃(7.19)V(e)) =
−∞. Note that this implies that V is non-increasing, and consequently the Filippov
solution e(t) is bounded. Thus, all solutions to (7.19) (as well as the solutions to
(7.18)) are complete and can be extended to t = ∞ (i.e., there is no finite escape time).
It can be seen that max(L̃(7.19)V(e)) ≤ 0 for all e ∈ B(ρ) and 0 ∈ max(L̃(7.19)V(e))
if and only if e = 0. According to the nonsmooth invariance principle shown in
Theorem 15, the asymptotic convergence is proved.

We then prove the stronger convergence result, i.e., the finite-time convergence.
From the definition of the sign function in (7.17), there holds sign(e)⊤sign(e) > 1 for
any e 6= 0, which implies

max(L̃(7.19)V(e)) ≤ −λ̄min (7.22)

for any e 6= 0. Thus, by applying Theorem 17 (in the Appendix), any solution starting
at e(0) ∈ B(ρ) reaches the origin in finite time, and the convergence time is upper
bounded by T∗ = V(e(0))/λ̄min = ‖e(0)‖1/λ̄min.

Remark 18. (Dealing with chattering) In the controller (7.17) the sign function is used,
which may cause chattering when the formation is very close to the desired one (i.e. when e is
very close to the origin). Possible solutions to eliminate the chattering include the following:

• Add deadzone to the sign function around the origin (similar to the case of uniform
quantizers; see Part 1 of Theorem 11). This will give rise to a trade-off in the conver-
gence, i.e., the distance error does not converge to the origin but to a bounded set, the
size of which depends on how large the deadzone parameter is chosen;

• Use the hysteresis principle in the quantization function design;

• Use the self-triggering principle, as in [Persis and Frasca, 2013].

The adoption of the above techniques to avoid chattering will be discussed in future research.
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(a) (b) 

Figure 7.2: (a) Symmetric uniform quantizer function, defined in (7.2). (b) Asymmet-
ric uniform quantizer function, defined in (7.23).

7.5 Asymmetric uniform quantizer

In [Liu et al., 2012], it has been shown that when an asymmetric uniform quantizer
(defined below) is applied to double-integrator consensus dynamics some undesir-
able motions may occur. In this section we investigate whether there are undesired
motions for rigid formation control in the presence of an asymmetric uniform quan-
tizer.

We consider the following asymmetric uniform quantizer (the same as in [Liu et al.,
2012]), defined by

q∗u(x) = δu

(⌊
x
δu

⌋)

, (7.23)

where δu is a positive number and ⌊a⌋ , a ∈ R denotes the greatest integer that is less
than or equal to a. For a comparison of the uniform quantizers defined in (7.2) and in
(7.23), see Figure 7.2.

7.5.1 Motivating example: two-agent formation case

We first consider a two-agent formation case. Suppose two agents are controlled
to achieve an inter-agent distance of d12 with the quantization function (7.23). The
system dynamics for agents 1 and 2 can be described, respectively, as

ṗ1 = q∗u (||z1|| − d12) ẑ1 (7.24)

and

ṗ2 = −q∗u (||z1|| − d12) ẑ1 (7.25)

where z1 = p2 − p1, and q∗u(·) denotes the asymmetric uniform quantizer in (7.23).

Lemma 30. Consider the two-agent formation control system (7.24) and (7.25) with the
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asymmetric quantization function (7.23).

• If the initial distance between agents 1 and 2 is greater than d12 + δu, then the inter-
agent distance ‖z‖ will converge to d12 + δu and the final formation will be stationary;

• If the initial distance between agents 1 and 2 is smaller than the desired distance d12,
then the inter-agent distance ‖z‖ will converge to the desired distance d12 and the final
formation will be stationary;

• If the initial distance between agents 1 and 2 is between d12 and d12 + δu, then both
agents 1 and 2 are stationary and the inter-agent distance ‖z‖ remains unchanged.

The proof is obvious and is omitted here as it can be inferred from previous
proofs.

Remark 19. In the above example it can be seen that in the case of an asymmetric uni-
form quantizer, there exist no undesired motions, which is different to the result observed in
[Liu et al., 2012] which showed unbounded velocities. Apart from the difference in system
dynamics under discussions, the key difference that leads to the distinct behaviors is that
when the asymmetric quantizer is applied to the consensus dynamics (which is to quantize
a vector), there holds F [q∗u(ri − rj)] + F [q∗u(rj − ri)] = −δu when rj − ri 6= kδu, where
rj − ri denotes the relative position vector (see Section 5 of [Liu et al., 2012]). Note that in
the above formation controller, the quantization applies only to the distance error term (i.e.
q∗u (‖p2 − p1‖ − d12)) which is a scalar, and the asymmetric property of the quantizer only
affects the convergence of the distance term.

7.5.2 General formation case

We consider the general formation case with more than two agents, in which each
agent employs asymmetric uniform quantizers in individual controllers.

Theorem 13. Suppose each individual agent takes the asymmetric uniform quantizer (7.23)
in the quantized formation controller (7.7). Then the inter-agent distances converge to the set

Faym = {e|ek ∈ [0, δu], k ∈ {1, . . . , m}}.

The proof is omitted here as it can be directly inferred from previous proofs.

7.6 Illustrative examples and simulations

In this section we show several examples to illustrate the theoretical results obtained
in previous sections. In the following illustrative examples we consider the stabi-
lization control of a five-agent minimally rigid formation in the 3-D space. The un-
derlying graph describes a double tetrahedron shape of nine edges, and the desired
distances for all edges are set as 6. 2 The initial positions are chosen such that the

2Note that the realization of a target formation with the given nine desired distances is not unique
up to rotation and translation [Hendrickson, 1992].
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Figure 7.3: Stabilization control of a rigid formation: symmetric uniform quantiza-
tion case. Left: the trajectories of five agents and the final formation shape. Right:

Time evolutions of the distance errors.

initial formation is infinitesimally rigid and is close to a target formation shape. For
all simulations, we set the quantization gain as δu = 0.5.

Agents trajectories, the final formation shape and the evolutions of nine distance
errors under symmetric uniform quantization and under logarithmic quantization
are shown in Figure 7.3 and Figure 7.4, respectively. It is obvious from these two
figures that with symmetric uniform quantizer the formation errors converge to the
bounded set Fapprox = {e|ek ∈ [−0.25, 0.25], k ∈ {1, . . . , m}}, and with the logarithmic
quantizer the formation converges to the target shape, which are consistent with the
theoretical results in Theorem 11.

The formation convergence behavior with binary distance measurements under
the quantization strategy (7.17) is depicted in Figure 7.5. It can be seen from Figure
7.5 that with very coarsely quantized distance measurement via a simple signum
function as in (7.17), the formation converges to the target shape within a finite time,
but the price to be paid is the occurrence of chattering (as shown in the right part of
Figure 7.5).

Finally, when the asymmetric uniform quantizer (7.23) is used in the formation
control system (7.7), the formation converges to an approximate one with all distance
errors converging to the bounded set Faym = {e|ek ∈ [0, 0.5], k ∈ {1, . . . , m}}, as
shown in Figure 7.6. This supports the conclusion of Theorem 13.

7.7 Concluding remarks

In this chapter we consider the rigid formation control problem with quantized dis-
tance measurements. We have discussed in detail the quantization effect on the
convergence of rigid formation shapes under two commonly-used quantizers. In
the case of the symmetric uniform quantizer, all distances will converge locally to a
bounded set, the size of which depends on the quantization error. In the case of the
logarithmic quantizer, all distances converge locally to the desired values. We also
consider a special quantizer with a signum function, which allows each agent to use
very coarse distance measurements (i.e. binary information on whether it is close
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Figure 7.4: Stabilization control of a rigid formation: logarithmic quantization case.
Left: the trajectories of five agents and the final formation shape. Right: Time evolu-

tions of the distance errors.
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Figure 7.5: Stabilization control of a rigid formation: binary measurement case. Left:
the trajectories of five agents and the final formation shape. Right: Time evolutions

of the distance errors.
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Figure 7.6: Stabilization control of a rigid formation: asymmetric uniform quantiza-
tion case. Left: the trajectories of five agents and the final formation shape. Right:

Time evolutions of the distance errors.
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or far away to neighboring agents with respect to the desired distances). We show
in this case the formation shape can still be achieved within a finite time. We fur-
ther discuss the case of an asymmetric quantizer applied in rigid formation control
system, and analyze the convergence property of distance errors.

7.8 Appendix: background and useful tools on nonsmooth

analysis

Calculus for computing differential inclusion

In the following we list some properties of calculus for computing Filippov’s differ-
ential inclusion.

1. Assume that f , g : R
m → R

n are locally bounded; then F [ f + g](x) ⊂ F [ f ](x)+
F [g](x).

2. Let g : R
m → R

n be C1 (i.e. continuously differentiable function), rank(Dg(x)) =
n and f : R

n → R
p be locally bounded; then F [ f ◦ g](x) = F [ f ](g(x)).

3. Let g : R
m → R

p×n be C0 (i.e. continuous function) and f : R
m → R

n be locally
bounded; then F [g f ](x) = g(x)F [ f ](x), where g f (x) := g(x) f (x) ∈ R

p.

4. Assume that f j : R
m → R

nj , j ∈ {1, 2, , · · · , N} are locally bounded; then

F
[

×N
j=1 f j

]

(x) ⊂ ×N
j=1F

[
f j
]
(x).

The proof for the above properties can be found in [Paden and Sastry, 1987].

A collection of definitions: generalized derivative and gradient

Definition 7. (see [Clarke, 1998]) Let f : R
m → R. The right directional derivative f ′(x; v)

of f at x in the direction of v ∈ R
d is defined as

f ′(x; v) = lim
h→0+

f (x + hv)− f (x)
h

(7.26)

Definition 8. (see [Clarke, 1998]) Let f : R
m → R. The generalized derivative f o(x; v) of

f at x in the direction of v ∈ R
d is defined as

f o(x; v) = lim sup
y→x

h→0+

f (y + hv)− f (y)
h

= lim
δ→0+
ǫ→0+

sup
y∈B(x,δ)
h→[0,ǫ)

f (y + hv)− f (y)
h

(7.27)

Definition 9. (see [Clarke, 1998]) A function f is called regular at x if f o(x; v) = f ′(x; v)
for all v ∈ R

d.
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Definition 10. (see [Clarke, 1998]) If f : R
m → R is locally Lipschitz, then its generalized

gradient ∂ f : R
d → 2R

d
is defined by

∂ f (x) = co{ lim
i→∞

▽ f (xi)|xi → x, xi /∈ S ∪ Ω f } (7.28)

where Ω f denotes the set of points where f fails to be differentiable and S ⊂ R
d is a set of

measure zero.

We refer the readers to [Clarke, 1998] for more discussions on generalized deriva-
tive and function regularity in nonsmooth analysis.

Lyapunov theory in nonsmooth analysis

Definition 11. (see [Cortés, 2008]) Given a locally Lipschitz function f : R
m → R, the

set-valued Lie derivative of f with respect to the Filippov set-valued map F [x] at x is defined
as

L̃F [X] f (x) = {a ∈ R|∃v ∈ F [X](x)

such that ζ⊤v = a, ∀ζ ∈ ∂ f (x)}. (7.29)

If F [X](x) takes convex and compact values, then for each x ∈ R
d, L̃F [X] f (x) is a

closed and bounded interval in R, possibly empty. For the empty set, we adopt the
convention max(∅) = −∞. If f is continuously differentiable at x, then

˙̄V(x) := L̃F [X] f (x) = {(∇ f )⊤ · v|v ∈ F [X](x)}. (7.30)

As discussed in [Cortés, 2008], the set-valued Lie derivative allows us to study how
a function f evolves along the solutions of a differential inclusion without having
to explicitly obtain the solutions. The usefulness of the set-valued Lie derivative is
highlighted by the following theorem.

Theorem 14. (see [Bacciotti and Ceragioli, 1999]) Let x : [t0, t1] → R
n be a Filippov

solution of ẋ(t) ∈ F [X]x(t). Let V(x) be a locally Lipschitz and regular function. Then
(d/dt)V(x(t)) = ∇V⊤ ẋ exists almost everywhere and

(d/dt)V(x(t)) ∈ ˙̄V(x) (7.31)

holds almost everywhere.

Theorem 15. (see [Bacciotti and Ceragioli, 1999]) Let f : R
m → R be a locally Lipschitz

and regular function. Let S be compact and strongly invariant for the differential inclusion
ẋ(t) ∈ F [X]x(t), and assume that maxL̃F [X] f (x) ≤ 0 for each x ∈ S. Define ZX, f =

{x ∈ R
d|0 ∈ L̃F [X] f (x)}. Then all solutions x : [0, ∞) → R

d of the differential inclusion
converge to the largest weakly invariant set M contained in

S ∩ ZX, f . (7.32)
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The word weakly, as opposed to the word strongly, is used in the above theorem
to indicate that at least one solution (as opposed to all solutions) satisfies the invariant
set property. The proof can be found in [Bacciotti and Ceragioli, 1999]. For more
discussions on regular functions and weakly invariant sets, we refer the readers to
[Cortés, 2008].

Additional calculus rules

The following theorem provides a convenient way to calculate the generalized deriva-
tive and to apply Lyapunov theory for nonsmooth systems.

Theorem 16. (see [Shevitz et al., 1994]) Let x(·) be a Filippov solution to ẋ = f (x, t) on
an interval containing t and V : R

n × R → R be a Lipschitz and regular function. Then
V(x(t), t) is absolutely continuous, (d/dt)V(x(t), t) exists almost everywhere and

d
dt

V(x(t), t) ∈a.e. ˙̃V(x(t), t) (7.33)

where

˙̃V(x(t), t) :=
⋂

ξ∈∂V(x(t),t)

ξ⊤
( F [ f ](x(t), t)

1

)

(7.34)

The proof can be found in [Shevitz et al., 1994]. Note there also holds ˙̄V(x) ⊂
˙̃V(x(t)) (see e.g. [Bacciotti and Ceragioli, 1999]).

Finite-time convergence

The following theorem further characterizes finite time convergence under stronger
conditions than the above Theorem 15.

Theorem 17. (see [Cortés, 2006]) Under the same assumptions of Theorem 15, further as-
sume that there exists a neighborhood U of S∩ ZX, f in S such that maxL̃F [X] f (x) ≤ −ǫ < 0
a.e. on U (S ∩ ZX, f ). Then any solution x : [0, ∞) → R

d of the differential inclusion start-
ing at x0 ∈ S reaches S ∩ ZX, f in finite time. Moreover, if U = S, then the convergence time
is upper bounded by ( f (x0)− minx∈S f (x))/ǫ.

The proof can be found in [Cortés, 2006].
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Chapter 8

Rigid formation control of

double-integrator systems

Chapter summary

In this chapter, we move our focus from formation control systems modelled by
single integrators (e.g. those considered in previous chapters) to formation systems
modelled by double integrators. Two kinds of double-integrator formation systems are
considered, namely, formation stabilization systems and flocking control systems.
Novel observations on the measurement requirement, the null space and eigenvalues
of the system Jacobian matrix will be provided, which reveal important properties of
system dynamics and the associated convergence results. We also establish some new
links between single-integrator formation systems and double-integrator formation
systems via a parameterized Hamiltonian system, which in addition provide novel
stability criteria for different equilibria in double-integrator formation systems by
using available results from single-integrator formation systems.

8.1 Introduction

8.1.1 Background and related work

In the literature, most results on rigid formation control are based on simple single-
integrator formation models; see e.g. [Dimarogonas and Johansson, 2008], [Krick
et al., 2009], [Dörfler and Francis, 2010], [Helmke and Anderson, 2013], [Tian and
Wang, 2013], [Anderson and Helmke, 2014], [Rozenheck et al., 2015] and the survey
[Oh et al., 2015]. In this chapter, we will consider formation control systems modelled
by double integrators, motivated by the fact that double-integrator systems serve as
a somewhat more natural models to describe many real-life control systems.

Double-integrator models have been studied extensively for flocking control of
multi-agent systems, partly originated by the pioneering works [Olfati-Saber, 2006]
and [Tanner et al., 2007]. Another active research topic on double-integrator mod-
els which received particular interest in recent years is the linear consensus problem
[Ren, 2008], [Cao et al., 2013]. However, for rigid formation control systems modelled

113
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by double integrators, the results appear rather sparsely in the literature, with some
discussions in [Dimarogonas and Johansson, 2008], [Oh and Ahn, 2014a], [Sun et al.,
2014b], [Ramazani et al., 2015; Cai and De Queiroz, 2014; Zhang et al., 2015]. A recent
paper [Deghat et al., 2016] showed the possibility of combining a linear consensus
algorithm and a nonlinear rigid shape controller to achieve a desired rigid flocking
movement. Note that all these papers only focused on some local convergence anal-
ysis. Due to the nonlinear property of the formation controller for stabilizing rigid
shapes, a full characterization of the convergence analysis is quite challenging. Ac-
tually, there are many open issues for rigid formation control systems when they are
modelled by double integrators, which include equilibrium properties, convergence
analysis, robustness issues, etc.

This chapter provides new results dealing with the system dynamics and con-
vergence property of double-integrator rigid formation systems. We will consider
two types of formation systems: formation stabilization systems and flocking control
systems. The main contributions of this chapter are summarized as follows. First, we
will characterize null spaces and zero eigenvalues of the Jacobian matrix for the vec-
tor function of double-integrator formation systems, which will reveal several system
dynamical properties. Second, compared with the analysis and results in [Dimarog-
onas and Johansson, 2008], [Oh and Ahn, 2014a], [Sun et al., 2014b], [Ramazani et al.,
2015; Cai and De Queiroz, 2014; Zhang et al., 2015] and [Deghat et al., 2016], we go
well beyond the local convergence analysis of the correct equilibrium set (i.e., those
equilibria corresponding to correct formation shapes). Instead, we aim to provide
new characterizations for the convergence properties of any equilibrium set, includ-
ing those that do not correspond to a desired equilibrium. Third, invariant properties
and links between single-integrator formation systems and double-integrator forma-
tion systems will be established. This will be done by employing a parameterized
Hamiltonian system, an idea which was also used for power network analysis [Chi-
ang and Wu, 1988], [Chiang and Chu, 1995], oscillator networks [Dörfler and Bullo,
2011], and was briefly mentioned in a recent paper [Oh and Ahn, 2014a] on for-
mation control. We will show how available results on characterizing equilibrium
properties in single-integrator rigid formation systems (e.g. [Krick et al., 2009; Dör-
fler and Francis, 2010; Park et al., 2014; Sun et al., 2015a]) can be readily extended
to the stability analysis for double-integrator formation systems. In our opinion, this
is the most revealing of any method for analyzing the stability of double-integrator
systems, since it ties their properties so closely to those of the more easily understood
single-integrator rigid formation systems.

We mention that in this chapter we do not focus on proposing novel controllers
for stabilizing rigid formation shapes. Instead, we study double-integrator rigid for-
mation systems with the popular formation stabilization controller shown in (2.10),
while the main purposes of this chapter are to provide novel understanding and
more insights on the system dynamics and convergence analysis which will help the
implementation of such formation controllers in practice.
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8.1.2 Chapter organization

The remaining parts of this chapter are organized as follows. Section 8.2 briefly
reviews some background and then introduces the relevant system equations. Sec-
tion 8.3 presents results on local convergence and Jacobian matrix analysis using
linearization technique. By exploring a parameterized Hamiltonian system, Section
8.4 establishes certain invariance principles, which help to characterize novel equilib-
rium properties on double-integrator formation systems by relating them to available
results in single-integrator formation systems. Extensions of the results to flocking
formation systems are discussed in Section 8.5. Some illustrative examples with sim-
ulation results are shown in Section 8.6. Finally, conclusions are provided in Section
8.7 which closes this chapter.

8.2 Motion equations

Let dkij
denote the desired length of edge k which links agents i and j. We assume that

the set of desired lengths is realizable in the given d-dimensional Euclidean space,
i.e., there exists a formation in R

d whose inter-agent distances correspond to the
desired values. 1 In the following, the set of all formations (G, p) which satisfies the
distance constraints in R

d is referred to as the set of target formations. 2 We assume
here that the target formation is infinitesimally rigid.

8.2.1 Introduction of double-integrator formation control systems

For the aim of comparisons and convenience of analysis, we recall the following
formation control system modelled by a single integrator from Chapter 2:

ṗi = − ∑
j∈Ni

(‖pi − pj‖2 − d2
kij
)(pi − pj), i = 1, . . . , n (8.1)

which defines the steepest descent gradient flow of the distance potential function

V(p) =
1
4 ∑

(i,j)∈E
(‖pi − pj‖2 − d2

kij
)2 (8.2)

In a compact form, we can rewrite (8.1) as

ṗ(t) = −∇pV = −R⊤(z)e(z) (8.3)

Two kinds of double-integrator rigid formation systems will be considered in this

1Suppose the target formation can be realized in an ambient space R
d (thus it can be realized in

any ambient space with dimension d′ > d). Then there exists an ambient space R
d̃ with a minimal

dimension d̃, such that the target formation cannot be realized in R
d′ for any d′ < d̃. In later analysis

of this chapter we will also occasionally use the concept minimal dimension when appropriate.
2Again, we remark that the realization of a target formation with the given desired distances may

not be unique up to rotation and translation [Hendrickson, 1992].
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chapter. The first one is a model with velocity damping term, which aims to stabilize
a desired rigid shape and to achieve a stationary formation (i.e. the final formation
should come to a rest). The formation system can be described by the following
form:

ṗi = vi

v̇i = −kivi − ∑
j∈Ni

(‖pi − pj‖2 − d2
kij
)(pi − pj) (8.4)

where vi ∈ R
d is the velocity of agent i and ki is a positive control gain which is

freely selectable by the system designer. Define

ψ(p, v) :=
1
2 ∑

i∈V
‖vi‖2 + V(p) (8.5)

Then in a compact form, we can rewrite the above double-integrator formation stabiliza-
tion system as

Hformation :

ṗ = ∇vψ = v

v̇ = −K∇vψ −∇pψ

= −Kv − R⊤(z)e(z)

(8.6)

where K = K ⊗ Id×d and K is a diagonal gain matrix with the i-th diagonal entry
being ki.

The other model is for achieving a flocking behavior with both velocity consen-
sus and shape stabilization. The overall system can be described by the following
equations 3

ṗi = vi

v̇i = ∑
j∈Ni

(vj − vi)− ∑
j∈Ni

(‖pi − pj‖2 − d2
kij
)(pi − pj) (8.7)

In a compact form, we can rewrite the above double-integrator flocking control sys-
tem as

Hflocking :
ṗ = ∇vψ = v

v̇ = −Lv − R⊤(z)e(z)
(8.8)

where L = L ⊗ Id×d and L is the Laplacian matrix for the underlying undirected and

3Note that there are two types of velocity consensus algorithms depending on different underly-
ing graphs: one is based on undirected underlying graph and the other is based on directed graph (for
achieving a leader-following control). Furthermore, the underlying graph for achieving velocity con-
sensus can be different to the one of shape stabilization (see relevant discussions in [Deghat et al., 2016;
Qin and Yu, 2013]). In this chapter we focus on the first one (with undirected underlying graph for the
velocity consensus) and assume the same underlying graph for both shape stabilization and velocity
consensus.



§8.2 Motion equations 117

connected graph.
It is noted that different distance potential functions, other than the one in (8.2),

can be chosen for stabilizing rigid formation shapes, which will give rise to different
types of formation controllers. For the case of general potential functions, we have
provided a unified approach for conducting convergence analysis in Chapter 4 (or
see relevant discussions in [Sun et al., 2016a]). In this chapter, we will focus on the
potential function (8.2) to model double-integrator formation systems, while more
general potential functions can also be used by following the similar analysis to that
in Chapter 4.

8.2.2 Independence of global coordinate frame

We state the following lemma on the coordinate system requirement for implement-
ing the formation control law (8.6) and the flocking control law (8.8).

Lemma 31. Suppose each agent can access its own velocity (which can be measured in its
own coordinate basis). Then the implementation of the double-integrator formation control
system (8.6) does not require all agents’ coordinate systems to be aligned. Furthermore,
suppose each agent can measure the relative velocity to its neighbors in addition to its own
velocity (which can be measured in its own coordinate basis). Then the implementation of the
double-integrator flocking system (8.8) does not require all agents’ coordinate systems to be
aligned.

Proof. The proof for the first statement in the lemma can be handled in the same way
as the proof of the second statement, so we will focus on the proof of the second
statement.

Suppose agent i’s position and velocity in the global coordinate system ∑g are
measured as pg

i and vg
i , while pi

i, pi
j, vi

i, and vi
j denote agent i’s and its neighboring

agent j’s position and velocity, respectively, measured by agent i’s local coordinate
system. The controller for agent i is implemented in its local coordinate as

p̈i
i = ui

i = ∑
j∈Ni

(vi
j − vi

i)− ∑
j∈Ni

(‖pi
i − pi

j‖2 − d2
kij
)(pi

i − pi
j) (8.9)

Clearly, there exist a rotation matrix Qi ∈ SO(d) and a translation vector ϑi ∈ R
d,

such that pi
j = Qi p

g
j + ϑi and vi

j − vi
i = Qi(v

g
j − vg

i ). We rewrite the controller (8.9)
for agent i in the global coordinate system ∑g as follows

p̈g
i = Q−1

i ui
i = Q−1

i

(

∑
j∈Ni

(vi
j − vi

i)− ∑
j∈Ni

(‖pi
i − pi

j‖2 − d2
kij
)(pi

i − pi
j)

)

= ∑
j∈Ni

(vg
j − vg

i )− ∑
j∈Ni

(‖pg
i − pg

j ‖2 − d2
kij
)Q−1

i Qi(pg
i − pg

j )

= ∑
j∈Ni

(vg
j − vg

i )− ∑
j∈Ni

(‖pg
i − pg

j ‖2 − d2
kij
)(pg

i − pg
j ) (8.10)
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which has the same form as (8.9). Since Qi and ϑi are chosen arbitrarily, the above
equation indicates that the designed controllers for all agents are independent of
the global coordinate basis. The proof for the first statement can be handled by
modifying vi

j − vi
i as vi

i in the above equation, and a similar argument then follows.

In the remaining analysis in later sections, in order to avoid complicated notation,
we will drop the superscript in the controller term (8.9) or (8.10) and still use the
expression of (8.4) or (8.7) for the convenience of analysis.

Remark 20. The above controller property, termed the translational and rotational invariance
property (or the SE(d) invariance property [Vasile et al., 2015]), has been well studied for
single-integrator rigid formation control systems (see e.g. [Krick et al., 2009]). To the best of
our knowledge, the corresponding property for double-integrator rigid formation systems has
been largely ignored in the previous literature. Lemma 31 highlights the advantage of rigid
formation controllers, in contrast to the displacement-based formation control strategy (see
the survey [Oh et al., 2015]).

Remark 21. In practical formation control one needs to distinguish different ways of obtain-
ing the required relative information for each individual agent (e.g., either by measurement
solely at one agent or measurement additionally at neighboring agents with communication).
In the statement of Lemma 31, we assume the relative velocity vj − vi is measured using
agent i’s local coordinate system which is usually the case for implementing a formation con-
trol system in practice. If alternatively, the neighboring agents’ velocities were transmitted
to agent i, then adjacent agents would need to align their local coordinate systems or have
the knowledge of the orientation of a common coordinate system so that the communicated
velocity information can be correctly interpreted.

8.3 System dynamics

8.3.1 Equilibrium sets for single- and double-integrator formation sys-
tems

We first describe the equilibrium set of each formation system. Suppose the distance
potential (8.2) and the target formation are the same for the single-integrator system
(8.3) and double-integrator systems (8.6) (used in the composite potential (8.5)) and
(8.8). Denote the set of all equilibria of the single-integrator system (8.3) as

MS := {p∗ : ∇pV(p∗) = 0} (8.11)

First note that the distance potential V defined in (8.2) for shape stabilization only
depends on distances between agents and thus is invariant with respect to translation
and rotation. Such symmetries imply that any formation system that involves the
gradient of the distance potential V in (8.2) does not have isolated equilibrium points.
Instead, it possesses continuum equilibria which form orbits under the SE(d) group
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action. To fix ideas, let us define the SE(d) group action to a configuration P =
[p1, p2, · · · , pn] of n agents’ positions with each pi ∈ R

d :

OP := SE(d) · P = [Qp1 + ϑ,Qp2 + ϑ, · · · ,Qpn + ϑ] (8.12)

where Q ∈ SO(d) and ϑ ∈ R
d are components of SE(d). From this it is obvious to

see that if p∗ is an equilibrium point of (8.3), then any point in the orbit generated
by the group action OP∗ in (8.12) is also an equilibrium point. Similarly, according
to the notion used in [Helmke and Anderson, 2013] and [Chen et al., 2015], we will
call the orbit associated with an equilibrium point p∗ generated by the group action
OP∗ an equilibrium orbit. As a consequence, the Hessian for the gradient-based rigid
formation system (8.3) is always singular, with parts of the null spaces induced by
the shape invariance under rotation and translation. If the Hessian at an equilibrium
point p∗ of (8.3) is nonsingular in the normal direction to OP∗ , then we will say it is
normal hyperbolic.

Similarly, for the corresponding double-integrator formation system (8.6), the set
of all equilibria can be described as

MD := {(p∗, v∗) : ∇pV(p∗) = 0, v∗ = 0 ∈ R
dn} (8.13)

Finally, for the double-integrator flocking system (8.8), we define the set

MF := {(p∗, v∗) : ∇pV(p∗) = 0,Lv∗ = 0} = {(p∗, v∗) : ∇pV(p∗) = 0, v∗ = 1n ⊗ vc}
(8.14)

where vc is the average velocity. In the later analysis, we will call the set (8.14) defined
above the set of equilibrium orbits for the double-integrator flocking system, according
to the fact that all agents will finally show a steady equilibrium motion which is a
flocking motion. The above discussions on continuum equilibria and equilibrium
orbits under SE(d) group action for the single-integrator system (8.3) also apply to
the property of the equilibrium set defined above for the double-integrator formation
stabilization system (8.6) and flocking system (8.8).

By the definition in (8.14), vc is the velocity of the formation centroid. The ex-
istence of a constant vc, readily computable from the initial conditions, is shown by
the following lemma.

Lemma 32. For the double-integrator flocking system (8.8), the velocity of the formation
centroid vc remains fixed throughout the motion.

Proof. Denote by pc ∈ R
d the center of the mass of the formation, i.e., pc =

1
n ∑

n
i=1 pi =

1
n (1n ⊗ Id×d)

⊤p and thus

vc = ṗc =
1
n
(1n ⊗ Id×d)

⊤ ṗ (8.15)
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From (8.8), one can show

v̇c =
1
n
(1n ⊗ Id×d)

⊤ p̈

=
1
n
(1n ⊗ Id×d)

⊤(−Lv − R⊤e)

=− 1
n
(1n ⊗ Id×d)

⊤Lv − 1
n

(

Z⊤(H ⊗ Id×d)(1n ⊗ Id×d)
)⊤

e (8.16)

Note that (1n ⊗ Id×d)
⊤Lv = 0. Also because null(H) = span{1n} there holds

(

Z⊤(H ⊗ Id×d)(1n ⊗ Id×d)
)⊤

e = 0.

Thus v̇c = 0, which indicates that the velocity of the formation centroid remains
constant.

Based on Lemma 32, a commonly-used approach for stability analysis of the
flocking control system is to perform a linear system transformation by separating
the motion of the formation centroid (see e.g., [Deghat et al., 2016]). We will also
discuss this point in Section 8.5.

In the following, we introduce the notion of set stability [Hahn and Baartz, 1967,
Chapter V] which will be used later for the stability analysis of equilibrium sets or
equilibrium orbits. Define the distance between a point p and a set S as

dist(p, S) = infy∈S‖p − y‖

This point-to-set distance allows us to define the stability for a set, which can be seen
as a straightforward extension of the well known definition of that for an equilib-
rium point. We omit the detailed definitions here, and refer the readers to [Hahn
and Baartz, 1967, Chapter V] for definitions and explanations on concepts such as set
stability, asymptotic set stability and exponential set stability. The slight difference
between the set stability and a closely related concept termed orbital stability (see [Wig-
gins, 2003, Chapter 1.2] for detailed discussions) was discussed in [Hahn and Baartz,
1967, Page 171], and there will be no confusion caused by this slight difference in the
context of formation control (since an equilibrium orbit under SE(d) group action is
also defined as an equilibrium set). Therefore, when no confusion is expected, we
will use these two terms orbital stability and set stability interchangeably.

In general, rigid formation control systems exhibit multiple equilibrium orbits
(see discussions in [Anderson and Helmke, 2014], [Sun et al., 2015a]). We call the
set of equilibria at which the correct shape is attained the correct equilibrium set (or
correct equilibrium orbit), and we denote it by Mc

S := {p∗ : e(p∗) = 0} for the single-
integrator system (8.3), Mc

D = {(p∗, 0) : e(p∗) = 0} for the double-integrator for-
mation system (8.6), and Mc

F = {(p∗, v∗) : e(p∗) = 0, v∗ = 1n ⊗ vc} for the double-
integrator flocking system (8.8) 4. Note that a correct equilibrium set is characterized

4In the set Mc
F all agents under the control law of (8.8) reach a steady flocking behavior in which
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by the condition e(p∗) = 0, i.e., the set of desired distances at such an equilibrium is
achieved. Correspondingly, one can also define incorrect equilibrium set by following
the property that at such an equilibrium the set of desired distances is not achieved
(i.e. e(p∗) 6= 0).

Remark 22. We also note that the set of correct equilibria (up to translation, rotation and
reflection) may not form a unique equilibrium orbit. This is because the realization of a target
formation with given distances (up to translation, rotation and reflection) may not be unique
due to e.g., flex or flip ambiguity [Hendrickson, 1992]. In other words, two correct equilibria
may not correspond to congruent formations, since for minimally rigid formations with more
than three agents, there always exist noncongruent equilibria pairs obtainable by either a flex
or flip ambiguity [Anderson et al., 2008b].

8.3.2 General results on convergence analysis

The following convergence results for double-integrator formation systems (8.6) and
(8.8) are well known, and are based on a standard Lyapunov argument and LaSalle’s
Invariance Principle.

Lemma 33. Each trajectory of the double-integrator formation system (8.6) converges to an
invariant set in MD. Also, each trajectory of the double-integrator flocking system (8.8)
converges to an invariant set in MF.

The proof can be shown by following similar steps from e.g. [Deghat et al., 2016],
[Sun et al., 2016b] and is omitted here.

The following result characterizes the local convergence of the correct equilibrium
set.

Corollary 5. There exists a neighborhood of Mc
D such that the trajectory of (8.6) converges

locally to an equilibrium point in Mc
D. Also, there exists a neighborhood of Mc

F such that
the trajectory of (8.8) converges locally to Mc

F.

We remark that the first statement in Corollary 5 indeed shows a stronger con-
vergence result, i.e., the convergence to a point in the equilibrium set (rather than the
convergence to the set).

The local convergence to the correct equilibrium set for double-integrator forma-
tion systems as shown in Corollary 5 has been proved in several previous papers
based on different assumptions on graph topologies and formation characteriza-
tions. For example, in [Dimarogonas and Johansson, 2008], the local convergence for
double-integrator formation stabilization system (8.6) was proved by assuming that
the underlying topology is a tree (and in this case the local convergence to a correct
equilibrium set can be extended to almost global convergence). In [Sun et al., 2014b],
the local convergence for the double-integrator flocking system (8.8) was proved by

they also achieve a velocity consensus. The term equilibrium to describe the set Mc
F for (8.8) may

seem unusual since at a point of Mc
F the right-hand side of (8.8) is not zero. However, we keep this

terminology as it will be clear if one considers a reduced-order flocking system by factoring out the
translational motion; see discussions in Section 8.4.3.
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assuming that the target formation is minimally and infinitesimally rigid, via Lya-
punov arguments and LaSalle’s Invariance Principle. A more recent paper [Deghat
et al., 2016] presented a comprehensive study for the double-integrator formation
flocking system (8.8), by employing the linearization approach and the Center Man-

ifold Theorem [Carr, 1981]. Note that [Deghat et al., 2016] only assumed that the
target formation is infinitesimally rigid, which is a more relaxed assumption than
that in [Sun et al., 2014b]. Also note that [Deghat et al., 2016] mostly focused on the
stability analysis for the formation flocking system (8.8), while the analysis and proof
can be directly extended to the case of formation stabilization system (8.6). Hence,
we omit the proof for Corollary 5 here and refer the readers to the above references.

Note that the above results only concern the local convergence property of the
correct equilibrium set. In Section 8.4.2 we will prove the instability for a special set
of incorrect equilibria called degenerate equilibria after we establish a link between
single-integrator rigid formation systems and double-integrator rigid formation sys-
tems.

8.3.3 Jacobian matrix analysis

In this subsection we will show new results on system dynamics at a general equi-
librium by analyzing the Jacobian matrix via the linearization technique. From this
subsection we will focus on the double-integrator formation control system (8.6) for
the convenience of analysis, but note that most results can be extended to the corre-
sponding flocking model (8.8) with slight modifications. In Section 8.5, we will show
how to extend the results from the formation control system (8.6) to the flocking
control system (8.8).

Denote the Jacobian matrix of the right-hand vector function of (8.3) at an equi-
librium point p∗ as

Jp∗ =
∂(−R⊤(p)e(p))

∂p

∣
∣
∣
∣

p=p∗

=

(

−∂R⊤(p)
∂p

e(p)− R⊤(p)
∂e(p)

∂p

) ∣
∣
∣
∣

p=p∗
(8.17)

Note that because (8.3) describes a gradient descent flow of V(p), Jp∗ is actually the
Hessian matrix of −V(p) and thus is symmetric. Define a diagonal matrix E =
diag(e1, e2, · · · , em) ∈ R

m×m. Then an explicit expression of Jp∗ can be obtained as
(see e.g. [Anderson and Helmke, 2014], [Sun et al., 2015a])

Jp∗ = −2R(p∗)⊤R(p∗)− (H⊤E(p∗)H)⊗ Id×d

= H̄⊤
(

−2Z(p∗)Z(p∗)⊤ − E(p∗)⊗ Id×d

)

H̄ (8.18)

Note that, as can be seen from the above formula (8.18), the null space of Jp∗ is
always non-empty. For example, in the 2-D case, the dimension of null(Jp∗) is at least
three, with two dimensions reflecting the translation invariance and one dimension
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reflecting the rotation invariance of a rigid shape. In the general case, suppose the
inter-agent distances defining a target formation are realized in a given ambient space
with a minimal dimension d. Then at a correct equilibrium at which E(p∗) is a zero
matrix, there holds Jp∗ = −2R(p∗)⊤R(p∗) and the dimension of the null space of Jp∗

is d(d + 1)/2 according to Theorem 1 in Chapter 2.
The Jacobian matrix of the double-integrator formation system (8.6) at an equi-

librium point (p∗, 0) can be calculated as

J(p∗, 0) =

[
0dn×dn Idn×dn

Jp∗ −K

]

(8.19)

where Jp∗ is the Jacobian matrix of (8.3) defined in (8.17), and K is the diagonal gain
matrix defined in (8.6).

The following result characterizes the null space of J(p∗, 0).

Theorem 18. Suppose the null space of Jp∗ is spanned by a set of l linearly independent vec-
tors νj and denote the null space by null(Jp∗) = span{ν1, · · · , νj, · · · , νl}. Define the corre-
sponding vector υj = [ν⊤j , 0⊤]⊤. Then there holds null(J(p∗, 0)) = span{υ1, · · · , υj, · · · , υl}.

Proof. Suppose υj = [υ⊤
jp, υ⊤

jv]
⊤ is a vector in the null space of J(p∗, 0), that is

[
0dn×dn Idn×dn

Jp∗ −K

] [
υjp

υjv

]

= 0 (8.20)

which can be simplified as

υjv = 0

Jp∗υjp −Kυjv = 0 (8.21)

The above equation implies that υjp is the corresponding vector in the null space of
Jp∗ . Thus, there holds νj := υjp. Also note that each vector νj in the null space of
Jp∗ gives rise to one vector υj in the null space of J(p∗, 0). Since each νj is linearly
independent, it follows that each υj is also linearly independent which serves as a
valid basis for the null space of J(p∗, 0). Hence the statement is proved.

The above analysis further leads to the following lemma, which can be easily
proved by observing the size of the matrices and the dimensions of the null spaces.

Lemma 34. Suppose at an equilibrium p∗, the rank of the Jacobian matrix Jp∗ for the single-
integrator system (8.3) is k. Then at the corresponding equilibrium (p∗, 0) the rank of the
Jacobian matrix J(p∗, 0) for the double-integrator system (8.6) is dn + k.

We next show a result on an eigenvalue property of J(p∗, 0).

Lemma 35. With the positive definite gain matrix K as defined previously, the eigenvalues
of J(p∗, 0) cannot be purely imaginary.
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Proof. Let λ be an eigenvalue of J(p∗, 0) with the corresponding eigenvector denoted
by υλ = [υ⊤

λ,p, υ⊤
λ,v]

⊤,

[
0dn×dn Idn×dn

Jp∗ −K

] [
υλ,p

υλ,v

]

= λ

[
υλ,p

υλ,v

]

(8.22)

The above equation can be further rewritten as

υλ,v = λυλ,p

Jp∗υλ,p −Kυλ,v = λυλ,v (8.23)

Multiplying υ∗
λ,p (i.e. the complex conjugate transpose of υλ,p) to both sides of the

above equation, one can get

λ2υ∗
λ,pυλ,p + λυ∗

λ,pKυλ,p − υ∗
λ,p Jp∗υλ,p = 0 (8.24)

Note that υλ,p cannot be a zero vector (otherwise υλ will be a zero vector which then
contradicts the fact that υλ is an eigenvector). Also note that the coefficient υ∗

λ,pKυλ,p

is positive because K is positive definite. Hence there cannot exist purely imaginary
roots to the above quadratic equation (8.24), which implies that the eigenvalues of
J(p∗, 0) cannot be purely imaginary at any equilibrium.

Remark 23. Note that when K = 0 (the damping term is zero) then the above double-
integrator system (8.6) describes a Hamiltonian system. We note one consequence of the
above Lemma 35: The non-existence of purely imaginary eigenvalues of the Jacobian J(p∗, 0)
implies that Hopf bifurcation in the double-integrator formation system (8.6) cannot occur.

In the next section, we will interpret these various properties (including the null
space properties) of the Hessian and of the Jacobian in the light of convergence of
rigid formation systems.

8.4 Perspectives from a parameterized double-integrator for-

mation system

One of the main aims of this chapter is to characterize the convergence properties of
the double-integrator system (8.6) (and (8.8)) in terms of those of the reduced-order
single-integrator formation system (8.3). In this section, we will consider a family
of parameterized formation systems which provides a bridge between the single-
integrator gradient formation system (8.3) and the double-integrator formation sys-
tem (8.6) (and further the flocking control system (8.8)). Two extreme values of the
relevant parameter effectively correspond to single- and double-integrator formation
systems. Intermediate values of the parameter do not correspond to formations, but
are relevant to the definition of a sort of homotopy between the two types of forma-
tion. This parameterization-based idea is inspired by [Chiang and Wu, 1988], [Chiang
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and Chu, 1995] and [Dörfler and Bullo, 2011], in which similar approaches were em-
ployed for the stability and convergence analysis of Hamiltonian-like power systems
([Chiang and Wu, 1988], [Chiang and Chu, 1995]) and oscillator networks ([Dörfler
and Bullo, 2011]). A recent paper [Oh and Ahn, 2014a] has briefly discussed this
idea in the rigid formation shape control with double-integrator systems. The use of
this idea in the context of formation control with shape stabilization and flocking is
however novel, which will reveal several important insights on the stability analysis
of different types of equilibrium points for double-integrator formation systems.

Consider the double-integrator system with a parameter λ ∈ [0, 1] in the follow-
ing form

Hλ :
[

ṗ
v̇

]

=

[ −λI (1 − λ)I
−(1 − λ)I −K

]

︸ ︷︷ ︸

=:Sλ

[ ∇pψ

∇vψ

]

(8.25)

In the case that λ = 0, the above system (8.25) reduces to the double-integrator
formation stabilization system shown in (8.6). In the case that λ = 1, the above
system (8.25) then reduces to the following uncoupled gradient system:

ṗ = −∇pψ

v̇ = −K∇vψ (8.26)

8.4.1 Invariance principles

In the following, we will prove an invariance result which represents a substantial
extension of that in [Oh and Ahn, 2014a]. This result helps to relate a gradient
system (8.26) and a double-integrator formation stabilization system (8.6) via the
parameterized Hamiltonian system (8.25).

Theorem 19. For the one-parameter family of dynamical systems Hλ in (8.25), the following
statements hold:

• Invariance of equilibrium sets: For all λ ∈ [0, 1], the equilibrium set of Hλ is given
by the set of critical points of the potential function ψ (i.e. the critical points of (8.26))
and is independent of λ;

• Invariance of the inertia: For any equilibrium of Hλ for all λ ∈ [0, 1], the inertia
of the Jacobian of the vector function of Hλ is equal to that of the Hessian of ψ and is
independent of λ.

Proof. Note that K is positive definite and is invertible. By the Schur Determinant
Formula [Zhang, 2006, Theorem 1.1] it follows from the definition of Sλ in (8.25)
that det(Sλ) = det(−K)det(−λI + (1 − λ)2(−K)−1), which is non-zero for all λ ∈
[0, 1]. Hence, the matrix Sλ is nonsingular for all λ ∈ [0, 1], which implies that the
equilibrium set of Hλ for which the right-hand side of (8.25) is zero is identical with
the equilibrium set for which the right-hand side of (8.26) is zero, irrespective of the
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value of λ ∈ [0, 1]. That is, the equilibrium set of Hλ is given by the critical points of
ψ: MHλ

= {(p∗, v∗) : ∇pψ(p∗) = 0,∇vψ(v∗) = 0} which is independent of the value
of λ. Thus the first statement is proved.

The proof of the second statement is inspired by [Dörfler and Bullo, 2011]. Denote
the Hessian of ψ as ∇2

p,vψ. The Jacobian of the vector function on the right-hand side
of (8.25) can be written as JHλ

= Sλ∇2
p,vψ. Denote A := −J⊤Hλ

, P := ∇2
p,vψ. By noting

that P is symmetric, one has

Q : = (AP + PA⊤) = P
(

−Sλ − S⊤
λ

)

P

= P
[

2λIdn×dn 0dn×dn

0dn×dn 2K

]

P (8.27)

It is obvious that Q � 0 for λ ≥ 0, and for λ 6= 0 we have null(Q) = null(P). Hence,
by [Carlson and Schneider, 1963, Theorem 5] one can conclude that the non-zero
inertia (i.e. the number of {ν+, ν−}) of A is the same as the non-zero inertia of P.
Also note that −JHλ

and −J⊤Hλ
have the same set of eigenvalues. These facts further

imply that the non-zero inertia of −JHλ
is determined by ∇2

p,vψ and is independent
of λ ∈ (0, 1]. We then consider the case of λ = 0. Note that the eigenspace corre-
sponding to the eigenvalues with zero real parts of −JHλ

equals the eigenspace of
zero eigenvalues of ∇2

p,vψ for all λ ∈ [0, 1], which implies that the non-zero inertia
of JHλ

cannot change when λ = 0. In summary, the inertia of −JHλ
equals the in-

ertia of ∇2
p,vψ for all λ ∈ [0, 1], and thus the stability property of an equilibrium for

(8.25) is determined by the inertia of the Hessian ∇2
p,vψ at that equilibrium and is

independent of λ.

Remark 24. The above Theorem 19 can be seen as a generalization of [Oh and Ahn, 2014a,
Theorem 4.1] (which again is an extension of [Dörfler and Bullo, 2011, Theorem 5.1]). This
theorem was presented and used in [Oh and Ahn, 2014a] to show the local asymptotic
convergence of a formation stabilization system with double integrators which focused on
two special cases: λ = 1 and λ = 0. However, no proof was shown in [Oh and Ahn, 2014a].
We note that a proof for the above result is non-trivial, and we also extend the invariance
results to the more general case for all λ ∈ [0, 1]. Furthermore, a by-product of this Theorem
19 shows the equivalence between the eigenspace of the eigenvalues with zero real parts of
J(p∗, 0) and the null space of Sλ∇2

p,vψ, which generalizes the result in Theorem 18. In the
following analysis in Section 8.4.3, we will show that Theorem 19 offers us additional insights
to show the local exponential convergence.

8.4.2 Relating double-integrator formation systems to single-integrator for-
mation systems

We now show more results to characterize different equilibrium sets of the double-
integrator formation systems, by relating them to the available results in single-
integrator formation systems (e.g. the results discussed in Chapter 3). The following
results are direct consequences of Theorem 19.



§8.4 Perspectives from a parameterized double-integrator formation system 127

Corollary 6. Suppose at an equilibrium p∗ in the equilibrium set MS, the Jacobian matrix
Jp∗ for the single-integrator system (8.3) has k (resp. j) positive (resp. negative) eigenvalues.
Then at the corresponding equilibrium (p∗, 0) in the equilibrium set MD for the double-
integrator system (8.6), the Jacobian matrix J(p∗, 0) has k (resp. dn + j) eigenvalues with
positive (resp. negative) real parts.

As shown in Theorem 18, the Jacobian matrix J(p∗, 0) for (8.6) is always singular
at every equilibrium point. Also, the Jacobian matrix Jp∗ (which is the Hessian of the
negative potential −V) is always singular, with parts of the null space induced by
the rotation and translation invariance of rigid formation shapes.

By assuming that the Hessian is normal hyperbolic (i.e. there is no extra zero
eigenvalue for the Hessian other than those induced by shape invariance), Part II of
Theorem 19 allows us to employ the inertia information of the Jacobian and of the
Hessian to determine the local stability of an equilibrium set.

Corollary 7. (Property of equilibria in single- and double-integrator formation sys-

tems) Suppose the Hessian of the distance potential is normal hyperbolic at a particular
equilibrium orbit, and for the single-integrator formation system (8.3), that particular equi-
librium set is stable (resp. unstable). Then for the double-integrator formation system (8.6),
the corresponding equilibrium set is stable (resp. unstable).

Theorem 19 and Corollary 7 imply that available results on stability analysis
in single-integrator systems (e.g. [Krick et al., 2009], [Dörfler and Francis, 2010;
Park et al., 2014; Sun et al., 2015a] and Chapter 3) can be applied here to deter-
mine whether an equilibrium set MD(p∗, 0) is stable or not for the double-integrator
formation stabilization system under question. In the following we will show an
example.

Since the formation control system is a nonlinear system and it exhibits multiple
equilibrium orbits, it is challenging to give a complete picture of the convergence
property for different equilibrium sets. The following theorem borrows an exist-
ing result for single-integrator formation systems from Chapter 3 and confirms the
instability for a particular set of incorrect equilibria.

In the following analysis, we assume that the target formation is realizable by a
nondegenerate configuration in R

d. 5 Given an equilibrium p∗ ∈ R
nd for the single-

integrator formation system (8.3), we construct a matrix Z∗ = [z∗1 , z∗2 , · · · , z∗m] ∈ R
d×m

with the i-th column being the i-th relative position vector z∗i (see Chapter 2 for the
definition and construction of relative position vectors z). We call an equilibrium
point p∗ with rank(Z∗) < d an incorrect degenerate equilibrium for the single-integrator
formation system (8.3), according to the fact that the affine space that embeds p∗ has
dimension less than d and at such a degenerate equilibrium the distance potential
function V(p) is not zero (i.e. the target shape is not achieved at p∗). For more prop-
erties such as existence of such equilibrium points, see Chapter 3. Accordingly, one

5For example, a target triangle formation shape with three given distances satisfying the triangle
inequality can be realized in R

2 but not in R
1. In this case, any collinear equilibrium that only spans a

d = 1-dimensional affine space is a degenerate equilibrium.
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can define the degenerate equilibrium set for the double-integrator formation system
(8.6) as

M̃D := {(p∗, v∗) : ∇pV(p∗) = 0, rank(Z∗) < d, v∗ = 0 ∈ R
dn} (8.28)

Examples of degenerate equilibria include collinear equilibria (i.e. the equilibrium po-
sitions that span a one-dimensional affine space) for formations when agents live in
R

2, or coplanar equilibria (i.e. the equilibrium positions that span a two-dimensional
affine space) for formations when agents live in R

3. In the previous literature, prop-
erties of degenerate equilibria have been studied for single-integrator formation sys-
tems with some special formation shapes. For example, [Dörfler and Francis, 2010]
and [Cao et al., 2011] studied in detail the collinear equilibria for a triangular forma-
tion target shape, while [Park et al., 2013] studied the properties of collinear equilib-
ria and coplanar equilibria for a regular tetrahedron target shape. Note under the
assumption that the target formation is realizable by a nondegenerate configuration
in R

d, the set of degenerate equilibria is a subset of the set of incorrect equilibria at
which the formation has an incorrect shape.

According to the above invariance principle, one can obtain the following stability
result.

Theorem 20. (Instability of degenerate equilibria) Suppose the target formation is re-
alizable by a nondegenerate configuration in R

d. A degenerate equilibrium set M̃D for the
double-integrator formation stabilization system (8.6) is unstable.

Proof. In Chapter 3, it has been proved that any degenerate equilibrium p∗ is unstable
for the single-integrator formation system (8.3). As a consequence of Theorem 19, the
degenerate equilibrium set M̃D characterized by the rank condition rank(Z∗) < d
is unstable for the corresponding double-integrator formation stabilization system
(8.6).

Remark 25. Note that in Theorem 20 we do not need to assume that the Hessian of −V
(and the associated Jacobian J(p∗, 0)) are normal hyperbolic. This is because the existence
of at least one negative eigenvalue ensures the existence of unstable manifold, which can be
uniquely determined and is tangent to the unstable subspaces corresponding to the negative
eigenvalue (c.f. the Nonhyperbolic Hartman-Grobman Theorem [Meiss, 2007, Page 189,
Theorem 5.9]). As proved in [Sun et al., 2015a], unstable degenerate equilibria for single-
integrator formation systems are actually either local maximum or saddle points, and for
saddle points there exist initial positions (the set of which has measure zero) forming an affine
space of lower dimensions such that the single-integrator formation system cannot escape
from that lower dimensional space and will converge to one of such degenerate equilibria.
We will verify in simulations that, for double-integrator formation systems, even if agents
start with initial positions that span an affine space with a dimension lower than the minimal
dimension, the formation system can still converge to a correct formation shape instead of a
degenerate equilibrium with an incorrect shape.

Remark 26. In many published papers on rigid formation control (see e.g. [Krick et al.,
2009; Dörfler and Francis, 2010; Deghat et al., 2016; Sun et al., 2015a; Oh et al., 2015]),
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it is a standard assumption that the target formation is infinitesimally rigid, and during
the convergence process the instantaneous formation shape at an arbitrary instant of time is
assumed also to be infinitesimally rigid (i.e., the rigidity matrix always attains its maximum
rank at any time during the convergence process). This cannot be achieved for arbitrary
initial conditions, and for this reason most papers only consider local convergence, that is, the
initial formation is chosen to be infinitesimally rigid and close to the target formation. Under
this assumption, the infinitesimal rigidity of the instantaneous formation shape during the
convergence can be guaranteed due to the gradient property of the dynamical system (which
ensures that the norm of the distance error vector is non-increasing) and the continuous
dependence of the rigidity matrix on agents’ positions. In Section 8.4.3 we will also use this
assumption to ensure local exponential convergence. The rank-preserving property for single-
integrator rigid formation control systems, established in Chapter 3 and [Sun et al., 2015a],
is however a different concept, which in most cases is not related to the rank of the rigidity
matrix R. This can be seen from the definition of degenerate equilibria in (8.28) with the
rank condition of the matrix P. The rank of P is the dimension of the ambient affine space
containing all agents, and is not the same to the rank of R (or the infinitesimal rigidity as
shown in Theorem 1). We have tried to apply the rank-preserving theory (see [Helmke and
Moore, 1994, Chapter 5]) to determine whether the global preservation of the infinitesimal
rigidity holds during the convergence under the gradient flow (8.3), but cannot obtain the
result. This is because one cannot transform the matrix differential system involving R into
the standard form of a rank-preserving matrix differential equation shown in [Helmke and
Moore, 1994, Lemma 1.22, Chapter 5]. There are some results on the global preservation of
infinitesimal rigidity during the convergence for special formations (e.g. triangular formation
[Dörfler and Francis, 2010], or tetrahedral formation [Park et al., 2014]), since in these special
cases the rank of P can be determined from the rank of R.

The following result further clarifies the topological conjugacy 6 of the two trajec-
tories from (8.6) and (8.26), which indicates that they can be continuously deformed
to match each other while preserving the parameterization of time.

Theorem 21. (Topological conjugacy) Consider the double-integrator formation system
(8.6) and the uncoupled single-integrator formation gradient system (8.26) modelled by the
same undirected and rigid underlying graph and the same target formation. Then locally near
a correct equilibrium set, their trajectories are topologically conjugate.

Proof. The proof is inspired by [Dörfler and Bullo, 2011, Theorem 5.3]. As discussed
above, any correct equilibrium in the set of correct equilibria (p∗, 0) for (8.6) is not
isolated but forms an equilibrium manifold with dimension d(d + 1)/2, which is in-
duced by translational and rotational invariance. However, by factoring out the trans-
lational and rotational invariance, the correct equilibrium corresponds to an isolated
equilibrium in a quotient space. Such a quotient space for the linearized system of
(8.6) can be identified with the orthogonal complement of the null space induced by

6Two flows ϕt : A → A and ψt : B → B are conjugate if there exists a homeomorphism h : A → B
such that for each x ∈ A and t ∈ R, there holds h(ϕt(x)) = ψt(h(x)). For more discussions on
topological conjugacy, the readers are referred to [Meiss, 2007, Chapter 4.7].
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shape invariance, and the Jacobian matrix J(p∗, 0) is normal hyperbolic (i.e. hyper-
bolic in that quotient space). According to the Hartman-Grobman Theorem [Meiss,
2007, Theorem 4.13], the trajectories of the vector fields (8.6) and (8.26) are locally
topologically conjugate to the flow generated by their respective linearized vector
fields near the correct equilibrium. Also as proved in Theorem 19, the linearized Ja-
cobian matrix for each flow (8.6) and (8.26) has the same hyperbolic inertia (besides
the same common center eigenspace of the same dimension induced by shape invari-
ance). According to [Meiss, 2007, Theorem 4.12], this indicates that the corresponding
linearized dynamics are topologically conjugate. In summary, the trajectories gener-
ated by the vector fields (8.6) and (8.26) are locally topologically conjugate near the
correct equilibrium set.

We note that such a topological conjugacy property has been observed in several
other practical systems modelled by double integrators, including power systems
[Chiang and Chu, 1995] and oscillator synchronization [Dörfler and Bullo, 2011].
Here we show that it also holds for rigid formation control systems.

8.4.3 Exponential convergence of double-integrator formation systems

The following analysis in particular shows the convergence to a point in a correct
equilibrium set and its convergence rate in double-integrator formation control sys-
tems under discussion. With a slight abuse of terminology, we will call the matrix
Jp∗ normal negative definite if its null space only consists of the subspace induced by
shape invariance and all non-zero eigenvalues are positive.

Lemma 36. (Local exponential convergence) The trajectory of (8.6) converges locally
exponentially fast to an equilibrium point (p∗, 0) in an equilibrium set, if and only if Jp∗

is normal negative definite at p∗ in the vector space orthogonal to the null space induced by
shape invariance.

The proof for Lemma 36 is omitted but can be easily inferred from Theorem 19
as well as Corollary 6 and Corollary 7. By the assumption that the target formation
is infinitesimally rigid, the above Lemma 36 indicates that the correct equilibrium
is exponentially stable. The following gives a more detailed explanation on this
exponential convergence statement.

Let us take 2-D formation systems as an example to interpret the above Lemma
36 and to determine the exponential convergence of double-integrator formation sys-
tems. From the characterization of the null space of the Jacobian matrix, the inertia
of the Jacobian matrix at a point in that particular equilibrium orbit is indepen-
dent of the choice of that point. If at an equilibrium point p∗ in a particular equi-
librium set, the Jacobian Jp∗ of a 2-D single-integrator system (8.3) has inertia as
{ν+, ν−, ν0} = {0, 2n − 3, 3}, then such equilibrium set is locally exponentially stable
for (8.3). Actually, by invoking the Center Manifold Theorem [Carr, 1981] and by
assuming that the target formation is infinitesimally rigid, it has been proven in [Krick
et al., 2009] that the position of each agent in the gradient system ṗ = −∇pψ in (8.26)
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converges locally exponentially fast to an equilibrium point in the correct equilibrium
set, with the equilibrium point dependent on the initial condition. 7

By combining this result with the statement in Lemma 36, one can show that
if at an equilibrium point (p∗, 0) in a particular equilibrium set MD(p∗, 0), the Ja-
cobian J(p∗, 0) of a 2-D double-integrator system (8.6) has inertia as {ν+, ν−, ν0} =
{0, 4n − 3, 3}, then such an equilibrium set is locally exponentially stable and the
trajectory of (8.6) converges locally exponentially fast to an equilibrium point in
this equilibrium set. In particular, if the target formation is infinitesimally rigid, then
the double-integrator formation system (8.6) converges locally exponentially fast to an
equilibrium point in the correct equilibrium set with a desired formation shape.

Furthermore, according to the definition of the distance error vector e in (2.11),
we can conclude from the above discussion that inter-agent distances also converge
locally exponentially fast to the desired values. It is worth mentioning that there ex-
ist other ways for proving local convergence for double-integrator formation systems
(see e.g. [Oh and Ahn, 2014a] by using Łojasiewicz’s inequality for a gradient flow,
[Jiang et al., 2017] with the usage of the Malkin theorem, and [Dimarogonas and Jo-
hansson, 2008], [Sun et al., 2014b], [Zhang et al., 2015] by invoking Barbalat’s Lemma
and Lyapunov argument), all without however showing how fast the convergence is.
Note that the exponential convergence delivered by our arguments is a crucial prop-
erty for studying robustness issues in rigid formation control systems [Mou et al.,
2016]. We mention that the key idea of Theorem 19 and Lemma 36 in this section
has been employed in a recent paper [Garcia de Marina et al., 2016b] to study a
double-integrator formation stabilization system with constant distance mismatches.
In our future research, we will show that the exponential convergence established in
this chapter is a key factor in explaining the robustness property of double-integrator
rigid formation system and flocking system in the presence of more general pertur-
bations.

8.5 Extensions to double-integrator flocking systems

At the beginning of Section 8.3 we have established explicit forms and some proper-
ties of equilibrium points for double-integrator flocking systems (8.8). In this section
we will provide brief discussions to show that the obtained results in previous sec-
tions on double-integrator formation stabilization systems (8.6) can be extended to
formation flocking systems (8.8). Note that in the formation flocking system, the
motion of the whole formation can be broken into a combination of two motions
[Deghat et al., 2016], i.e., that of the centroid, and that of the formation relative to
the centroid. The latter motion is like that already analyzed in the previous sections.
The former motion (that of the centroid) is simple to analyze. We now show how
this works.

7Another way for proving the exponential convergence is to focus on the relative position dynamics
or distance error dynamics; see e.g. [Dörfler and Francis, 2010; Sun et al., 2016a] and the exponential
stability analysis in Chapter 4.
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Recalling the notations in Section 8.3.1, we have used pc to denote the formation
centroid, and vc to denote the average velocity of all the agents, i.e., vc(t) = ṗc =
1
n ∑

n
i=1 vi(t). Observe that vc(t) is time-invariant as shown in Lemma 32. We then

define the relative position vector to the formation centroid as p̄i = pi − pc, and the
relative velocity vector v̄i = ˙̄pi = ṗi − ṗc. Note that there holds p̄i − p̄j = pi − pj

and v̄i − v̄j = vi − vj. Also note there holds ˙̄vi = ¨̄pi since vc is constant. Hence, one
can further transform (8.8) into the following equivalent system by factoring out the
formation centroid dynamics:

˙̄pi = v̄i

˙̄vi = ∑
j∈Ni

(v̄j − v̄i) + ∑
j∈Ni

ekij
( p̄j − p̄i) (8.29)

By introducing the composite relative position vector p̄ = [ p̄1, p̄2, · · · , p̄n]⊤ and the
velocity disagreement vector as v̄ = [v̄1, v̄2, · · · , v̄n]⊤, one can rewrite the above sys-
tem (8.29) in a compact form

˙̄p = v̄

˙̄v = −Lv̄ − R⊤( p̄)e( p̄) (8.30)

Since null(L) = span{1n}, there holds null(L) = span{1n ⊗ Id×d}. Thus L is positive
definite by restricting it to the vector space of span(1n ⊗ Id×d)

⊥ (where the superscript
⊥ denotes orthogonal complement) in which the velocity disagreement vector v̄ lives.
8 From this viewpoint, L serves the same role as the positive definite gain matrix K
in (8.6). Note that the equilibrium set MF of (8.8) can be re-stated in the new coor-
dinates as MF,(8.30) = {( p̄∗, v̄∗) : ∇ p̄V( p̄∗) = 0, v̄∗ = 0} for the transformed system
(8.30). Thus, the transformed system (8.30) has the same structure as the double-
integrator formation system (8.6), and all previous results on the equilibrium prop-
erties and parameterized system analysis for the double-integrator formation system
(8.6) can be readily extended to (8.30).

8.6 Illustrative examples on convergence

In this section we consider several simulation examples on rigid formation control in
the 3-D space. The target formation shape is supposed to be a double tetrahedron
formation with 9 edges, with the desired distances for each edge being 6. The initial
positions and initial velocities for each agent are chosen randomly, but we also ensure
that the initial formation shape is close to the target one. The formation stabilization
result is shown in Figure 8.1, which illustrates the trajectories of each agent, together
with the initial shape and final shape, and the trajectories of each distance error. The
formation flocking result is shown in Figure 8.2, which illustrates the trajectories of

8Another way to perform the system transformation is to define the velocity disagreement vector
with respect to the formation centroid velocity. Such a system transformation also gives rise to a reduced-
order double-integrator formation system, as discussed in [Deghat et al., 2016].
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Figure 8.1: Simulation on shape stabilization control of a double tetrahedron forma-
tion in the 3-D space with double-integrator systems.

each agent, the flocking behavior, and the trajectories of each distance error. It can
also be seen from simulations that the convergence of each distance error vector in
both cases is exponentially fast.

Note that the above examples only show local convergence to the target formation
shape. The following simulation shows a comparison of convergence results between
single-integrator formation models and double-integrator formation models. We as-
sume the same target formation shape as described above, and choose the initial
positions for all agents as p1(0) = [4, 4, 0]⊤, p2(0) = [0, 0, 0]⊤, p3(0) = [4, 0, 0]⊤,
p4(0) = [5, 0, 0]⊤ and p5(0) = [−4,−10, 0]⊤. The simulation result with single-
integrator model is depicted in Figure 8.3, which shows the convergence to an in-
correct formation shape in a degenerate 2-D plane when agents’ initial positions are
chosen in that plane (which has measure zero in the whole space R

3). The converged
equilibrium in this case is p∗1 = [3.2992, 3.8112, 0]⊤, p∗2 = [−1.5078, 0.2206, 0]⊤, p∗3 =
[4.0052,−2.1471, 0]⊤, p∗4 = [4.0052,−2.1471, 0]⊤ and p∗5 = [−0.8018,−5.7376, 0]⊤,
which span the same plane that contains the initial positions. The convergence to
an incorrect equilibrium (more specifically, a degenerate incorrect equilibrium) is
due to the rank-preserving property of single-integrator rigid formation systems as
discussed in [Sun et al., 2015a].

We then use the same initial positions (and random initial velocities) to perform
the simulation with double-integrator models, and observe the convergence to the
correct formation shape as shown in Figure 8.4. Actually, as proved in [Sun et al.,
2015a], the incorrect equilibrium formation illustrated in Figure 8.3 is a saddle point.
Such an equilibrium point is unstable for both single-integrator formation systems
and double-integrator formation systems (see Theorem 20). However, this simula-
tion also shows one advantage of using double-integrator formation models against
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Figure 8.2: Simulation on formation flocking control of a double tetrahedron forma-
tion in the 3-D space with double-integrator systems.

single-integrator formation models. For double-integrator formation systems, even
if one chooses initial positions that live in a lower-dimensional space, the forma-
tion system will not always live in that degenerate space. That is, double-integrator
formation systems can escape from degenerate positions (e.g., collinear positions or
coplanar positions) and thus will avoid the convergence to an incorrect degener-
ate equilibrium even if agents’ positions are initially placed in a lower dimensional
space. This is due to the fact that the rank-preserving property does not hold for rigid
formation systems modelled by double-integrator dynamics.

8.7 Concluding remarks

In this chapter, we have considered formation control systems modelled by double
integrators, which include the formation stabilization model and flocking control
model. Due to the multi-equilibrium property caused by the nonlinear formation
controller, a complete analysis of the convergence is quite challenging. This chap-
ter serves as a further step to understand the dynamical behavior of such formation
control systems. Novel properties of the system dynamics and convergence analysis
for different equilibria are discussed by analyzing certain properties of the linearized
systems and a parameterized Hamiltonian-like system. Some key results are sum-
marized as follows:

• We discuss the measurement requirement for individual agents and establish
the independence of a global coordinate frame for implementing the formation
controller.

• Certain properties of the Jacobian matrix (e.g. the rank, null spaces and eigen-
values) for double-integrator formation systems are characterized.
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Figure 8.3: Simulation on formation shape control of a double tetrahedron formation
in the 3-D space with single-integrator systems. The initial conditions are chosen to
be in a plane in the 3-D space, and the formation converges to an incorrect formation

shape that lives in that plane (i.e. an incorrect planar equilibrium formation).
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Figure 8.4: Simulation on formation shape control of a double tetrahedron forma-
tion in the 3-D space with double-integrator systems. The formation converges to a

correct formation shape, even if one chooses degenerate coplanar initial positions.
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• Invariance principles concerning the equilibrium set and local stability are es-
tablished for a family of parameterized Hamiltonian-like system, which builds
the link between single-integrator formation systems and double-integrator
formation systems. Thus, available results on equilibrium analysis in single-
integrator rigid formation systems reported in the vast literature can be ex-
tended to double-integrator formation systems. Note that the rank-preserving
property, as discussed in Chapter 3 for single-integrator formation systems,
does not hold for double-integrator formation systems.

• Several criteria for determining the stability and convergence of equilibrium
sets for double-integrator formation systems are proposed.



Chapter 9

Formation feasibility and motion

generation of networked

heterogeneous systems

Chapter summary

In this chapter, we discuss a general problem of formation feasibility for multi-agent
coordination control when individual agents have kinematics constraints modelled
by affine nonlinear control systems with possible drift terms. Such dynamics mod-
els include the single-integrator model and double-integrator model considered in
previous chapters, as well as other commonly-used models such as unicycle models
discussed in many papers. In this problem, all agents need to work cooperatively to
maintain a global formation task described by edge constraints. For such a multi-
agent group, we assume that different agents may have totally different dynamics,
which brings the problem of coordination control of networked heterogeneous sys-
tems. Based on the concepts of (affine) distribution and codistribution, we propose a
unified framework and an algebraic condition to determine the existence of feasible
motions under both kinematic constraints and formation constraints. In the case that
feasible motions exist, we propose a systematic procedure to obtain an equivalent
dynamical system which generates all types of feasible motions. Several examples
involving coordination control of constant-speed agents and heterogeneous agents
are provided to demonstrate the application of this coordination control framework.

9.1 Introduction

9.1.1 Background, motivation and related work

Collective coordination control of networked multi-agent systems has received con-
siderable attention in recent years, partly motivated by its applications in many areas
[Cao et al., 2013; Knorn et al., 2016]. A particular class of cooperative tasks for multi-
agent coordination is formation control, in which the control objective is to form
or maintain a prescribed geometric relationship for a group of spatially distributed

137
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agents [Oh et al., 2015]. Maintaining a formation is important in multi-agent coordi-
nation and in some cases would be a prerequisite for agents to perform additional
tasks such as surveillance, coverage, target detection, etc ([Egerstedt and Hu, 2001;
Mesbahi and Egerstedt, 2010]).

Given a predefined formation task assigned to a group of distributed agents, a
fundamental problem is to determine whether there exists a feasible trajectory for
such an agent group to maintain the formation task subject to both kinematics and
formation constraints. Formation feasibility was firstly discussed by P. Tabuada et.
al. in [Tabuada et al., 2005]. They employed tools in differential geometry and de-
rived an elegant criterion to analyze whether a networked agent group has feasible
motions to maintain the formation constraint. Later papers along this direction in-
clude [Maithripala et al., 2008], which proposed a similar geometric approach to
discuss some real-time formation control problems, including radar deception, for-
mation keeping and formation reconfiguration. As revealed in [Tabuada et al., 2005]
and [Maithripala et al., 2008], the central idea in the formation feasibility analysis
is the interplay of agents’ kinematic constraints and formation task constraints in
controlling a formation and in generating a feasible trajectory for all the agents.

The concept of formation feasibility in this chapter builds on the analysis in
[Tabuada et al., 2005], while here we present several extensions and generalizations to
this fundamental networked control problem. First, in contrast to the control system
model discussed in [Tabuada et al., 2005], in this chapter we consider agents’ dynam-
ics modelled by affine nonlinear control systems with possibly additional drift terms.
This is motivated by the fact that most real-life control systems have drift terms. We
note that affine nonlinear control systems with drift terms are very general in system
modelling and are also popular choices for nonlinear control system analysis in the
control community [Isidori, 1995]. One motivating example to consider agent dy-
namics with drift terms is the coordination control of constant-speed agents. Coordi-
nation control and collective circular motion with unit-speed agents or non-identical
constant-speed agents was reported in e. g. [Sepulchre et al., 2008], [Seyboth et al.,
2014]. More recently, the tracking control problem for multiple constant-speed agents
was discussed in [Sun et al., 2015c] which also revealed the performance limitations
in this coordination control problem. However, a general analysis on performance
feasibility and its relationship to the speed constraint is still lacking. The results in
this chapter will shed new insights to this coordination control problem.

Secondly, we further consider the case that individual agents in the networked
system may have totally different dynamics, a possibility which includes fully ac-
tuated agents, under-actuated agents, or agents with a nonholonomic constraint
and/or drift terms. Under this framework, we develop a fairly checkable condition
for the existence of feasible motions by including both heterogeneous agent dynam-
ics and formation constraints. Thus, the coordination control framework developed
in this chapter is general enough to encompass many coordination control problems
and presents a unified approach in the coordination feasibility analysis of networked
heterogeneous systems.

When the feasibility condition is satisfied and there exist feasible motions, a nat-
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ural problem arises as how to obtain such feasible motions. We then propose a sys-
tematic approach to derive feasible motions in terms of an equivalent control system.
In the later part of this chapter, we will also provide typical examples and detailed
analysis involving coordination control of constant-speed agents and heterogeneous
agents to demonstrate the application of this coordination control framework.

9.1.2 Chapter organization

The rest of this chapter is organized as follows. Section 9.2 introduces preliminary
concepts on differential geometry and the problem formulation with a motivating
example. Section 9.3 presents the main result on formation feasibility condition by
incorporating both heterogeneous kinematic constraint and formation constraint into
a unified form. Section 9.4 discusses its application in coordination control of net-
worked agents with constant-speed dynamics. In Section 9.5, we discuss the motion
generation problem using the formation feasibility analysis, together with a detailed
illustrative example on cooperative control of networked heterogeneous agents. Fi-
nally, Section 9.6 concludes this chapter.

9.2 Preliminaries, problem formulation and motivating ex-

amples

9.2.1 Preliminaries on differential geometry and system equation

Some standard notions from differential geometry (especially the concepts of distri-
bution/codistribution) will be introduced in this subsection. More background can
be found in [Isidori, 1995, Chapter 1] and [Murray et al., 1994, Chapter 7].

A distribution ∆(x) on R
n is an assignment of a linear subspace of R

n at each
point x. Given a set of k vector fields X1(x), X2(x), · · · , Xk(x), we define the distri-
bution as

∆(x) = span{X1(x), X2(x), · · · , Xk(x)}.

A vector field X belongs to a distribution ∆ if X(x) ∈ ∆(x), ∀x ∈ R
n. Here we

assume all distributions have constant rank.
A codistribution assigns a subspace to the dual space, denoted by (Rn)⋆. Given

a distribution ∆, for each x consider the annihilator of ∆, which is the set of all
covectors that annihilates all vectors in ∆(x) (see [Isidori, 1995, Chapter 1])

∆⊥ = {ω ∈ (Rn)⋆| 〈ω, X〉 = 0, ∀X ∈ ∆}

In this chapter, we assume that each individual agent’s dynamics are described
by the following general form (i.e. affine nonlinear control system)

ṗi = fi,0 +
l

∑
j=1

fi,jui,j (9.1)
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where pi ∈ R
ni is the state of agent i, ni is the dimension of state space for agent

i, fi,0 is a smooth drift term, and ui,j is the scalar control input associated with the
smooth vector field fi,j, and l is the number of vector field functions. Such an affine
nonlinear control system (9.1) with a drift term 1 is a very general tool to describe
many different types of real-life control systems, including control systems with an
underactuation property or nonholonomic constraints.

9.2.2 Motivating examples

The paper [Tabuada et al., 2005] introduced the concept of motion feasibility problem
for multi-agent formations. The discussions in [Tabuada et al., 2005] were restricted
to the coordination control of drift-free control systems (i.e. fi,0 = 0) in the form of

ṗi =
l

∑
j=1

fi,jui,j (9.2)

However, the above model is not general enough to describe many real-life non-
linear control systems. In contrast, the control system model in (9.1) encompasses
a larger number of practical models and is modelling the most popular nonlinear
control system [Isidori, 1995]. As an example, the unicycle-type agent with constant-
speed constraints is one such nonlinear control system with drift terms that can be
described by (9.1) but not by (9.2). Such system dynamics can be described as

ẋi = vi cos(θi)

ẏi = vi sin(θi) (9.3)

θ̇i = ui

where xi ∈ R, yi ∈ R are the coordinates in the real plane and θi is the heading angle
for agent i. The agent has a fixed cruising speed vi > 0, which could be different for
distinct agents; ui is the control input to be designed for steering the orientation.

Introducing the vector fields as

fi,0 =





vicos(θi)
visin(θi)

0



 , fi,1 =





0
0
1



 , (9.4)

we can rewrite the system (9.3) as

ṗi = [ẋi, ẏi, θ̇i]
⊤ = fi,0 + fi,1ui (9.5)

which has the form of (9.1).

1A statement by Roger Brockett in his recent survey paper [Brockett, 2014]: “almost all real systems
have a drift term...”.
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9.2.3 Problem formulation: formation feasibility with kinematics and for-
mation constraints

In this chapter, we assume a networked multi-agent control system modelled by an
undirected graph G, in which we use V to denote its vertex set and E to denote the
edge set. The vertices consist of n heterogeneous agents each modelled by the general
dynamical equation (9.1). The graph consists of m edges, each with an inter-agent
formation constraint.

A family of formation constraints C is indexed by the edge set, denoted as
CE = {cij}(vi ,vj) with (vi, vj) ∈ E. For each edge (vi, vj), cij is a vector function defin-
ing the formation constraints between agents i and j and the constraint is enforced
if cij(pi, pj) = 0. Such formation constraints can be used to describe very general
coordinate control problems, such as formation shape control, formation tracking,
coverage control, etc. For example, in formation shape control, the constraint vector
function cij can be a function of desired relative position, or desired bearings, or de-
sired distances between agents i and j that can be used to describe a target formation
(for example, see [Oh et al., 2015]).

The formation feasibility problem is stated as follows:

Problem 1. Given a formation graph F = [V, E, C], determine whether there are feasible
trajectories pi(t) (or equivalently, feasible agents’ motions ṗi(t)) for all agents whose kine-
matics are modelled by (9.1) with possible drift terms, such that the trajectories pi(t) also
meet formation constraints CE = 0, where CE = [· · · , c⊤ij , · · · ]⊤ for all (vi, vj) ∈ E and
t ∈ I where I is a specified time interval.

In the case that there exist feasible motions, we further consider the motion gen-
eration problem formulated as below.

Problem 2. Given a formation graph F = [V, E, C] with feasible agents’ motions, determine
an equivalent control system that generates feasible motions for the networked heterogeneous
multi-agent system.

Remark 27. A prerequisite of solving the above motion feasibility problem is that the for-
mation constraint for the distributed edge set should be non-conflicting, and the overall con-
straint for all the edges should be realizable at least in the full Euclidean space. For example,
if the formation is described by relative position vectors which are conflicting, then the for-
mation is unachievable and this may lead to unexpected flocking motion [Dimarogonas and
Kyriakopoulos, 2008]. As another example, if the formation is described by distance con-
straints to realize a rigid shape in a 3-agent group, then the set of formation distances should
satisfy the triangle inequality [Sun et al., 2014c]. Thus, in order to well define the feasibil-
ity problem, we need to first assume that the formation constraints are non-conflicting and
realizable.
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9.3 Conditions for feasible motion

9.3.1 Constraints on inter-agent formations

For ease of notation, we collect all of the agents’ states together, denoting them by
the composite state vector P = [p⊤1 , p⊤2 , · · · , p⊤n ]

⊤. We collect the formation con-
straints for all the edges and define an overall formation constraint denoted by
CE = [· · · , c⊤ij , · · · ]⊤ = 0. Formation feasibility means that the constraints are sat-
isfied along the formation trajectories. Thus, one can obtain

d
dt

CE = LPCE +
∂CE

∂t
= 0, (9.6)

where LPCE denotes the Lie derivative of CE along P.
If we group all the constraints for all the edges by writing down a compact form

TF = −[· · · , (
∂cij

∂t )
⊤, · · · ]⊤ and LPCE =: ΩF(Ṗ) with the duality product relationship

between the rows of ΩF and Ṗ, we can reexpress equation (9.6) as

ΩF(Ṗ) = TF. (9.7)

where the subscript F stands for formation. Thus, the vector field Ṗ defined by the
above equation represents possible motions for all the agents that respect the forma-
tion constraint.

9.3.2 Constraints on individual agents’ kinematics

The kinematics constraints of the drift-free agent model (9.2) can be described in an
equivalent form

ωi,j(pi) ṗi = 0, j = 1, · · · , ni − l. (9.8)

The above transformation is based on the idea that a distribution generated by vector
fields of a nonlinear control system can be equivalently defined by its annihilating
codistribution. Note that each ωi,j(pi) in (9.8) is a row covector in the dual space
(Rni)⋆.

We consider a group of n heterogeneous agents, each modelled by the general
control system in the form of (9.1). Note that an affine nonlinear control system (9.1)
with drifts can be equivalently described by the following affine distribution

∆i = fi,0 + span{ fi,1, fi,2, · · · , fi,l}. (9.9)

As opposed to the system constraint transformation shown in (9.8) for drift-free sys-
tems, for the system (9.1) with drifts, one can obtain a corresponding transformation
with equivalent constraints via the construction of covectors:

ωi,j(pi) ṗi = qi,j, j = 1, · · · , ni − l, (9.10)
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where the parameter qi,j is due to the existence of the drift term fi,0. We collect all
the row covectors ωi,j as

ΩKi =








ωi,1

ωi,2
...

ωi,ni−l








, (9.11)

and similarly define TKi = [qi,1, qi,2, · · · , qi,ni−l ]
⊤. By doing this, one can rewrite (9.10)

in a compact form as follows

ΩKi ṗi = TKi . (9.12)

where the subscript K stands for kinematics. From the above, we collect all the kine-
matic constraints for all the agents in a composite form

ΩK = [Ω⊤
K1

, Ω⊤
K2

, · · · , Ω⊤
Kn
]⊤, TK = [T⊤

K1
, T⊤

K2
, · · · , T⊤

Kn
]⊤

and thus the overall kinematic constraint for all the agents can be stated in a compact
equation ΩK(Ṗ) = TK.

Remark 28. Note that if the system i has a drift (as in (9.1)) but the drift satisfies

fi,0 ∈ span{ fi,1, fi,2, · · · , fi,l} (9.13)

then one can choose a control ui to cancel the drift. In such case the system with drifts (9.1)
can be transformed to be the drift-free system (9.2), and the codistribution can be defined by
using the covector ωi,j in (9.8). Note that the constant-speed agent model (9.3) does not meet
the above assumption (9.13).

9.3.3 Main results on formation feasibility

By including both kinematic constraints and formation constraints for all the agents
into a unified expression, the formation feasibility problem then becomes one of
establishing existence of a solution to the following equation

Ω(Ṗ) = T (9.14)

where

Ω =

[
ΩF

ΩK

]

, T =

[
TF

TK

]

. (9.15)

We remark that the expression of the codistribution Ω is coordinate-free and is also
independent of the enumeration of edge sets.

The formation feasibility condition is shown in the following theorem.
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Theorem 22. The undirected formation has feasible motions if the above equation (9.14) has
solutions, or equivalently if T belongs to the range of Ω.

Remark 29. As we remarked before, the condition is applicable for networked heterogeneous
systems as the model of (9.1) includes different types of agent dynamics. Also, to determine
and calculate the condition, symbolic toolboxes from certain popular software (e.g. Matlab
or Mathematica) are readily available. Note that the condition stated in (9.14) of Theo-
rem 22 can be reexpressed in an equivalent way in terms of the rank condition of the form
rank(Ω) = rank([Ω, T]). This alternative condition could facilitate calculations using avail-
able softwares.

Remark 30. For the time-invariant formation case we have ∂CE
∂t = 0 and thus TF = 0; in the

drift-free model case there holds TK,i = 0 for all i and thus TK = 0. Under these two special

cases, one has T =

[
TF

TK

]

= 0, and the feasibility condition in Theorem 22 reduces to the

condition statement in Theorem 4.1 of [Tabuada et al., 2005].

9.4 Application to coordination control of multiple constant-

speed agents

Coordination and formation control of constant-speed agents (e.g. fixed-wing UAVs
with constant cruising speeds) has been discussed in [Sepulchre et al., 2008], [Ander-
son et al., 2008a], [Seyboth et al., 2014], [Guler et al., 2013], [Sun et al., 2015c], etc.
However, a complete solution to such a control problem is not yet available. In this
section, this coordination control problem is revisited with insights obtained from
the above formation feasibility analysis.

9.4.1 Affine distribution and codistribution generated by constant-speed
dynamics

Following similar notations as in Section 9.2, we denote each agent’s state as pi =
[xi, yi, θi]

⊤, with the system dynamics described in (9.3) and (9.5). The vector fields
shown in (9.4) generate the following affine distribution:

∆i = fi,0 + span( fi,1) (9.16)

We now construct the covectors for the codistribution2 ∆⊥
i . Note that the dimen-

sion of the affine distribution ∆i is 1, which implies that the dimension of the codis-
tribution is 2. We denote two linearly independent covectors of the codistribution as
ωi,1 and ωi,2. Direct calculation shows the following:

[
sin(θi) −cos(θi) 0
cos(θi) sin(θi) 0

]




ẋi

ẏi

θ̇i



 =

[
0
vi

]

(9.17)

2The codistribution that is dual to an affine distribution is termed as t-codistribution in [Elkin, 2012].
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which is an instance of system constraint transformation shown in (9.10). Thus,
according to (9.12), we let TKi = [qi,1, qi,2]

⊤ = [0, vi]
⊤ in the construction of the corre-

sponding codistribution. Based on the constraint transformation concept presented
in Section 9.3.2, the above (9.17) presents an equivalent way to describe the kine-
matics constraint for a constant-speed agent. Note that a basis for describing any
covector in the dual space is (dxi, dyi, dθi), which gives the following expression of
the covectors

ωi,1 = sin(θi)dxi − cos(θi)dyi,

ωi,2 = cos(θi)dxi + sin(θi)dyi.

By denoting ΩK,i =

[
ωi,1

ωi,2

]

, there holds ΩK,i fi,1 = 0 and ΩK,i fi,0 = TKi . These covec-

tors and their equivalent forms in formulating distributions/codistributions will be
useful in later analysis on coordination control with constant-speed agent groups.

9.4.2 Example: rigid formation maintenance and coordination by constant-
speed agents

In this example, we suppose the formation is defined by a certain set of inter-agent
distances (as the problem formulation in [Krick et al., 2009]) and the control task is
to coordinate a group of constant-speed agents while maintaining the rigid target
formation. We consider a three-agent group in this control task. The inter-agent
distances are denoted as dij with i, j = 1, 2, 3, i 6= j, and the constraint function for
edge (i, j) is defined as cij =

1
2 (xi − xj)

2 + 1
2 (yi − yj)

2 − d2
ij.

According to the analysis in Section 9.3.1 and Section 9.4.1, the matrices ΩF

and ΩK for characterizing codistributions can be calculated as shown in (9.18) and
(9.19), respectively. 3 The overall constraint matrix Ω is now constructed as Ω =
[Ω⊤

F , Ω⊤
K ]

⊤ ∈ R
9×9.

ΩK =












sin(θ1)dx1 − cos(θ1)dy1

cos(θ1)dx1 + sin(θ1)dy1

sin(θ2)dx2 − cos(θ2)dy2

cos(θ2)dx2 + sin(θ2)dy2

sin(θ3)dx3 − cos(θ3)dy3

cos(θ3)dx3 + sin(θ3)dy3












(9.18)

ΩF =





(x1 − x2)dx1 + (y1 − y2)dy1 + (x2 − x1)dx2 + (y2 − y1)dy2

(x1 − x3)dx1 + (y1 − y3)dy1 + (x3 − x1)dx3 + (y3 − y1)dy3

(x2 − x3)dx2 + (y2 − y3)dy2 + (x3 − x2)dx3 + (y3 − y2)dy3



 (9.19)

3We would like to emphasize that ΩF and ΩK are matrices and not vectors, with ΩF ∈ R
6×9 and

ΩK ∈ R
3×9. Note that we have used the standard basis (dx1, dy1, dθ1, · · · , dx3, dy3, dθ3) in the dual

space to write down each row covector in ΩF and ΩK .
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(a) A translational motion  

with the same direction 

(b) A rotational motion around  

the triangle centroid 

Figure 9.1: Two feasible formations with a group of constant-speed agents.

R =





(x1 − x2) (y1 − y2) (x2 − x1) (y2 − y1) 0 0
(x1 − x3) (y1 − y3) 0 0 (x3 − x1) (y3 − y1)

0 0 (x2 − x3) (y2 − y3) (x3 − x2) (y3 − y2)



 (9.20)

The matrix T is calculated as T = [0, v1, 0, v2, 0, v3, 0, 0, 0]⊤ ∈ R
9×1. Thus, the

formation feasibility problem is now transformed to the problem of determining
whether there exists a vector field Ṗ that satisfies ΩṖ = T. After these matrices
are constructed with the specified parameters vi and dij describing both kinematics
constraints and formation constraints, available computation approaches could then
be employed to assist the analysis of determining the solution issue.

For the aim of demonstration, in the following analysis we assume that d12 =
d23 = d31 = β, that is, the target rigid formation is an equilateral triangle. We then
consider different sets of cruising speeds to determine the solution property. In the
case that all agents have identical cruising speeds, i.e. v1 = v2 = v3, a simple calcu-
lation shows that the motion solution is that either (i) θ̇1 = θ̇2 = θ̇3 = 0, θ1 = θ2 = θ3,
or (ii) θ̇1 = θ̇2 = θ̇3, θ1 = θ2 +

2π
3 = θ3 +

4π
3 , which correspond to (i) a translational

motion with the same direction or (ii) a rotational motion around the triangle cen-
troid. In the case that v1 = 0, v2 = v3, a feasible motion exists such that agents 2 and
3 rotate around agent 1 with the same angular velocity. These two types of feasible
formations are shown in Figure 9.1. In the case that all agents have non-identical
cruising speeds, there usually does not exist a solution to the feasibility condition
except for some special cases, which agrees with our intuition that maintaining a
rigid shape by using non-identical constant-speed agents is generally impossible.

We also remark that the codistribution matrix ΩF for characterizing the formation
constraints can be interpreted as a rigidity matrix R (see definitions in Section 2.3.2 of
Chapter 2). For ease of demonstration, R is written in (9.20). A reinterpretation of the
above formation feasibility result is that any feasible velocity (ẋi, ẏi) should satisfy
[ẋ1, ẏ1, ẋ2, ẏ2, ẋ3, ẏ3]⊤ ∈ null(R), where null(R) denotes the null space of the rigidity
matrix R associated with a realization of the target formation (see Section 6.2.1 of
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Chapter 6 for detailed discussions on their null spaces). For a 2-D infinitesimally
rigid formation, the dimension of the null space of the associated rigidity matrix
R is 3 (see Theorem 1 in Chapter 2), corresponding to rotational and translational
motions. Thus, the motion solution of a feasible translational motion mentioned
above is that [ẋ1, ẏ1, ẋ2, ẏ2, ẋ3, ẏ3]⊤ ∈ span(1 ⊗ I2), and the feasible rotational motion
corresponds to the rotational part in the null space of R. This gives another viewpoint
to confirm the above analysis.

9.5 Motion generation and coordination control with hetero-

geneous agents

9.5.1 Generalization and motion derivation

We mention the fact that the theory developed in the previous sections is not lim-
ited to any specific type of agent dynamics, and it provides a unified analysis and
framework to the coordination control with distinct agent dynamics. Actually, agent
dynamics considered here include, but are not limited to, the following types:

• fully actuated agents;

• agents with drift-free, nonholonomic dynamics;

• agents modelled by affine systems with possible drift terms.

Thus, the general framework developed in previous sections can be applied in the
coordination control problem for a multi-agent group with heterogeneous dynam-
ics. We then consider Problem 2, i.e., how to derive feasible motions for networked
heterogeneous agents.

Suppose the formation feasibility condition is satisfied, i.e. there holds rank(Ω) =
rank([Ω, T]). One can first calculate a special solution to the feasibility equation
(9.14), denoted by K̄. Further we suppose the null space of Ω is spanned by κ vectors,
denoted by K1, K2, · · · , Kκ. Then any feasible motion for the overall heterogeneous
networked system can be generated by the following equivalent dynamical system

Ṗ = K̄ +
κ

∑
l=1

Klwl (9.21)

where wl is an input that activates the associated vector field Kl .

9.5.2 Illustrative example: coordination control with a group of heteroge-
neous agents

In this subsection, by using an illustrative example with a group of heterogeneous
agents, we show how to apply the previous results to determine whether the net-
worked system has a feasible motion under both kinematic and formation con-
straints, and if there exist feasible motions, how to generate them.
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The illustrative example on coordination control in this section is adopted from
[Tabuada et al., 2005], but here we consider a more complicated problem when all
agents are with heterogeneous dynamics. Consider an undirected formation consist-
ing of three agents. We assume agent 1 is modelled by the dynamics (9.3) with both
nonholonomic constraint and drift term, while agents 2 and 3 have totally different
dynamics. To be specific, we assume that agent 2 is a unicycle-type robot with non-
holonomic constraint and adjustable forward speed, whose system equation is written
as

ẋ2 = u2,1cos(θ2)

ẏ2 = u2,1sin(θ2) (9.22)

θ̇2 = u2,2

or in an equivalent and compact form

ṗ2 = [ẋ2, ẏ2, θ̇2]
⊤ = f2,1u2,1 + f2,2u2,2, (9.23)

with

f2,1 =





cos(θ2)
sin(θ2)

0



 , f2,2 =





0
0
1



 . (9.24)

We assume agent 3 is fully actuated, and its dynamical equation is described by
single integrators

ẋ3 = u3,1, ẏ3 = u3,2 (9.25)

where u3,1, u3,2 are the control inputs which generate velocity in the x and y coordi-
nate.

For each individual agent, we first formulate the (affine) distribution and codis-
tribution generated by its kinematic constraint. For agent 1, the affine distribution
and codistribution can be obtained from the same procedure as in Section 9.4.1. For
agent 2, one can show the distribution generated by its system vector fields is de-
scribed by ∆2 = span{ f2,1, f2,2}, which can be equivalently stated by the annihilating
codistribution

∆⊥
2 = span{sin(θ2)dx2 − cos(θ2)dy2}. (9.26)

For agent 3, the two vectors [1, 0]⊤ and [0, 1]⊤ span the full R
2 space and thus the

codistribution is null. By putting together kinematic constraints for all the agents,
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one can obtain a compact form

ΩK =





ω1,1

ω1,2

sin(θ2)dx2 − cos(θ2)dy2



 (9.27)

with TK = [0, v1, 0]⊤.

The formation constraint follows similarly from [Tabuada et al., 2005, Example
4.2], with some slight modifications. We assume that the formation constraint con-
sists of a relative position constraint for the edge (1, 2), and a distance constraint for
the edge (1, 3). Specifically, the constraint associated with the edge between agent 1
and agent 2 is defined by

c12 =





x1 − x2 − δx

y1 − y2 − δy

θ1 − θ2



 , (9.28)

where δx and δy are positive constants specifying the desired relative displacement
between agent 1 and agent 2. The constraint between agent 1 and agent 3 is defined
by the function

c13 =
1
2
(x1 − x3)

2 +
1
2
(y1 − y3)

2 − δ (9.29)

where δ is a positive constant specifying the desired distance between agent 1 and
agent 3.

Up to now, it is not obvious whether there exists a feasible motion just from
mere observation. The theory developed in Section 9.3.3 and Section 9.5.1 should
be employed. The codistribution for characterizing the formation constraint can be
described in (9.30).

ΩF =










dx1 − dx2

dy1 − dy2

dθ1 − dθ2

(x1 − x3)dx1 + (y1 − y3)dy1 + (x3 − x1)dx3

+(y3 − y1)dy3










(9.30)

where we have used the standard basis {dx1, dy1, dθ1, · · · , dx3, dy3} to describe each
covector in ΩF. By grouping both the kinematic constraint and formation con-
straint, one can write down a composite constraint matrix Ω as shown in (9.31).
Straightforward calculation shows that rank(Ω) = rank([Ω, T]) holds in this exam-
ple. Thus, there exist feasible motions to coordinate such a heterogeneous agent
group while maintaining the target formation. One special solution K̄ to the equa-
tion ΩṖ = T and the two null vectors K1, K2 of Ω are calculated in (9.32).

Then the feasible motion for the heterogeneous agent group can be described by
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Ω =













sin(θ1) −cos(θ1) 0 0 0 0 0 0
cos(θ1) sin(θ1) 0 0 0 0 0 0

0 0 0 sin(θ2) −cos(θ2) 0 0 0
1 0 0 −1 0 0 0 0
0 1 0 0 −1 0 0 0
0 0 1 0 0 −1 0 0

x1 − x3 y1 − y3 0 0 0 0 x3 − x1 y3 − y1













Ṗ =
[

ẋ1 ẏ1 θ̇1 ẋ2 ẏ2 θ̇2 ẋ3 ẏ3
]⊤ ,

T =
[

0 v1 0 0 0 0 0 0
]⊤ (9.31)

K̄ =















v1cos(θ1)
v1sin(θ1)

0
v1cos(θ1)
v1sin(θ1)

0
v1cos(θ1)
v1sin(θ1)















, K1 =















0
0
0
0
0
0

y3 − y1
x1 − x3















, K2 =















0
0
1
0
0
1
0
0















(9.32)

the following equivalent control system

Ṗ = K̄ + K1w1 + K2w2 (9.33)

The above abstracted control system provides certain insights on different types of
feasible motions for the heterogeneous agent group according to different choices of
w1 and w2. More precisely, all feasible motions can be categorized into the following
four groups:

• Type (i): the case of w1 = 0 and w2 = 0: all the three agents translate with the
same heading while maintaining the formation constraints (9.28) and (9.29);

• Type (ii): the case of w1 6= 0 and w2 = 0: agent 1 and agent 2 translate with
the same heading, while agent 3 performs a combined motion of both trans-
lation and rotation generated by the dynamics ẋ3 = v1cos(θ1) + y3 − y1, ẏ3 =
v1sin(θ1) + x3 − x1;

• Type (iii): the case of w1 = 0 and w2 6= 0: all the three agents rotate with the
same angular velocity, while agent 1 and agent 2 have the same instantaneous
phase;

• Type (iv): the case of w1 6= 0 and w2 6= 0: agent 1 and agent 2 rotate with the
same angular velocity and have the same instantaneous phase, while agent 3
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performs a combined motion of both translation and rotation generated by the
dynamics ẋ3 = v1cos(θ1) + y3 − y1, ẏ3 = v1sin(θ1) + x3 − x1.

Thus, by using the general motion generation system (9.33), all kinds of feasible
motions can be derived. Figure 9.2 depicts all these four types of feasible motions
and all agents’ trajectories 4.

9.6 Concluding remarks

In this chapter, we have discussed the formation feasibility problem in the coordi-
nation control of multi-agent systems whose dynamics are heterogeneous and may
contain drift terms. Based on concepts from elementary differential geometry and
tools of (affine) distribution and codistribution, we formulate the constraints from
the formation aspect and kinematics aspect into a unified form, and propose an al-
gebraic condition to determine the existence of feasible motions. Furthermore, in the
case that the feasibility condition holds, we propose a systematic approach to ob-
tain an equivalent dynamical system that can generate all feasible motions. Through
several examples, we have shown how this general and unified framework can be
applied to coordination control of constant-speed agent groups and heterogeneous
agent groups.

4We performed numerical simulations via Matlab to generate all these figures. In the simulations we
set v1 = 1, δx = −2, δy = −2, δ = 2. The initial states for all agents were set as [x1(0), y1(0), θ1(0)]⊤ =

[0, 1, 2]⊤, [x2(0), y2(0), θ2(0)]⊤ = [2, 3, 2]⊤ and [x3(0), y3(0)]⊤ = [0, 3]⊤. Note that at the initial states
the formation constraint is satisfied.
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Figure 9.2: Feasible motions for heterogeneous agent group. Type (i): w1 = 0 and
w2 = 0; Type (ii): w1 = 1 and w2 = 0; Type (iii): w1 = 0 and w2 = 1; Type (iv): w1 = 1

and w2 = 1. The solid markers indicate the final positions for all the agents.



Chapter 10

Conclusions and future work

By way of conclusion, the main contributions of this thesis are summarized in this
chapter. Suggestions for possible future research directions are also outlined in Sec-
tion 10.2.

10.1 Thesis summary and contributions

This thesis mainly considers the problem of distributed coordination and formation
control for multi-agent systems. We have addressed a wide range of issues in this
field, ranging from stability and equilibrium analysis of rigid formation systems,
certain practical considerations in applying formation control algorithms (including
mismatched distances, formation orientation stabilization and quantized measure-
ments), different system models and their effects in distributed coordination and
formation achievement 1 . We now show a brief summary of the main results and
contributions of this thesis.

10.1.1 Formation control systems: equilibrium and stability analysis

• We have addressed some open problems in rigid formation control when the
formation system is modelled by single-integrator systems. In Chapter 3, a
rank-preserving property is established for rigid formation control systems, which
reveals several novel insights on its equilibrium analysis. We have further
proved the instability of a special equilibrium set called degenerate equilibria. On
the one hand, some previously established results can be seen as special cases
in this framework. On the other hand, we have provided a much simplified
approach for the stability analysis via the rank-preserving flow theory.

• We have established the exponential stability of rigid formation control systems
for a large family of formation controllers in Chapter 4. The results hold for
both minimally rigid formations and non-minimally rigid formations.

1For experiment verifications relating to some theoretical results of this thesis, we recommend
relevant online videos from two YouTube channels maintained and updated by our collaborat-
ing groups: (i) ❤tt♣s✿✴✴✇✇✇✳②♦✉t✉❜❡✳❝♦♠✴❝❤❛♥♥❡❧✴❯❈❨✼✇❚❊■q❝✵✲✵■◗❊❉❥❤❦■❣❍❣ by DCASL (Dis-
tributed Control and Autonomous Systems Laboratory) at GIST led by Prof. Hyo-Sung Ahn; and (ii)
❤tt♣s✿✴✴✇✇✇✳②♦✉t✉❜❡✳❝♦♠✴✉s❡r✴♥♦❡t❤✸r by Dr. Héctor Garcia de Marina.
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• An invariance principle on the equilibrium set and its stability for double-integrator
formation systems is established in Chapter 8, which provides a link between
single-integrator and double-integrator formation systems. To this end, certain
results on equilibrium analysis from single-integrator formation systems, such
as these discussed in Chapter 3 and in other literature, can be extended to the
stability analysis of formation systems modelled by double integrators.

10.1.2 Formation control systems: some practical considerations

• From the exponential stability obtained in Chapter 4, in Chapter 5 we have dis-
cussed the robustness issue for (3-D) rigid formation control systems in the
presence of mismatched distances. We show that generically a helical motion will
be induced by small and constant mismatches between neighboring agents in
their distance measurements or perceived target distances. Motion parameter
formulas are also derived to describe these rigid formation movements.

• In practice, the stabilization of only rigid formation shapes may not be sufficient
for real-life applications and the achieving of a certain orientation for a rigid
formation could also be desirable. To address this problem, in Chapter 6 we
propose a feasible formation controller to achieve a desired rigid shape and a
prescribed formation orientation in both ambient 2-D and 3-D spaces. In this
control framework, we also prove the minimal number of agents requiring the
global knowledge of a common coordinate orientation to achieve this task.

• Motivated by practical sensing and measurement constraints of digital sensors,
we discuss the quantization effect on rigid formation control (in Chapter 7). Two
types of quantizers are considered, namely the uniform quantizer and the log-
arithmic quantizer. The convergence property of the formation system and the
tradeoff of using quantized measurements are investigated in detail in Chapter
7.

10.1.3 Distributed coordination control: general system models

• In Chapter 8, we have discussed in detail two types of double-integrator systems:
formation stabilization systems and flocking control systems with a target rigid
shape. The measurement requirement, properties of equilibrium set and Ja-
cobian matrix analysis are shown in Chapter 8. By constructing a family of
parameterized Hamiltonian-like system, invariance principles concerning the
equilibrium set and local stability are also established which help to analyze
the stability of different equilibrium sets for formation control systems mod-
elled by double integrators.

• A general framework for distributed coordination control with both formation
constraints and kinematics constraints is presented in Chapter 9. The coordi-
nation control described by formation constraints includes the rigid formation
control as a special case, and also provides a very general framework to model
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other coordination tasks. We consider a general problem setting that each agent
is modelled by an affine control system with possible drift terms, and individ-
ual agents may have totally different dynamics (thus enabling the heterogeneity
in modelling multi-agent systems). Based on this setting, in Chapter 9 we have
discussed in detail a fundamental problem in distributed coordination control:
the formation feasibility problem. An algebraic condition is provided to de-
termine the existence of feasible formations in such heterogeneous networked
systems, and a systematic procedure is proposed to generate feasible trajecto-
ries (if they exist) for all the agents.

10.2 Future work

In this section we outline some research problems for future research. They are listed
according to different topics as shown below.

10.2.1 Equilibrium analysis

In Chapter 3 we show a further step to understand the equilibrium property of the
gradient-based rigid formation system. We also list some open problems in the future
research as follows.

• For formation systems with a general target shape, it has not been determined
analytically whether there exist local stable minima 2. One may start with the
special case of a 2-D K4 (complete graph with 4 agents) formation, and deter-
mine the uniqueness of local/global minima.

• Apart from the investigation of equilibrium property, it is also worthwhile to
propose modified formation controllers to avoid the convergence to incorrect
shapes or to guarantee the convergence to the correct formation shape in an
almost global sense 3. We recently proposed a modified control law with a
virtual coordinate to achieve almost global stabilization of K4 formations [Park
et al., 2016]. We expect that this approach, which bypasses the determination of
local/global minima for a general K4 formation, will also enable almost global
convergence for general formations modelled by complete graphs in arbitrary
dimensions.

2In the conclusion section of a recent survey paper [Dokmanic et al., 2015] it states: "(On analytical
local minimum of s-stress) everyone agrees that there are many, but, to the best of our knowledge, no analytical
minimum of s-stress has yet been found." The s-stress function takes exactly the same form as the potential
function (2.9) in formation control. Numerical examples of a local minimum of such potentials indeed
exist; see our recent paper [Park et al., 2016].

3Along this research direction, a recent paper [Tian and Wang, 2013] proposed a modified formation
controller to almost globally stabilize a rigid target formation. However, we recently found some
incorrect statements in [Tian and Wang, 2013] (see the commentary paper [Trinh et al., 2016]). Thus,
the global stabilization of a target rigid formation is still an open problem.
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• It is desirable to study other types of invariants apart from the rank and cen-
troid (as discussed in Chapter 3) such that more properties of the formation
system can be explored.

• An outstanding issue is to establish the Morse function property when the de-
sired formation is in a d ≥ 2 dimensional space. It has been established for
one-dimensional formations [Anderson and Helmke, 2014] and for complete
formations in higher dimensions [Draisma et al., 2015]. The analysis in [Helmke
and Anderson, 2013] provided some bounds on the number critical points of
two gradient-type formation systems based on the assumption that the poten-
tial is an equivariant Morse function. However, it is still unknown whether the
potential is generically an equivariant Morse function.

• The general issue is to find algebraic invariants of the gradient flow in terms
of computer algebra methods, which may facilitate the analysis with the aid of
available computation algorithms.

10.2.2 Robustness issues

The robustness issues, and in particular the rigid motions for 3-D formation control
systems induced by distance mismatches, are discussed in detail in Chapter 5. We
list some interesting problems along this research direction.

• Quantization is a source of inaccuracy in measurements and/or communica-
tions in distributed coordination control. In Chapter 7, we assume the quan-
tization is applied to the distance measurements, and it will be more practi-
cal to assume both quantized distance and quantized bearing measurements.
It is also interesting to investigate the case that different agents employ non-
identical quantizers in their controllers. This suggests a typical scenario of
distance mismatches, but it is not clear whether it gives rise to steady-state rigid
motions, as we have observed in [Mou et al., 2016] when agents have unmatched
distance measurements.

• It will be interesting to investigate whether the rigid motions, as observed
in Chapter 5 on single-integrator formation systems, still occur in double-
integrator formation systems with inconsistent distances or distance measure-
ment errors. The main tools in Chapter 5 and [Mou et al., 2016] include lin-
earization analysis and exponential stability of the single-integrator system.
Thus, we expect that the linearization technique and Jacobian matrix analysis
in Section 8.3, as well as the parameterized system analysis and the exponential
convergence established in Section 8.4, will be fundamental results to establish
the robustness property for double-integrator rigid formation systems. Some
results on rigid motions in double-integrator formation systems have been re-
ported in [Garcia de Marina et al., 2016b], which focused on the formation sta-
bilization model. It is still unclear about the additional motions and formation
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properties for double-integrator flocking models with mismatched distances or
other perturbations.

• Finally, we remark that such robustness issues on distributed formation control
discussed in Chapter 5 also have implications in the general field of cooper-
ative control involving gradient-flow approach, distributed coordination and
local information sharing [Sakurama et al., 2015]. This will help to reveal the
fundamental performance limitations and robustness behaviors in general co-
ordination control systems.

10.2.3 Formation feasibility and motion generation

In Chapter 9 we consider the fundamental problem of determining formation fea-
sibility and how to generate feasible motions for networked heterogeneous systems
with drift terms. We also list some open problems for future research along this
direction:

• In Chapter 9, the constraints in modelling a global control task and agents’
dynamics are described by some equalities. It is worthwhile to extend the
formation feasibility theory to the case with inequality constraints. This is partly
motivated by the coordination control problem of multiple agents with almost
constant speeds (as in [Anderson et al., 2008a]).

• We also note that the motion generation algorithm reported in Chapter 9 as-
sumes that all agents are initially at a feasible trajectory. It will be interesting
to develop control approaches to stabilize all agents’ trajectories to one of the
feasible trajectories if they exist.

10.2.4 Longer-term research problems: coordination control in nonlinear
spaces

In this thesis the coordination control and formation control have been mostly fo-
cused on the real Euclidean space, and only in Chapter 9 have we considered a general
problem where agents’ states may not be confined to live in the Euclidean space.
Such problems can be further generalized, in the sense that agents’ states may live
in some nonlinear spaces, e.g. on a sphere, a smooth surface, or (more generally)
a Riemannian manifold. This has been motivated by many real-life applications in
distributed coordination and cooperative control, for example attitude control, orien-
tation synchronization, etc.

Consensus of multi-agent systems has been considered as a fundamental tool in
multi-agent distributed control which serves as a basis for many distributed algo-
rithms. There has been an increasing interest in recent years to consider consensus
and distributed control in nonlinear spaces (see e.g. [Sepulchre, 2011], [Tron et al.,
2013; Li and Spong, 2014; Satici and Spong, 2016]). Recently we have revisited the
fundamental consensus problem when agents’ states are confined to be living on a
sphere [Lageman and Sun, 2016] and have developed a perturbation theory for this
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coordination problem. Based on this and other findings achieved in this thesis, we
expect more results on coordination control in nonlinear spaces will be achieved in
the future research.
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