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Abstract—Due to the limited power constraint in sensors,
dynamic scheduling with data quality management is strongly
preferred in long lifetime monitoring applications. But typical
techniques treat data management as an isolated process on only
selected individual nodes, e.g. the centroid node. In this paper,
we propose and evaluate an aggressive data reduction algorithm
based on error inference within sensor segments. The architecture
integrates three parallel dynamic error control mechanisms to
optimize the trade-off between energy saving and data validity.
We demonstrate that not only substantial energy savings can be
achieved but also that an error bound specified by the application
can be guaranteed. Moreover, we have investigate the system
performance by using the realistic historical soil temperature data
as an experimental context. The experimental results demonstrate
that the system error meets the specified error tolerance and
produces up to a 50 percent of the energy savings compared to
several sensing schemes.

I. INTRODUCTION

Wireless Sensor Networks (WSNs), consisting of thousands

of low-cost sensor nodes having different type of sensors (e.g.

Light sensor, Temperature Sensor and etc) installed to detect

interested physical properties, have been used in many applica-

tion domains. Due to the limited power supply and difficulties

in harvesting ambient energy, low power energy management

obviously is a critical research problem in WSNs [1], [2],

[3], [4], [5]. In order to achieve missions, such as persistent

surveillance and tracking, energy efficient sensing schemes

have to be developed to extend the lifetime of the network. En-

ergy consumption determines the lifetime of a sensor network,

and communicating wirelessly consumes more power than any

other activities. Hence, it is important to design protocols so

as to minimize the amount of communication required by the

sensor nodes. In the past few years, many solutions [6], [7]

have been proposed for energy conservation by applying the

data aggregation protocol in which one centroid node (i.e., the

sensor node in a group that all other sensors report their data to

at a given schedule) collects and packs several communication

packets into one packet. Most data aggregation methods [6],

[7] achieved energy saving by taking advantage of the fact

that most of the data packets sent to the centroid nodes will

share similar packet headers, which include training sequences

for transceiver clock synchronization, framing information,

destination address, and error control codes, typically makes

up a large component of the sensor data packets, especially

at low data rates such as those in environmental sensing

applications. More saving can be achieved by combining

those packets with similar header into one or few packets;

Even though those methods show some interesting results,

data inherent correlation to simplicity and efficient manner is

underestimated which can be exploited in our data reduction

algorithm. Generally energy saving in data aggregation has

to be achieved by using a robust sensor node equipped with

strong power supply and relative super computation capacity,

which imply the increase in design complexity. Moreover those

aggregation approaches are not easy to achieve in practice due

to connectivity and reliability issues, as all the sensors have

to coordinate scheduling and routing their packets so that the

data can be aggregated along the path.

To release the strict requirement of hardware and design

complexity, we propose a dynamic and systematic data reduc-

tion approach, called DR3, which is created based upon three

levels of communication reduction in wireless sensor network

architecture. Data reduction, differently to data aggregation,

cuts down significant amount of the data communicated among

sensor nodes between/within sensor groups. It doesn’t requires

all the sensor nodes to remain active most of the time, yet still

achieve high accuracy of data even at situations when quality

connectivity cannot be maintained.

Most data aggregation approaches aggregate data within a

group. Data are sampled at each sensor nodes most of the time.

Suppose that the data intended is the mean value, the sample

data get a random distribution within certain data range, the

possibility will increase when there exists at least one data

among the sample group whose reading is close enough to

intended results. Let’s take a temperature sampling as an

example. Suppose temperature ranging from 0oC and 35oC is

uniformly distributed along an area. If sensor nodes are placed

uniformly in this area in a grid topology, it is expected that the

higher the intensity of the nodes, the higher possibility that one

grid having a node will cover where sample mean will fall into.

This characteristic motivates us to explore potentials of data

reduction extensively by creating the DR3 system framework.

The highlights of such design can be categorized as a novel

three-level data reduction: dynamic centroid selection, duty-

cycle adjustment with machine learning prediction and correl-

ative inter-group data reduction. According to our knowledge,

this is the first design that supports self-adaptive centroid node

selection and uses centroid’s reading to represent the group’s



reading instead of waiting for all data ready to further reduce

the communication packets in wireless sensor network.

II. OVERVIEW AND OBJECTIVES

Typical sampling systems, such as habitat monitoring [8],

make use of the data aggregation and compression tech-

niques. In wireless sensor network applications, the energy

cost associated switching operating status for transceivers are

significantly large enough compared to energy consumption in

sensing. It is wisely to compress several packets into one or

aggregate the data collected from different packet into one data

sector before transferring to transceiver for communication as

done in TAG [9]. Since data compression and aggregation such

as TAG need to buffer a relatively large amount of sensing data

from different location, they are not quite suitable for time-

critical monitoring application and impose some requirement

on hardware.

A. Data Management in DR3

The strategies investigated in our DR3 scheme are mainly

motivated by a long lifetime environment monitoring appli-

cation in which sustainability and data accuracy are of the

best interest. We intend to construct a system which can

cover large area for data acquisition while requiring less

maintenance and less complexity in data processing. These

design requirements are quite critical for practical application

especially when energy renovation technique is not accessible

due to cost issues. Several features are considered in term of

power conservation in our design:

Self-adaptive Sensing: due to the dynamic nature of en-

vironment application, sensor system is required to provide

continuous sensing service though the full space coverage may

not be necessary. However its sensing frequency together with

its length of prediction cycle will be self adjusted according

to system prediction accuracy. This feature becomes one of

the most important issues in our data management scheme to

study the energy conservation performance of our strategies.

Data Accuracy: instead of achieving long lifetime operation

in wireless sensor network, DR3 embraces consideration in

data accuracy in sensing. Aggressive data management scheme

tends to undermine the data integrity by throwing some data

which could be quite critical. Certain technique is exploited

in DR3 to accommodate such scarification.

In order to successfully implement those features into our

system architecture, three levels of data management are care-

fully introduced and investigated to meet those requirements.

We developed a prototype system by adding a combination

of internal group and inter-group data reduction while trying

to maintain data integrity at an acceptable level. Our previous

work [10] has shown that a statistical approach can help to pre-

dict the future sensing data under predefined tolerance. How-

ever using machine learning approach in data reduction is new

as the data processing center can predict the data both inside

group and inter-group with sending request which normally

consume large amount of energy in packets dissemination. The

objectives we intend to achieve are: 1) optimization in dynamic

Fig. 1. The Architecture schematic of DR3

centroid selection. Dynamic centroid selection is a method to

find the node whose reading is the best approximation to that

of group interest.2) duty-cycle optimization. It is an approach

to find the error rate of group centroid’s prediction at a given

schedule. We intend to figure out the trade-off between energy

saving and error rate in prediction 3) opportunity coupling, an

idea to identify correlated sensor group in a network thus to

reduce the sensing data from a whole network perspective. A

prototype of sensor network implemented with such energy

efficiency scheme will also be presented.

III. DESIGN OF DR3

We propose divide the sensing action into three phases. To

enable only one sensor’s reading while calling other sensor

nodes to sleep. The statistical approach is also introduced

into our system to reduce the error of sampling during re-

sampling cycles. We also rely on the inter dependence of

those group representative readings with intention to switch

off groups whose readings are highly correlated to other

groups. This correlation implies that one group’s data can

be extracted from others data with acceptable error rate.

This achieves great energy saving for large sensor network,

especially for monitoring application while maintaining data

integrity through dynamic resample strategy described later in

detail.

The performance of design will be investigated under the

monitoring application so as to explore potential benefits

and issues in implementation. Our design architecture can be

categorized into three levels of data reduction:

A. Internal Group Data Reduction (IGDR)

In IGDR, instead of all the sensor nodes continuously trans-

mit their sensing data to group centroid used in conventional

data aggregation, only one node, also a centroid, will be active

in sensing during certain sensing schedule while the remaining

sensors are called to sleep. Since majority of communication

packets associated with originally active nodes have been

compromised due to status switching off, it can be anticipated

that large amount of energy could be saved for those sleeping

nodes.



Our strategy is independent to the category of data to be

aggregated or compressed, and then it is not important for

us to choose what kind of data we choose to apply our

data reduction strategy. In ideal case, a centroid node will

be fault-free one. However, in a real system, sensing at each

sensor node could be irregular and affected by many factors

including environment nose, obstacles, et al. Therefore, the

irregularity of node performance should be carefully measured

and considered. Because typically centroid node switching

involves communication topology modification, which costs

extra energy consumption overhead, environment irregularity

should be factored in decision making process. Before going

further, there are two questions need to answer firstly: (i) how

to evaluate the measurement risk of the selected node; (ii) is

there a monotonic relationship between the environment irreg-

ularity and centroid nomination? To solve the first question,

a node’s reading error to the reference will be exploited. The

average of all the sensors’ data in a group, the most typical

reference metric in data aggregation, will be compared against

each node’s sensing data within study group and the one whose

reading has the least square error rate in sampling period has

high possibility to be chosen. This factor allows us to minimize

the error of using one sensor node rather than operation of

whole local group. To tackle the second question, we argue

that a smoothing approach should be applied to eliminate

the spontaneous environmental irregularity. Therefore, sensor

node’s selected frequency, denoting how many times it has

been as centroid, weights into final selection. As inferred, the

higher frequency, the better chance that the node is picked.

To bridge gap between one centroid’s reading and reference

(group reading average), polynomial regression approach used

in machine learning are introduced so that an approximation

mapping function from one centroid node’s reading onto

reference can be constructed. This strategy, by its nature,

guarantees the data stability and reliability in sensor network.

1) Centroid Selection : An algorithm for centroid node

selection is proposed according to relationship between inter-

ested data of a group and data from individual sensor nodes

within a group. Our algorithm, based on previous analysis,

applies these two most critical factors, the instant measured

risk and historical node nominated frequency, to determine

optimal centroid node. To be more clear, measured risk is

defined as the minimizing empirical risk ( by least square

error) R toward the reference measurement, and the node

nominated frequency is the frequency of a node being a

centroid node in the group. Given data from all sensor nodes

within groups, those two conditions are applied repeatedly into

our selection module to produce the winning centroid node for

each sensing schedule according to the algorithm described in

Table 1. Given the specific sensing schedule L (L= 1,2...,n) the

number of sensor nodes in a group, denoted as Si, i= 1,2..m,

the number of cycle j the past frequency of winning selection

for each node f(i), and the sensing data of each sensor node

at cycle j as Dij , the centroid selection algorithm iteratively

performs the following steps:

Noted that the if only least square error based selection

Algorithm 1 The Selection Algorithm

1: Calculate the average Qj for each group at cycle j by

taking average of all the data sampled from each sensor

node;

2: The data is store in a matrix for later comparison;

3: Calculate the least square error for each sensor node i by

taking the least square error function for the entire sensing

schedule;

4: Identify the node as centroid node at schedule L;

5: C(L) = {j |argmin{utility function(ej , f(j)) }}
6: Update the frequency counter of selected centroid node

7: f(j) = f(j) +1;

algorithm only gives an optimal selection for that specific

schedule, the past frequency f(j) of nodes winning could help

to select the node who has got the most approximate results

to the average data in a long time frame. Now the centroid

determination problem turns into an optimal utility function

F (ei, f) issue:

Maximize

N∑

i=1

F (ei, f)

subject to

N∑
i=1

ei

N
≤ et (1)

In practice, the utility function can vary upon the application

purposes. If a sensor node is capable of being the centroid

nodes with multiple nominations, it will be reliable to lean

toward this node in decision. Given the current measurement

risk ei at node i, and nomination frequency fi, and Q

modalities for the time L, one utility function, F (ei, fi) can be

obtained by smoothing the multiplication of those two factors

over the modality k according to its sensitivity:

F (ei, fi) =

!∑

k=1

ei · fi (2)

For practical design purpose, the modalities can be de-

termined based on requirement of system sensitivity to the

environment irregularity.

2) Translation Model Building: This section describes the

statistical method used to compare the centroid node’s sensing

data to the group average. The model function,whose input are

centroid’s sensing data C(L) is built to bridge the difference

between individual readings to the averages. By introducing

the translation function, we expected to reduce error rate

caused by the natural difference of using one node’s reading

to approximate the group average.

The critical problem in such approximation with finite

samples is the model selection. It involves choosing the model

complexity optimally for a given training sample. The training

samples here refer to the centroid node’s reading in the past n

cycles. As a result, the number of training samples also deter-

mines the empirical risk for each model complexity. Practical



model building involves two tasks which are estimation of

model parameters and estimation of the prediction risk. The

first task can be achieved via minimization of the empirical

risk, i.e. least square fitting approach used in our work. The

second can be done through data resampling following the

finish of first task.

Recall that our work focuses on environment monitoring

application, it makes sense not to use advanced models and

high degree complexity m into our model selection. Therefore

typical polynomial regression statistical approach with a model

complexity from 1 to 2 will be used in our model construction.

In intuition, the centroid node’s reading is proportional to the

group average, which makes us believe complexity of 1 and

2 are sufficient enough to keep approximation risk at a low

level. It can be noticed that the empirical risk depends on the

selection of model and the number of training samples. Then

the performance of such estimator requires carefully selection

of model parameters, model complexity degree and the number

of inputs. However, the distribution of input data also affects

system performance so that those raw data are needed to be

preprocessed before entering into estimator. The purpose of

preprocessing is to offer fast convergence of parameters in

approximation process, which may increase model accuracy

due to better fitting of input training samples.

The first level data reduction achieves the both the centroid

selection and translation model building mission, and the latter

one establish a solid basis for second level data reduction

discuss in the following section.

B. Adaptive Lower Duty Cycle Data Reduction (ALDCDR)

In LDCDR, the centroid node can lower its operating duty

cycle in sensing schedule, meaning centroid can even switch

into sleeping status to save its energy. This idea comes from

the fact that sensor’s reading could form a recognizable pattern

during certain period especially in environment monitoring

application. Those patterns can be well approximated and used

for prediction future outcome from sensor node if specific

application is well studied. As a result, following the model

building schedule, we introduce the data resampling phase and

prediction phase. In data resample phase, we try to achieve

the latest data to update the model built in training cycle. In

prediction phase, the centroid node will switch off to conserve

energy and the assumed sensing results are generated through

predictor that has been updated. Although similar polynomial

regression approach used in IGDR provides us necessity of

model selection and parameter optimization, it is wise to use

empirical model in specific application i.e. environment moni-

toring in our case, to save more energy related to computation

and data storage. Based on the prediction accuracy provided by

our empirical model, the sensor system will adjust its resample

rate accordingly yet to ensure that a balance for accuracy and

energy saving could be well maintained. The details of model

have been provided in .

Fig. 2. the new developed Test-bed of Wireless Sensor Network

C. Correlated Group Date Reduction (CGDR)

In CGDR, we intend to aggressively reduce sensing data

that need to be communicated through setting sensor group

whose sensing reading have high correlation with other groups

into sleep status. The sleep sensor group’s sensing reading

can be estimated using its correlated group’s reading. This

process obviously brings additional estimation error for the

true reading but could be well worthy when large scale

sensor network embeds significant amount of correlated sensor

groups. The standard statistical sample correlation coefficient

is used to measure the group correlation. The threshold of

bias pair data correlation is the key in balancing the error and

energy saving among groups. Its decision mainly depends on

the duty cycle for each group and the environment stability in

which wireless sensor network is deployed. We propose to use

error/energy saving ratio as a metric to find out the optimal

threshold of correlation under different duty-cycle setup and

stability of sensing environment. The results can eventually

suggest a guideline in communication protocol design for other

application.

D. SYSTEM IMPLEMENTATION

The architecture will be implemented on our newly con-

structed test-bed with more than 100 sensor nodes which

provides a realistic controllable environment for design ver-

ification and performance improvement shown in Fig. 2. The

design is implanted on Berkeley TinyOS/Micaz systems, scan-

ning light patterns will be projected onto test-bed for sensor

to detect Sensors are divided into several groups according

to space proximity. Those data sensed are sent to a powerful

workstation where complicated and energy consumption cal-

culation will be performed. The evaluation results (e.g. Error

rate vs Energy Saving) allow further analysis to optimize the

overall system.

IV. EVALUATION

A. System Evaluation

To evaluation the performance of three levels data reduction

strategies, a simulation program over maximum 1000 nodes



is carried out to emulate the deployment of nodes over a

large area which is divided into 100 regions. The data feed

is collected from WI-MN Cooperative Extension Agricultural

Weather Page where they monitor the soil temperature hourly

every day. The whole area under monitor is divided into over

25 groups as show in Figure 4. The soil temperature will be

sampled twice per hour and 24 hours per day. Their full record

of the soil temperature data in the past 10 years allows us to

test extensively efficiency of our strategy. Over 7 groups of

data are exploited to verify the performance of our strategies

under different system setup. To overcome the continuity

issues for those areas that are not covered, a weighted average

data distribution method is introduced to generate the reading

to cover the whole area where there are also sensors deployed

in our experiment. Their sampling data, though sampled in

hour basis, is treated continuously that provides flexibility of

our experimental control.

B. Performance Analysis

1) Estimation Error Analysis: In this sector, we evaluate

the architecture error rates on different key design parameters,

which include the density of sensor nodes in each group, the

effect of risk tolerance, the frequency of state interchange

between re-sampling phase and prediction phase. Although

those three parameters are not independent, study of their

effects separately could provide us better insight of improving

system performance. The methods used to calculate the error

rate are described in the methodology section.

2) Error Rate vs Risk Tolerance: During such evaluation,

the level of risk tolerance varies from 1 percent to 90 percent

at a step of 3 percent while other two key parameters, the

density of sensor nodes in each group and number of groups

are set to be constants respectively. And to avoid the possible

problems from the length of training phase, it is also set to be

a fixed value 49 unit cycles at the beginning of each test. Since

we attempt to achieve aggressive energy saving, the minimum

length of prediction phase is set to be 1. As described in

methodology section, we divide the region regularly into 100

groups across the whole area 1500m × 1500m. The sensor

nodes are deployed into those groups according to the density

setup initially. According to our experiments, we do not

observe a notable difference for the positions of sensor nodes

in each group.

All sources vary their intensity according to the data pro-

vided trying to mimic the environment hour by hour. The total

cycles of evaluation is about 9000, approximately more than

1 year reading, which we believe significantly large enough

to reduce the unsystematic risk caused by limited sample

size. At this moment, we haven’t considered the effect of

switching off correlated sensor groups, as IGDR and ALD-

CDR level consideration have focus on accuracy of prediction

and translation models created. To prevent unexpected error at

the initial state, we start with the training schedule right from

the beginning, during which both the translation model and

predictions continue to feed the inputs, sensor nodes’ sensing

at each cycle, to construct and train their model individually.
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Fig. 3. The influence of risk tolerance

Figure 3 shows the result of estimated error rate with the

change of risk tolerance for estimator w/o using the translation

model. As suggested from the simulation results, the prediction

error increases proportional to the increase of risk tolerance.

And it can be told from the projection that the risk won’t

be equal to zero if risk tolerance is extended to zero. This

is the systematic error introduced by our methodology nature

in which a minimum of prediction step is set. The average

prediction risk for tolerance at 90 percent is around 14.2

percent, a highly affordable error for a sensor system targeting

for long term usage. At such a low level of prediction error,

it will be more flexible for system to choose other appropriate

parameters.

We also measure average system prediction error under

the assistance of our translation model. The prediction error

assisted with the translation model we build is about two

times less than the error without using the translation model,

a number more benign than what we expect. And the gap of

error in both methods shows low correlation to risk tolerance

we choose. This can be explained that translation model

takes effect to reduce error from location mismatch from

the weighted average center of all reading in a group since

relationship between centroid’s reading and the real group

average reading is linear within a certain space.

3) Energy Saving Vs Risk Tolerance: The risk tolerance

determines the switching rate of the prediction cycle which is

the key effect to energy saving by our system. It is crucial to

study risk tolerance’s impacts onto the energy saving. During

our simulation experiments, we steadily increased our system

risk tolerance, then measured the average energy saving by

sensor system. The results are shown in Figure 6. From

intuitive perspectives, the energy saving increases as the risk

tolerance becomes higher due to the fact that the prediction

cycles have been extended, thus allow the system to get into

energy saving mode more frequently than low risk tolerance.

It is not surprised that even at 10 percent risk tolerance level,

energy saving can reach to 68 percent because the main energy

saving has been achieved through the IGDR approach. We note

here that the energy saving’s performance can only improve

the system energy saving level to certain extend since the



Fig. 4. The influence of risk tolerance on the average energy saving

existence of training cycles and re-sampling cycles used to

build the model. It hints that more aggressive energy saving

is possible by reducing those cycle length but apparently we

will have that at the loss of accuracy and roughness of the

prediction model.

4) Energy Saving Efficiency Vs Risk Tolerance: It will be

difficult to judge whether the energy saving at a risk tolerance

level is acceptable or not without any comparison standard.

Therefore an indicator called energy saving efficiency is de-

fined as

ESE =
Energy Saving

Risk Tolerance
=

Es

τrisk
(3)

Es is the energy saving percentage by referring to TAG

approach and τrisk to be the risk tolerance of system. It is

shown in Fig. 5.

From the result we can see that even energy saving at low

risk tolerance, its efficiency is higher than that for higher risk

tolerance. At the middle range, the energy saving efficiency

remains at a stable rate, which is quite interesting for practical

application. It indicates system can be tuned at a range of

risk tolerance for different energy saving while keeping the

stable energy saving efficiency. This feature provides flexibility

for users to adjust the system under different application

requirement domains.

V. CONCLUSION

In the paper, a system framework offering 3 degree of

data reduction is proposed in an attempt to minimize energy

consumption in wireless sensor network especially for long

life time application. The lower level of data reduction scheme

serves as the basis for higher level one with consideration of

their integration issues. Our statistical local error minimization

approach ensures centroid nodes selected in each group can

best represent oriented data point ( i.e. data average ) without

giving up data accuracy which is quite important in data

analysis. Furthermore, an empirical data model is created to

lower computation complexity and groups whose data have

high correlated coefficient will be reorganized into divisions

so that more aggressive data reduction can be achieved.

Our system implementation suggests a possible practice to

Fig. 5. Energy saving efficiency related to the risk tolerance

extend to a much larger scale of wireless sensor network. The

potential benefits for a system to exchange over 70 percent

energy saving with prediction error rate about 2 percent to 12

percent are demonstrated through our extensive simulation by

taking advantage of those readily available soil temperature

data. As future work, we will need to consider the routing

and connectivity issues for three level data reduction scheme

integration to improve the network’s robustness.
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