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Collective coupling between dipoles can dramatically modify the optical response of a medium. Such effects

depend strongly on the geometry of the medium and the polarization of the light. Using a classical coupled

dipole model, here we investigate the simplest case of one-dimensional arrays of interacting atomic dipoles

driven by a weak laser field. Changing the polarization and direction of the driving field allows us to separately

address superradiant, subradiant, redshifted, and blueshifted eigenmodes, as well as observe strong Fano-like

interferences between different modes. The cooperative eigenvectors can be characterized by the phase difference

between nearest-neighbor dipoles, ranging from all oscillating in phase to all oscillating out of phase with their

nearest neighbors. Investigating the eigenvalue behavior as a function of atom number and lattice spacing, we

find that certain eigenmodes of an infinite atomic chain have the same decay rate as a single atom between two

mirrors. The effects we observe provide a framework for collective control of the optical response of a medium,

giving insight into the behavior of more complicated geometries, as well as providing further evidence for the

dipolar analog of cavity QED.

DOI: 10.1103/PhysRevA.94.043844

I. INTRODUCTION

The optical response of an ensemble of scatterers can be

significantly modified if the scatterers behave cooperatively,

i.e., as an ensemble, rather than independently. Examples

of cooperative effects can include enhanced and reduced

scattering or decay rates (superradiance and subradiance

respectively) [1–14], energy shifts [4,14–20], highly direc-

tional scattering [21,22], Fano-like interferences [23–28], and

modified optical depth and scattering [19,29–32]. Cooperative

effects have been observed experimentally in many different

systems, from ultracold (Bose-Einstein condensate) [7], cold

[8,10–14,19,20,33], and high temperature atomic vapors [15]

to ions [6,17,34], nuclei [16], quantum dots [9], and plasmonic

nanoresonators [23,24,35,36]. Understanding and being able

to tailor this behavior may open the door to exciting and

novel applications, including enhanced atom-light coupling

[29], shift-free clock transitions [37], and long-lived quantum

state storage [38].

One way in which an ensemble can exhibit cooperative

behavior is if the particles all scatter coherently [39]. Such

coherent scattering is a result partly of coherent driving by an

external light field as well as coherent interactions between the

particles (typically, electric dipole-dipole interactions). The

combination of the resonant nature of these interactions as

well as Bragg-like interference between the scattered fields

means that placing the scatterers into periodic arrays or lattices

can greatly enhance the cooperative response [17,25,28,29,35–

38,40–45]. This also has relevance for the study of spin

lattices, since coherent scattering between two level dipoles

maps exactly onto a spin exchange description [38,46,47].

In two recent papers [28,29], we investigated numerically

the cooperative behavior of different two-dimensional (2D)

*r.j.bettles@durham.ac.uk
†s.a.gardiner@durham.ac.uk
‡c.s.adams@durham.ac.uk

atomic lattices. In [28] and also in [25,27], strong Fano-like

interferences between different cooperative eigenmodes can

lead to a cooperative analog of electromagnetically induced

transparency. In [29], we found certain parameter regimes

in which the optical extinction through a 2D lattice can

reach almost 100%, due in part to strong subradiant behavior

of the dominant cooperative eigenmode (see also [24,25]).

In this paper, we will discuss in more detail the model

that was used in these previous works and then apply it to

the case of atoms trapped in one-dimensional (1D) arrays.

Investigation into the cooperative behavior of 1D arrays has

already seen considerable interest in a number of different

systems. One of the earliest measurements of the cooperative

energy shifts and modified decay rates as a function of atom

spacing was made for a pair of ions [6], which has more

recently been extended to 1D arrays of up to eight ions

[17]. Recent experiments have seen atoms coupled to 1D

waveguides, in which superradiance has been observed [11],

localized eigenmodes and strong coupling predicted [48],

and optical band gaps and near-perfect reflection predicted

[42,49] and recently measured [50,51]. Other predictions for

atoms coupling through free space include large energy shifts

and modified decay rates as N → ∞ [37,41], increase in

excitation population along the direction of light propagation

breaking the Beer-Lambert prediction [44], and subradiant

excitation hopping [38] and state preparation [52]. Reducing

the dimensionality to 1D simplifies the behavior compared

with the 2D arrays considered in [28,29], making it easier

to observe patterns and structures which, in turn, provide

insight into the more complicated 2D behavior. Even in 1D,

however, we still observe a rich variety of different cooperative

phenomena.

The cooperative modification of an ensemble’s optical

response is analogous to the modified behavior of a single

quantum emitter inside a cavity [53]. In both cases, the optical

emission environment [i.e., the electromagnetic (EM) field

mode structure] of a single emitter is modified by the presence

of either a nearby mirror (in the cavity case) or an additional
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emitter (in the cooperative case). Recent proposals have

suggested the reproduction of cavitylike effects in cooperative

ensembles (without the need for a cavity), including atomic

mirrors [29,42], access to the strong coupling regime [42],

and cavity-free lazing [54]. In this paper, we show that the

decay rate of a single atom in a cavity is equivalent to that

of an infinite chain of atoms. Furthermore, the many-atom

system contains additional degrees of freedom compared with

the cavity case, allowing for richer, more varied behavior.

In Sec. II we present the coupled dipole model used to

calculate the optical response of the atomic array to a weak

classical driving field. We show how this can be used to

calculate the scattering cross section of the system and relate

this to the behavior of the cooperative eigenmodes. In Sec. III,

we begin by calculating the decay rate of a single atom within

a cavity. By replacing the cavity mirrors with a long chain

of atoms on either side, we observe the same decay rate as

for the single atom-cavity system. To better understand the

behavior of the atom chain, in Sec. IV we consider a smaller

chain of just N = 3 atoms, demonstrating Fano interferences

between the eigenmodes, energy shifts, and superradiant and

subradiant behavior, all accessible by tailoring the polarization

and direction of the incident driving field. Increasing the

atom number to N = 25, in Sec. V we look closely at the

eigenvectors and eigenvalues of a longer chain of atoms,

discovering patterns in both. In Sec. VI we compare chains

of different atom numbers, finding that certain eigenvalues

converge as N → ∞ which, as we found in Sec. III, is

equivalent to replacing the infinite chain of atoms with a single

atom between two mirrors. We then finally in Sec. VII make

comparison between the behavior of these 1D arrays with the

2D arrays considered in [28,29]. In Sec. VIII we conclude our

findings and present a brief outlook for future work.

II. COUPLED DIPOLE MODEL

A. Coupled classical dipoles

We begin by considering an ensemble of N atoms

with two manifolds of energy states characterized by the

angular momentum quantum number J . We assume there

is a single ground state |Jg = 0〉 ≡ |g〉, separated by an

energy of Ege = �ω0 from three degenerate excited states

|Je = 1,mJe
= {0, ± 1}〉, where mJ is the projection quantum

number of J , ω0 is the atomic transition frequency, and � the

reduced Planck constant. Such a system could, for example, be

realized in the triplet transitions of Sr [38,55] or Yb [56,57].

Arrays of singly occupied atomic lattices can be created, for

example, in optical lattice Mott insulators (e.g., demonstrated

in Sr [58] and Yb [57]) or in arrays of dipole traps [59,60].

The ground and excited states can be coupled by applying

a driving EM field to the atoms. For a sufficiently weak

monochromatic laser beam, the electric field component can

be described as a classical electric field Ek oscillating with

frequency ω = ck (k = 2π/λ is the wave number, λ is the

wavelength [61], and c is the speed of light) [62],

Ek(r,t) = Ek(r) e−iωt + E∗
k(r) eiωt , (1)

where Ek is the time-independent (complex) field in the

rotating frame. We shall assume the driving field is a uniform

field propagating with wave vector k, amplitude Ek , and

polarization ǫ̂k , Ek(r) = Ek eik·r
ǫ̂k . Which excited state is

addressed by the driving field depends on the polarization

of the driving field. For convenience, we will transform the

excited states from the angular momentum projection basis

into the Cartesian basis:

|x〉 ≡ 1√
2

(|Je = 1,mJe
= 1〉 + |Je = 1,mJe

= −1〉),

|y〉 ≡ i√
2

(|Je = 1,mJe
= −1〉 − |Je = 1,mJe

= 1〉),

|z〉 ≡ |Je = 1,mJe
= 0〉. (2)

Each state can now be excited by a driving field with the

corresponding linear polarization (e.g., ǫ̂x will couple the

ground and |x〉 states).

The quantum dynamics of the ith atom from an ensemble

of N atoms can be described by that atom’s density matrix

ρi ≡ |�i〉 〈�i | (for single-atom wave function |�i〉). We have

taken the trace over the EM field parts of the quantum system

and are assuming the many-atom quantum state is a product

state of the single-atom states, ρat = ⊗

i ρi , where
⊗

i is the

tensor product over all atoms i ∈ {1, . . . ,N}. If we assume the

driving field amplitude Ek is sufficiently weak such that we can

ignore the excited-state populations, ρνν
i ≃ 0 for ν ∈ {x,y,z},

we then need only consider the behavior of the individual

atomic coherences, ρ
gν

i .

In this weak driving limit, the resulting many-body optical

Bloch equations describing the dynamics of the atomic

coherences are equivalent to describing the atoms as classical,

coupled, driven electric dipoles [63–65]. The expectation of

the (vector) electric dipole operator acting on atom i, Di , is

〈Di〉 = Tr
{

ρat

(

∑

ν∈{x,y,z} dνg |νi〉 〈gi | + dgν |gi〉 〈νi |
)}

= di e
−iωt + c.c., (3)

where Tr is the trace over all atoms, dνg = ǫ̂ν 〈ν|D |g〉 = d∗
gν

is the dipole matrix element in direction ν, D is the scalar

electric dipole operator, c.c. is the complex conjugate, and

di ≡ dgνρ
νg

i eiωt (4)

is the electric dipole moment of atom i in the same rotating

frame as Ek in Eq. (1). In the steady state, an oscillating electric

field E(r) results in an oscillating dipole moment in atom i,

di = αE(ri), (5)

where ri is the position of the atom, α = −α0γ0/(
 + iγ0) is

the polarizability of a single two level atom, α0 = 6πε0/k3
0 ,

k0 = ω0/c is the wave number for the resonant atomic

transition, ε0 is the permittivity of free space, γ0 is half the

natural atomic decay rate, and 
 = ω − ω0 is the detuning

of the driving field from the resonant atomic transition. Each

oscillating electric dipole in turn radiates an oscillating electric
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field,

Ei(r) = G(Ri) di

= 3

2α0

eikRi

{[

1

kRi

+ i

(kRi)2
− 1

(kRi)3

]

di

−
[

1

kRi

+ 3i

(kRi)2
− 3

(kRi)3

]

(R̂i · di)R̂i

}

, (6)

where G(r) is a 3 × 3 matrix with matrix ele-

ments (ν,υ) ∈ {x,y,z}, defined as above, and the vector

Ri = RiR̂i ≡ r − ri has magnitude Ri and unit vector R̂i (we

just consider Ri �= 0). G(r) is the Green’s function solution

for an electric dipole radiating into free space [66]. The total

field experienced by atom i is therefore the sum of the driving

field and the fields scattered from every other dipole,

E(ri) = Ek(ri) +
∑

j �=i

Gij dj , (7)

where Gij ≡ G(ri − rj ) is the 3 × 3 Green’s function matrix

describing the scattering between atoms i and j . Substituting

this into the expression for the dipole moment (5), we obtain

a set of 3N coupled linear equations,

di = αEk(ri) + α
∑

j �=i

Gij dj , (8)

where each vector di has three components. These coupled

equations can be numerically solved self-consistently, allow-

ing us to calculate the steady-state behavior of the dipole

moments of an ensemble of atoms with arbitrary positions

driven by a classical driving field with arbitrary polarization

and functional form [in deriving (8) we have made no

assumption on the atomic position or form of the electric

field]. Again, we emphasize that this is both the solution to

the many-body optical Bloch equations in the weak driving

limit and equivalently the solution if we had modeled each

atom as a classical coupled driven oscillator [63–65]. This

type of coupled dipole model has been used extensively in

several fields including nanoplasmonics [25,26,36,67] and

atomic physics [13,14,19,20,28–30,33,45,68–70].

By solving Eq. (8) self-consistently, we are accounting

for multiple recurrent scattering between the dipoles. The

resulting phenomenology would be different if we had instead

treated the atoms as a polarizable medium experiencing mean

local field corrections, which is the case when, e.g., there is

significant inhomogeneous broadening [18]. In such systems,

mean-field density-dependent phenomena can include colli-

sional self-broadening of absorption lines [71] and collective

Lamb shifts [4,15,16].

B. Eigenvalue decomposition

The coupled linear equations in (8) can be represented in

terms of a matrix equation �Ek = M �d, where �Ek and �d are

column vectors composed of the N driving field and dipole

vectors, respectively, and M is a 3N × 3N matrix describing

the coupling between these vectors. M is composed of smaller

3 × 3 submatrices, Mij , each describing the coupling between

atoms i and j . Each element of Mij , in turn, describes the

coupling between polarizations (ν,υ) ∈ {x,y,z}. The matrix

elements of M, therefore, have the form

M
νυ
ij = α−1δν,υδi,j − (1 − δi,j ) G

νυ
ij , (9)

where Gνυ
ij is the (ν,υ)th element of Gij .

It is instructive to consider the eigenvalues μℓ and eigen-

vectors �mℓ of the matrix M, as this will provide insight

into the behavior of �d [26,28]. The eigenvalue equation

for M is M �mℓ = μℓ �mℓ, where the eigenmode index is

ℓ ∈ {1, . . . ,3N}. Provided that M is invertible, the set of

eigenvectors { �mℓ} forms a complete basis [72]. The tensors �Ek

and �d can therefore be represented in terms of this eigenbasis,

�Ek =
∑

ℓ

bℓ �mℓ, (10a)

�d =
∑

ℓ

cℓ �mℓ, (10b)

where the coefficients can be calculated by taking the dot

product of (10) with �mℓ′ . If M were Hermitian, the eigenvectors

would be orthogonal, and calculating the coefficients would

be trivial. However, because the dipole-dipole coupling is

complex and symmetric under exchange of atom and/or

polarization index, Gνυ
ij = Gυν

ji �= (Gυν
ji )∗, the matrix M is

complex symmetric, rather than Hermitian. One consequence

of this is that the eigenvectors are not necessarily orthogonal;

i.e., there are situations when �m∗
ℓ · �mℓ′ �= δℓ,ℓ′ [73]. Calculating

each coefficient bℓ then involves solving a set of coupled linear

equations,

�m∗
ℓ · �Ek = bℓ +

∑

ℓ′ �=ℓ

bℓ′ �m∗
ℓ · �mℓ′ , (11)

assuming we have normalized | �mℓ|2 = 1. From this, we can

calculate the expansion coefficients for �d,

�Ek = M �d = M

∑

ℓ

cℓ �mℓ =
∑

ℓ

cℓ μℓ �mℓ =
∑

ℓ

bℓ �mℓ; (12)

i.e., cℓ = bℓ/μℓ and �d = ∑

ℓ bℓ �mℓ/μℓ.

One further consequence of the complex symmetry of M is

that the eigenvalues are, in general, complex. The interaction

energy between two electric dipoles di and dj is given by

Vdd = −d∗
j · Gji di = −d∗

i · Gij dj . (13)

The complex nature of G is related to how it has both a coherent

and a dissipative part. If we split the coupling matrix into

the diagonal matrix 1/α and the coupling matrix G (where

G is the 3N × 3N matrix with matrix elements Gνυ
ij ), i.e.,

M = 1/α − G, then the eigenvalues can be expressed as

μℓ = 1

α
− gℓ = − 1

α0


 + iγ0

γ0

− gℓ

= − 1

α0γ0

[(
 − 
ℓ) + i(γ0 + γℓ)], (14)

where gℓ is the eigenvalue of the coupling matrix G and 
ℓ and

γℓ are related to the real and imaginary parts of gℓ, respectively,


ℓ ≡ −α0 γ0 Re(gℓ), γℓ ≡ α0 γ0 Im(gℓ). (15)

The eigenvalues in Eq. (14) have a similar form to the inverse

of the atomic polarizability α−1 = −(
 + iγ0)/(α0γ0), except
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the resonance frequency is shifted by 
ℓ and the decay rate

is modified by γℓ. Because of this, we shall refer to 
ℓ as

the cooperative shift and (γ0 + γℓ) as the cooperative (half)

decay rate. When (γ0 + γℓ) > γ0, the decay rate is said to be

superradiant; when (γ0 + γℓ) < γ0, the decay rate is said to

be subradiant.

C. Degenerate eigenmodes

In this paper we consider atoms arranged in 1D arrays. If we

define three orthogonal coordinate axes such that one is parallel

to the atomic separation vector (the atomic axis), ǫ̂‖, and the

other two are perpendicular to the atomic axis, ǫ̂⊥,1 and ǫ̂⊥,2,

then Eq. (6) shows that there is no dipole-dipole interaction

between dipoles that are aligned along different axes from

{ǫ̂‖,ǫ̂⊥,1,ǫ̂⊥,2}. We can therefore separate the 3N eigenmodes

equally into modes with dipoles polarized separately in each

of these three coordinate axes.

For a given polarization ǫ̂, the angle between R̂ij and ǫ̂

is θ = arccos(R̂ij · ǫ̂). Because θ = π/2 is the same for both

ǫ̂⊥,1 and ǫ̂⊥,2, each mode in ǫ̂⊥,1 is degenerate with an identical

mode in ǫ̂⊥,2. For two degenerate eigenvectors �mℓ and �mℓ′ ,

any linear superposition of these two eigenvectors is also

an eigenvector of M with the same eigenvalue. To speed up

calculations, if we consider a driving field that only excites

one of the three mentioned polarizations, then we can ignore

the other two directions in our calculations.

D. Scattering cross section

One convenient quantity we can calculate from the dipole

solutions is the scattering cross section. The scattering cross

section for an ensemble of electric dipoles is given by

σsc = σ0

α0|Ek|2
Im(�E∗

k · �d), (16)

where σ0 = 6π/k2
0 is the resonant atomic scattering cross

section. We assume the atomic dipoles have no nonradiative

decay (e.g., phonon loss in a plasmonic resonator), and so

the scattering cross section is equal to the extinction cross

section, which can be determined using the optical theorem

[66]. Substituting the expressions for �Ek and �d from (10) into

(16) gives

σsc = σ0

α0|Ek|2
Im

[(

∑

ℓ

b∗
ℓ �m∗

ℓ

)

·
(

∑

ℓ′

bℓ′

μℓ′
�mℓ′

)]

= σ0

α0|Ek|2

⎡

⎣

∑

ℓ

|bℓ|2 Im

(

1

μℓ

)

+
ℓ �=ℓ′
∑

ℓ,ℓ′

Im

(

b∗
ℓbℓ′

μℓ′
�m∗

ℓ · �mℓ′

)

⎤

⎦. (17)

For clarity we define the terms in the sum just over ℓ as direct

contributions to the cross section, σℓ, and the terms in the sum

over ℓ and ℓ′ as interference contributions, σℓℓ′ , i.e.,

σsc ≡
∑

ℓ

σℓ +
ℓ �=ℓ′
∑

ℓ,ℓ′

σℓℓ′ , (18)

The significance of the nonorthogonality of the eigenvectors

for the cross section is that not only does each mode contribute

to the scattering individually (σℓ), but there are also interfer-

ences between modes (σℓℓ′), which, as we shall see in Sec. IV,

result in striking Fano-like resonance interferences. The direct

scattering due to each mode has a Lorentzian line shape,

σℓ = σ0|bℓ|2
|Ek|2

γ0(γ0 + γℓ)

(
 − 
ℓ)2 + (γ0 + γℓ)2
, (19)

which has a resonance shifted by 
ℓ, a half width at half

maximum (HWHM) of (γ0 + γℓ), and a value on resonance of

σℓ(
 = 
ℓ) = σ0|bℓ|2
|Ek|2

γ0

γ0 + γℓ

, (20)

which is inversely proportional to the ratio of the cooperative

decay rate and the natural decay rate. A superradiant resonance

(γ0 + γℓ > γ0) will therefore broaden and lower the peak of

the line shape of σℓ, while a subradiant resonance will narrow

and increase the peak of the line shape.

III. SINGLE ATOM IN A CAVITY

Before investigating in detail the cooperative behavior of

different 1D atomic chains, we want to make a comparison

between the way multiple atoms interact with each other to

the way a single atom interacts with a mirror. To modify the

optical response of a single resonator, it is necessary to modify

the EM environment of that resonator. For a single atom,

this can be done, for example, by placing the atom within an

optical cavity (e.g., between two highly reflecting mirrors).

The EM field generated in the mirror surface is equivalent to

there being an image dipole positioned behind the mirror with

which the real dipole can then interact [66]. Placing the atom

midway between two mirrors separated by a therefore results

in the real dipole interacting with an infinite chain of equally

spaced image dipoles. If the dipole is polarized parallel to the

mirror planes, the first-order image dipoles on either side of

the real dipole are antialigned with the real dipole, and the

half-decay rate is [74]

γ ‖ = 3πγ0

2ka

ka/π
∑

n=1

(

1 + n2π2

k2a2

)

sin2

(

nπ

2

)

, (21)

where n is the cavity mode index. Alternatively, if the real

dipole is polarized perpendicular to the mirror planes, the

image dipoles are then all aligned with the real dipole, and

the half-decay rate is

γ ⊥ = 3πγ0

ka

[

1

2
+

ka/π
∑

n=1

(

1 − n2π2

k2a2

)

cos2

(

nπ

2

)

]

. (22)

The number of EM modes that can exist within the cavity is

limited by the size of the cavity. For the parallel polarization

γ ‖ plotted in Fig. 1, if the cavity is too short to support even

a single cavity mode (a < λ/2) then the atom cannot decay

and so the decay rate becomes zero (subradiance). This is

because the cavity mode must have opposite sign at the real

and image dipoles. Conversely, for γ ⊥, we shall see later in

Fig. 9(b) that the atom can decay even when a < λ/2 and, in

fact, γ ⊥ → ∞ (superradiance) as a → 0.
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FIG. 1. Half-decay rate for a single atom between two mirrors

and polarized parallel to the mirror plane [gray shaded area, Eq. (21)]

as a function of mirror spacing a. This is shown to have a similar

decay rate behavior to that of a chain of N = 51 real atoms

polarized perpendicular to the atom chain, antialigned with their

nearest neighbors (red solid line), and separated by nearest-neighbor

spacing a.

Using the model outlined in Sec. II, we can replace the

image dipoles formed by the mirrors with a chain of real

dipoles. In Fig. 1 we see that the cavity half-decay rate

is approximated well by the half-decay rate of a chain of

N = 51 atoms polarized perpendicular to the atomic axis and

in the eigenmode for which each dipole is antialigned with its

nearest neighbors ( �mN , the mode index is ℓ = N , which will

be explained in Sec. V). The chain of atoms therefore behaves

as if the atoms on either side of the central atom are just

mirrors, allowing only certain modes to be supported. Similar

mirrorlike behavior has been predicted [42] and recently

demonstrated [50,51] for 1D chains of atoms coupled along a

waveguide, where Bragg reflection from the atom chains can,

in an ideal case, produce near-perfect reflection of an incident

electric field propagating through the waveguide. The dipolar

system therefore provides an analog to cavity QED, although

with additional degrees of freedom since the behavior of each

dipole is no longer constrained by the behavior of the central

dipole, as is the case with the image dipoles. In the following

sections we shall go on to investigate this cooperative behavior,

looking at the scattering, eigenvectors, and eigenvalues for

different 1D atomic chains.

IV. ATOM CHAIN, N = 3

A. Perpendicular wave vector, parallel polarization

In order to better understand the behavior of the chain of

dipoles shown in Fig. 1, we shall now consider a much simpler

system of just three atoms in a chain. Such a system has also

been considered in [75]. In Fig. 2 we plot the scattering cross

section as a function of detuning for three different orientations

of driving field polarization ǫ̂k and wave vector k. In Fig. 2(a)

we first consider the case where the driving field is incident

perpendicular to the chain, k⊥,2, and polarized parallel to the

chain, ǫ̂‖. The overall scattering cross section (red solid line)

FIG. 2. (a),(c),(e) Scattering cross section σsc (red solid lines)

of a uniform, linearly polarized plane wave due to three atoms

evenly spaced in a line with nearest-neighbor spacing a = 0.25λ,

as a function of the driving field detuning. The contribution to the

scattering from the individual modes σℓ are also plotted (blue, green,

and purple solid lines). (b),(d),(f) The solid black lines plot the

contribution to the scattering from interference between the modes,
∑ℓ �=ℓ′

ℓℓ′ σℓℓ′ . (a),(b) The driving field wave vector is perpendicular to the

atomic axis, k⊥,2, and polarized parallel to the atomic axis, ǫ̂‖. (c),(d)

The driving field wave vector is perpendicular to the atomic axis, k⊥,2,

and linearly polarized π/4 to the atomic axis, ǫ̂ = (ǫ̂‖ + ǫ̂⊥,1)/
√

2.

(e),(f) The driving field wave vector is parallel to the atomic axis, k‖,

and polarized perpendicular to the atomic axis, ǫ̂⊥,1. The gray shaded

areas indicate the scattering line shape for a single noninteracting

atom.

exhibits a broadening and a redshift of the resonance line

shape compared with the single-atom case (gray shaded area).
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However, in addition to this, the line shape has a very sharp

blueshifted resonance.

The presence of these two features can be explained by

considering the eigenmode decomposition of σsc (17). By

plotting the individual cross sections of the different modes,

σℓ, we see that the overall line shape is dominated by two

individual modes, one broad (superradiant, γ1′ ≃ 2.25γ0) and

redshifted (σ1′ , green line), and the other narrow (subradiant,

γ3′ ≃ 0.06γ0) and blueshifted (σ3′ , blue line) [76]. The eigen-

vector for mode σ1′ corresponds to each dipole oscillating with

approximately equal amplitude and approximately in phase

with each other [d1,3 ≃ 0.7 exp(0.02iπ ) d2 for edge dipoles

d1,3 and central dipole d2]. In Sec. V B we will discuss how,

for small spacing, these modes are similar to the well-known

Dicke states [1].
The total cross section is not, however, just the sum of the

two mode cross sections σ1′ + σ3′ . In Fig. 2(b) we plot the
difference in the sum of the two mode cross sections with
the total cross section (σsc − σ1′ − σ3′), which is identical
to the interference term σℓℓ′ . This interference, as already
mentioned, is asymmetric around the resonance of mode �m3′ .
Such an asymmetric interference line shape is characteristic of
a Fano-type line shape. In a Fano resonance, a discrete ground
state can be excited to a continuum of excited states either
directly or via an intermediate discrete state, the energy of
which lies within the excited-state energy band. Interference
between these two pathways changes sign as the frequency of
the driving passes through resonance with the discrete state,
resulting in the characteristic Fano asymmetric line shape. In
the coupled atomic dipoles, excitation from the ground state to
a broad cooperative eigenstate ( �m1′ ) can either occur directly
or via the narrow eigenstate ( �m3′). This pathway is allowed
because the eigenvectors are nonorthogonal. As with the Fano
resonance, the sign of the interference changes as the driving
goes through resonance with the narrow mode, resulting in
an asymmetric interference line shape. Fano-like interference
line shapes have been predicted and observed in a number of
coupled dipole systems [23,26,28,77–79].

B. Perpendicular wave vector, diagonal polarization

If we change the angle of the polarization vector such that it

is diagonal with equal components in ǫ̂‖ and ǫ̂⊥,1, then we ex-

cite twice as many eigenstates [Fig. 2(c)]. In addition to the two

ǫ̂‖ states observed in Fig. 2(a), we observe the equivalent in-

phase ( �m1) and out-of-phase ( �m3) modes polarized in ǫ̂⊥,1. The

eigenvalues of the ǫ̂⊥,1 modes are different from those of the ǫ̂‖
modes because the dipole-dipole interaction energy is different

for θ = 0 and θ = π/2. σ1 is again broad (superradiant) and σ3

is narrow (subradiant), although the shifts now have opposite

signs. Like �m1′ and �m3′ , �m1 and �m3 interfere with each other,

resulting in an asymmetric interference line shape in Fig. 2(d)

at the resonance of σ3. The two sets of modes of different polar-

izations do not, however, interfere as they truly are orthogonal

(i.e., �m∗
1 · �m1′ = 0, etc.), and so the only interferences occur

between modes with nonorthogonal polarization.

C. Parallel wave vector, perpendicular polarization

Changing the direction of propagation of the driving field

in Fig. 2(e) such that the propagation wave vector is parallel

to the atomic axis, we are able to excite a third mode not

previously seen in either of the other configurations: �m2.

This mode corresponds to the central atom having no dipole

moment while the outer two dipoles oscillate with equal

amplitude and π out of phase with each other. The reason

this antisymmetric mode is not observed in the other two

cases is the symmetry of the driving field: In Figs. 2(a)–2(d),

the driving field experienced by each atom is identical, and

therefore the overlap between mode σ2 and these fields is zero,

meaning b2 = 0. For k‖, however, the propagation phase eik‖·r

can be different at each atom, meaning that depending on the

value of a, each atom experiences a different phased driving

field. This means there can now be a nonzero overlap with

an antisymmetric mode like �m2. For a = 0.25λ, the phase

difference between each nearest neighbor is eiπ/2 = i, which

results in the expansion coefficient of mode �m2, |b2|2 (10a),

being around four times larger than |b1|2 and |b3|2. Because

the linewidth of σ3 is so narrow, however, the peak of σ3 is still

larger than the peak of σ2. Note, as well, that because mode

�m2 is orthogonal to �m1 and �m3, the only nonzero interferences

in Fig. 2(f) are between modes �m1 and �m3.

D. Comment on application

Even for just three atoms with fixed atomic spacing, we

observe a diverse range of different scattering behaviors. De-

pending on what is required, we can realize different features

just by changing the direction and polarization of the driving

field. For example, Fig. 2(a) allows us to observe strong mode

interferences and simultaneous superradiant and subradiant

behavior, depending on detuning. In Fig. 2(c), the line shape is

dominated by two orthogonal broad superradiant modes which

do not interfere and so the overall line shape is broad and

superradiant, with only relatively weak contributions from the

two subradiant modes. Conversely, in Fig. 2(e), simultaneous

excitation of symmetric and antisymmetric modes results in

only weak mode interferences and strong excitation of a

subradiant mode, meaning the overall line shape is now largely

subradiant, with the peak cross section almost doubling that

of the independent atom case.

V. ATOM CHAIN, N = 25

A. Eigenvectors

As we increase the atom number, the number of eigenmodes

increases linearly, resulting in an even richer behavior. In

Fig. 3, we plot a selection of the eigenvectors for a chain of

N = 25 atoms. We consider only those eigenvectors polarized

perpendicular to the atomic axis (θ = π/2). For each dipole in

the chain we plot the amplitude and phase of the ǫ̂⊥,1 polarized

dipole vector as a phasor.

Other than small deviations due to finite size effects, the

general behavior of the eigenvectors has two main features.

First, as the mode index ℓ increases from 1 to N , the average

phase difference between nearest-neighbor dipoles appears to

increase. For ℓ = 1, the dipole oscillations are approximately

all in phase with each other (indicated by the angle of their

phasors). This is similar to modes �m1 and �m1′ from Fig. 2.

Conversely, for ℓ = N = 25, each dipole is approximately π

out of phase with its nearest neighbors, similar to �m3 and �m3′ in
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FIG. 3. Phasors of each dipole in a chain of N = 25 atoms for a selection of eigenmodes. Each phasor represents the amplitude dℓ
i and phase

ϕℓ
i of each dipole in the ℓth eigenmode polarized perpendicular to the atomic axis (θ = π/2), dℓ

i = dℓ
i eiϕℓ

i ǫ̂⊥,1. Atomic spacing is a = 0.25λ.

The nearest-neighbor phase correlation function 〈cos ϕℓ
i,i+1〉, Eq. (23), decreases with increasing mode index.

Fig. 2. We can quantify this nearest-neighbor phase difference

by defining a phase correlation function

〈

cos ϕℓ
i,i+1

〉

= 1

N − 1

N−1
∑

i=1

cos
(

ϕℓ
i+1 − ϕℓ

i

)

, (23)

where 〈 〉 refers to averaging over every pair of nearest-

neighbor atoms. When all dipoles are in phase, the correlation

function should be 〈cos ϕℓ
i,i+1〉 ≃ 1, and when all dipoles

are out of phase, it should be 〈cos ϕℓ
i,i+1〉 ≃ −1. In Fig. 4

we plot 〈cos ϕℓ
i,i+1〉 for increasing mode index and see an

approximately linear decrease from 1 to −1, confirming that

the average phase difference between nearest neighbors does

increase with increasing mode index.

In addition to the phase differences between neighboring

dipoles, the amplitudes of the oscillating dipoles are not

constant across the chain. Starting from ℓ = 1 and increasing

the mode index, the amplitude envelopes can be described

by harmonic modes of increasing order. The same is true

starting from ℓ = N and decreasing mode index. In general,

as ℓ tends towards ℓ = (N + 1)/2 from either direction,

the amplitude envelope is a harmonic mode with n antin-

odes, where n = ℓ for ℓ < (N + 1)/2 and n = N + 1 − ℓ

for ℓ > (N + 1)/2.

We can account for this change in amplitude of oscillation

by defining another nearest-neighbor correlation function,

〈(

dℓ
i

)∗ · dℓ
i+1

〉

= 1

N − 1

N−1
∑

i=1

(

dℓ
i

)∗ · dℓ
i+1

|α0Ek|2

= 1

N − 1

N−1
∑

i=1

dℓ
i d

ℓ
i+1

|α0Ek|2
ei(ϕℓ

i+1−ϕℓ
i ), (24)
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FIG. 4. Nearest-neighbor phase correlation functions for each

eigenmode in a chain of N = 25 atoms polarized perpendicular to

the atomic axis (θ = π/2) with nearest-neighbor spacing a = 0.25λ.

The different correlation functions are defined in Eqs. (23) and (24)

and indicated by the key in the figure. A gray line indicates a linear

decrease from +1 to −1.

where dℓ
i = dℓ

i eiϕℓ
i ǫ̂

ℓ
i is the dipole vector corresponding to the

ℓth eigenvector with magnitude dℓ
i , phase ϕℓ

i , and polarization

ǫ̂
ℓ
i . Equation (24) is effectively the normalized expectation

value of the dot product between two neighboring dipoles. We

plot the real and imaginary parts of this separately in Fig. 4.

The imaginary part is always zero, although the real part, like

〈cos ϕℓ
i,i+1〉, decreases (now nonlinearly) from 1 to −1 with

increasing mode index.

In this paper we always consider odd N . For even N , the

same patterns in eigenvectors and eigenvalues appear. Because

of the symmetry, the mode �mN is antisymmetric about the

center of the lattice rather than symmetric, although it is still

fully antiphased.

B. Eigenvalues

Our convention for mode index assignment has been

such that the correlation functions continually decrease for

increasing mode index. However, plotting the eigenvalues for

an atomic separation of a = 0.25λ in Fig. 5, we see that the

eigenvalues also depend on mode index, following a smooth

arclike pathway through frequency space centered roughly on

(
ℓ = 0, γℓ = 0). The reason for this is that eigenvalues of

each eigenmode are related to the total sum of each individual

dipole vector (and also on the phase accumulated by scattering

between dipoles). Similar eigenvalue plots have been made

for 1D arrays [44] as well as aperiodic Vogel spiral arrays [80]

and random atomic ensembles [81,82]. For random ensembles,

the eigenvalue spectra typically consist of regions and narrow

branches of randomly distributed eigenmodes.

In the Dicke picture [1,5], an ensemble of N atoms is

confined to a volume much smaller than λ in extent. In that

situation, a mode like �m1, in which each dipole oscillates in

phase, will behave like a macroscopic dipole, with a dipole

moment N times larger than each individual dipole moment.

FIG. 5. Eigenvalues for a chain of N = 25 atoms polarized

perpendicular to the atomic axis (θ = π/2) with nearest-neighbor

spacing a = 0.25λ. The mode indices are labeled from ℓ = 1 to 25.

The correlation function 〈cos ϕℓ
i,i+1〉 is defined in Eq. (23).

This coherent N -fold enhancement results in an enhanced

scattering rate and a decay rate N times larger than the decay

rate of a single dipole. We can apply a similar idea to our

chain of dipoles. Since the extent of the chain is now much

larger than λ, the phase of the scattering between dipoles

is also important, although we can still apply the idea of a

coherent increase or decrease in the overall dipole moment

of the ensemble. The overall dipole moment, and thus the

eigenvalue of each eigenmode, are therefore clearly related to

the relative phase and magnitude of each dipole in the chain.

This will be discussed further in Sec. V D.

C. Scattering cross section

Let us now consider which modes can be addressed by a

uniform driving field with polarization and propagation wave

vector both orthogonal to each other and to the atomic chain

(ǫ̂⊥,1,k⊥,2). In Fig. 6 we find that the scattering cross section

is dominated by the fully in-phase mode σ1. For this atomic

separation (a = 0.25λ), the in-phase mode is superradiant

and blueshifted. In contrast to the three-atom case in Fig. 2,

the higher index modes are now only very weakly coupled

to the driving field. This is because the overlap between

the uniform driving field and the out-of-phase dipoles is

small. The perturbation of these highly subradiant modes is

still visible in the total cross section, although, in practice,

would likely be washed out by experimental uncertainties in

the atomic position. Notice also that only the odd-numbered

modes are visible. This is because the even-numbered modes

are all antisymmetric while the odd-numbered modes (like the

uniform driving field) are symmetric.

D. Eigenvalue dependence on atomic spacing

So far we have only considered a single atomic spacing,

a = 0.25λ. However, as the dipole-dipole interaction (13)

depends on atomic spacing, so will the eigenvalues (the

correlation functions in Fig. 4 do not change significantly for

different atomic spacings; individual mode vectors may have

slightly different phases or amplitudes, but stay approximately
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FIG. 6. Scattering cross section (red solid line) for a chain of

N = 25 (inset, N = 3) atoms driven by a uniform driving field of

varying detuning 
, propagating perpendicular to the atomic chain

k⊥,2, and polarized perpendicular to the atomic chain ǫ̂⊥,1. The atoms

are separated by a = 0.25λ. The individual contribution for each

eigenmode is also plotted (blue lines), and the modes are labeled with

the same mode indices as in Figs. 3, 4, and 5.

the same as in Fig. 3). In Fig. 7 we plot the eigenvalues for the

chain of N = 25 atoms for θ = π/2 and θ = 0 as a function

of atomic spacing. We highlight the fully in-phase mode �m1

with a black solid line. This mode tends to a decay rate of

γ0 + γ1 ≃ 22γ0 as a → 0 for either orientation. As discussed

in Sec. V B, this is analogous to the Dicke fully symmetric

state, which for a → 0 becomes γ0 + γ1 = Nγ0. However,

because the mode has a nonuniform amplitude envelope such

that the dipole moments are larger in the center and smaller at

the edges, the fully in-phase mode considered here does not

completely reproduce the Dicke picture.

In Figs. 7(e) and 7(f), we plot the eigenvalue spectra. As

already noted, modes with superradiant decay rates and small a

are all blueshifted for θ = π/2 and are all redshifted for θ = 0.

This is because of the difference in sign of the dipole-dipole

interaction (13) between the two different orientations.

VI. ATOM CHAIN, VARYING N

A. Convergent and divergent eigenvalue limits

Increasing the atom number from N = 3 to N = 25, we
see an increase in the number of eigenmodes as well as the
complexity of their behavior. In Fig. 8, we plot the eigenvalues
for an atomic spacing of a = 0.25λ as we did in Fig. 5, but
now for different numbers of atoms (N = 3,11,25,51). We
notice first that the maximal modes (ℓ ≃ 1, ℓ ≃ N ) at either
end of the arcs of eigenvalues appear to converge to limiting
values as N → ∞. However, for the modes around ℓ ≃ N/2,
while for any given value of N the eigenvalues are well defined
and finite, as we increase N , the eigenvalues do not appear to
converge as they did for ℓ ≃ 1 and ℓ ≃ N .

Looking at the eigenvectors in Fig. 3, it is possible to
make guesses as to the general eigenvector behavior for the
eigenvectors of a chain of N atoms. Let us consider the
modes �m1 and �m(N+1)/2. For these modes, the j th dipole has

the general form dℓ
j ≃ d cos(jϕℓ) ǫ̂ [83], where the nearest-

neighbor phase difference ϕℓ
j,j+1 = ϕℓ is the same for all

(j,j + 1). We are interested in the limit N → ∞ and so we
ignore the edge effects and amplitude envelopes. Substituting
dℓ

j into Eq. (8) results in eigenvalues of the form [14,37,41,84]


ℓ = −α0γ0

∞
∑

j=−∞
Re[cos(jϕℓ)G0j ](1 − δ0j ), (25a)

γℓ = α0γ0

∞
∑

j=−∞
Im[cos(jϕℓ)G0j ](1 − δ0j ). (25b)

If the position of the j th dipole is aj , then G0j is proportional
to 1/|j |, 1/|j |2, and 1/|j |3. The sum over a series

∑∞
j=1 1/jρ

is absolutely convergent if ρ > 1. However, if ρ = 1, then the
sum is convergent only if the sign of the numerator alternates
(with some periodicity);

∑∞
j=1 1/j does not converge. Such a

sum is conditionally convergent.
For θ = 0, the 1/j terms cancel in G0j (6), meaning

the eigenvalues are always absolutely convergent since G0j

only depends on 1/j 2 and 1/j 3. For θ = π/2, however, the
1/j terms do not cancel, meaning the eigenvalues from (25)
become (ignoring the 1/j 2 and 1/j 3 terms)


ℓ ∝
∞

∑

j=1

cos(jϕℓ) cos(kaj )

j
, (26a)

γℓ ∝
∞

∑

j=1

cos(jϕℓ) sin(kaj )

j
. (26b)

The numerator in (26b) changes sign as a function of j

and so γℓ is always convergent. However, depending on the
relationship between ϕℓ and aj , the numerator in (26a) may
or may not have an alternating sign. For example, mode ℓ = 1
in Fig. 8 with atom spacing a = λ/4 can be described with
a phase difference ϕℓ = 0. In this case, the numerator in
(26a) is cos(jπ/2) which changes sign as a function of j and
therefore results in a converging series. This is confirmed by
our observation in Fig. 8 that the eigenvalues for ℓ = 1 appear
to converge as N increases. Conversely, for ℓ = (N + 1)/2,
ϕℓ = π/2, and so the numerator in (26a) becomes cos2(jπ/2),
which always has the same sign, and therefore the shifts

(N+1)/2 do not converge as N → ∞.
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FIG. 7. Eigenvalue dependence on atomic spacing for a chain of N = 25 atoms. The angle between the atomic separation and the polarization

vector is θ = π/2 (a),(c),(e) and θ = 0 (b),(d),(f). In (a)–(d) the half-decay rates (a),(b) and eigenvalue shifts (c),(d) are plotted separately as a

function of atom spacing. In (e),(f) the same eigenvalues are plotted together, starting at the center with large atomic spacing and spiraling out

with decreasing atomic spacing. The half-decay rates in (a) are similar to those in Figs. 1 and 9(a). Black solid lines highlight the modes �m1

(a),(c),(e) and �m1′ (b),(d),(f).

Similar discussions of the convergence and divergence of
the eigenvalues of a 1D chain of dipoles, as well as analytic
solutions in various limits, can be found in [37,41,84].

B. Atom in a cavity

In Fig. 1, we showed that the decay rate of a single atom

inside a cavity polarized parallel to the cavity mirrors is ap-

proximated well by the decay rate of the antiphased eigenmode

�mN of a chain of N = 51 atoms polarized perpendicularly

to the atomic axis. In Fig. 9, we plot the half-decay rates

and also the energy shifts as a function of lattice spacing for

N = {3,11,51}. In Fig. 9(a) we find that the decay rates of

the atom chains in the antiphased mode �mN tend towards the

decay rate of a single atom in a cavity polarized parallel to

the cavity mirrors. In Fig. 9(b) we find the same is true when

considering the fully in-phase mode �m1′ and an atom polarized

perpendicular to the mirrors. In Figs. 9(c) and 9(d) we plot the

cooperative shifts for these same modes. Comparing these

with the shifts calculated using Eq. (25a), we see that, as

predicted in Sec. VI A, the shifts diverge logarithmically when

a = Zoddλ/2 for odd integers Zodd and θ = π/2 (c) [85];

otherwise, the shifts (and widths) converge for all other a

for both θ = π/2 and θ = 0.

VII. COMPARISON BETWEEN 1D AND 2D ARRAYS

Many of the features we observe in this paper for 1D atomic

arrays are similar to the behaviors that have been observed

in previous studies of 2D atomic arrays [28,29,37,40]. For
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FIG. 8. Eigenvalues for a chain of atoms polarized perpendicular to the atomic axis (θ = π/2) with nearest-neighbor spacing a = 0.25λ.

The different markers correspond to atom numbers N = 3 (purple diamonds), N = 11 (blue squares), N = 25 (green triangles), and N = 51

(red hexagons). The gray line and markers plot the predicted eigenvalues (25) assuming an eigenvector with nearest-neighbor phase difference

ϕℓ
j,j+1 = π/2. This is to demonstrate how the ℓ = (N + 1)/2 mode cooperative shifts do not converge as N → ∞.

example, in Figs. 2 and 3 of [28], the cross section line

shapes for 2D square and kagome arrays can exhibit Fano-like

resonances due to interferences between multiple cooperative

eigenmodes, similar to the line shapes observed in Figs. 2

FIG. 9. (a),(b) Half-decay rates and (c),(d) cooperative shifts for chains of N = 3 (purple), N = 11 (blue), and N = 51 (red) atoms. In

(a),(c), the atoms are polarized perpendicular to the atomic axis (θ = π/2) and we consider mode �mN ; in (b),(d) the atoms are polarized parallel

to the atomic axis (θ = 0) and we consider mode �m1′ . The shaded areas plot the half-decay rates for a single atom between two mirrors:

(a) polarized parallel to the mirrors [γ ‖, Eq. (21)] and (b) polarized perpendicular to the mirrors [γ ⊥, Eq. (22)]. We also plot with black dashed

lines the half-decay rates and shifts calculated using the eigenvector ansatz in Eq. (25), with nearest-neighbor phase difference ϕℓ
i,i+1 = π

(a),(c) and ϕℓ
i,i+1 = 0 (b),(d), assuming an atom number of N = (2.5 × 105) + 1.
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and 6. The behaviors of these eigenvalues and eigenvectors

also exhibit similarities. For example, Fig. 1 of [28] and Fig. 3

of [37] show a similar dependence of the eigenvalues on

nearest-neighbor spacing to that observed for a 1D chain in

Fig. 7. However, a crucial difference is that in 1D the spacing

between pairs of atoms is commensurate; i.e., it is always an

integer multiple of a. In 2D, however, the atom spacings are

incommensurate, since next-nearest neighbors are separated

by
√

2a and so on for next-next-nearest neighbors, etc. This

means that whereas the eigenvalue resonances and poles in

1D (Fig. 7) occur at half-integer multiples of a = λ/2, the

equivalent resonances in 2D do not occur at such regular

intervals (cf. the peaks and troughs of the transmission in

Fig. 2 of [29], as well as Fig. 3 in [37]). One other point

of comparison is in the form of the eigenvectors. For 1D

chains, the eigenvectors form well-defined patterns, ranging

from all dipoles oscillating in phase to all oscillating out of

phase with their nearest neighbors. In 2D with uniform driving,

again the dominant eigenmode is typically one in which all

dipoles oscillate in phase and are aligned along the polarization

direction of the driving field (Fig. 3(b) of [28]). The extra

dimension, however, means that, in general, the structure of the

eigenvectors in 2D is more complicated, as demonstrated by

the hybrid mode in Fig. 3(c) of [28], exhibiting both in-phase

and out-of-phase behavior, alternating between different rows

of dipoles.

Nonetheless, the underlying similarities between the coop-

erative behavior of 1D and 2D arrays mean that understanding

the 1D system better should, in turn, provide insight into the

more complicated behavior of 2D and higher-dimensional

configurations. For example, it may be possible to define

similar phase correlation functions in 2D as for those defined

in (23) and (24), thus potentially finding patterns or structures

in the otherwise complicated eigenvector behaviors.

VIII. CONCLUSIONS AND OUTLOOK

In conclusion, we have investigated the cooperative be-

havior of 1D atomic ensembles in free space, calculating

the scattering cross sections and how these can be explained

by considering the eigenmodes of the system. The com-

plex symmetry of the coupling between the dipoles results

in nonorthogonal eigenvectors which interfere, producing

striking asymmetric Fano resonances in the scattering. The

eigenvalues are also complex, meaning each eigenmode

experiences an energy shift as well as a broadening or

narrowing of the linewidth, corresponding to a modification

of the scattering or decay rate. Even for just three atoms in

a line, a broad range of cooperative behaviors are accessible,

including strong superradiance, subradiance, line shifts, and

mode interferences, tunable by simply changing the driving

field polarization and direction. Analyzing the eigenvectors

of a chain of N = 25 atoms, we find the eigenvectors range

from the dipoles all oscillating in phase to all oscillating

out of phase with their nearest neighbors. This eigenvector

behavior relates to the eigenvalues as well. For increasing atom

number, some eigenvalues diverge while others converge to a

behavior described by a single atom between two mirrors,

demonstrating an analog between dipolar interactions and

cavity QED.

The classical model described in Sec. II A is a good

approximation to the full quantum model, provided the

amplitude of the driving field is sufficiently weak, Ek ≪
|dνg|/α0. For stronger driving, finite excited-state populations

result in nonlinear saturation effects in the cross section, for

example, attenuating some of the narrower weaker eigenmodes

and modifying the overall cross-section line shapes. This

has been the subject of recent work [43,86] and will be

investigated further in the future. Experimental limitations

such as imperfect trapping localization and finite filling factors

may also affect the cooperative behavior discussed in this paper

(e.g., by causing the narrow resonances to wash out) and so

would need to be accounted for, as was done in [28,29,40].

The methods presented in this paper can be applied to many

different configurations, not just of atomic dipoles, but also

quantum dots, metamolecules, nanoresonators, etc. We hope

our study into the interesting resonant behavior of 1D systems

will inspire further investigation and help to begin to explain

the intricate mode behaviors observed in higher-dimensional

systems [28,29,40].

The data presented in this paper can be found in Ref. [87].
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