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Cooperative Energy Detection with

Heterogeneous Sensors under Noise Uncertainty:

SNR Wall and use of Evidence Theory
Prakash B. Gohain, Student Member, IEEE, Sachin Chaudhari, Member, IEEE, and Visa Koivunen, Fellow, IEEE

Abstract—The analyzed system model in this paper is a
distributed parallel detection network in which each secondary
user (SU) evaluates the energy-based test statistic from the
received observations and sends it to a fusion center (FC), which
makes the final decision. Uncertainty in the noise variance at
each SU is modeled as an unknown constant in a certain interval
around the nominal noise variance. It is assumed that the SUs
are heterogeneous in that the nominal noise variances and the
uncertainty intervals can be different for different SUs. Moreover,
the received signal power at each SU may be different. For the
considered system model, the paper presents important results for
two inter-related themes on cooperative energy detection (CED)
in the presence of noise uncertainty (NU). First, the expressions
for generalized SNR walls are derived for the classical CED fusion
rule, i.e., sum of energies from all SUs. Second, a Dempster-
Shafer theory (DST) based CED is proposed in the presence
of NU with heterogeneous sensors. In the proposed scheme,
the test statistic from each SU is the energy-based basic mass
assignment (BMA) values, which are first discounted depending
on the uncertainty level associated with the SU and then fused at
the FC using the Dempster rule of combination to arrive at the
global decision. It is shown that the proposed scheme outperforms
the traditional sum fusion rule in terms of detection performance
as well as the location of SNR wall.

Index Terms—Cognitive radio, cooperative spectrum sensing,
data fusion, Dempster-Shafer theory, energy detection, noise
uncertainty, SNR wall, SP wall.

I. INTRODUCTION

W ITH the advent of internet of things (IoT), machine

to machine (M2M) communication and 5G systems,

billions of wireless devices performing simple to complicated

tasks will be added to the existing crowded wireless spectrum.

As a result, availability of good quality wireless spectrum is

going to be a major bottleneck for such future wireless services

and systems. In such a scenario, opportunistic spectrum access

provided by cognitive radio (CR) will enable these devices to

efficiently use the spectrum and enhance reliability in data

transfer [1]–[5].

Spectrum sensing is a key enabler for flexible spectrum use

and CRs (also called secondary users (SUs)) as it provides

spectrum awareness crucial for maximizing the spectrum uti-

lization while limiting the interference to the primary user
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(PU) to minimum. Cooperative energy detection (CED), where

several energy detection based CRs collaborate to detect the

PU activity in a given spectrum, is an attractive choice because

of its simplicity, low power consumption and ability to capture

highly dynamic behaviour of the radio spectrum. It also has

good sensing performance when noise variance is exactly

known [6], [7]. However, in most of the cases, the noise

variance is not known and has to be estimated. In the real

physical world, the estimates of system parameters are always

subjected to uncertainty. Typically, the uncertainty in the

noise variance is ±1 dB even if no external interferences are

assumed. In a practical scenario, where external and unknown

interferences from many different sources are present, the

uncertainty in the noise variance can be significantly higher

[8].

In the presence of noise uncertainty (NU), detection

schemes based on the energy of the observed signal suffer

from drastic performance degradation [9]. In fact, [9] is one

of the first papers that studied the effect of NU in energy

detection. The authors demonstrated that in the absence of

perfect knowledge of noise power, detection of a spread-

spectrum signal by a wideband radiometer is more difficult

in practice than suggested by standard results. Another major

issue with energy detection schemes in the presence of NU is

the performance limitation of signal-to-noise ratio (SNR) wall,

which is defined as the value of SNR at and below which a

energy detector fails to achieve the expected performance even

if the number of observations tends to infinity [10]–[12]. In

[10], the SNR wall was derived for the local energy detector

by considering a NU model such that the true noise variance

lies within a upper and lower bounds where the bounds are

defined by the nominal noise variance and the uncertainty

factor. In [11], the author reconsidered the case of a log-

normal approximated NU as suggested in [9] and presented

close form expressions of the SNR wall that depends on the

desired performances of the detector and also on the level of

uncertainty. In [12], based on the estimated noise power, the

conditions for the existence of the SNR wall were derived and

the impact of noise power estimation on the performance of

energy detector was studied. In [13], the authors studied the

effects of NU in generalized energy detector and derived an

expression of the SNR wall for the same. The papers from

[9]–[13] deals with the effects of NU and formation of SNR

in a single energy detector. However, in our work the prime

focus is on studying the effects of NU on the CED.

SNR wall for cooperative spectrum sensing is addressed in
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[14]–[16]. In [14], the noise variance is modeled as a random

variable with uniform distribution in particular interval while

in [15], [16], noise variance is assumed to be an unknown

value in some specified interval. Both these noise models are

discussed in [10]. However, the works in [14]–[16] assume

homogeneous SUs, where all the SUs have the same nominal

noise-variances and the same uncertainty intervals. Contrary

to that, we derive the SNR wall for a more general case

of heterogeneous sensors, where each SU may experience

a different noise variance as well as a different uncertainty

interval. Note that the term heterogeneous sensors essentially

means non-identical detectors and has been used in different

contexts in sensing literature. In [17], the term heterogeneous

sensors means employing different sensing algorithms whereas

in this paper, the term means that the sensors may have

different nominal noise variances and different uncertainty

intervals.

Currently in spectrum sensing literature, design of most

detectors including the sum fusion rule is based on the

Bayesian probability theory. One drawback of the Bayesian

probability theory is its inability to deal with uncertainty in the

observed data. Dempster-Shafer theory (DST), also referred

to as evidence theory or theory of belief functions, has the

ability to mathematically represent uncertainty or ignorance

[18]. Confidence values in the DST are associated with the

elements of the power set instead of the sample space as in

the probability theory. This allows for modeling ignorance and

uncertainty in the observed data. DST also provides an upper

and lower bound on the likelihood of an event. Furthermore,

the theory provides Dempster’s rule of combination for fusing

data from various sources. Therefore, it has been widely used

in several applications including safety-and-reliability model-

ing, artificial intelligence, object classification, target tracking,

information fusion, and process engineering [19]–[21]. Please

refer to [18]–[21] for more details on mathematical analysis

and applications of DST. In this paper, we propose the use of

DST as an efficient alternative to the traditional sum fusion

rule [22] for CED in the presence of NU.

DST has been applied earlier to the problem of distributed

detection in traditional networks [23] while in CR networks, it

has been applied to CED in [24]–[28]. In [24], SU credibility

was evaluated based on the imperfections in the decisions at

the SU arising due to the channel conditions between the PU

and the SU. In [25], it is assumed that the SNR values at

the SUs are different and credibility for each SU is calculated

to evaluate the degree of reliability of each local spectrum

sensing terminal. The work in [25] is later extended in [26]

by employing an effective quantizer for the sensing data based

on the hypothesis distribution under different SNRs of the PU

signal. In [27], a DST based CED scheme is proposed where

the credibility and belief measures are calculated based on the

local sensing result of the CRs, which are then combined at the

fusion center (FC) using Dempster combination rule to arrive

at the global decision. In [28], a double threshold method is

used to evaluate the local spectrum sensing requirements and

the DST based belief measures. Moreover, a node selection

technique is proposed that removes the redundant sensors from

participating in CED. However, the works in [24]–[28] assume

that the noise variance is perfectly known while our paper

specifically targets the scenario where there is uncertainty in

the noise variance at each SU.

There are a few papers [29]–[31] which have tried to

improve the performance of CED in the presence of NU. In

[29], a linear weighted gain combining scheme is proposed by

maximizing the deflection coefficient in the presence of NU. In

[30], a two-threshold method is employed for local detection

where the thresholds are chosen according to the NU at each

SU. In the CED scheme presented in [31], the FC employs

two thresholds, which are dynamically changed based on the

estimated NU factor and are toggled based on the predicted

activity of the PU. However, the work in [29]–[31] do not

employ DST which is the prime focus of this paper.

The contributions of this paper are as follows 1:

• SNR wall expression is derived for the sum fusion rule for

the scenario where the SUs have different NU parameters

as well as different received signal power levels.

• A novel DST based CED scheme is proposed with

heterogeneous SUs that experience NU. In the proposed

scheme, basic mass assignment (BMA) values are evalu-

ated for each SU based on the likelihood functions of the

energy of the received signal, which is calculated from

the received observations. Each SU sends its BMA values

to the FC which combines them using Dempster fusion

rule.

• When the noise variance is exactly known, it is shown that

the Dempster fusion rule based on the proposed BMA,

reduces to the optimal likelihood ratio (LR) based fusion

rule under the assumption of conditional independence

of observations at the SUs conditioned on either of the

hypotheses.

• In the presence of NU, its effect is taken into account

by discounting the BMA for each node. A method is

proposed to evaluate the discount factor based on the

width of the NU interval.

• The detection performance of the proposed DST based

CED is compared to that of the traditional sum and

maximal ratio combining (MRC) fusion rule for the

performance parameters of probability of detection in

additive white Gaussian noise (AWGN) and multipath

fading channels.

• The performance of the DST and the sum fusion rules are

also compared in terms of SNR wall phenomenon and

their locations for different NU parameters in different

channel conditions.

The paper is organized as follows: Section II first presents

the traditional sum fusion rule based CED in the absence of

NU and next in the presence of NU. Section III presents the

derivation and discussion of the SNR wall for the sum fusion

rule with heterogeneous sensors. Section IV briefly describes

the basics of DST while section V presents the proposed DST

based CED method. Section VI presents the simulation results

and section VII concludes the paper.

1Some preliminary results were presented in [32] at COMSNETS 2017
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Figure 1: Considered CED model : SUs (or sensors) have non-

identical NU parameters. Each SU evaluates energy from the

observed data and sends it to the FC, where sum fusion rule

is applied for decision making.

II. COOPERATIVE DETECTION USING SUM FUSION RULE

In this section, the system model for the sum fusion rule

is presented followed by its performance in the absence of

NU. Next, the modeling of NU and its effect on the detection

performance of the sum fusion rule is presented.

A. System Model

Fig. 1 shows the considered CED model for the sum fusion

rule, which consists of a PU, U number of energy detection

based SUs and a FC. There are two hypotheses H0 and H1,

where H0 is associated with noise only scenario and H1 with

the case where PU signal is present. Each SU evaluates the

energy from the received observations and sends it to the

FC. At the FC, assuming conditional independence between

the received observations at the SUs, the sum fusion rule is

employed to arrive at the final decision. The SUs are assumed

to be heterogeneous in nature such that the true noise variances

and related uncertainty intervals are different for different SUs.

Here, the true noise variance σ2
i at the ith SU is modeled as

an unknown constant and takes values in an interval defined

by the nominal noise variance σ2
ni and the parameter ρi setting

the bounds of the interval. It is assumed that the information

about NU parameters (σ2
ni and ρi) of the SUs is available at

the FC.

The considered signal model is

H0 : xi[n] = wi[n]

H1 : xi[n] = hi[n]s[n] + wi[n]
(1)

for n = 1, 2, . . . , N , where xi[n], wi[n], and s[n] are samples

of the received signal, noise and PU signal respectively at the

ith SU. Here, hi[n] represents the channel gain of a single-

tap fast-fading multipath channel. The local observations at the

SUs, are assumed to be independent of each other conditioned

on either of the hypotheses. The noise sample wi[n] is assumed

to be a complex circular symmetric Gaussian random variable

with zero mean and variance σ2
i , i.e., wi[n] ∼ Nc(0, σ

2
i ). It

is assumed that s[n] and wi[n] are independent of each other.

Moreover, the noise samples wi[n] and channel gains hi[n]
are assumed to be independent among sensors too. Several

types of PU signals, including widely used OFDM signals,

can be modeled with Gaussian distribution [5]. Therefore the

PU signal s[n] is also assumed as complex circular symmetric

Gaussian random variable with zero mean and variance σ2
s .

Similarly, the channel coefficient hi[n] is assumed to be a

complex circular symmetric Gaussian random variable with

zero mean and variance δi. Consequently, |hi[n]| is Rayleigh

distributed. Note that the reporting channels are assumed to

be error-free.

The received signal energy Ei can be evaluated from the N
received samples by

Ei =
N
∑

n=1

|xi[n]|2. (2)

According to the central limit theorem [33], if the number of

samples N is sufficiently large (e.g., ≥ 250 in practice) [34],

the test statistic Ei is asymptotically Gaussian distributed, and

its distributions at the ith SU, under the two hypotheses H0

and H1, are given in [22], [35] as

H0 : Ei ∼ N
(

µ0i, σ
2
0i

)

,

H1 : Ei ∼ N
(

µ1i, σ
2
1i

)

,
(3)

where

µ0i = Nσ2
i ; µ1i = Nσ2

i (1 + SNRi) = N(σ2
i + Pi)

σ2
0i = Nσ4

i ; σ2
1i = Nσ4

i (1 + SNRi)
2 = N(σ2

i + Pi)
2.

Here, SNRi = Pi/σ
2
i is the true SNR in linear scale with

Pi = δiσ
2
s denoting the received PU signal power at the

ith SU. Corresponding SNR in dB is given by SNRi(dB)

= 10 log10 SNRi.

At the FC, the sum fusion rule is applied so that the test

statistic is given by

Tsum =
U
∑

i=1

Ei, (4)

while the global decision is made by using

Tsum

H1

≷
H0

ηsum, (5)

where ηsum is the threshold of a Neyman-Pearson (NP)

detector at the FC.

B. Performance with known noise statistics

In this paper, we have considered NP based detector, where

the prime objective is to maximize the probability of detection

(Pd) for a given probability of false alarm (Pfa). The threshold

ηsum for a NP detector depends on the distribution of Tsum
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under the null hypothesis H0 and the constraint on the

probability of false alarm Pfa ≤ β. As Tsum in (4) is a linear

combination of U independent Gaussian random variables, it

is also Gaussian distributed under both the hypotheses with

distributions given in [22] by

H0 : Tsum ∼ N
(

µ0, σ
2
0

)

,

H1 : Tsum ∼ N
(

µ1, σ
2
1

)

,
(6)

where

µ0 = N
U
∑

i=1

σ2
i ; µ1 = N

U
∑

i=1

(

σ2
i + Pi

)

;

σ2
0 = N

U
∑

i=1

σ4
i ; σ2

1 = N
U
∑

i=1

(

σ2
i + Pi

)2
.

(7)

Assuming that the knowledge of noise variance σ2
i and re-

ceived signal power Pi is available for all SUs, the probability

of false alarm (Pfa) and probability of detection (Pd) for a

NP detector are expressed as [36]

Pfa = Q

(

ηsum − µ0

σ0

)

; Pd = Q

(

ηsum − µ1

σ1

)

, (8)

where Q(·) is the tail probability of the standard normal

distribution. The threshold ηsum with false alarm constraint

of β can then be calculated from (8) as given in [36]

ηsum =Q−1(β)σ0 + µ0

=Q−1(β)

√

√

√

√N
U
∑

i=1

σ4
i +N

U
∑

i=1

σ2
i ,

(9)

Note that the sum fusion rule given by (4) is also an optimal

fusion rule for binary hypothesis testing problem in (6) when

noise variance is perfectly known [22], [36].

C. Modeling noise uncertainty

Estimating the uncertainty in noise variance is a well-

studied topic in radar and constant false alarm rate (CFAR)

detectors [36]. There are a good number of methods for doing

it using guard bands, auxiliary channels, on top of pilot signals,

while PU is definitely not active (for example, calibration

stage). There have also been a few attempts in estimating

and modeling the noise variance uncertainty in the spectrum

sensing literature in [10], [36], [37].

In this paper, the NU at each SU is modeled as in [10]

by considering σ2
i to be an unknown constant that lies in

the interval
[

1
ρi
σ2
ni, ρiσ

2
ni

]

, where σ2
ni is the nominal noise

variance and ρi ≥ 1 is the uncertainty parameter. Here, the

subscript ni signifies that this is a nominal value for the

ith SU. This NU model is used to quantify the impact of

misspecified noise level on the performance of the detector.

Lower and upper bounds are used instead of Bayesian prior

to characterize the impact of NU in the worst case scenario.

Nominal SNR corresponding to the nominal noise variance

σ2
ni is denoted as SNRni = Pi/σ

2
ni. Corresponding nominal

SNR in dB is denoted by SNRni(dB) = 10 log10 SNRni. As it

is sometimes convenient to describe the uncertainty parameter

in dB, we denote the deviation in noise variance about the

nominal value in dB for the ith SU by ∆i = 10 log10 ρi.
Therefore, if the deviation is ±∆i dB then the lower and upper

bounds on the noise variance are given by

σ2
li = σ2

ni · 10(−∆i/10) =
1

ρ
σ2
ni,

σ2
ui = σ2

ni · 10(+∆i/10) = ρσ2
ni.

(10)

D. Performance in the presence of NU

In the presence of NU, (9) cannot be used to determine the

threshold of NP detector as σ2
i is unknown. In such a case,

to maintain constraint on the false alarm probability Pfa ≤ β

for noise variance in the known interval
[

1
ρi
σ2
ni, ρiσ

2
ni

]

, we

can set β to be the worst-case false alarm probability [10]

corresponding to σ2
ui so that

β = max
σ2

i
∈
[

1

ρi
σ2

ni
,ρiσ2

ni

]

Q

(

η′sum − µ0

σ0

)

= Q













η′sum −N
U
∑

i=1

ρiσ
2
ni

√

N
U
∑

i=1

ρ2iσ
4
ni













, (11)

where η′sum denotes the threshold of NP detector at the FC in

the presence of NU and can be evaluated from (11) as

η′sum = Q−1(β)

√

√

√

√N
U
∑

i=1

ρ2iσ
4
ni +N

U
∑

i=1

ρiσ
2
ni. (12)

The probability of detection for the worst case scenario is as

given in [10]

Pd = min
σ2

i
∈
[

1

ρi
σ2

ni
,ρiσ2

ni

]

Q

(

η′sum − µ1

σ1

)

= Q













η′sum −N
U
∑

i=1

(

1
ρi
σ2
ni + Pi

)

√

N
U
∑

i=1

(

1
ρi
σ2
ni + Pi

)2













. (13)

III. SNR WALL FOR THE SUM FUSION RULE WITH

HETEROGENEOUS SUS

In this section, we first derive the SNR wall expression for

CED under the general assumption that all the participating

SUs are heterogeneous in nature. Later, it is shown that the

traditional SNR wall expressions for local as well as CED with

homogeneous sensors can be obtained as special cases of the

generalized SNR wall proposed in this paper.

In the presence of NU, energy detector suffers from a

performance limitation such that if the SNR at the SU is below

a certain SNR threshold, called SNR wall, it fails to achieve

the desired Pd and Pfa even if the number of samples N tends

to infinity [10]. As such, the expression for the sample size

N is required to find the SNR wall for the considered sum

rule based CED scheme with heterogeneous SUs. Substituting
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(12) in (13) we obtain the expression for sample size N for

given Pfa and Pd values as

N =















Q−1(Pfa)

√

U
∑

i=1

ρ2iσ
4
ni −

Q−1(Pd)

√

U
∑

i=1

(

1
ρi
σ2
ni + Pi

)2















2

[

U
∑

i=1

(

1
ρi
σ2
ni + Pi

)

−
U
∑

i=1

ρiσ2
ni

]2 . (14)

Therefore, to derive the SNR wall, where N → ∞, equating

the denominator of (14) to zero, we get

1

U

U
∑

i=1

Pi =
1

U

U
∑

i=1

σ2
ni

(

ρi −
1

ρi

)

, (15)

where both sides are divided by U for convenience. From

(15), we can clearly observe that in the case of heterogeneous

SUs having different nominal noise variances σ2
ni, defining a

single SNR wall for all the SUs is not feasible, since each SU

will have its own nominal SNR value. Therefore, instead of

defining a SNR wall for each SU, we take the average signal

power as the reference to coin a new term called signal power

(SP) wall denoted by SPwall. The expression for the SP wall

is given from (15) as

SPwall =
1

U

U
∑

i=1

σ2
ni

(

ρi −
1

ρi

)

. (16)

If we denote Pavg
△
= 1

U

∑U
i=1 Pi in (15), then (16) signifies

that the average signal power, Pavg , required to achieve the

target Pd and Pfa at the FC should always be greater than

SPwall.

A. SNR wall as a special case of SP wall homogeneous

sensors and Pi = P

For σ2
ni = σ2

n, (16) can be written as

SPwall =
σ2
n

U

U
∑

i=1

(

ρi −
1

ρi

)

. (17)

Using SNR = P/σ2
n, we can rewrite the above equation as

SNRwall =
SPwall

σ2
n

=
1

U

U
∑

i=1

(

ρi −
1

ρi

)

. (18)

For homogeneous SUs, where ρi = ρ in addition to σ2
ni = σ2

n,

we can rewrite (18) as

SNRwall =
SPwall

σ2
n

=

(

ρ− 1

ρ

)

. (19)

The above expression given by (19) is the traditional SNR

wall as shown in [10] for local energy detector and in [15],

[16] for CED. From this we can conclude that cooperative

spectrum sensing using traditional soft combining fusion rule

does not contribute in lowering the SNR wall for energy

detector. However, when SNRn > SNRwall, cooperation does

help in reducing the sample size N at individual SU for

achieving the same detection performance. This can be seen

from

N =

[

ρQ−1(Pfa)− (1/ρ+ SNRn)Q
−1(Pd)

]2

U [(1/ρ+ SNRn)− ρ]
2 , (20)

which can be obtained by using ρi = ρ and σ2
ni = σ2

n in (14).

IV. DEMPSTER-SHAFER THEORY (DST) OF EVIDENCE

Our proposed CED scheme is based on the DST of evidence.

Although the theory of evidence is well studied and applied in

different fields, it has not received sufficient attention in the

field of wireless communication. Keeping this in mind, this

section is dedicated for a brief overview of DST basics. This

section also includes a toy example with two hypotheses θ0
and θ1 used for explaining the concepts of DST.

In DST, a set of mutually exclusive and exhaustive hy-

potheses are first defined. This initial set of hypotheses is

called frame of discernment and denoted by Θ. For the toy

example considered in this section, frame of discernment is

given by Θ = {θ0, θ1} while the power set of Θ is given

as 2Θ = {φ, θ0, θ1, {θ0, θ1}}, which basically represents all

the possible subsets of Θ, including the empty set φ and Θ
itself. Next, a function m(.), called BMA, is defined for the

elements of power set such that m : 2Θ → [0, 1] and satisfies

the following properties

m(φ) = 0; 0 ≤ m(A) ≤ 1;
∑

A∈2Θ

m(A) = 1.

The quantity m(A) is the basic mass or weight assigned to a

proposition/set A ∈ 2Θ denoting the measure of belief that is

committed exactly to A and not to any subset of A. Here, it is

important to note that in DST the basic masses are assigned

not to the elements of Θ, but to the power set 2Θ. This is a

key difference between the Bayesian theory and DST. To elab-

orate this point consider the following hypothetical example.

Suppose we are asked to assign weights for the propositions

“whether extraterrestrial life exists or not”. We consider the

same frame of discernment Θ = {θ0, θ1}, where θ0 stands

for the hypothesis that there is no extraterrestrial life and

θ1 stands for the hypothesis that there is extraterrestrial life.

From Bayesian theory, we may assign weights as {0.5, 0.5},

which basically accounts for the least informative scenario

when our knowledge is null or minimal. However, with DST

and based on the available evidence at our disposal, we can

assign weights to all four possibilities {φ, θ0, θ1, {θ0, θ1}}, for

example, as {0, 0.1, 0.2, 0.7}. Here, {θ0, θ1} = 0.7 signifies

our ignorance level or amount of uncertainty. In fact, if our

evidence is null we can assign weights as {0, 0, 0, 1}, with

{θ0, θ1} = 1, which basically means that our ignorance level

is 100%. This grants DST more flexibility and allows for

the inclusion of unquantified uncertainty, which is the most

significant advantage of the DST over the Bayesian theory.
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There are two more functions associated with BMA. They

are belief function denoted as Bel and plausibility function

designated as Pl, defined for all A ⊆ Θ is given in [18] as

Bel(A) =
∑

B⊆A

m(B),

Pl(A) =
∑

A∩B 6=φ

m(B).
(21)

The function Bel(A) describes the minimum support (lower

bound) of one’s belief that hypothesis A is true, while Pl(A)

denotes the maximum support (upper bound) or belief that

A can be true if more evidence is available. Also from the

above definition, the following relationships hold: Bel(A) ≤
Pl(A), Pl(A) = 1 − Bel(Ā), Bel(A) = 1 − Pl(Ā), where Ā
is the complement set of A.

The Dempster rule of combination enables us to compute

the orthogonal sum of several belief functions over the same

frame of discernment but based on distinct bodies of evidence.

If there are U independent sources based on the same frame

of discernment with BMAs m1(·), m2(·), . . ., mU (·), then the

combined basic mass for an element A is given in [18] as

M(A) = [m1 ⊕m2 ⊕ ...⊕mU ] (A) (22)

= 1
K











∑

A1,A2,...,AU∈2Θ

A1∩A2∩...∩AU=A

m1(A1)...mU (AU )











,

where

K =
∑

A1,A2,...,AU∈2Θ

A1∩A2∩...∩AU 6=φ

m1(A1)...mU (AU ).

The symbol ⊕ denotes the Dempster combination operator

and K is the renormalization factor. For instance, for the toy

example described above, consider two independent sources

for the same frame of reference Θ = {θ0, θ1}, with BMA

m1(.) and m2(.), and basic masses as given in table I.

Table I: BMA of two sources

BMA OF SOURCE 1 VALUE BMA OF SOURCE 2 VALUE

m1(φ) 0 m2(φ) 0

m1(θ0) 0.1 m2(θ0) 0.2

m1(θ1) 0.2 m2(θ1) 0.2

m1({θ0, θ1}) 0.7 m2({θ0, θ1}) 0.6

The combined BMA M(.) for hypothesis θ0 and θ1 based

on DS combination rule can be expressed as

M(θ0) =
1

K

{

m1(θ0)m2(θ0) +m1(θ0)m2 ({θ0, θ1})+
m2(θ0)m1 ({θ0, θ1})

}

,

M(θ1) =
1

K

{

m1(θ1)m2(θ1) +m1(θ1)m2 ({θ0, θ1})+
m2(θ1)m1 ({θ0, θ1})

}

,

where K is computed as

K = m1(θ0)m2(θ0) +m1(θ1)m2(θ1) +m1(θ0)m2 ({θ0, θ1})
+m2(θ0)m1 ({θ0, θ1}) +m1(θ2)m2 ({θ1, θ2})
+m2(θ2)m1 ({θ0, θ1}) +m1 ({θ0, θ1})m2 ({θ0, θ1}) .
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Figure 2: Framework for the proposed DST based CED. Each

SU first evaluates the basic mass for different elements and

then performs the discounting operation. The discounted BMA

values are send to the FC via reporting channels for fusion.

Using the above formulation we get K = 0.94, M(θ0) =
0.2340 and M(θ1) = 0.3191. At this stage, a decision can be

made based on the obtained data, simply by comparing the

combined basic masses. For this hypothetical example, since

M(θ1) > M(θ0), we can infer that there is a higher chance

that extraterrestrial life exists.

V. PROPOSED DST BASED CED

Fig. 2 shows the framework for the proposed DST based

CED. First step in this approach is estimating the BMA values

for different elements of the power set based on the energy

of the received signal. Next, the BMA values for each SU are

discounted based on the NU interval. In the final step, these

discounted BMA values are used in the DST fusion rule at

the FC. These steps are explained in detail in this section.

Towards the end of this section, we also provide a proof for

the optimality of the proposed DST based CED in the absence

of NU.

A. Proposed BMA method

In DST based spectrum sensing for CRs, assigning basic

mass to the elements of the power set is a crucial part as

the end decision depends on the correctness of how the basic

masses are assigned. In DST, there is no single explicit rule for

assigning basic masses to different elements. As such, in some

scenarios, they are assigned by field-experts or formulated

using an application specific equation. Here, we propose a

novel BMA method, which is based on the energy of the

received signal.

In [18], the author has discussed the idea of assigning

support values to different hypotheses based on probabilistic
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models. In this context, for a SU performing local sensing,

consider the frame of discernment Θ = {H0, H1}. The

power set of Θ is given as {φ,H0, H1, {H0, H1}} where

ω = {H0, H1} represents the uncertainty or ignorance set.

Let p (E ;Hj) for j = 0, 1, denote the class of likelihood

functions on the set of energy values E ∈ R≥0. Now, according

to the DST, if we have an observation Ei ∈ E , then Ei lends

plausibility to a singleton {Hj} ⊂ Θ in strict proportion to the

probability that p (Ei;Hj) assigns to Ei. Moreover, p (Ei;Hj)
is further parameterized by the unknown noise variance σ2

i .

Therefore, Ei should determine a plausibility function PlEi

obeying

PlEi
(Hj) = c · p

(

Ei;Hj , σ
2
i

)

, (23)

where c is a constant and PlEi
: 2Θ → [0, 1]. Note that c

in (23) is a quantity that normalizes the plausibility values.

Therefore, we propose c to be taken as

c =
1

p (Ei;H0, σ2
i ) + p (Ei;H1, σ2

i )
. (24)

It will be shown later in this section that this choice of c is

optimal under the no NU assumption. Using (3) the likelihood

functions under both the hypotheses are given as

p
(

Ei;H0, σ
2
i

)

=
1√

2πσ0i

exp

(

− (Ei − µ0i)
2

2σ2
0i

)

,

p
(

Ei;H1, σ
2
i

)

=
1√

2πσ1i

exp

(

− (Ei − µ1i)
2

2σ2
1i

)

.

(25)

Now the belief or support function SEi
: 2Θ → [0, 1] is given

as in [18]

SEi
(A) = 1− PlEi

(Ā), (26)

for all proper subsets A ⊆ Θ. Using equations (23), (24) and

(26), the support function for the hypothesis H0 at the ith SU

is obtained as

SEi
(H0) = 1− PlEi

(H1)

= 1− p
(

Ei;H1, σ
2
i

)

p (Ei;H0, σ2
i ) + p (Ei;H1, σ2

i )

=
p
(

Ei;H0, σ
2
i

)

p (Ei;H0, σ2
i ) + p (Ei;H1, σ2

i )
. (27)

Similarly, support functions for H1 and ω at the ith SU are

obtained as

SEi
(H1) =

p
(

Ei;H1, σ
2
i

)

p (Ei;H0, σ2
i ) + p (Ei;H1, σ2

i )
, (28)

SEi
(ω) = 1. (29)

Now, there is a one-one correspondence between the BMA

function and support function, i.e., m ↔ SEi
. The BMA

values for hypotheses H0, H1, and ω can be uniquely obtained

from the support function SEi
by means of the inversion

formula [18], which is given as

m(A) =
∑

B⊆A

(−1)|A−B|SEi
(B) (30)

for all proper subsets A ⊆ Θ. Here A−B denotes difference

of sets A and B (or the set of all elements of A that are not

in B) and |A| denotes the cardinality of the set A. Therefore

we have,

mi(H0) =
∑

B⊆H0

(−1)|H0−B|SEi
(B)

= (−1)|H0−H0|SEi
(H0)

= SEi
(H0)

=
p
(

Ei;H0, σ
2
i

)

p (Ei;H0, σ2
i ) + p (Ei;H1, σ2

i )
, (31)

mi(H1) =
∑

B⊆H1

(−1)|H1−B|SEi
(B)

= (−1)|H1−H1|SEi
(H1)

= SEi
(H1)

=
p
(

Ei;H1, σ
2
i

)

p (Ei;H0, σ2
i ) + p (Ei;H1, σ2

i )
, (32)

mi(ω) =
∑

B⊆ω

(−1)|ω−B|SEi
(B)

= (−1)|ω−ω|SEi
(ω) + (−1)|ω−H0|SEi

(H0) +

(−1)|ω−H1|SEi
(H1)

= 1− SEi
(H0)− SEi

(H1)

= 1−mi(H0)−mi(H1). (33)

B. BMA adjustment under NU

The BMA functions mi(.) are formulated in such a way that

in the absence of NU, each SU sends its BMA values to the

FC as it is. As a result, the sum of mi(H0) and mi(H1) will

always be one, i.e., mi(H0) +mi(H1) = 1 and consequently

the basic mass for ω will be mi(ω) = 0. However, in the

presence of NU, these BMA values may not be completely

reliable. The DST provides an attractive way to discount these

BMA values based on their reliability using the discounting

rule of DST [18]. The discounting rule states that if we have

a degree of trust of 1− α in the evidence as a whole, where

0 ≤ α ≤ 1, then α is adopted as a discount rate and reduce the

degree of support for each proper subset A of Θ from m(A) to

(1−α)m(A). So under NU conditions, the new BMA values

for each SU will be

m̂i(H0) = (1− αi)mi(H0), (34)

m̂i(H1) = (1− αi)mi(H1), (35)

where αi denotes discount rate for the ith SU such that 0 ≤
αi ≤ 1. Now, the BMA for ω is obtained as

m̂i(ω) = 1− m̂i(H0)− m̂i(H1)

= 1− (1− αi) [mi(H0) +mi(H1)]

= 1− (1− αi)

= αi.

Thus we find that the BMA value for the set ω under NU, i.e.,

m̂i(ω) is same as the discount rate αi. Therefore, when SUs’

are subjected to NU, m̂i(H0) + m̂i(H1) < 1 and m̂i(ω) =
αi > 0.
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The discounting factor αi may be different for different SUs

depending on their noise variance interval. However, since 0 ≤
αi ≤ 1, it is to be ensured that under any NU interval and any

arbitrary nominal noise variance, the αi value should always

lie between 0 and 1.

C. Determining discount rate α

In this section we propose a method for determining the

discount rate αi in the presence of NU. The discount rates

are measured individually for every SU depending on the NU

interval associated with it and as such each SU will have its

own unique discount rate αi. In this regard, the first piece of

information required for calculating αi is the NU parameters

σ2
ni and ρi of each SU.

Now, considering a single SU performing spectrum sensing

in the presence of NU, the objective in NP criterion based

energy detection is to maximize Pdi (probability of detection at

the ith SU) for a given value of Pfi (probability of false alarm

at the ith SU) ≤ βi, where βi is the false alarm constraint at

the ith SU. Therefore we have,

βi = max
σ2

i
∈[σ2

li
,σ2

ui]
Q

(

ηi − µ0i

σ0i

)

= Q

(

ηi −Nσ2
ui√

Nσ2
ui

)

.

The threshold ηi for a single SU (U=1) under NU is then

given by

ηi =
√
Nσ2

uiQ
−1(βi) +Nσ2

ui. (36)

Thus from (36) we observe that the threshold ηi at the ith SU is

a function of βi and upper limit of noise variance σ2
ui. Under

this condition, the maximum probability of detection Pdi is

achieved, when σ2
i = σ2

ui and minimum Pdi for σ2
i = σ2

li.

Now based on threshold values evaluated from (36), receiver

operating characteristic (ROC) curves for a single user are

obtained for the best case (σ2
i = σ2

ui) and worst case (σ2
i =

σ2
li). Once this is estimated, we calculate αi as the difference

between the best and the worst case Pdi values.

αi(βi) = Pdi(βi)σ2

ui
− Pdi(βi)σ2

li
. (37)

This technique helps in ensuring 0 ≤ αi ≤ 1 and also makes

sure that the αi value increases (or decreases) with increase

(or decrease) in the NU interval as shown later in this section.

Note that with the change in nominal SNR value, i.e., SNRni

at the ith SU and sample size N , ROC curves will also change

for the same NU interval
[

σ2
li, σ

2
ui

]

. Therefore, we can say that

αi is a function of three parameters viz. βi, SNRni and N .

However, considering N to be fixed for a SU, αi becomes a

function of βi and SNRni as long as the NU interval of a SU

remains constant. Thus (37) can be modified as

αi(βi, SNRni) = Pdi(βi, SNRni)σ2

ui
− Pdi(βi, SNRni)σ2

li

(38)

Analytically we can express Pdi (βi, SNRni)σ2

ui
and

Pdi (βi, SNRni)σ2

li
in equation (38) as

Pdi (βi, SNRni)σ2

ui
= max

σ2

i
∈[σ2

li
,σ2

ui]
Q

(

ηi − µ1i

σ1i

)

= Q

(

ηi −Nσ2
ni (ρi + SNRni)√

Nσ2
ni (ρi + SNRni)

) (39)

and

Pdi (βi, SNRni)σ2

li
= min

σ2

i
∈[σ2

li
,σ2

ui]
Q

(

ηi − µ1i

σ1i

)

= Q





ηi −Nσ2
ni

(

1
ρi

+ SNRni

)

√
Nσ2

ni

(

1
ρi

+ SNRni

)



 .

(40)

Using (39) and (40) in (38), αi can be expressed in closed

form as

αi(βi, SNRni) = Q

(

ηi −Nσ2
ni (ρi + SNRni)√

Nσ2
ni (ρi + SNRni)

)

−

Q





ηi −Nσ2
ni

(

1
ρi

+ SNRni

)

√
Nσ2

ni

(

1
ρi

+ SNRni

)



 ,

(41)

where the value of ηi is obtained from (36). Fig. 3 shows

the plot of αi as a function of βi for different NU intervals

and SNRn(dB) = −5 dB. It can be clearly seen that with

increase in NU interval, the αi or discount rate of a SU

also increases. For false alarm rate βi = 0.1, the αi values

intersecting the black dotted line denotes the discount rate to

be used depending on the NU interval associated with the SU.

β

α

α ∆

α ∆

α ∆

α ∆

Figure 3: Plot of αi for different NU intervals as a function

of βi and SNRn(dB) = −5 dB.

In order to calculate the discount rate αi for each SU, we

have assumed for convenience that the βi is the same as the

false alarm value used at the FC. Therefore, we can write

βi = β. However, note that the SUs do not make any local

decisions and the value βi = β is only used for αi calculation.

D. Data fusion at the FC

The BMA adjustment is performed locally at the SU with

the corresponding discount rate αi. For identical sensors, we

can assume α1 = α2 = ...... = αU = α. But if the NU interval

is different for each SUi the discount rates will also differ

accordingly. The discounted BMA values are then send to the

FC via the reporting channel. In the FC, Dempster combination
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rule is used to fuse the BMA values from all the U SUs, which

gives us the combined basic mass M(H0) and M(H1) for

hypothesis H0 and H1 respectively,

M(H0) =
1

K

∑

A1∩A2∩.....∩AU=H0

U
∏

i=1

m̂i(Ai) ,

M(H1) =
1

K

∑

A1∩A2∩.....∩AU=H1

U
∏

i=1

m̂i(Ai).

(42)

Finally, the test statistic at the FC is taken as the ratio of

M(H1) and M(H0)

Tds =
M(H1)

M(H0)

H1

≷
H0

ηds, (43)

where ηds is the threshold under DST scheme at FC. In this

context, the threshold ηds is a function of β and SNRni value

at the ith SU. For determining threshold ηds, we take αi = 0
to ensure that the constraint Pfa ≤ β is maintained for all

values of αi.

E. Optimality under no NU

In this subsection, we show that in the absence of NU, i.e.,

∆ = 0, the proposed DST based fusion rule reduces to the

optimal fusion rule of LR. Note for ∆i = 0 dB, we have σ2
li =

σ2
ui, which along with (38) means that αi = 0. Therefore, for

this case m̂i(ω) = 0, m̂i(H0) = mi(H0) and m̂i(H1) =
mi(H1) for i = 1, . . . , U so that the test statistic Tds in (43)

becomes

Tds =
M(H1)

M(H0)
=

1
K

U
∏

i=1

mi(H1)

1
K

U
∏

i=1

mi(H0)

=
U
∏

i=1

p(Ei;H1,σ
2

i )

p(Ei;H0,σ2

i
)+p(Ei;H1,σ2

i
)

p(Ei;H0,σ2

i
)

p(Ei;H0,σ2

i
)+p(Ei;H1,σ2

i
)

=
U
∏

i=1

p(Ei;H1, σ
2
i )

p(Ei;H0, σ2
i )
, (44)

which is the optimal LR test statistic for the binary hy-

pothesis testing problem in (6) [36]. Therefore the detection

performance of tests with Tsum and Tds will have the same

performance in the absence of NU.

VI. SIMULATION RESULTS

The simulation results are divided into three parts. In the

first part, performance analysis of the proposed DST scheme

is done in terms of Pd vs SNRn(dB) plots considering homo-

geneous sensors for different channel conditions and different

number of SUs. In the second part, performance comparison

of the proposed scheme is carried out with the traditional sum

and MRC fusion rules. In the third part, analytical SP wall

results are validated in simulation for the sum fusion rule in

different scenarios followed by comparison with DST based

CED.

For our simulations, we have assumed that the PU signal is a

zero-mean complex and circularly symmetric Gaussian signal.
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Figure 4: Pd vs SNRn(dB) plots of DST based CED scheme

for different number of homogeneous SUs in the presence

(∆ = 0.5 dB) and absence (∆ = 0 dB) of NU. Here,

βi = β = 0.1, σ2
n = 1, and Pi = P = SNRn · σ2

n.

NP detector is assumed with the constraint on the false alarm

probability β. Generally in a practical scenario, σ2
i of each SU

can take any value within the interval
[

σ2
li, σ

2
ui

]

. However, for

NP criterion, the key objective under NU is to ensure that for

low SNR values Pfa ≤ β is maintained at all times. In order

to satisfy this constraint, the threshold at the FC for all the

schemes (i.e. sum, MRC and DST) is determined by setting

the true value of all SUs to the upper limit of noise variance,

i.e., σ2
i = σ2

ui, ∀i, for a fixed value of β. On the contrary, for

performance analysis and comparison under NU, the true noise

variance used for the experiments is the lower noise variance

limit, i.e., σ2
i = σ2

li for each SU. This corresponds to the worst

case scenario where the detector has been designed to maintain

the false alarm constraint even for the highest allowed noise

variance while the actual noise variance is the lowest allowed

value of noise variance.

Unless stated otherwise, the number of cooperating SUs is

U = 3. In this paper, simulation results are presented for

two channel conditions: AWGN and fading. For the fading

channel, we have considered a fast-fading channel such that

hi[n] changes after every 10 transmitted PU samples with

δi = 1. For AWGN channel, hi[n] = 1. The number of

observations used for evaluating received signal energy is

N = 300 while the number of realizations used for estimating

the probability of detection is 10,000. For the proposed DST

scheme, deriving the distribution of the test statistic Tds under

both the hypotheses is a non-trivial and tedious task. As

such, the threshold ηds is evaluated empirically. Note that the

empirical evaluation of threshold can be done off-line as it

depends on all the known parameters such as noise variance

σ2
i = σ2

ui, β, and nominal SNR(dB).

A. Performance analysis of proposed DST scheme

Fig. 4 shows the Pd vs SNRn(dB) plots of DST scheme

for β = 0.1 assuming homogeneous SUs and same received

power at all SUs. First observation from the figure is that

the presence of NU leads to performance degradation for
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Figure 5: Comparison of Pd vs SNRn(dB) between the

proposed DST and the sum fusion rule for CED with ho-

mogeneous SUs. Here U = 3, β = 0.1, σ2
n = 1, and

Pi = P = SNRn · σ2
n.

both single-user (U = 1) and cooperative sensing (U = 3)

scenarios. Second observation is that the performance of DST

scheme improves significantly with increase in the number of

SUs, which validates the cooperation gain of the proposed

scheme in the presence as well as in the absence of NU.

Third observation is that the performance of the proposed

DST scheme under fading is close to AWGN. Although this

is also true for the sum fusion rule, the results are not shown

here for conciseness. This is expected for the considered

fast-fading channel with δi = 1 for following reasons: the

effects of channel fading averages out during the sensing time

yielding results similar to that of AWGN while for δi = 1,

the definitions of SNR are same for the two channels. As the

sensing results are same for both AWGN and fading channel

considered in this paper, we only present sensing results for

AWGN channel in the following sections for conciseness.

B. Comparison of the sum, MRC and DST fusion rules

In this part, performance comparison of the proposed

scheme is carried out with the traditional sum and MRC fusion

rules for two scenarios: (1) homogeneous sensors having same

NU parameters and Pi = P ∀i and (2) heterogeneous sensors

having different NU parameters and Pi 6= P ∀i. For MRC,

the test statistic is the weighted sum given in [31] by

Tmrc =
U
∑

i=1

wiEi, (45)

where the weight corresponding to the ith SU is chosen as

wi =
Pi/σ

2
ni

∑U
i=1 Pi/σ2

ni

. (46)

These weights can be calculated at the FC, which is assumed

to have Pi and σ2
ni values for all the sensors.

1) Homogeneous and equal power (EP): The SUs are

assumed to have identical NU parameters and equal received

signal power. Fig. 5 shows the performance comparison of

the proposed DST fusion rule to that of the sum fusion rule in
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10

P
avg

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
d

 DST, EP

 DST, UP

 SUM, EP

 SUM, UP

 MRC, EP

 MRC, UP

Figure 6: Pd vs Pavg (log scale) comparison of proposed

scheme with sum and MRC rule for SUs with heterogeneous

NU parameters. Here EP and UP denote the scenarios where

different SUs have equal and unequal powers, respectively.

terms of Pd vs SNRn(dB) plots for different NU intervals of

∆ = 0, 0.5 and 1. Since in this case Pi = P and σ2
ni = σ2

n ∀i,
the performance of MRC will be same as the sum rule. Hence,

the plots for MRC have not been included in this figure for

conciseness. Note that the NU parameters and received power

at all SUs are considered same so that the nominal SNRs

are also same, i.e. SNRni = SNRn. The nominal variance

at each SU for this plot is σ2
n = 1. First observation from

the figure is that under no NU (∆ = 0), the performances of

both fusion rules overlap. This results from the fact that both

the test statistics Tsum and Tds are equivalent to the optimal

LR test statistic under no NU as was shown in Sec. V-E.

Second observation from the figure is that for NU of ∆ = 0.5
dB and ∆ = 1 dB, performances of both the fusion rules

degrade. However, proposed DST based approach significantly

outperforms the traditional sum fusion rule in the presence of

NU.

2) Heterogeneous and unequal power (UP): All SUs have

different NU parameters and the received signal power are also

different for all SUs, i.e., Pi 6= P ∀i. The number of SUs are

taken as U = 3. The signal power at the three SUs are chosen

as 1.5P , P and 0.5P such that the average power Pavg is P .

For simulation purpose, the NU intervals for the three SUs

are chosen as ∆1 = 0.25 dB, ∆2 = 0.5 dB, and ∆3 = 1
dB while the nominal noise variances are taken as σ2

n1 = 0.9,

σ2
n2 = 1 and σ2

n3 = 1.1. Fig. 6 shows the performance of DST,

sum and MRC fusion rules in the form of Pd vs Pavg (log

scale) plot. First observation from the plot is that there is slight

improvement in the performance of the MRC as compared to

the sum rule for the EP case. However, for the UP case, the

MRC gives significant gain as compared to the simple sum

rule. Finally, for both cases of EP and UP, the DST gives the

best performance as compared to the sum rule as well as the

MRC.

C. SP wall analysis and comparison

In order to verify the formation of SP wall in CED under

NU, five different cases are taken into account based on
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different combinations of nominal noise variance σ2
ni and

uncertainty factor ρi. They are as follows:

• Case I : All SUs have identical nominal noise variance

and uncertainty parameter (homogeneous).

• Case II : All SUs have different nominal noise variances

but identical uncertainty factor.

• Case III : All SUs have identical nominal noise variance

but different uncertainty factors.

• Case IV : All SUs have different nominal noise variances

and uncertainty factors.

• Case V : NU parameters same as case IV but Pi 6= P ∀i.
Table II shows the NU parameters for all the 5 considered

scenarios. The received signal power Pi = P ∀i for cases I-IV.

For generalized SNR wall, the constraint on the probabilities

of detection and false alarm are Pd ≥ 0.9 and Pfa ≤ β = 0.1,

respectively.

Table II: SP wall for the sum fusion rule in AWGN. Theory

and simulations are well in par in characterizing the SP wall.

Case NU parameters SPwall SPwall

No. (U = 3) (Theory) (Sim.)

σ2

n1
= σ2

n2
= σ2

n3
= 1

I ∆1 = ∆2 = ∆3 = 0.75 dB 0.349 0.3520
ρ1 = ρ2 = ρ3 = 1.189

σ2

n1
= 0.9, σ2

n2
= 1, σ2

n3
= 1.1

II ∆1 = ∆2 = ∆3 = 1 dB 0.4646 0.4670
ρ1 = ρ2 = ρ3 = 1.259
σ2

n1
= σ2

n2
= σ2

n3
= 1

III ∆1 = 0.5 ,∆2 = 0.75 ,∆3 = 1 dB 0.3475 0.3510
ρ1 = 1.122, ρ2 = 1.188, ρ3 = 1.259

σ2

n1
= 0.9, σ2

n2
= 1, σ2

n3
= 1.1

IV ∆1 = 0.25,∆2 = 0.5,∆3 = 1 dB 0.2818 0.2846
ρ1 = 1.0593, ρ2 = 1.122, ρ3 = 1.259

Same as case IV but with Pi 6= P
V P1 = 1.5P, P2 = P, P3 = 0.5P 0.2818 0.2870

Pavg =
∑U

i=1
Pi = P
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Figure 7: Sample size N (in log scale) vs average signal power,

Pavg for the considered cases in AWGN channel.The figure

clearly shows that the SP wall varies for different values of

uncertainty parameters associated with the sensors.

1) SP wall for the sum fusion rule: Fig. 7 shows the plots

of sample size N (in log scale) vs average signal power Pavg

for all the five cases. The figure clearly demonstrates the
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Figure 8: Comparison of the DST and sum fusion rules in

terms of sample size N as a function of P and SNRn(dB)

with NU parameters corresponding to cases I and III in Table

II with σ2
ni = σ2

n. Here, Pi = P ∀i.

existence of SP wall for all the scenarios, homogeneous (case

I) and heterogeneous (case II, III, IV and V). Table II shows

a comparison of theoretical and simulated SP wall values for

the sum fusion rule, where the theoretical values of SP wall

for all the five cases are calculated using (16). For cases I-IV,

we choose Pi = P ∀i. In case V, the NU parameters are same

as case IV but the power levels at each SU are different and

chosen as shown in Table II. However, irrespective of different

Pi, the SP wall for case V is same as case IV. This is because

Pavg = 1
U

∑U
i=1 Pi = P in this case which proves that SP

wall value depends on the average signal power across all the

SUs. Furthermore, it can be seen that both the theoretical and

simulated values of SP wall for the all the considered cases

are very close, which validates the theoretical analysis of SP

wall as discussed in Section III.

2) Comparison between DST and sum fusion rule: Figs. 8

and 9 show the comparison between the sum and DST based

CED schemes in terms of location of SP wall. The detection
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Figure 9: Comparison of DST and sum fusion rules in terms

of N as a function of Pavg for scenarios corresponding to

cases II and IV in Table II.
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performance at the FC is chosen as Pfa ≤ 0.1 and Pd ≥ 0.9.

Fig. 8 shows the SP wall plots for cases I and III of Table II,

where σ2
ni = σ2

n and Pi = P ∀i. This makes it possible to use

SNRn(dB) in addition to P as visible from the figure. First

observation from the figure is that the SP wall plots for both

the schemes for the fast-fading scenario almost overlaps with

AWGN. Secondly, the SP wall value for the proposed scheme

is significantly lower than that of sum rule. On the other hand,

Fig. 9 shows the SP wall plots for cases II, IV, and V of Table

II, where σ2
ni 6= σ2

n, making it impossible to use SNRn(dB)

as visible from the figure. It can be clearly observed from this

figure that even for cases II, IV and V the proposed scheme

is able to significantly lower the sample size to achieve the

same detection performance at the FC. Moreover, the value of

SP wall for the proposed scheme is much lower than that of

traditional sum rule in all the considered scenarios.

VII. CONCLUSION

In this paper, we have derived the expression for generalized

SNR wall for the sum fusion rule based CED with heteroge-

neous SUs, i.e., when the nominal noise variances and the

uncertainty intervals at different SUs are different and also

the signal powers are unequal for all SUs. We have termed the

generalized SNR wall as SP wall as it is possible to represent

the performance limitation in terms of SP and not in SNR

in more general scenario as shown in the paper. It has been

also shown that when the SUs are homogeneous, i.e., have

same nominal noise variances and same NU intervals, SP wall

simplifies to the traditional SNR wall for local as well as for

CED.

We have also proposed a DST based approach for CED. A

new BMA method has been introduced based on the energy of

the received signal. In the absence of NU, it has been shown

that the proposed DST based CED test statistic is the same as

the LR test statistic. In the presence of NU, the proposed DST

based CED approach incorporates the uncertainty present in

the noise variance by discounting the BMA from each SU by

a rate proportional to the amount of NU associated with that

SU. The detection performance of the proposed DST based

CED is better than the sum and the MRC fusion rules in the

presence of NU. Moreover, the proposed DST based scheme

significantly lowers the SP wall values as compared to the sum

fusion rule.
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