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Cooperative Fault-Tolerant Control for Networks of
Stochastic Nonlinear Systems with Non-differential

Saturation Nonlinearity
Hongjing Liang, Guangliang Liu, Tingwen Huang, Fellow, IEEE, Hak-Keung Lam, Fellow, IEEE, and Bohui

Wang

Abstract—This paper addresses the cooperative fault-tolerant
control problem for networks of stochastic nonlinear systems with
actuator faults and input saturation. The fuzzy neural networks
(FNNs) are employed to estimate the unknown functions and
stochastic disturbance terms. To analyze the nondifferential sat-
uration nonlinearity, a smooth nonlinear function of the control
input signal is constructed to estimate the saturation function. A
novel adaptive fault-tolerant control protocol is proposed by using
backstepping design technique. By using the stochastic Lyapunov
functional strategy, it is proved that all the followers’ outputs
eventually converge to a small neighborhood of the leader’s
output, and all the signals in the closed-loop systems are bounded
in probability. Finally, the performance of the proposed control
strategy is illustrated through simulation.

Index Terms—Communication topology, networks of stochastic
nonlinear systems, fuzzy neural networks, input saturation,
actuator faults.

I. INTRODUCTION

IN the past few decades, the research on stochastic systems
has received extensive attention due to the typical exhibi-

tion of stochastic phenomenon in many actual systems, such
as biological systems [1], [2], unmanned air vehicle (UAV)
formations [3], satellite clusters [4] and adaptive control sys-
tems [5], [6]. The stochastic multi-agent systems are seldom
considered in the existing papers, although stochastic modeling
has played an important role in many stochastic systems [7]–
[9]. In [10], to unitedly overcome the bottlenecks of resource,
communication, and computation in distributed optimization,
the random sleep scheme is creatively introduced into algorith-
m design, which allows each agent to independently control
its update frequency. Zhou et al. in [11] proposed a novel
adaptive fuzzy control scheme to solve the problem of adaptive
fuzzy tracking control for a class of nonlinear systems by using
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the adaptive backstepping technique. Zhu et al. in [12] studied
the high-order stochastic systems subject to unmeasured states,
in which the fuzzy states observer was utilized to handle
the uncertain parts in systems. In [13], a fuzzy generalized
predictive control law was first proposed and constructed,
which offers pioneering work for the predictive control of
a nonlinear complexity system. This served as a foundation
bridge in combining research fuzzy system and generalized
predictive control. By the barrier Lyapunov function and com-
bining a backstepping design technique and an adding a power
integrator, the authors in [14] developed a novel controller
to control high-order uncertain nonlinear system. In [15],
Sun et al. proposed a multiagent-based consensus algorithm
for distributed coordinated control, which was firstly applied
to Energy Internet and was an important breakthrough for
energy management. A decentralized controller was designed
by Lyapunov-based recursive method to ensure the global
stability for stochastic nonlinear systems [16]. Based on the
backstepping technique, the authors in [17] developed a new
adaptive fuzzy control protocol to solve the event-triggered
containment control problem for stochastic nonlinear multi-
agent systems.

In most industrial systems, the saturation nonlinearities are
inevitable [18]–[25]. Since the input saturation nonlinearity
maybe reduce the systems performance, and also may lead
to instability such as undesirable inaccuracy or oscillations, it
is difficult to handle a case that the nonlinear systems with
saturation nonlinearities. By using the sliding mode approach,
an adaptive control method for spacecraft systems was pro-
posed in [18] subject to input saturation. A new adaptive
auxiliary signals was established in [19] to compensate for
the influence of the dead zones and actuator faults on the
control performance. The Ref. [20] gave a more greater flexi-
bility approach to solve the synchronization issue for network
systems with saturation nonlinearities. In [21], the authors
investigated the problem of event-triggered adaptive control for
a class of nonlinear systems with asymmetric input saturation.
Ref [23] constructed a low-gain feedback protocol to solve
the consensus problem of multi-agent systems with input
saturation. In order to solve the global consensus problem
of multi-agent systems with input saturation constraints, the
authors in [24] proposed a linear protocol under fixed network
topologies and time-varying network topologies. However, the
aforementioned results on solving the nonlinear multi-agent
systems subject to input saturation require that the systems
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should not be influenced by stochastic disturbance. In real
industry, there are some stochastic systems, so it is important
to research the control design of stochastic multi-agent systems
subject to input saturation.

At the same time, the faults of actuator are also the main
factor which make the controller design and stability analy-
sis more difficult. Recently, researchers have achieved good
research results in the study of actuator faults [26]–[34]. For
instance, based on a weighted switching approach, the authors
in [27] introduced a pair of variable weights in an efficient and
straight-forward way to solve the problem of observer-based
fault estimation for discrete-time nonlinear systems. In order
to overcome the impact of actuator faults on systems stability,
Tao et al. in [29] designed an effective distributed controller
to ensure systems’ stability when actuator fault occurred. In
[31], an adaptive algorithm was proposed for dynamic systems
with unknown actuator faults, while the compensation for
actuator fault was based on an adaptive tuning of actuator
parameter matrices. According to Lyapunov stability theory, a
nonlinear parameterized radial basis function neural adaptive
control algorithm was proposed to design the fault-tolerant
tracking controller in [33]. So far, although remarkable results
have been achieved in dealing with the above disadvantages.
There are few studies on the coexistence problem about the
aforementioned factors in the networks of stochastic nonlinear
systems, which motivates our current research work.

We aim the adaptive fuzzy neural networks (FNNs) cooper-
ative fault-tolerant control problem for networks of stochastic
nonlinear systems with actuator faults and input saturation.
The main advantages of our designed control protocol can be
lain in the following:

1) An adaptive fuzzy neural network algorithm is proposed
to transform the ideal weight vector into the multiplication of
two parameters, and the proposed algorithm has few number of
adjustable parameters, which can reduce the online calculation
burden and easy to be applied into networks of stochastic
nonlinear systems, and the completely unknown nonlinear
terms and stochastic disturbances are effectively dealt by using
the property of FNNs in the backstepping process.

2) Compared with the existing results of fault-tolerant
control problems, the fault model used in this paper contains
both abrupt faults and incipient faults, which is more general
than the faults models in [35], [36]. In addition, the structure
of actual control input vi of the system is changed to broaden
the application range of the obtained results.

3) The fuzzy neural network-based adaptive fault-tolerant
control protocol is extended to networks of stochastic non-
linear systems subject to nonlinearity input saturation. The
developed method does not need the prior knowledge of the
bound for input saturation.

The rest of this paper is organized as follows. In Section II,
the basic graph theory, the FNNs, and the problem formulation
are introduced. The main technical results of this paper are
given in Section III, which include the design of real control
protocol and virtual control protocol. A numerical simulation
is presented in Section IV. Finally, Section V draws our
conclusion.

Notation 1: The following notations are used throughout

this paper. max {•} and min {•} represent maximum and
minimum eigenvalue, respectively. For a given vector or matrix
x, xT represents its transpose. |•| refers to the absolute value,
and ‖•‖ expresses 2-norm. sup (•) represents the supremacy.
arg min {•} represents the value of the variable that minimizes
the objective function. tanh (•) refers to the hyperbolic tangent
function. diag (B1, . . . Bk) denotes a diagonal matrix with
B1, . . . Bk as its diagonal elements.

II. PRELIMINARIES

A. Graph theory

Graph G = (κ, E) is a directed graph to describe the
information communication between agents, where κ =
{κ1, . . . ,κm} is a nonempty set of follower agents, and
E ∈κ×κ denotes the set of edges. The edge means that the jth
follower only receives state information from the i-th follower,
and satisfies i ∈ Nj , i, j = 1, . . . ,m, and i 6= j. Define the
adjacency matrix A = (ai,j) ∈ Rm×m, where ai,j = 1 if
(κj ,κi) ∈ E , and otherwise ai,j = 0. The in-degree matrix
of agent i is denoted as D =diag(d1 . . . , dm) ∈ Rm×m with
di =

∑m
j=1 ai,j . The Laplacian matrix LG = [li,j ]m×m ∈

Rm×m of G is defined as LG = D − A. In a digraph,
a directed path from node i to node j is a sequence of
edges {(κi,κk) , (κk,κl) , . . . , (κh,κj)} with distinct nodes
l = k, . . . , h. The digraph G is said to contain a directed
spanning tree, if there is a root node that has a directed path
to any other node. For any distinct agents κi,κj ∈ κ, if there
exists a directed path from agent i to agent j, then G is called
strongly connected.

This paper considers the multi-agent systems consisted of N
followers and one leader. Without loss of generality, we mark
the leader as 0 and followers as 1, . . . , N. The communication
topology between the leader and the followers is represented
by a diagonal matrix.

The following assumptions and lemma are given to solve
the cooperative control problem.

Assumption 1: The augmented graph Ḡ =
(
κ̄, Ē

)
, with

κ̄ = {κ0,κ1, . . . ,κm} exists a spanning tree, where the leader
node 0 is the root node of Ḡ.

Assumption 2: The nth order time derivatives of leader
output y01(t) is continuous bounded and available.

Lemma 1: [37] The digraph G is said to have a spanning
tree, if there is at least a directed path from the root to all
other nodes. If denote B = diag (b1,0, . . . , bN,0), the node 0
is called the root of the spanning tree, then the matrix LG+B
is nonsingular.

B. Problem Formulation

Consider a class of stochastic nonlinear multi-agent systems

dxi,h = (gi,h (xi)xi,h+1 + fi,h (xi)) dt+ Ψi,h (xi) dw

1 ≤ h ≤ ni − 1

dxi,ni = (gi,ni (xi)ui + fi,ni (xi)) dt+ Ψi,ni (xi) dw

yi = xi,1 (1)

where xi = [xi,1, . . . , xi,ni ]
T ∈ Rni , and yi (i = 1, . . .m)

are the systems’ state vector and output; fi,h (·) and Ψi,h (·)
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(h = 1, . . . ni) are unknown smooth functions, gi,h (·) is a
continuous bounded function. w denotes an r-dimensional
standard Brownian. ui represents that nonsymmetric saturation
nonlinearity is described as

ui = sat (vi) =

 ui,max, vi ≥ ui,max

vi, ui,min < vi < ui,max

ui,min, vi ≤ ui,min

(2)

with ui,min < 0 and ui,max > 0 being unknown constants,
and vi denotes the nonlinearity input saturation signal.

Fig. 1. Saturation. Dotted line: p (vi). Solid line: sat (vi) .

According to Fig. 1, it is quite clear that there are two
sharp corners if ui,max = vi, and ui,min = vi. Thus, the
backstepping method can not be directly used to design the
control signal. Therefore, we proposed a smooth piecewise
function to estimate the saturation function to deal with this
problem. The function is defined as follows:

p (vi) =

 ui,max × tanh
(

vi
ui,max

)
, vi ≥ 0

ui,min × tanh
(

vi
ui,min

)
, vi < 0

=


ui,max × e

vi
ui,max −e

−vi
ui,max

e

vi
ui,max +e

−vi
ui,max

, vi ≥ 0

ui,min × e

vi
ui,min −e

−vi
ui,min

e

vi
ui,min +e

−vi
ui,min

, vi < 0.

(3)

Then, sat (vi) in (2) can be denoted as

ui = sat (vi) = p (vi) + q (vi) (4)

where q (vi) = sat (vi) − p (vi) denotes a bounded function,
and one has

|q (vi)| = |sat (vi)− p (vi)|
≤ max{ui,min (tanh (1)− 1) ,

ui,max (1− tanh(1))}
= D. (5)

Fig. 1 denotes an estimation of the saturation function.
Furthermore, we define

p (vi) = p (v0) + pvµ (vi − v0) . (6)

By selecting v0 = 0, (6) is rewritten as

p (vi) = pvµvi. (7)

To facilitate the design of the controller, the following assump-
tions are proposed.

Assumption 3: For the function pvµ in (6), there is an
unknown constant pm such that

0 < pm ≤ pvµ ≤ 1. (8)

Remark 1: The actual control input signal vi cannot be
infinite in practical (i.e., there is no pvµ = 0), so there exists
an unknown constant pm that makes this assumption valid.

Assumption 4: There exist unknown constants ϕ
h
> 0 such

that ϕ
h
≤ gi,h (xi) for all xi ∈ Rni , and on arbitrary bounded

set in Rni , ϕ̄h > 0 also exists such that gi,h (xi) ≤ ϕ̄h,
h = 1, . . . ni.

Remark 2: By means of Assumptions 3 and Assumptions
4, it can be further assumed that

0 < ϕ
ni
≤ pvµgi,ni (xi) (9)

where ϕ
ni

= min
{
gi,ni (xi) , pvµgi,ni (xi)

}
is an unknown

constant.
Substituting (4) into (1) and using (7), one gets

dxi,h = (gi,h (xi)xi,h+1 + fi,h (xi)) dt+ Ψi,h (xi) dw

1 ≤ h ≤ ni − 1,

dxi,ni =
(
gi,ni (xi)

(
pvµvi + q(vi)

)
+ fi,ni (xi)

)
dt

+Ψi,ni (xi) dw,

yi = xi,1. (10)

where i = 1, . . .m.
Remark 3: The above dynamics (10) is an non-strict feed-

back form. In the multi-agent systems (10), functions fi,h (·) ,
gi,h (·) , Ψi,h (·) and all state vector xi are not reported in
the existing consensus works. The further stimulated our re-
search interest for the multi-agent systems model. Meanwhile,
compared to the existing stochastic strict-feedback multi-agent
systems, fi,h (·) and Ψi,h (·) are completely unknown.

Definition 1: [38] Given V (x, t) a twice continuously
differentiable function. The differential operator L is defined
as follows

LV =
∂V

∂t
+
∂V

∂x
f +

1

2
Tr
{

ΨT ∂
2V

∂x2
Ψ

}
(11)

with Tr being the matrix trace.
Definition 2: [38] Under the digraph G, if for ∀ς > 0, the

tracking errors between the leader and followers are coopera-
tively semiglobally uniformly ultimately bounded(CSUUB) in
probability, i.e., E |yi (t)− y01 (t)|4 ≤ ς (i = 1, . . . ,m) when
t→∞ with E being the expectation operator.

The accidental actuator faults might occur in practice, giving
the systems real control input vi and the designed input vdi.
Meanwhile, define the relationship between vi and vdi, as
follows

vi = ρ (tr, t) vdi + δd (t− tf )λd (t) (12)

where ρ (tr, t) denotes the “healthy indicator”, showing the
actuator effectiveness, δd (t− tf )λd (t) expresses for uncon-
trollable additive actuator failures, tr denotes the time instant
when the actuator fails, and tf means additive actuator fault
occurs. The function δd (t− tf ) characterizes the time profile
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of a failure that occurs at some unknown time tf , and λd (t)
is the bounded but uncontrollable part of the actuator output.
In this paper, two main types of failures are considered

1) Abrupt Faults

δd (t− tf ) =

{
0, t ≤ tf
1, t > tf .

(13)

2) Incipient Faults

δd (t− tf ) =

{
0, t ≤ tf
1− e−ϑ(t−tf ), t > tf

(14)

with ϑ ∈ [0,∞) being the faults in which the uncontrollable
part δd (t− tf ) occurs. In particular, ϑ = 0 implies that
all actuator faults are controllable and ϑ = ∞ means that
the uncontrollable part appears abruptly, and 0 < ϑ < ∞
corresponds to the situation where the uncontrollable part
gradually occurs in the system. Note that, in this paper, we
require the “healthy indicator” ρ (tr, t) is 0 < ρ (tr, t) ≤ 1,
meaning that although the actuator missing its effectiveness, it
is still working, so that vi can always be affected by the control
input vdi. Meanwhile, there is no other restriction, and it could
change over time.

Remark 4: Some interesting works on fault-tolerant control
have been reported in [33], [35], [39]. We need less faults
information to construct our control protocol than the above
literature. More specifically, the adaptive control protocol
proposed in [33] is based on the linear parametric decompo-
sition of the failure signals. Such decomposition is impossible
if there is a little or no message about the fault models.
In [39], actuation fault compensation and control protocol
were designed, while the system considered in this paper is
nonlinear and uncertainties. In [35], only the additional fault is
considered, which is more easier to deal with, because such a
fault can be simply treated as additional disturbance. However,
if the system has both abrupt faults and incipient faults
considered in this paper, the underlying problem becomes
more complicated to make the control design and stability
analysis more challenging.

The control objective is to develop an adaptive fault-tolerant
control protocol vi(t) for the system (10) such that the outputs
of stochastic nonlinear multi-agent systems yi track a desired
trajectory y01 (t) while ensure that all closed-loop signals in
system (10) are bounded in probability.

Define synchronization error as

si,1 =

m∑
j=1

ai,j (yi − yj) + bi (yi − y01) (15)

with bi ≥ 0 being the pinning gains. Only when the i-th
follower is able to receive the information from the leader
node, bi > 0.

To facilitate our stability analysis, the following lemmas are
needed.

Lemma 2: [37] Defining s•,1 = (s1,1, . . . , sm,1)
T
, y =

(y1, . . . , ym)
T
, y01 = (y01, . . . , y01)

T
, one gets

‖y − y01‖ ≤ ‖s•,1‖ /∆ (L+ ι) (16)

where ∆ (L+ ι) denotes the minimum singular value of L+ι.

Lemma 3: [40] If there exist a function V (p, q) ∈ C2,1, two
positive constants $ and ν, E∞-functions κ1 and κ2, such that{

κ1 (‖p‖) ≤ V (p, q) ≤ κ2 (‖p‖)
LV ≤ −$V (p, q) + ν

(17)

for ∀p ∈ Rn and ∀q > 0, there is an unique solution for
systems (10) of ∀p0 ∈ Rn, and all signals are bounded in
probability.

Lemma 4: [41] If ā, b̄, p̄, and q̄ are positive real numbers
and ā, b̄, satisfy 1

ā + 1
b̄

= 1, then, following inequality holds:

p̄q̄ ≤ 1

ā
p̄ā +

1

b̄
q̄b̄.

C. FNNs Approximation Property

In this part, we use the FNNs to estimate unknown nonlinear
functions. According to [42], the fuzzy logic systems (FLSs)
are divided into a fuzzy reasoning and fuzzy rules. The fuzzy
reasoning could be mapping Γ ∈ R by applying the fuzzy
rules in the form of IF-THEN. The i-th (i = 1, . . . , n) fuzzy
rule in the form of IF-THEN is defined as

If e1 (q) and . . . em (q) is Aim, then B (r) is Oi

with Ai1, A
i
2, . . . , A

i
m and Oi being fuzzy sets. F denotes the

number of fuzzy rules. By applying center-average, singleton
fuzzifier and product inference, the outputs of systems could
be described as

B (e) =

∑F
i=1 ȳ

i
(∏m

j=1 ΛAiJ (ej)
)

∑F
i=1

(∏m
j=1 ΛAiJ (ej)

) = WTS (e) (18)

where ΛAiJ (ej) denotes the fuzzy variable membership func-
tion value; n is all number of the rules; ȳi point at which
ΛOi

(
ȳi
)

= 1; WT =
[
ȳ1, ȳ2, . . . , ȳn

]
is the adjustable

parameter vector; ST =
(
s1, s2, . . . , sn

)
represents basis

vector with si being defined as

si =

(∏n
j=1 ΛAiJ (ej)

)
∑m
i=1

(∏n
j=1 ΛAiJ (ej)

) . (19)

Remark 5: The FNNs in this paper and literatures [43]
depend on a defined set of priority membership functions.
Then, according to the centers of membership functions,
the adjustable parameters are gained. Any parameters of the
priority portion are nonadjustable and depended on the right
select of the expert. In [44], it does not need priori message
for the IF portion of the rules, therefore, it is not susceptible to
initial design assumptions. Meanwhile, the developed method
in [44] maintains the well characteristic of linearity for the
adjustable parameters.

Based on the approximation property of the FNNs, a con-
tinuous real-valued function Γ (Z) defined over a compact set
D, there always exists a W ∗T ξ (Z) such that

Γ (Z) = W ∗T ξ (Z) + ε∗ (20)
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where ε∗ shows the estimation error and ξ (Z) denotes basis
function vector, generally speaking, it is assumed to be bound-
ed by ε. W ∗ is optimal weight vector, which used only for
analytical aims. W ∗ is defined as

W ∗ = arg min
W∈Rl

{
sup
X∈Ω

∣∣f (X)−WTS (X)
∣∣} . (21)

In this paper, The FNNs will be applied to estimate the
unknown nonlinear function Γi,h (Zi,h) with Zi,h ∈ D, one
has

Γi,h (Zi,h) = W ∗Ti,h ξi,h (Zi,h) + ε∗i,h (22)

where Γi,h (Zi,h) and Zi,h are defined later. The FNNs applied
in this paper can be replaced by the radial basis function NNs
[45] and FLSs [46].

Let θi,h = ϕ−1
h

∥∥∥W ∗i,h∥∥∥ , where θ̂i,h ≥ 0 is given to estimate

θi,h. Define θ̃i,h = θ̂i,h − θi,h, where θ̂i,h will be adaptively
adjusted.

III. DISTRIBUTED ADAPTIVE CONTROLLER DESIGN

In this section, a distributed fault-tolerant control protocol
will be proposed by backstepping technique. In the following
design, we define the following coordinate transformation

si,h = xi,h − αi,h−1, h = 2, . . . , ni (23)

with αi,h−1 being the virtual control signal.
Step 1 : According to (15) and Itô formula, we can obtain

dsi,1 = ((di + bi) (fi,1 (xi) + gi,1 (xi)xi,2) (24)

−
m∑
j=1

ai,j [fj,1 (xj) + gj,1 (xj)xj,2]− biẏ01)dt

+

(di + bi) Ψi,1 (xi)−
m∑
j=1

ai,jΨj,1 (xj)

 dw.

Select the Lyapunov candidate function as follows:

Vi,1 =
1

4
s4
i,1 +

ϕ
1

2ri,1
θ̃2
i,1 (25)

where ri,1 (i = 1, . . .m) is a design constant.
By (11) and (24), one gets

LVi,1 = s3
i,1((di + bi) [gi,1 (si,2 + αi,1) + fi,1 (xi)]

−
m∑
j=1

ai,j [gj,1 (xj)xj,2 + fj,1 (xj)]− biẏ01)

+
3

2
s2
i,1ΦTi,1Φi,1 +

ϕ
1

ri,1
θ̃i,1

˙̂
θi,1 (26)

where

Φi,1 = (di + bi) Ψi,1 (xi)−
m∑
j=1

ai,jΨj,1 (xj) . (27)

By applying Assumption 4 and Young’s inequality, we have

s3
i,1 (di + bi) gi,1si,2 ≤ 3

4
ϕ

1
s4
i,1τ

4
3

1

+
1

4
(di + bi)

4

×ϕ−3
1
ϕ4

1s
4
i,2τ
−4
1 (28)

3

2
s2
i,1ΦTi,1Φi,1 ≤

3

4
l−2
i,1 s

4
i,1 ‖Φi,1‖

4
+

3

4
l2i,1 (29)

where τ1 > 0 and li,1 > 0 are the design constants.
Substituting (28) and (29) into (26), it yields

LVi,1 ≤ s3
i,1 [(di + bi) gi,1αi,1 + Γi,1 − biẏ01]

+
3

4
ϕ

1
s4
i,1τ

4
3

1 +
1

4
(di + bi)

4

×ϕ−3
1
ϕ̄4

1s
4
i,1τ
−4 +

3

4
l2i,1 +

ϕ
1

ri,1
θ̃i,1

˙̂
θi,1 (30)

where

Γi,1 (Zi,1) = (di + bi) fi,1 (xi)−
m∑
j=1

ai,jgj,1 (xi)xj,2

−
m∑
j=1

ai,jfj,1 (xj) +
3

4
l−2
i,1 ‖Φi,1‖

4 (31)

where Zi,1 =
[
xTi , x

T
j

]T
. That is, for ∀εi,1 > 0, one gets

Γi,1 (Zi,1) = ε∗i,1 +W ∗Ti,1 ξi,1 (Zi,1) ,
∣∣ε∗i,1∣∣ ≤ εi,1. (32)

Based on Young’s inequality, we have

s3
i,1ε
∗
i,1 ≤

3

4
ϕ

1
s4
i,1τ

4
3

1 +
1

4
ϕ−3

1
τ−4
1 ε4

i,1 (33)

Choose an intermediate virtual control signal and adaptive law
as

αi,1 =
1

(di + bi)
[−ci,1si,1 + biẏ01

−
θ̂2
i,1s

3
i,1 ‖ξi,1 (Zi,1)‖2

θ̂i,1 |si,1|3 ‖ξi,1 (Zi,1)‖+ βi,1
] (34)

˙̂
θi,1 = ri,1s

3
i,1 ‖ξi,1 (Zi,1)‖ − βi,1θ̂i,1 (35)

where ci,1 is positive design constants.
Substituting (33)-(35) into (30) yields

LVi,1 ≤ −gi,1ci,1s4
i,1 −

ϕ
1
θ̂2
i,1s

6
i,1 ‖ξi,1 (Zi,1)‖2

θ̂i,1 |si,1|3 ‖ξi,1 (Zi,1)‖+ βi,1

+s3
i,1W

∗T
i,1 ξi,1 (Zi,1) +

3

4
l2i,1

+
3

2
ϕ

1
s4
i,1τ

4
3

1 +
1

4
ϕ−3

1
τ−4
1 ε4

i,1

+
1

4
s4
i,2 (di + bi)

4
ϕ−3

1
ϕ̄4

1τ
−4

+ϕ
1
θ̃i,1 |si,1|3 ‖ξi,1 (Zi,1)‖

−
ϕ

1
βi,1

ri,1
θ̃i,1θ̂i,1. (36)

By applying Young’s inequality, we can get

−
ϕ

1
βi,1

ri,1
θ̃i,1θ̂i,1 ≤ −

ϕ
1
βi,1

2ri,1
θ̃2
i,1 +

ϕ
1
βi,1

2ri,1
θ2
i,1. (37)

According to Assumption 4, the following inequality holds

s3
i,1W

∗T
i,1 ξi,1 (Zi,1) + ϕ

1
θ̃i,1 |si,1|3 ‖ξi,1 (Zi,1)‖
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−
ϕ

1
θ̂2
i,1s

6
i,1 ‖ξi,1 (Zi,1)‖2

θ̂i,1 |si,1|3 ‖ξi,1 (Zi,1)‖+ βi,1

≤ ϕ
1
[|si,1|3 θi,1 ‖ξi,1 (Zi,1)‖+ θ̃i,1 |si,1|3 ‖ξi,1 (Zi,1)‖

−
θ̂2
i,1s

6
i,1 ‖ξi,1 (Zi,1)‖2

θ̂i,1 |si,1|3 ‖ξi,1 (Zi,1)‖+ βi,1
]

≤ ϕ
1
[θ̂i,1 |si,1|3 ‖ξi,1 (Zi,1)‖

−
θ̂2
i,1s

6
i,1 ‖ξi,1 (Zi,1)‖2

θ̂i,1 |si,1|3 ‖ξi,1 (Zi,1)‖+ βi,1
]

= ϕ
1

θ̂i,1 |si,1|3 ‖ξi,1 (Zi,1)‖βi,1
θ̂i,1 |si,1|3 ‖ξi,1 (Zi,1)‖+ βi,1

≤ ϕ
1
βi,1. (38)

Rewritten (36) as follows

LVi,1 ≤ −c∗i,1ϕ1
s4
i,1 −

ϕ
1
βi,1

2ri,1
θ̃2
i,1 + τi,1

+
1

4
s4
i,2 (di + bi)

4
ϕ−3

1
ϕ̄4

1τ
−4
1 (39)

where

τi,1 =
3

4
l2i,1 +

ϕ
1
βi,1

2ri,1
θ2
i,1 + ϕ

1
βi,1

+
1

4
ϕ−3

1
τ−4
1 ε4

i,1 (40)

c∗i,1 = ci,1 −
3

2
τ

4
3

1 . (41)

Step h (2 ≤ h ≤ ni − 1) : Based on (23) and Itô formula, one
has

dsi,h = (gi,hxi,h+1 + fi,h (xi)− Lαi,h−1) dt

+

Ψi,h (xi)−
h−1∑
j=1

∂αi,h−1

∂xi,j
Ψi,j

T

dw (42)

where

Lαi,h−1 =

h−1∑
j=1

∂αi,h−1

∂xi,j
[fi,j (xi) + gi,j (xi)xi,j+1]

+

h−1∑
j=1

∂αi,h−1

∂θ̂i,j

˙̂
θi,j +

h−1∑
j=0

∂αi,h−1

∂y
(j)
r

yj+1
r

+
1

2

h−1∑
t,o=1

∂2αi,h−1

∂xi,t∂xi,o
ΨT
i,tΨi,o. (43)

Choose the following Lyapunov function candidate

Vi,h = Vi,h−1 +
s4
i,h

4
+

ϕ
h

2ri,h
θ̃2
i,h (44)

with ri,h > 0 (i = 1, . . .m) being a design parameter.
By using (11) (42) and (43), one has

LVi,h = LVi,h−1 + s3
i,h [fi,h − Lαi,h−1

+gi,h (αi,h + si,h+1)]

+
3

2
s2
i,hΦTi,hΦi,h +

ϕ
h

ri,h
θ̃i,h

˙̂
θi,h (45)

where

Φi,h = Ψi,h (xi)−
h∑
j=1

∂αi,h−1

∂xj
Ψj,h. (46)

By applying Young’s inequality, we can obtain

gi,hs
3
i,hsi,h+1 ≤

3

4
ϕ
h
τ

4
3

h s
4
i,h +

1

4
ϕ−3
h
τ−4
h ϕ̄4

hs
4
i,h+1 (47)

3

2
s2
i,hΦTi,hΦi,h ≤

3

4
l−2
i,hs

4
i,h ‖Φi,h‖

4
+

3

4
l2i,h. (48)

where τh > 0 is the design parameter.
Therefore, one has

LVi,h ≤ LVi,h−1 + s3
i,h (Γi,h + gi,hαi,h)

−1

4
s4
i,h

(
d̆i + b̆i

)4

ϕ−3
h−1

ϕ̄4
h−1τ

−4
h−1

+
3

4
ϕ
h
τ

4
3

h s
4
i,h +

1

4
ϕ−3
h
τ−4
h ϕ̄4

hs
4
i,h+1

+
3

4
l2i,h +

ϕ
h

ri,h
θ̃i,h

˙̂
θi,h (49)

where

Γi,h (Zi,h) = fi,h − Lαi,h−1 +
3

4
l−2
i,hsi,h ‖Φi,h‖

4 (50)

+
1

4
si,h

(
d̆i + b̆i

)4

ϕ−3
h−1

ϕ̄4
h−1τ

−4
h−1

where Zi,h =
[
xTi , x

T
j , θ̂i,1, . . . , θ̂i,h−1

]T
, and for k = 2, take

d̆i + b̆i = di + bi, and for 3 ≤ k ≤ ni − 1, take d̆i + b̆i = 1.
Similarly, the FNN is applied to estimate the unknown

function Γi,h (Zi,h) , that is, for ∀εi,h > 0, one has

Γi,h (Zi,h) = ε∗i,h +W ∗Ti,h ξi,h (Zi,h) ,
∣∣ε∗i,h∣∣ ≤ εi,h. (51)

By using Young’s inequality and (51), one gets

s3
i,hε
∗
i,h ≤

3

4
ϕ
h
τ

4
3

h s
4
i,h +

1

4
ϕ−3
h
τ−4
h ε4

i,h. (52)

We select the intermediate virtual control law as

αi,h = −ci,hsi,h −
θ̂2
i,hs

3
i,h ‖ξi,h (Zi,h)‖2

θ̂i,h |si,1|3 ‖ξi,h (Zi,h)‖+ βi,h
(53)

where ci,h > 0 denotes the design parameter.
The parameter adaptive law is chosen as

˙̂
θi,h = ri,h |si,1|3 ‖ξi,h (Zi,h)‖ − βi,hθ̂i,h (54)

with ri,h > 0 being a design constant.
Substituting (52)-(54) into (49), it yields

LVi,h ≤ LVi,h−1 + s3
i,hW

∗T
i,h ξi,h (Zi,h) +

1

4
ϕ−3
h
τ−4
h ε4

i,h

−1

4
s4
i,h

(
d̆i + b̆i

)4

ϕ−3
h−1

ϕ̄4
h−1τ

−4
h−1

−ϕ
h
ci,hs

4
i,h −

ϕ
h
βi,h

ri,h
θ̃i,hθ̂i,h

−
ϕ
h
θ̂2
i,hs

6
i,h ‖ξi,h (Zi,h)‖2

θ̂i,h |si,1|3 ‖ξi,h (Zi,h)‖+ βi,h

+
3

2
ϕ
h
τ

4
3

h s
4
i,h +

1

4
ϕ−3
h
τ−4
h ϕ̄4

hs
4
i,h+1

+
3

4
l2i,h + ϕ

h
θ̃i,h |si,1|3 ‖ξi,h (Zi,h)‖ . (55)

Based on Young’s inequality, one gets

−
ϕ
h
βi,h

ri,h
θ̃i,hθ̂i,h ≤ −

ϕ
h
βi,h

2ri,h
θ̃2
i,h +

ϕ
h
βi,h

2ri,h
θ2
i,h. (56)
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Then, similar to formula (38) , (55) can be rewritten as

LVi,h ≤ −
h∑
j=1

c∗i,jϕjs
4
i,j −

h∑
j=1

ϕ
j
βi,h

2ri,h
θ̃2
i,h

+
1

4
ϕ−3
h
τ−4
h ϕ̄4

hs
4
i,h+1 + τi,h (57)

where

τi,h = τi,h−1 +
3

4
l2i,h +

βi,h
2ri,h

θ2
i,h

+
1

4
ϕ−3
h
τ−4
h ε4

i,h + ϕ
h
βi,h (58)

c∗i,h = ci,h −
3

2
τ

4
3

h . (59)

Step ni : In this step, we will structure a real controller. Based
on Itô formula and (23), we have

dsi,ni = (gi,ni
(
pvµvni + q (vni)

)
+ fi,ni (xi)

−Lαi,ni−1)dt (60)

+

Ψi,ni (xi)−
ni−1∑
j=1

∂αi,ni−1

∂xi,j
Ψi,j

T

dw

where Lαi,ni−1 is defined in (43) with h = ni.
Select the Lyapunov function candidate as

Vi,ni = Vi,ni−1 +
1

4
s4
i,ni +

ϕ
ni

2ri,ni
θ̃2
i,ni (61)

where ri,ni (i = 1, . . .m) is a design parameter, by using (11)
and (60), one has

LVi,ni ≤ LVi,ni−1 + s3
i,ni(fi,ni + gi,ni(pvµvi

+q (vni))− Lαi,ni−1)

+
3

2
s2
i,niΦ

T
i,niΦi,ni +

ϕ
ni

ri,ni
θ̃i,ni

˙̂
θi,ni . (62)

Based on Young’s inequality, one can get

3

2
s2
i,niΦ

T
i,niΦi,ni ≤ 3

4
l−2
i,ni

s4
i,ni ‖Φi,ni‖

4
+

3

4
l2i,ni (63)

s3
i,nigi,niq (vni) ≤ 3

4d2
gi,nis

4
i,ni +

1

4
d2ϕ̄niD

4 (64)

with ci,ni , ri,ni and βi,ni being design constant.
Therefore, we have

LVi,ni ≤ LVi,ni−1 + s3
i,ni

(
Γi,ni + gi,nipvµvi

)
−

ϕ
ni
θ̂2
i,ni

s6
i,ni
‖ξi,ni (Zi,ni)‖

2

θ̂i,ni
∣∣s3
i,ni

∣∣ ‖ξi,ni (Zi,ni)‖+ βi,ni

−1

4
ϕ−3
ni−1

τ−4
ni−1ϕ̄

4
ni−1s

4
i,ni

+
1

4
d2ϕ̄niD

4 +
ϕ
ni

ri,ni
θ̃i,ni

˙̂
θi,ni

−3

4
gi,nis

4
i,ni +

3

4
l2i,ni (65)

where

Γi,ni (Zi,ni) = fi,ni +
3

4d2
gi,nis

4
i,ni

+
1

4
ϕ−3
ni−1

τ−4
ni−1ϕ̄

4
ni−1si,ni

−Lαi,ni−1 +
3

4
l−2
i,ni

si,ni ‖Φi,ni‖
4 (66)

where Zi,ni =
[
xTi , x

T
j , θ̂i,1, . . . , θ̂i,ni−1

]T
.

Using Young’s inequality

s3
i,niε

∗
i,ni ≤

3

4
ϕ
ni
τ

4
3
nis

4
i,ni +

1

4
ϕ−3
ni
τ−4
ni ε

4
i,ni . (67)

where τni > 0 is the design parameter.
Construct the actual controller and parameter adaptive law

as follows

vi = −ci,nisi,ni −
θ̂2
i,ni

s3
i,ni
‖ξi,ni (Zi,ni)‖

2

θ̂i,ni
∣∣s3
i,ni

∣∣ ‖ξi,ni (Zi,ni)‖+ βi,ni
(68)

˙̂
θi,ni = ri,nis

3
i,ni ‖ξi,ni (Zi,ni)‖ − βi,ni θ̂i,ni . (69)

Due to the fact that the actuator fault is considered in this
paper, vi = ρ (tr, t) vdi + δd (t− tf )λd (t) is achieved. When
the actuator is healthy, we can obtain ρ (tr, t) = 1 and
δd (t− tf )λd (t) = 0, i.e. vi = vdi.

When the actuator fails, the fault-tolerant controller is
designed as follows vdi = 1

ρ(tr,t)
(vi − δd (t− tf )λd (t)) i.e.,

vdi =
1

ρ (tr, t)
(−ci,nisi,ni − δd (t− tf )λd (t)

−
θ̂2
i,ni

s3
i,ni
‖ξi,ni (Zi,ni)‖

2

θ̂i,ni
∣∣s3
i,ni

∣∣ ‖ξi,ni (Zi,ni)‖+ βi,ni
). (70)

Substituting (67)-(69) into (65), one has

LVi,ni ≤ LVi,ni−1 + s3
i,niW

∗T
i,niξi,ni (Zi,ni)

−ϕ
ni
ci,nis

4
i,ni +

1

4
ϕ−3
ni
τ−4
ni ε

4
i,ni

−
ϕ
ni
θ̂2
i,ni

s6
i,ni
‖ξi,ni (Zi,ni)‖

2

θ̂i,ni |si,1|
3 ‖ξi,ni (Zi,ni)‖+ βi,ni

+
3

4
ϕ
ni
τ

4
3
nis

4
i,ni −

1

4
ϕ−3
ni−1

τ−4
ni−1ϕ̄

4
ni−1s

4
i,ni

+
3

4
l2i,ni + ϕ

ni
θ̃i,ni |si,1|

3 ‖ξi,ni (Zi,ni)‖

−
ϕ
ni
βi,ni

ri,ni
θ̃i,ni θ̂i,ni +

1

4
d2ϕ̄niD

4. (71)

Applying Young’s inequality, we have

−
ϕ
ni
βi,ni

ri,ni
θ̃i,ni θ̂i,ni ≤ −

ϕ
ni
βi,ni

2ri,ni
θ̃2
i,ni+

ϕ
ni
βi,ni

2ri,ni
θ2
i,ni . (72)

Further, similar to formula (38), (71) can be rewritten as

LVi,ni ≤ −
ni∑
j=1

c∗i,jϕjs
4
i,j −

ni∑
j=1

ϕ
j
βi,j

2ri,j
θ̃2
i,j + τi,ni (73)

where

τi,ni =

ni∑
j=1

(
3

4
l2i,j +

ϕ
j
βi,j

2ri,j
θ2
i,j

+
1

4
ϕ−3
j τ−4

j ε4
i,j + ϕ

j
βi,j

)
+

1

4
d2ϕ̄niD

4 (74)

c∗i,ni = pmci,ni −
3

4
τ

4
3
ni . (75)
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Let
ηi = min

{
2c∗i,h, βi,h

}
> 0, h = 1, . . . , ni (76)

then we have
LVi,ni ≤ −ηiVi,ni + τi. (77)

In the case of the healthy state or fault state of the actuator, the
following theorem gives the stability analysis of the proposed
control protocol.

Theorem 1: Consider the non-strict feedback stochastic
nonlinear multi-agent systems (1) under Assumptions 1-4. We
give the distributed control protocol (68) (healthy controller),
(70) (fault-tolerant controller) and the adaptive law (69) to
ensure that all the followers’ outputs eventually converge to a
small neighborhood of the leader’s output and all signals are
bounded in the closed-loop system (1) in probability.

Proof 1: Choose the total Lyapunov function candidate as

V =

m∑
i=1

Vi,ni (t) . (78)

Based on (77), we have

LV ≤ −ηV + τ (79)

where η = min {ηi, i = 1, . . . ,m} , τ =
∑m
i=1 τi.

According to Lemma 3 and the definition of V, all signals
in the closed-loop systems are CSUUB in probability.

Furthermore, according to [47] and (79), when t ≥ 0, one
gets

d (E [V (t)])

dt
= E [LV (t)] ≤ −ηE (V (t)) + τ. (80)

From (80), we have

0 ≤ E [V (t)] ≤ τ

η
+

(
V (0)− τ

η

)
e−ηt. (81)

Further, when t→∞, we can get

E [V (t)] ≤ τ

η
. (82)

For si,1 = (s1,1, . . . , sm,1)
T
, according to (82) and the

definition of V, we obtain

E
(
‖si,1‖4

)
≤ E

(
s2

1,1 + s2
2,1 . . . , s

2
m,1

)2
≤ 2E

(
s4

1,1 + s4
2,1 . . . , s

4
m,1

)
≤ 8τ

η
. (83)

Theoretically, for ∀ε > 0, on account of the definitions of
η and τ, by choosing the appropriate design parameters ci,h,
βi,h and ai,h, one has

τ

η
≤ ε

8
(∆ (L+ ι))

4
. (84)

Furthermore, when t→∞, according to Lemma 3, one gets

E
(
‖y − y01‖4

)
≤ E

(
‖si,1‖4

)
/∆ (L+ ι)

4 ≤ ε. (85)

According to Definition 2, the tracking errors between the
output of followers yi (t) and the leader’s output y01 (t) are
CSUUB in probability. �

IV. SIMULATION RESULTS

To illustrate the effectiveness of the developed control
protocol, we consider the following networks of stochastic
nonlinear systems

dxi,1 = [xi,1 + xi,2 sin(xi,1)] dt+ [0.2xi,1 sin (xi,1)] dw

dxi,2 = [0.8 sin(xi,2) + 0.5 sin(t) + ui] dt

+
[
1− cos

(
x2
i,2

)]
dw

yi = xi,1 (86)

where ui represents the output of the saturation nonlinearity,
the nonsymmetric input saturation bounds are selected as
ui,max = 5, ui,min = −6. The output of the leader is
y01 = 0.5 cos (t) .

Fig. 2. Graph G used in the simulation
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Fig. 3. Healthy Controller

Apparently, the adjacency matrix A and the Laplacian
matrix L of the digraph G are, respectively.

A =


0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 , L =


1 0 0 0 −1
−1 1 0 0 0
0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1


We consider the following faults model vi = ρ (tr, t) vdi +

δd (t− tf )λd (t), when the actuator is healthy ρ (tr, t) =
1, δd (t− tf )λd (t) = 0, i.e., vdi = vi. When the ac-
tuator is abrupt faults 0 < ρ (tr, t) < 1, λd (t) =
0.05 cos (t) , i.e., vdi = 1

ρ(tr,t)
[vi − 0.05 cos (t)] (tr > 5) .

When the actuator is incipient fault 0 < ρ (tr, t) < 1,
δd (t− tf ) = 1 − e−2(t−5), λd (t) = 0.05 cos (t) . i.e., vdi =
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1
ρ(tr,t)

[
vi −

(
1− e−2(t−5)

)
0.05 cos (t)

]
(tr > 5) . Figs. 3-5

show the simulation results of health actuator, actuator with
initial faults and actuator with abrupt faults, respectively.
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Fig. 4. Controller with incipient faults
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Fig. 5. Controller with abrupt faults
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Fig. 6. Output of the leader and followers.

Choose the following initial values and adaptive parameters
xi,1 (0) = (−0.15,−0.05)

T
, xi,2 (0) = (−0.15,−0.15)

T
,

xi,3 (0) = (−0.25,−0.01)
T
, xi,4 (0) = (−0.05,−0.25)

T
,

xi,5 (0) = (−0.15,−0.13)
T
. θ̂i,j (0) = (0.2, 0.2)

T
. ci,j =

0.15. (i = 1, . . . , 5, j = 1, 2) r1,1 = 1.5, r2,1 = 0.5, r1,2 =

r2,2 = r3,1 = r3,2 = r4,1 = r4,2 = r5,1 = r5,2 = 0.1. Fig.
6 denotes that output trajectories of followers can track the
output trajectories of leader.

In addition, we define the following membership functions:

ΛA1
i

(Zni ) = exp
[
−0.5 (Zni + 5)

2
]

ΛA2
i

(Zni ) = exp
[
−0.5 (Zni + 2)

2
]

ΛA3
i

(Zni ) = exp
[
−0.5 (Zni )

2
]

ΛA4
i

(Zni ) = exp
[
−0.5 (Zni − 2)

2
]

ΛA5
i

(Zni ) = exp
[
−0.5 (Zni − 5)

2
]

From these figures, we see that these simulation results
validate the effectiveness of the proposed control protocol.

V. CONCLUSION

Fuzzy neural network-based adaptive fault-tolerant control
protocol has been studied for the networks of stochastic
nonlinear systems with nonsymmetric input saturation and
actuator faults in this paper. Based on the FNNs approximation
property and the backstepping technique, a novel adaptive
fault-tolerant control protocol has been designed to guarantee
that in the closed loop systems all the signals are bounded in
probability and the tracking error converges to an arbitrarily
small neighborhood around the origin. At last, these simulation
results have been presented to illustrate the effectiveness of the
proposed control protocol. In our future work, the T-S fuzzy-
model-based [48] and [49] cooperative control would be an
interesting and challenging and will be considered.
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