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ABSTRACT Cognitive radio (CR) is one of the most promising technology soon due to the scarcity 

of the spectrum, especially at microwave band. CR faces massive resistance from the industry 

because of the potential interference caused by the secondary users. Spectrum sensing forms an 

important functionality for CR systems. However, such detection performance is usually 

compromised by shadowing and fading channel conditions. Cooperative sensing is one of the crucial 

solutions to overcome degraded detection performance. To improve the sensing performance and 

reduce the reporting error, a distributed architecture for processing and fusion of sensing information 

is proposed in this work. In dense network scenarios, the decision fusion for cooperated users could 

be complex and reported sensing traffic may require large bandwidth. This paper proposes a new 

distributed detection and adapted threshold based on controlled false alarm probability to improve 

sensing reliability and efficiency in a highly Rayleigh faded environment. A distributed detection is 

developed by selecting fusion nodes (FN) that are dynamically selected from a group of nodes. The 

detection threshold is calculated adaptively using the link quality indicator (LQI) of the sensing 

channel. Moreover, the proposed method can significantly minimize the typically transmitted bits in 

the reporting channel. The paper also discussed in detail the design parameter of the CR number on 

the performance of fusion values. The simulation analysis shows that the performance of the 

distributed cooperative sensing (DCS) process is considerably improved by the adapted threshold. 

The numerical results demonstrated that the error was remarkably minimized. The ROC curve of the 

sensing process is notably improved for detection probability and false alarm probability, 

respectively. Finally, it was shown that the requirement of sensitivity can be greatly improved up to 

0.95. 



INDEX TERMS Cognitive radio network (CRN); Spectrum sensing; Cooperative; Distributed 

architecture, Decision fusion  

I. INTRODUCTION 

Radio spectrum becomes one of the international wealth that get the attention of researchers and 

academia since early this century. Spectrum bands especially those between 300MHz to 10 GHz 

become quite crowded with many wireless technologies, services, and devices. The wireless industry 

and vendors are looking eagerly for new opportunities for the highly demanded wireless 

communication market. The industry now looking for more freely spectrum or unutilized spectrum 

such as 700MHz to be occupied for broadband services where it has been auctioned in many countries. 

for the sake of new spectrum, some new technologies recently have been innovated at terahertz (THz) 

and visible light (VL) bands. The FCC report [1] indicates that: some frequency bands in the spectrum 

are largely unoccupied most of the time, some other frequency bands are only partially occupied, and 

the remaining frequency bands are heavily used. Cognitive Radio (CR) is currently considered as one 

of the most promising solutions to the aforementioned spectrum scarcity problem and efficiently usage 

of many underutilization licensed frequency bands [2, 3].  

Cooperative Cognitive Radio has been introduced to improve the spectrum sharing efficiency, 

improve the capacity and avoid interference between various radios that work in the same frequency 

[4-7]. Wireless communications have many impairments, problematic issues, and challenges; in the 

cognitive radio arena, these issues become severe and critical due to collisions and conflict that may 

happen in the radio access network (RAN). Hidden node problem and synchronization are an example, 

in addition to many problems that Rayleigh fading may cause. Therefore, one of the key functions that 

CR needs to be aware of is detection reliability. Many research and studies have been proposed to 

increase the detection and sensing reliability to ensure no disturbance can be caused due to coexistence 

and spectrum sharing. in fact, the industry could not reach a consensus for cognitive radio standards 

that due to the high probability of disturbance for the primary users [8].  

The cognitive radio may not be able to reliably detect a Primary User (PU), this is due to the signal-

to-noise ratio (SNR) of the PU signal can be extremely low due to Rayleigh fading and shadowing. 

Weak SNR with high probability can lead to hidden node problem, which it can cause severe 

interference problem to the PUs [9-12]. Secondary Users (Sus) may be hidden by a shadow from the 

PU transmitter however in the meantime, PUs receiver may be close enough to the SU that is not 

hidden by a shadow from the PU transmitter. Therefore, may start sending although the PU is using 

the same frequency, and hence interfering with the intended receiver of the transmission. Also, [13] 



shown that when the number of cognitive users increases the probability of bit error is also increased, 

which dramatically reduces the spectrum agility.  

Due to all these problematic issues, cooperative spectrum sensing in cognitive radio has been 

proposed recently to support the decision of the local sensing /detection and improve the probabilities 

of false alarm and detection [14-17]. Rayleigh fading channel is the main cause of low SNR in 

practical, so many related works have been suggested for the obligation of users’ cooperation to cope 

with the problem of cognitive radio detection. Cooperative sensing achieves diversity gain and can 

reduce the detection time and thus increase the overall spectrum agility [18]. However, the cooperative 

sensing performance can be severely degraded due to fading reporting/control channel [19], where 

usually the low SNR is used. Also, with a large number of cognitive users, the decision fusion for 

cooperated users could be complex and the reporting sensing result may require a large bandwidth 

[20].  

A hard decision auto-correction reporting system is proposed in [21]. Where an auto-correction 

scheme is introduced for the reported bit error, and then reduces and minimizes the number of bits in 

the reporting channels by letting the user with detected information only to send its report. Even though 

this method reduced the required bandwidth and energy in the reporting channel, however, due to only 

a few SUs are reporting their observations without hearing from the other users, the spectrum agility 

can be degraded dramatically with the number of users in the network.  

One possible approach to increase the spectral agility and decrease the probability of interference 

of cognitive radios to the existing radio systems is proposed by [23] in which distributed spectrum 

sensing has been used. In [24] a cluster-based cooperative spectrum sensing method is proposed, by 

separating all the secondary users into a few clusters and selecting the most favorable user in each 

cluster. Another kind of cooperative spectrum sensing was proposed in [25], [26], and [27], where a 

power-constrained cooperation scheme is discussed. In which the cognitive user near the PU is 

regarded as a relay to forward its sensing data to the one who receives a weak signal from the PU due 

to fading and shadowing. However, when the number of cognitive users increases this requires a high 

bandwidth reporting channel, and the probability of error becomes higher, which will lead to wrong 

decision at the fusion point. 

The rest of this paper is organized as follows: Section 2 is presenting the system model of the local 

sensing based on the energy detection and network architecture based on the distributed cooperative 

sensing (DCS) and cooperation behaviors of the system Section 3 shows the analytical and simulation 

results. Finally, section 4 concludes the paper.  

II. MAIN AIM AND CONTRIBUTION 



In this paper, cooperative cognitive radio detection has been introduced to utilize spatial and 

temporal diversity for multiuser detection reliability [28-33]. Cooperative spectrum sensing is 

proposed to overcome the fading, shadowing, and noise uncertainty problems in a channel. 

Cooperating is quite successful in dense urban and urban scenarios due to the number of participated 

nodes in the cooperative process. Cooperative also can work for wide coverage areas where it offers a 

reliable answer to the hidden-terminal issue since SUs are apart by a larger distance than the correlated 

(shadow, fading) distance which this distance makes it unlikely for two SUs to be shadowed 

instantaneously from the PUs. related works on cooperative cognitive radio sensing among users [39, 

40] have investigated methods where cooperative detection has exploited all users in the cognitive 

radio network (CRN). Literature proofed that this scheme vitally enhanced the detection reliability of 

PU activity. The problem statement we are addressing in this paper as follows:  

 Unreliable ED (energy detection) monitoring in local users sensing addition to deficient (faded) 

reported detection through reporting channel with limited bandwidth under the hypothesis of a large 

number with long distances of cognitive nodes 

 Decision fusion procedure complexity; fusion is a centralized-based idea that has many problematic 

issues such as computation complexity, single point of failure, and energy consumption. 

In this paper, we propose a distributed sensing where the Cognitive Radios (CR) are divided into 

subgroups. The users perform sensing using energy detection (ED) and then report their observations 

using auto-correction based on the best SNR reporting channel. The processing and fusion of spectrum 

observations are done by each group by electing one fusion node (FN); fusion node is selected based 

on the best signal-to-noise ratio which we will express here with γ. the procedure would be like 

follows: 

 The group is collaboratively making the sensing decision,  

 fusion center (FC) is received the group decision by using the reporting channel. 

 The fusion center (FC) produces the final decision and final spectrum usage map 

Furthermore, an adaptive medium access control protocol is proposed for data exchange where the 

noise estimation is also used for the nodes reporting scheduling; the proposed scheme increases the 

time of sensing for the delayed scheduled CR nodes. The paper proposed distributed cooperative 

sensing (DCS) technique with overcoming of low SNR causes by the Rayleigh fading report channel, 

which shows a great enhancement in detection readability. in the simulation results and numerical 

analysis. The detection probability, false alarm probability and reported bits error rate were examined 

in the proposed model as performance metrics to validate and verify the proposed distributed decision 

fusion architecture for the cooperative spectrum sensing for direct cognitive radio-distributed decision 



fusion architecture under Rayleigh fading channel and non-cooperative detection. Also, an 

investigation and optimization of the distributed cooperative gain, an analytical formulation with 

probable candidate node selection criteria are used.  

III. SYSTEM MODEL 

In the CR network, in order to recognize white space channels that are available for transmission, 

the CR nodes accomplish active detection of the surrounding through (passive) for frequency time, 

and space degrees of freedom [41]. Then. nodes send their local sensing -under a maintained 

probability of false alarm- to fusion node (FN) user. The fusion user makes the decision of the group 

and forwards the reporting bits to the fusion center (FC). The fusion center produces the final decision 

and final spectrum usage map. The network scenario is shown in Figure 1. An AWGN channel with 

squared power path loss is assumed for CR-to-CR & CR-to-FN transmission. 

Assuming communication from FN-to-FC faded by Rayleigh characteristics. Moreover, in the 

network for the cooperative nodes, the distance between any two nodes compared with the wavelength 

leads to independent fading coefficients [43]. The rationale behind such channel assumptions is that 

the fusion node (FN)-to-fusion center transmission distance is much larger than the CR-to-FN and FN-

to-FN transmission range and the communication environments are more complex.  

 

 

FIGURE 1: Network Architecture 

A. Distributed Spectrum Sensing 

The distributed cooperation architecture is known to have the potential to increase spectral 

estimation reliability and decrease the probability of interference of cognitive radios to existing radio 

systems. The Network architecture consists of two basic elements: the sensing group and the Sensing 

Coordinator (SC) [44-46]. The sensing group is divided into G sensing subgroups which each 

subgroup performed by n secondary users.  

The secondary cognitive radio operates in a distributed cooperative group manner, where the fusion 

processing of local spectrum sensing for each group [47]. The detection decision at the group level is 

made to be sent through the best SNR reporting channel. These processes are spanning through both 

PHY and MAC layers, where the spectrum sensing and signal detections are performed by using PHY 



parameters. While choosing the group head GH is done through both PHY and MAC, which are based 

on the best SNR, the groups elect their GH using MAC messages. This can be performed by using a 

self-organizing algorithm.  
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FIGURE 2: The decision stages for the distributed cooperative spectrum sensing 

  

The GH communicates the SC (i.e., a base station (BS)) through the best SNR. The BS and uses 

the Radio Resources Management (RRM) feature in the MAC layer to make the spectrum decisions. 

The flow chart of the decision stages is described in Figure 2. Algorithm 1 shows the details of the 

distributed cooperative sensing (DCS) pseudo-code. Figure 3 shows the Distributed sensing stages. 

Assume that all the channels to be experienced Rayleigh fading. Moreover, channels corresponding 

to different cognitive users are assumed to be independent. Thereby, the signal received at the SU’s 

antenna can be expressed as follows [48]: 



𝑠[𝑛] = ℎ𝑥[𝑛] + 𝑤[𝑛]                                                     (1) 

where w[n] is the noise which is here we consider it as AWGN, x[n] is the detected signal, n is an 

indication of number of samples for the discrete channel index, and h is the impulse of fading channel. 

Here we considered that x[n] = 0 in the case that there are no PU signals [49]. The decision on the 

presence of a primary user signal can be made by comparing the decision metric M against a fixed 

threshold.    

 

Algorithm 1: The proposed distributed cooperative sensing (DCS) pseudo code 

Apply distributed architecture in CRN 

apply k-mean for node grouping 

give ID (identification) for all groups  

For all groups select best reporting channel associated with a node and assign as 

fusion/relay node 

compute gain of channels at fusion center 

announce the fusion/relay nodes for each group 

For all groups define the threshold for PU detection 

calculate the noise at fusion/relay node 

compute the P_f  

% noise calculation is out of this work scope, so is selected as P_f = 0.1 

Compute the threshold for P_f= 0.1 

Apply ED in each group’s node given the calculated threshold 

P_received ≤ threshold 

send this result to fusion/relay node 

run the fusion/relay node decision procedure 

Run OR_rule for received reports 

Send the decision to fusion center 

Run the final decision procedure  

Use OR_rule for the received fusion decisions 

Assess the parameters for system performance 

Evaluate ROC parameter 

% simulate, 

Save results history and evaluated with the on/off mode  

Calculate probability of error for reporting channel 

Calculate sensitivity level 



Use node_selection procedure to decrease the bandwidth 

Let nodes with detection information to send their decision 

Modify any no_detection status to detection 

Re-calculate the parameters for system performance 

Store all evaluated performance parameters and bandwidth value  

 

 

Figure 3:  Distributed sensing stages 

 

This is equivalent to distinguishing between the hypothesis testing busy channel,𝐻1, and idle 

channel, 𝐻0, which can be expressed by [50]: 

  𝐻0: 𝑠[𝑛] = 𝑤[𝑛] 𝐻1: 𝑠[𝑛] = ℎ𝑥[𝑛] + 𝑤[𝑛]                                                (2) 

 

Energy detection (ED) is one of most techniques used in detection and estimation of spectrum 

sensing for unknown signals. The detection of unknown signals using ED the mathematical expression 

can be modeled as [51], 

 

   𝑀 = ∑ 𝑠[𝑛]2𝑁−1𝑛=0                                                                         (3) 

 

The additive white Gaussian noise is designed analytical as a normal distribution random variable 

where the mean µ=0where the variance is 𝜎𝑤2  i.e.  

 𝑤[𝑛] = 𝑁(0, 𝜎𝑛2)    𝑤[𝑛] = 1𝜎𝑤√2𝜋 𝑒−12( 𝑛𝜎𝑤)2
                                                                (4) 



.  

The decision statistics I is a probability density function which assumed to be chi-square 

distribution, 𝜒2, with degrees freedom k=2N, in case of true hypothesis 𝐻0; else, would be as 

noncentral with (mean µ=0) chi-square distribution𝜒2. Which can be expressed as: 

 𝑀~ { 𝜒2𝑁2𝜒2𝑁(𝛾𝑖)2 𝐻0𝐻1                                                                        (5)  

 

If we assumed that the sample is quite large then the distribution can be approximated as central 

limit theorem with normal Gaussian distribution using the, so equation 5 of the Chi-distribution M can 

be rewritten in the following format [54], 𝑀|𝐻0 ≈ 𝑁(𝑁𝜎𝑥2, 2𝑁𝜎𝑤2 ) 

  𝑀|𝐻1 ≈ 𝑁(𝑁(𝜎𝑥2 + 𝜎𝑤2 ), 2𝑁(2𝜎𝑥2 + 𝜎𝑤2 ))                                                   (6) 

 

where 𝑁(𝜎𝑥2 + 𝜎𝑤2 ) known as central limit theorem with normal Gaussian distribution with mean 𝜎𝑥2and variance 𝑏. The detection threshold 𝜆for a given 𝑃𝑓  can be estimated as [55]: 

 𝜆 = √2𝑁𝜎𝑥2𝑄−1(𝑃𝑓) + 𝑁𝜎𝑤2                                                                (7) 

where 𝑄(𝑎) = ∫ 1√2𝜋 ℓ𝑎22 𝑑𝑎∞𝑎 , 

 

Undertake that k cognitive users are contained in a group of 𝐺𝑗 where(𝐾 ∈ 𝐾𝑡), where𝐾𝑡  is the 

cognitive user’s number in the whole network which contains a certain number of groups. So, the 

decision statistics 𝑀 for group𝑀𝑗that collaboratively sense the PUs can be expressed as 

 𝑀𝑗 = ∑ ∑ 𝑠𝑗[𝑛]2𝑁−1𝑛=0𝐾−1𝐾=0                                                                            (8) 

 

The distribution probability of the cooperative sensing group 𝑀𝑗approximated as the central limit 

theorem with chi-square random distribution. The decision statistics 𝑀 for group𝑀𝑗that collaboratively 

sense the PUs can be expressed: 

 

𝑀𝑗|𝐻1~𝑁 [𝑁 (∑ 𝜎𝑥,𝑗2 + 𝐽𝜎𝑤,𝑗2𝐾−1
𝐾=0 ) , 



2𝑁 (2 ∑ 𝜎𝑥,𝑗2 + 𝐽𝜎𝑤,𝑗2𝐾−1
𝐾=1 )] 

 𝑀𝑗|𝐻0~𝑁(𝑁𝐾𝜎𝑥2, 2𝑁𝐾𝜎𝑤2 )                                                          (9) 

 

then the detection threshold 𝜆𝑗for a given 𝑃𝑓can be estimated as: 𝜆𝑗 = √2𝑁𝐾𝜎𝑥2𝑄−1(𝑃𝑓) + 𝑁𝐾𝜎𝑤2                                                      (10) 

 

From (7) and (8) and following same derivation in [57-59], then the probability of detection 𝑃𝑑 for 

the local nodes and sensing group can be written for k total number cognitive users and j total number 

of sensing groups as: 

 

𝑃𝑑,𝑘 = 𝑄 ( 𝜆−𝑁(𝜎𝑥2+𝜎𝑤2 )√2𝑁(2𝜎𝑥2+𝜎𝑤2 ))                                                                        (11) 

𝑃𝑑,𝑗 = 𝑄 (𝜆𝑗−(𝑁(∑ 𝜎𝑥,𝑗2 +𝐾𝜎𝑤,𝑗2𝐾−1𝐾=0 ))√2𝑁(2 ∑ 𝜎𝑥,𝑗2 +𝐾𝜎𝑤,𝑗2𝐾−1𝐾=0 ) )                                                            (12) 

B. Auto-correction  

In the cooperative sensing and the ED level, the secondary users (SUs) have to decide that if the 

primary users (PUs) signal is detected or not [60]. For that, the integrator output 𝑄 is associated with 

the threshold 𝜆. If the value of 𝑄 is exceeded 𝜆2 the threshold 2, a report of the decision 𝐻1 is taken 

and decision of binary 1 is sent to group head GH and if 𝑄 lower than λ2, the threshold 2 a report the 

decision 𝐻0 is also taken and the decision of binary 01 is sent to fusion node (FN) else “no decision” 

is considered. This concept can be summarized and calculated as: 

 

{ 𝐻0 𝑄 < 𝜆1𝐻1 𝑄 > 𝜆2𝑛𝑜𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝜆2 > 𝑄 > 𝜆1                                                                        (13) 

 

Equation (11) is illustrated in Figure 4(a). To reduce the number of reporter bits, in this paper we 

proposed a single reporting bit using auto-correction scheme, where only one threshold 𝜆 is introduced. 

If the value of 𝑄 is exceeded 𝜆, a report of the decision 𝑅 is considered and the decision of binary 1 is 

sent to Fusion nodes (FNs) otherwise “no decision” decision 𝑅′ is taken. This is given by: 

 



𝑅 = { 1 𝑄 > 𝜆𝑛𝑜𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑄 < 𝜆                                                                        (14) 

 

This is can be illustrated as shown in Figure 4(b). 

 

FIGURE 4: (a) Cooperative sensing detection technique with two thresholds for local user. (b) 

Auto-correction technique with single threshold. 

 

Assume that the group head GH receiver receive 𝑘 (out of𝐾, where 𝐾 is the is the cognitive user’s 

number in the whole network, while k is the number of users per group) local decision by the cognitive 

cooperative users. If the FN receives locally the decision 0 instead of 1, it’s taken as a report of error 

due to the faded and attenuated channel and the decision to be auto-corrected to the decision 1 [64]. 

Under these circumstances the performance will be high regardless of the channel condition. The 

ultimate sensing decision H is taken based on the coefficient 𝑘′ at the FN server If the FN server 

obtains any local sensing decision 0 or 1 a final decision H = 1 is considered. If no local sensing 

decision is received to the FN server, then a final sensing decision H = 0 is considered. This is can be 

illustrated as:  

 

 𝐻 = {10 𝑘′𝑙𝑜𝑐𝑎𝑙𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠𝑘 ≤ 𝐾𝑛𝑜𝑙𝑜𝑐𝑎𝑙𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑘 = 0                                                  (15) 

 

Let 𝑘̄ denote as normalize mean number of bits reporting; then: 

 𝑘̄ = 𝑘𝑎𝑣𝑔 𝐾⁄                                                                                   (16) 

 𝑘𝑎𝑣𝑔denotes as mean bits number in reporting stage. assume that 𝑅𝑘is the state of k reporting from 

users, and 𝑅𝐾−𝑘′ is the state of K - k not reporting of cognitive users, from (12) we can write:  

 𝑃{𝑅𝑘} = (𝑃{𝑄 > 𝜆})𝑘 = (1 − 𝑃{𝑄 < 𝜆})𝑘                                                     (17) 
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𝑃{𝑅𝐾−𝑘′ } = (𝑃{𝑄 < 𝜆})𝐾−𝑘                                                           (18) 

 

where 𝑃 is the probability. Further, suppose 𝑃0 = 𝑃{𝐻0} and 𝑃1 = 𝑃{𝐻1}. So, the mean reporting bits 

number is written as: 

𝑘𝑎𝑣𝑔 = 𝑃0 ∑ 𝑘𝐾−1
𝑘=0 (𝐾𝑘) 𝑃{𝑅̄𝐾−𝑘|𝐻0} 
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                                                    (19) 

If 𝑅0′ and 𝑅1′  represent the probability of “No report” under hypothesis 𝐻0and , 𝐻1 respectively. 

Then by using (14) we can write: 

 𝑘̄ = 1 − 𝑃0𝑅0′ − 𝑃1𝑅1′                                                         (20) 

where  𝑅0′ = 𝑃{𝑄 < 𝜆|𝐻0}, 𝑅1′ = 𝑃{𝑄 < 𝜆|𝐻1}                                       (12) 

 

From (20) it can be written that the normalized mean reporting bits number is always 𝑘̄ < 1. 

C. Decision Fusion 𝑭 

Assume that the SC receiver receives 𝑗 group head decision where j is the total groups number in 

the network i.e., 𝑗 = 0,1, . . . , 𝐽, which calculated based on of 𝐺𝑗 decision locally reported form the 

cognitive users within each group. Then the last detection decision fusion,𝐹, is calculated in the FC 

[63]: 

 𝐹 = {1 ∑ 𝑓𝑗 ≥ 1𝐽−1𝑗=10 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                (22) 

 

J denoted as the active groups number in the cooperative network. These groups can be established 

based on beamforming in the BS or self-initiation by the nodes itself i.e., using self-organizing 

protocol. Let 𝑃𝑒,𝑗 denote the error probability in reporting the group 𝑗 sensing decision and let 𝛾𝑗′ 
denote the SNR for the reporting channel in group 𝑗. 𝛾𝑗′ is considered as the reporting channel in the 

group that has the strongest SNR (with high channel quality indicator (CQI) [66]. If we use BPSK for 

the reporting channel, then the error probability can be written as:  

 𝑃𝑒,𝑗|𝛾𝑗 = 𝑄(√2𝛾𝑗)                                                                        (23) 



 

Therefore, the average error probability over the Rayleigh fading channel can be derived as: 

 𝑃𝑒,𝑗 = ∫ 𝑃𝑒,𝑗𝛾𝑗𝑓(𝛾𝑗)𝑑𝛾𝑗∞
0  

= ∑ (𝐽 − 1𝑗 )𝐽−1
𝑗=0 (−1)𝐽−𝑗−1 𝐽2(𝐽 − 𝑗) 

 × (1 − √ 𝛾𝑗′𝐽−𝑗+𝛾𝑗′)                                                                   (24) 

where 𝑄(. ) is the Marcum Q- Function and 𝐽 is the total number of cognitive group. Then from (10) 

and (23) the probability of detection of the network can be expressed as follows: 

 𝑃𝑑 = ∏ 1 − 𝑃𝑑,𝑗(1 − 𝑃𝑒,𝑗) + 𝑃𝑑,𝑗𝐽𝑗=1 𝑃𝑒,𝑗                                             (25) 

 

For analyzing and characterizing our cooperative sensing approach, the main performance 

parameter and coefficient are detection probability,𝑃𝑑, and false Alarm probability,𝑃𝑓, both 𝑃𝑓 and 𝑃𝑑 

are performance parameters for the two design parameters distributed detection threshold and received 

SNR. Our proposed method assumes energy detection (ED), where the distributed detection adaptive 

threshold is achieved by determine the higher allowed false Alarm probability 𝑃𝑓. Our technique is 

assessed and analyzed in term of detection probability 𝑃𝑑 of for a certain allowed𝑃𝑓.  

Typically, the ultimate value for both 𝑃𝑑and𝑃𝑓are 1 and 0 respectively. Though, practically the two 

probabilities are need be more realistic to permit a relaxation of 𝑃𝑓 value might be between 0.01 – 0.5 

and 𝑃𝑑 takes the range 0.1 – 0.99 [55]. For protect PUs from interference by SUs, a high false Alarm 

probability 𝑃𝑓 is can be allowed than a low detection probability 𝑃𝑑. So, to realize that the receiver-

operating characteristic (ROC) for the sensing coordinator (i.e., BS receiver) is calculated as:  

 𝑃𝑑 = 𝑄(√2𝛽(𝛾𝑗), √−2 𝑙𝑛 𝑃𝑓)                                                              (26) 

 

where 𝑄 is the Marcum’s function and 𝛽 is a factor depend on the modulation type i.e., BPSK 𝛽 =1. 

VIII. SIMULATION DESIGN AND ARCHITECTURE 

Distributed cooperative cognitive radio (CR) divides radios into groups, fusion node (FN) is 

elected from each group among all nodes which should has strongest SNR channel reporting. The 



cognitive radio nodes perform a local sensing based on ED (energy detection) and send their binary 

decision to the FN. Figure 5 shows the simulation modeling and DCS architecture. The fusion nodes 

FNS selection which was performed based on the best SNR channel reporting based on the reporting 

channel SNR to FC (fusion center). The flow chart in Figure 6 also shows an approach of dealing with 

new nodes joining or existing nodes leaving the CR network, though in our simulation, we assumed 

that no leaving/joining nodes with fixed architecture. 

 

 

 

FIGURE 5: Simulation design and the DCS architecture 

 



 

FIGURE6: Fusion node selection 

 

The simulation architecture of the proposed method as shown in Figure 7 considers sensing 

groups (𝐽) with different number of nodes per group. User that has best SNR selected as group head 

(reporter node). Figure 8 shows 30 distributed cognitive radios with different reporting SNR (fusion 

node (FN) to fusion center (FC)) where the cognitive nodes are considered an independent and 

identically distributed i.i.d with randomly and same probability distribution and all are mutually 

independent. This scatter distribution setup is used throughout the simulation. The detection 

thresholds are set without maintained probability of false alarm.  

 



 

FIGURE7: Simulation Architecture 

 

 

 

FIGURE 7: The simulation scatter distribution setup for i.i.d. 30 distributed cognitive radios 

with different reporting groups  

VII. SIMULATION RESULT 

The Figure 8 shows the probability of detection 𝑃𝑑,𝑗 vs. probability of false alarm 𝑃𝑓,𝑗 for group 𝐺𝑗with 𝐾 = 128 users with different SNR channels for the control / reporting to the coordinator node 

of cooperative sensing (FN) from the group head (GH). Figure 8 is also illustrating the process of 
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selecting the best SNR channel for decision (less fading and shadowing affects) to improve the 

spectrum sensing performance. The detection probability per group 𝑃𝑑,𝑗 increases to near 1 while the 

probability of false alarm 𝑃𝑓,𝑗 is decreased. This is shown in the SNR=30dB, where the values 

(𝑃𝑓,𝑗,𝑃𝑑,𝑗) were (3.4x10-7, 0.97), which too difficult to implemented in the real situations.  

Figure 9 shows the probability of error for the proposed distributed cooperative spectrum sensing 

(DCS) approach that derived for each group with different number of users {K=64, 128, 256 and 512}. 

Figure 9 is also showing the error probability (Pe) for fixed SNR has been enhanced and increased for 

the reporting phase when the cognitive users number increased within the groups. Figure 10 shows 

that the direct cooperative spectrum sensing can be degraded when the number of users K increases. 

Generally, the more concave the ROC curve, the better is the performance of the system i.e., high 

probability of detection and low probability of false match. For instance, if K=64 with our DCS-based 

fusion node approach the optimal ROC values for 𝑃𝑓 and𝑃𝑑 are 0.04 and 0.8, respectively. 

 

 

FIGURE 8. Probability of detection 𝑃𝑑,𝑗 vs Probability of false alarm 𝑃𝑓,𝑗  for different 

reporting channel SNR. 
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FIGURE 9. Probability of error for sensing groups allocated with different number of users 

(𝑲 =64, 128, 156, 512; J=4). 

 

Benchmarking is conducted by using the similar number of users K and channel with Rayleigh 

fading characteristics for the previous related scheme proposed in [13] the optimal ROC values for 𝑃𝑓 

and 𝑃𝑑 are 0.07 and 0.4, respectively. Figure 11 illustrates normalization of the mean reported bits is 

dramatically improved when benchmarked with related works in [9], where the two quantization levels 

schemes show its effectiveness. The censoring phase results deterioration of false alarm probability 

this is due to the increases of ‘No decision’ section. 
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FIGURE 10. Probability of detection 𝑷𝒅 vs. probability of false alarm 𝑷𝒇 for the proposed 

reporting system using 𝑺𝑵𝑹 = 𝟏𝟎dB. 

 

 

FIGURE 11. The normalized average number of sensing bits 𝒌̄vs. 𝑷𝒇, 𝑵 = 𝟏𝟎, and SNR=10 

dB 

 

A. Received Power Sensitivity  
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The receiver sensitivity level tells us the weakest signal that a receiver will be able to identify 

and process. It can be improved by reducing the noise level and bandwidth of the receiver. to have a 

net probability of false alarm 𝑃𝑓 to be around 0.1, the threshold should be set three standard deviations 

away from the mean.  

This places the threshold at: 𝛼𝑚𝑎𝑥1  where 1 = 2𝑤2 (1 + √2(9 + 𝑙𝑛( 𝐺𝑗)/𝑁). The factor 𝛼𝑚𝑎𝑥2𝑤2  is 

the worst-case noise variance power. If we bound system performance by assuming that all provided 

samples to Cognitive radio (CR) using the best SNR channel. In that case the false alarm probability 

threshold can be set at: 𝛼𝑚𝑎𝑥2 , where 2 = 2𝑤2 (1 + 3√2/𝐺𝑗𝑁) and 𝐺𝑗 is the CR nodes number in the 

group.  

To perceive the variation in sensitivity; we simulated two sensing groups with the same reporting 

channel with SNR, 𝛾′ = 10 dB. Number of users in all groups was varied and the effect of 90% and 

95% radio sensitivity for a detection probability was examined. The effect of cooperation process on 

the sensitivity threshold (m) of single radio can be shown in Figure 12 illustrates un-bounded 

enhancement of sensitivity threshold in m watt with various number of users Sensitivity variation 

with number of users and two different detection probability (𝑃𝑓= 0.1).  

Our ultimate aim is the sensing time minimization on cooperative environment. To calculate the 

detection probability, average power for primary channel has to be inspected. In addition to that 

energy detection (ED) in the channel, which is vital coefficient for detection performance. Hereafter 

it minimizes the sensing phase duration for efficient utilize for radio resources.  

In addition to that, threshold value and SNR (signal-to-noise ratio) value has to be determined 

for identifying the probability of detection in a renewal process. Hence the probability of detection 

would be efficient based on two major factors with less interference and primary channel transition 

state. These are two main factors for efficient probability of detection in vehicular networks. In 

addition to that, the fake SU issue is also a major concern. However, in cooperative spectrum sensing 

involvement, fake user in graduation is decreased due to a centralized approach. 

 



 

FIGURE 12. Un-bounded enhancement of sensitivity threshold in m watt with various 

number of users and two different detection probability (𝑷𝒇=0.1). 

B. Fusion Analysis  

Fusion decision is joining of CR sensing data or data processed from different CR nodes, where 

data usually has lower uncertainty when it used individual node. The term uncertainty enhancement 

means more complete, dependable, or accurate. Figure 13 illustrates the analysis and compare between 

OR-rule (one-out-of-N) and AND-rule for different number of candidates’ nodes per fusion decision 

group. OR-rule is resultant of emerging of all mutually exclusive sensing reports in a group of 

cooperative distributed spectrum detection process compared to AND-rule. The results show that when 

the false alarm probability is less than 0.04, AND-rule decision based is out-perform OR-rule based 

decision. 
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FIGURE 13.  Drawback of the distributed cooperative spectrum sensing based OR-rule 

compared to AND-rule. 

VI. CONCLUSIONS 

The performance of the cooperative spectrum sensing and reporting in cognitive radio network can 

be improved and overcome fading impact by using a distributed group sensing approach. This is by 

exploiting the reporting channel selection diversity to enhance reporting stage. In so far as the CR 

network nodes growing, the proposed cooperative scheme would have shortened the protocol messages 

overhead. The paper also proposed an auto correction scheme for reported bits error. The normalized 

average number of reported bits is also greatly reduced and enhanced with an efficiently. The simulation 

results examined and analyzed the proposed algorithm performance in cooperative spectrum sensing 

with distributed fusion selection, the normalized reported bits average number has been verified by 

simulation result which demonstrates notable reduction in reporting bits compared with the existing 

non-cooperative method without reduction in performance and network throughput. The numerical 

simulation and analytical derivation recommend that the algorithm significantly enhance the detection 

probability and the number of nodes that cooperate in fusion decision is reduced also. The combination 

of distributed fusion scheme with the conventional ED (energy detection) was modeled to accomplish 

best reporting and sensing probabilities. through simulation model, by varying the sensing time in nodes 

with hierarchical multilevel reporting procedure, the network throughput is optimized using receiver 

operating characteristic curve. For further research works other parameters such as clustering and 

grouping procedure, users per group optimization, space diversity, and coverage area can be considered 

and studied. 
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Figures

Figure 1

Network Architecture



Figure 2

The decision stages for the distributed cooperative spectrum sensing



Figure 3

Distributed sensing stages

Figure 4



(a) Cooperative sensing detection technique with two thresholds for local user. (b) Auto-correction
technique with single threshold.

Figure 5

Simulation design and the DCS architecture



Figure 6

Fusion node selection



Figure 7

Simulation Architecture



Figure 8

The simulation scatter distribution setup for i.i.d. 30 distributed cognitive radios with different reporting
groups



Figure 9
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Figure 10

Probability of error for sensing groups allocated with different number of users (K =64, 128, 156, 512;
J=4).
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Figure 13
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Figure 14

Drawback of the distributed cooperative spectrum sensing based OR-rule compared to AND-rule.


