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Abstract

Forming coalitions is a generic means for cooperation: people, robots, web services, resources, firms, they
can all improve their performance by joining forces. The useof coalitions has been successful in domains
such as task allocations, sensor networks, and electronic marketplaces. Forming efficient coalitions
requires the identification of matching synergies between different entities (finding complementary
partners, or similar partners, or partners who add diversity). In addition, the different parties must negotiate
a fair repartition of the worth created by the coalition. Thefirst part of this paper is a tutorial on cooperative
game theory (also called coalitional games). We then surveythe different scenarios and the key issues
addressed by the multiagent systems community.

1 Introduction

Coalition formation is an important tool for enabling cooperation in agent societies. Social scientists and
economists have studied situations where individuals and businesses benefit from joining forces. The
coalition formation problem can be decomposed into two sub-problems. The first problem is theselection
of the coalition members in the agent population. Then, it isassumed that the members self-organise and
achieve their goals, and that the coalitionas a wholereceives a value, i.e., the cooperation of the coalition
members is rewarded, not the individual agents. The second problem is thesharingof this value between
its members. These two sub-problems cannot be treated independently (Sandholm et al., 1999): a rational
agent will not accept to be a member of a coalition if it can geta higher reward by joining a different
coalition. Games that model such cooperation have been extensively studied in the game theory literature
in a sub-field called “Cooperative game theory”. A central point of attention is the stability of the coalition:
it is preferable that agents do not have any incentive to leave their current coalition to join a different one.
Unfortunately, there is no unique and accepted solution to enforce stability, there are different stability
criteria, with their own strengths and weaknesses.

Over the last decade, cooperative game theory has received increased attention in the multiagent
systems community as forming dynamic coalitions may lead tomore efficient artificial agent societies.
Joining a coalition may be beneficial for an agent: the use of other members’ resources may facilitate or
enable the solution of a problem. Cooperative game theory has provided a great basis to build coalition
formation protocols, but additional issues have risen while trying to apply them. In addition, computer
scientists provide insights about computational complexity issues. Due to the exponential size of the input
(when there aren agents, there are2n coalitions, and each of them may generate a different value), it may
become quickly unfeasible to compute some solution for large values ofn.

Multiple scenarios, for example in the task allocation domains (Shehory and Kraus, 1998) or in the
electronic marketplace domain (Tsvetovat et al., 2001) have brought to light many issues and constraints
that classical game theory did not address, or some classes of games or representation that allow easier
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computation of some solution concepts. Some other issues are related with dynamic environments: agents
can enter and leave the system at any time, new tasks may appear in the environment, the environment
may be uncertain (uncertainty about the value of the coalitions, about the competence of other agents,
etc.). Safety and robustness issues should also be taken into account to guarantee a stable agent society.
In addition, researchers must design protocols that are secure to prevent the possibility of manipulation
or infiltration by agents or external forces. Another scenario is to consider that the goal of the agent is
to maximise utilitarian social welfare. This scenario is not interesting for game theory as sharing the
value between the members is no longer an issue. However, finding the optimal organisation is still a hard
problem which can be addressed by AI techniques.

The first part, section 2, consists of a tutorial on cooperative game theory. We first survey the case in
which utility can be transferred between agents (i.e., agents are allowed to make side payments between
them): the transferable utility games (TU games). This is the most important case treated by the game
theory literature. We introduce the stability concepts forTU games and provide some results about their
complexity. We will also study one special type of TU game that models voting situation, and some
extensions of TU games. We then briefly introduce the case where no transfer or comparison of utility are
possible between agents: the non-transferable utility games (NTU games) and provide some definitions of
stability concepts.

The rest of the paper introduces research from the multiagent systems literature. We first present some
applications that have been used to study the formation of coalitions in Section 3. In particular, we discuss
the task allocation domain, the electronic marketplace domain, and some variants. We also list some
additional domains where coalitions of agents have been used. In Section 4 we survey the cooperative
case where the agents’ goal is to maximise utilitarian social welfare, i.e., the case where the utility of an
agent is the total utility of the population. We survey some central algorithms that efficiently search for
the optimal partition of agents into coalitions. Finally inSection 5, we survey some issues raised by the
multiagent systems community for which game theory has little (or no) answer so far.

2 Tutorial on Cooperative Game Theory

One branch of game theory studies cooperation between agents, the so-called cooperative game the-
ory (Kahan and Rapoport, 1984; Osborne and Rubinstein, 1994; Peleg and Sudhölter, 2007). The literature
is divided into two main models, one in which it is possible tocompare utility between two agents and
transfer utility (the transferable utility games or TU games), and one in which comparison is not possible
(the non-transferable utility games or NTU games). In a TU game, a coalition generates a worth, i.e., a
value achieved through cooperation. The members of a coalition have to share the value of their coalition,
hence they need to compare the utility between them and they must be able to be transfer some utilities
between them. In an NTU game, an agent has some preference over the different coalitions, but they
cannot provide anything to compensate any agent.

We will introduce TU games in Section 2.1. The solution of a game consists of a partition of the set
of agents into coalitions and a payoff distribution to sharethe value of each coalition. One intuitive and
important solution, the core, has an important drawback: for some games, there will not be any solution
in the core. Many other solution concepts have been proposedto relax the requirements of the core, and
we will study the most important ones (the stable set, the nucleolus and the kernel). We will also study a
solution concept that fosters fairness: the Shapley value.

Then, we will study a particular type of TU games that model voting situations. We will end the study
of TU games with few extensions. One extension assumes (in Section 2.8) that the set of agents has already
been partitioned into coalitions, or that there exist some affinities between agents. The second extension,
called games with externality (in Section 2.9), considers games in which the value of a coalition depends
on the other coalitions present in the environment.

We will then move on to a brief introduction of NTU games in Section 2.10. We will first introduce
a subclass of NTU games called hedonic games before moving onthe general definition of NTU games.
This will conclude the tutorial on cooperative game theory.
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2.1 Transferable Utility Games (TU games)

In the following, we use a utility-based approach and we assume that “everything has a price”: each agent
has a utility function that is expressed in currency units. The use of a common currency enables the agents
to directly compare alternative outcomes, and it also enables side payments.

A TU game involves a set of playersN and a characteristic functionv : 2N → R that provides a value
for each possible coalition or subset of agents. The characteristic function is common knowledge for the
entire population, and the value of a coalition depends onlyon the players present in its coalition. In a TU
games, two questions are asked simultaneously: what coalitions should form (i.e., how to partition the set
N into coalitions), and how to share the value of a coalition toeach of its members.

In general, it is not always possible to satisfy the interests of all players at the same time. Unfortunately,
there is no single criterion for characterising an acceptable solution. After defining the TU games with
more details, we will present some desirable criterion for asolution, and then, we will present the main
solution concepts.

2.1.1 Notations and types of TU games
We consider a setN of n agents. Acoalition is a non-empty subset ofN . The setN is also known as
the grand coalition. The set of all coalitions isC and its cardinality is2n. A coalition structure (CS)
S = {C1, · · · , Cm} is a partition ofN : each setCi is a coalition with∪mi=1Ci =N andi 6= j⇒Ci ∩ Cj =

∅. The set of all CSs isS and its size is of the orderO(nn) andω(n
n

2 ) (Sandholm et al., 1999). The
characteristic function(or valuation function) v : 2N → R provides the worth or utility of a coalition. For
TU games, it is assumed that the valuation of a coalitionC does not depend on the other coalitions present
in the population.

Definition 2.1 (TU game) A transferable utility game (TU game) is defined as a pair(N, v) whereN
is the set of agents, andv : 2N → R is a characteristic function.

We now describe some types of valuation functions.

Additive (or inessential): ∀C1, C2 ⊆N | C1 ∩ C2 = ∅ , v(C1 ∪ C2) = v(C1) + v(C2). When a TU game
is additive,v(C) =

∑

i∈C v({i}), i.e., the worth of each coalition is the same whether its members
cooperate or not: there is no gain in cooperation or any synergies between coalitions, which explains
the alternative name (inessential) used for such games.

Superadditive: ∀C1, C2 ⊆N | C1 ∩ C2 = ∅ , v(C1 ∪ C2)≥ v(C1) + v(C2), in other words, any pair of
coalitions is best off by merging into one. In such environments, social welfare is maximised by
forming the grand coalition and agents have an incentive to form the grand coalition.

Subadditive: ∀C1, C2 ⊆N | C1 ∩ C2 = ∅ , v(C1 ∪ C2)≤ v(C1) + v(C2): the agents are best of when they
are on their own, i.e., cooperation is not desirable.

Convex games:First let us callv(C ∪ {i})− v(C) the marginal contribution of a playeri to coalitionC,
i.e., it is the increase of value of coalitionC due to the presence of agenti. We call a valuation
convexif for all C ⊆ T andi /∈ T v(C ∪ {i})− v(C)≤ v(T ∪ {i})− v(T ). So a valuation function
is convex when the marginal contribution of each player increases with the size of the coalition he
joins. Convex valuation functions are superadditive. We will see that such games have some nice
properties (e.g. the core of a convex game is non-empty).

Unconstrained. The valuation function can be superadditive for some coalitions, and subadditive for
others: some coalitions should merge when others should remain separated. This is the most difficult
and interesting environment.

The valuation function provides a value to a set of agents, not to individual agents. Thepayoff
distribution x= 〈x1, · · · , xn〉 describes how the worth of the coalition is shared between the agents,
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(N, v)

v : 2N → R

(S, x)

S ∈S , i.e.,S = {C1, . . . , Ck}, Ci ⊆N , i 6= j ⇒ (Ci ∩ Cj) = ∅

x ∈ Rn

?

TU game Payoff configuration

Figure 1 What is solving TU games?

wherexi is the payoff of agenti. We also use the notationx(C) =
∑

i∈C xi. A payoff configuration (PC)
is a pair(S, x) whereS ∈S is a CS andx is a payoff distribution.P denotes the set of all PCs.

The solution of a TU game(N, v) is a PC: what are the coalitions that will form and how to distribute
the worth of the coalitions (Figure 1). We are now going to present some rationality concepts for PCs,
which describes good properties that a solution of the coalition formation should have.

2.1.2 Rationality concepts
We now discuss different rationality concepts for payoff distributions, i.e., some properties that link the
coalition values to the agents’ individual payoff.

Efficiency: x(N) = v(N) the payoff distribution is an allocation of the whole worth of the grand
coalition to all the players. In other words, no utility is lost at the level of the population.

Individual rationality: An agenti will be a member of a coalition only whenxi ≥ v({i}), i.e., to be part
of a coalition, a player must be better off than when it is on its own.

Group rationality: ∀C ⊆N , x(C)≥ v(C), i.e., the sum of the payoffs of a coalition should be at least
the value of the coalition (there should not be any loss at thelevel of a coalition).

Pareto optimal payoff distribution: It may be desirable to have a payoff distribution where no agent
can improve its payoff without lowering the payoff of another agent. More formally, a payoff
distributionx is Pareto optimal iff

∄y ∈ Rn | ∃i ∈N | {yi > xi and∀j 6= i, yj ≥ xj}.

Two notions will be helpful to discuss some solution concepts. The first is the notion ofimputation,
which is a payoff distribution with the minimal acceptable constraints.

Definition 2.2 (Imputation) An imputation is a payoff distribution that is efficient and individually
rational for all agents. The set of all imputations is denoted byImp.

An imputation is a solution candidate for a payoff distribution, and can also be used to object a payoff
distribution. The second notion is theexcesswhich measures the improvement due to a change of coalition
in a CS.

Definition 2.3 (Excess) The excessrelated to a coalitionC given a payoff distributionx is e(C, x) =

v(C)− x(C).

We can provide two interpretation of the excess. First, it may measure the total amount that the players
would gain or lose if they were to form coalitionC. Whene(C, x)> 0, it means agents inC would gain
some utility by formingC, hence they have an incentive in doing so. An agent can use thevalue of the
excess of a coalitionC as a measure of its strength, i.e., if it were to form the coalition C, the agent
would be able to generate an additional value ofe(C, x). Another interpretation is to view the excess as
an amount of complaints: when the excess for a coalition is positive, it means that some utility is lost,
which is not acceptable! Some stability concepts (the kernel and the nucleolus, see below) are based on
the excess of coalitions. The core can also be defined using the notion of excess.
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The solution of the coalition formation problem is a PC(S, x). The problems of finding the CS (i.e.,
finding which coalitions are formed) and of finding a payoff distribution (i.e., sharing the value of the
coalitions between the members) cannot generally be separated. In the following, we are going to present
different solution concepts proposed in the literature. Each has pros and cons, and none is clearly better
than all others.

2.2 The Stable Set

A first idea is to use the concept of dominance between outcomes from non-cooperative game theory and
to apply it to the context of cooperative games.

Let x andy be two payoff distributions. We say thatx dominatesy iff ∃ T ⊆N such that∀i ∈ T ,
xi > yi andv(T )≥ x(T ) and we notex≻ y. In other words, there exists a coalitionT for which each
member prefers the allocationx overy, and they can obtain this utility. This dominance relation may not
be complete, i.e., two payoff distributions may not be comparable. Also, dominance may not be transitive.
One way to characterise fairness is to ensure, for all agents, that there is no other payoff distribution that
dominates the current one. The idea of the stable set is to gather together the payoff distributions that are
not comparable between each other, and that dominate some payoff distributions outside the stable set.
The formal definition follows:

Definition 2.4 (Stable set) The stable setV is a set of imputations that satisfies the following
conditions:

Internal Stability: ∀x ∈ V , ∄ y ∈ V such thaty ≻ x

External stability: ∀z /∈ V , ∃y ∈ V such thaty ≻ z.

In other words, internal stability ensures that no payoff distribution in the stable set dominates any
other payoff distribution in the stable set. External stability ensures that for any payoff distribution that is
not in the stable set, there exists one in the stable set that dominates it. Hence, the stable set represents a
set of acceptable payoff distribution from a global point ofview, which is akin to the Pareto Optimality
concept of non-cooperative game theory: individual playercan prefer some distributions over others in the
stable set, but not all the players will have the same preferences. Just as in non-cooperative game theory,
Pareto Optimality is accepted as a desirable equilibrium criterion: the stable set can be viewed a desirable
property of a solution. Though in many situations, the stable set is guaranteed to be non-empty, it is not
always the case.

2.3 The Core

Let us assume that we have a TU game(N, v) and that we want to form the grand coalition. The core,
which was first introduced by Gillies (Gillies, 1953), is themost attractive and natural way to define
stability. A payoff distribution is in thecorewhen no set of agents have any incentive to form a different
coalition. More formally:

Definition 2.5 (Core) A payoff distributionx ∈ Rn is in thecoreof a game(N, v) iff x is an imputation
that is group rational, i.e.,core(N, v) = {x ∈ Rn |

∑

i∈N xi = v(N) ∧ ∀C ⊆N x(C)≥ v(C)}

A payoff distribution is in the core when no group of agents has any interest in rejecting it, i.e., no group
of agents can gain by forming a different coalition. Note that this condition has to be true for all subsets
of N , in particular for all singletons, which ensures individual rationality. The core can thus be defined as
a payoff structure that satisfies weak linear inequalities.The core is therefore closed and convex. Another
way to define the core is in terms of excess:

Definition 2.6 (Core) The core is the set of payoff distributionx ∈ Rn, such that∀R⊂N , e(R, x)≤ 0.
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In other words, a PC is in the core when there exists no coalition that has a positive excess. This definition
is attractive as it shows that no coalition has any complaint: each coalition’s demand can be granted.

There are, however, multiple concerns associated with using the notion of the core. First, the core can be
empty: the conflicts captured by the characteristic function cannot satisfy all the players simultaneously.
When the core is empty, at least one player is dissatisfied by the utility allocation and therefore blocks
the coalition. Let us consider the following example from (Kahan and Rapoport, 1984):v({A, B}) = 90,
v({A, C}) = 80, v({B, C}) = 70, andv(N) = 120. In this case, the core is the PC where the grand
coalition forms and the associated payoff distribution is(50, 40, 30). If v(N) is increased, the size of the
core also increases. But ifv(N) decreases, the core becomes empty.

The other issue with adopting the core as stability concept concerns computational complexity. Check-
ing whether a payoff distribution is in the core isNP-hard (Conitzer and Sandholm, 2004). Additionally,
determining the non-emptiness of the core, even for a superadditive game, isNP-hard (Conitzer and
Sandholm, 2003), though there exists a transfer scheme to converge to the core (Wu, 1977). In addition,
Dieckmann and Schwalbe (2002) introduce a process that leads to a core allocation in non-superadditive
games.

Some classes of games, however, are guaranteed to have a non-empty core. For example, a convex
game has a non-empty core. The set of games with non-empty core has been characterized independently
by Bondareva (1963) and Shapley (1967), and the result is known as the Bondareva Shapley theorem. The
idea is to use a linear program to define the core.

(LP )

{

min x(N)

subject tox(C)≥ v(C) for all C ⊆N , S 6= ∅

The linear constraints correspond to the group rationalityconditions. A feasible solution of (LP) is a
group rational payoff distribution. For a solution to be member of the core, it has to be efficient as well.
The group rationality assumption for the grand coalition guarantees thatx(N)≥ v(N). The idea of (LP)
is to minimizex(N). Then, when the objective function reaches the value ofv(N), it is clear that the core
of the game is non-empty. We now introduce some notations needed to state the theorem.

First, we introduce a notation that encodes the members of a coalition in a vector form. The

characteristic vectorχC of a coalitionC ⊆N is vector ofRN defined byχi
C =

{

1 if i ∈ C
0 if i ∈N \ C

. Next,

we introduce a weight function, which is called a map.

Definition 2.7 (Map) A mapis a function2N \ ∅→ R+ that gives a positive weight to each coalition.

A special kind of map, the balanced map, can be thought of a percentage of time spent by the agents in
each coalition. For each agenti, the sum of a balanced map for all coalitions that containi must sum up to
one. The following definition formalizes this idea. Note that the condition is an equality between vectors
of Rn.

Definition 2.8 (Balanced map) A functionλ : 2N \ ∅→ R+ is a balanced mapiff
∑

C⊆N λ(C)χC =

χN .

We provide an example of a balanced map for three players in Table 1. Using the definition of balanced
map, we are now ready to define a balanced game.

Definition 2.9 (Balanced game) A game is balanced iff for each balanced mapλ we have
∑

C⊆N,C6=∅ λ(C)v(C)≤ v(N).

The definition of a balanced game may appear artificial. However, it appears in the dual of (LP), which
can be shown to be:

(DLP )







max
∑

C⊆N yCv(C)

subject to

{ ∑

C⊆N yCχC = χN and,
yC ≥ 0 for all C ⊆N , C 6= ∅.
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λ(C) =

{

1
2 if |C|= 2

0 otherwise
Each of the row sums up to 1:
for all i, we have1

2χ
i
{1,2} +

1
2χ

i
{1,3} +

1
2χ

i
{2,3} = χi

{1,2,3} = 1,

or using the vector notation12χ{1,2} +
1
2χ{1,3} +

1
2χ{2,3} = 〈1, 1, 1〉.

value ofλCχ
i
C

for nonzeroλC

C \ i 1 2 3

{1, 2} 1
2

1
2 0

{1, 3} 1
2 0 1

2

{2, 3} 0 1
2

1
2

Table 1 Example of a balanced map forn= 3

The Bondareva-Shapley theorem is a consequence of the duality theorem of linear programming. This
theorem completely characterize the set of games with a non-empty core. One standard application of
the Bondareva Shapley theorem is to prove that a market game has a non-empty core (see (Osborne and
Rubinstein, 1994, Section 13.4)).

Theorem 2.1 (Bondareva-Shapley theorem) A TU game has a non-empty core iff it is balanced.

There are few extensions to the concept of the core. As discussed above, one main issue of the core
is that it can be empty. In particular, a member of a coalitionmay block the formation so as to gain a
very small payoff. When the cost of building a coalition is considered, it can be argued that it is not
worth blocking a coalition for a small utility gain. Thestrong and weak ǫ-core concepts model this
possibility. The constraints defining the strong (respectively the weak)ǫ-core become∀T ⊆N, x(T )≥

v(T )− ǫ, (respectively∀T ⊆N, x(T )≥ v(T )− |T | · ǫ). In the weakǫ-core, the minimum amount of
utility required to block a coalition is per player, whereasfor the strongǫ-core, it is a fixed amount. If
one picksǫ large enough, the strong or weakǫ-core will be non-empty. When decreasing the value ofǫ,
there will be a threshold such that forǫ′ < ǫ theǫ′-core ceases to be non-empty. This specialǫ-core is then
called theleast core.

Another way to relax the requirements of the core is to slightly modify the game. Consider the linear
program (LP) and imagine that a feasible solution does not reach the value of the grand coalition. If one
could increase sufficiently the value of the grand coalition, the core of the corresponding game would
become non-empty. This is the idea of thecost of stability(Bachrach et al., 2009). Given a TU game
(N, v) and a value∆ ∈ R+, we consider the game(N, v∆) where∀C ⊂N , v∆(C) = v(C) andv∆(N) =

v(N) + ∆. The cost of stability is then defined as the smallest∆ such that the core of(N, v∆) is non-
empty.

In most traditional work in game theory, the superadditivity of the valuation function is not explicitly
stated, but it is implicitly assumed when the core is defined.In particular, this assumption ensures that
the grand coalition always emerges. That is one of the reasons why efficiency is defined with respect to
the grand coalition. In case of an unconstrained valuation function, the grand coalition may not form,
and instead a different CS may emerge. We can define the core for CS, and we borrow the definitions
from (Chalkiadakis et al., 2008), but the definitions are similar to (Dieckmann and Schwalbe, 2002;
Sandholm and Lesser, 1997).

A payoff distributionx is efficientwith respect to a CSS when∀C ∈ S,
∑

i∈C xj = v(C). A payoff
distribution is animputationwhen it is efficient (with respect to the current CS) and individually rational
(i.e.,∀i ∈N , xi ≥ v({i})). The set of all imputations for a CSS is denoted byImp(S). We can now state
the definition of the core:

Definition 2.10 (Core) The core of a game(N, v) is the set of all PCs(S, x) such thatx ∈ Imp(S)

and∀C ⊆N ,
∑

i∈C xj ≥ v(C).
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We now introduce a special type of TU game that will be usefullto define other stability concepts
(the nucleolus and the kernel). Aumann and Drèze (1974) propose the definition of a game with CS:
in their definition, the CS formed by the agent is fixed (e.g., due to some external constraints such as
location). In this type of games, the agents’ goal is not to change the CS, but simply to obtain a stable
payoff distribution. We will provide more information for this type of games in Section 2.8.1. For now,
the definition of the game and the statement of the definition of the core suffice.

Definition 2.11 (Game with coalition structure) A game with coalition structureis a triplet
(N, v, S), where(N, v) is a TU game, andS is a particular CS. In addition, transfer of utility is only
permitted within (not between) the coalitions ofS, i.e.,∀C ∈ S, x(C)≤ v(C).

For this type of games the core can be defined as follows:

Definition 2.12 (Core) The core of a game(N, v, S) is the set of all PCs(S, x) such thatx ∈ Imp(S)

and∀C ⊆N ,
∑

i∈C xj ≥ v(C), i.e.,core(N, v, S) = {x ∈ Rn | (∀C ∈ S, x(C) = v(C))}.

2.4 The nucleolus

The nucleolus has been introduced by Schmeidler (Schmeidler, 1969) for games with CS. Let(N, v, S)

be a TU game with CS andx be a payoff distribution. Let us start the discussion by recalling the definition
of the excess given in Section 2.1.2. Theexcesse(C, x) of coalition C at x is the quantitye(C, x) =
v(C)− x(C). For the nucleolus, we use the interpretation that the excess is a measure of complaints:
whene(C, x) is positive, the members ofC should complain that some utility is lost or not given to them.
The vector of excesses over all the coalitions is one way to evaluate the amount of complaints about a
payoff distribution. The goal of the nucleolus is to minimize this in a certain way.

Let us consider the game in Table 2 and we want to compare two payoff distributionsx andy. A priori,
it is not clear which payoff should be preferred. One solution is to compare the two vectors of complaints
using the lexicographical order (it is the order of a dictionary or a phone book1).

N = {1, 2, 3}, v({i}) = 0 for i ∈ {1, 2, 3} v({1, 2}) = 5, v({1, 3}) = 6, v({2, 3}) = 6 v(N) = 8

Let us consider two payoff vectorsx= 〈3, 3, 2〉 andy = 〈2, 3, 3〉.
x= 〈3, 3, 2〉 y = 〈2, 3, 3〉

coalitionC e(C, x)

{1} -3
{2} -3
{3} -2
{1, 2} -1
{1, 3} 1
{2, 3} 1
{1, 2, 3} 0

coalitionC e(C, y)

{1} -2
{2} -3
{3} -3
{1, 2} 0
{1, 3} 1
{2, 3} 0
{1, 2, 3} 0

Table 2 A motivating example for the nucleolus

Let l be a sequence ofm reals. We denote byl◮ the reorderingof l in decreasingorder. In the example,
e(x) = 〈−3,−3,−2,−1, 1, 1, 0〉 and thene(x)◮ = 〈1, 1, 0,−1,−2,−3,−3〉. The first entry ofe(x)◮

is the maximum excess: the agents involved in the corresponding coalition have the most valid complaint.
If the maximum excess ofx is larger than the one ofy, theny should be preferred. If they have the

1The formal definition is the following:

Definition 2.13 (Lexicographic ordering) Let (x, y) ∈ (Rm)2. We say thatx is greater or equal toy in the lexi-

cographicalordering, and we notex≥lex y when

{

x=y or
∃t s. t.1≤ t≤m s. t.∀i s. t.1≤ i < t xi = yi andxt > yt
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same maximum complaint, one can check the second entry and iterate the reasoning. Hence, we use the
lexicographical ordering for comparing two payoff distributionsx andy: we say thatx is preferred toy
whene(x)◮ ≤lex e(y)◮: there is a smaller amount of complaints inx than iny.

A payoff distribution is in the nucleolus when it yields the “least problematic” sequence of complaints
according to the lexicographical ordering. The nucleolus of the game is a set of payoff distributions such
that the corresponding vector of excesse(x)◮ is minimal.

Definition 2.14 LetImp be the set of all imputations. ThenucleolusNu(N, v) is the set
Nu(N, v) =

{

x ∈ Imp | ∀y ∈ Imp e(y)◮ ≥lex e(x)◮
}

.

Recall that the core is a payoff distribution that has no complaints: for all coalitionsC, e(C, x)≤ 0. The
nucleolus relaxes the stability requirements of the core asit is possible that some coalition has a complaint.
This relaxation of the core stability requirements is enough to guarantee that not only the nucleolus is non-
empty, but also that it contains at most one element. Hence, agents using the nucleolus are guaranteed to
find an agreement, and it is unique.

Theorem 2.2 Let (N, v) be a TU game andImp is the set of imputations. IfImp 6= ∅,
then the nucleolusNu(N, v) is non-empty.

Theorem 2.3 The nucleolus hasat most oneelement.

The next property of the nucleolus shows its relation with the core: when the core of a game is non-
empty, the nucleolus is included in the core. Hence, the nucleolus can be seen as a refinement of the
core. The intuition behind this result is that the core requires no complaint. For a game with non-empty
core, some payoff distributions have no complaints, but thenucleolus, by picking the one with the lowest
complaint, will discriminate between these payoffs in the core.

Theorem 2.4 Let (N, v) be a TU game with a non-empty core. ThenNu(N, v)⊆ core(N, v).

One drawback of the nucleolus is that it is difficult to compute. It can be computed using a sequence
of linear programs of decreasing dimensions, but the size ofeach of these groups is exponential. In some
special cases, the nucleolus can be computed in polynomial time (Kuipers et al., 2001; Deng et al., 2006;
Elkind and Pasechnik, 2009), but in the general case, computing the nucleolus is not guaranteed to be
polynomial. Only a few papers in the multiagent systems community have used the nucleolus, e.g., (Yokoo
et al., 2006).

2.5 The kernel

The kernel is a stability concept that weakens the stabilityrequirements of the core. It was first introduced
by Davis and Maschler (1965) and it is based on the idea that the strength of an agent is measured by the
maximum excess that agent can obtain by forming a new coalition (i.e., a different interpretation of the
kernel). An agent can consider a payoff distribution to be acceptable by comparing its own ‘strength’ with
the ‘strength’ of other members of its coalition. When both agents have equal strength, they do not have
any incentive to leave the coalition. When their strength differs, the weaker agent can make a payment to
the stronger agent to balance out their strength and reach some kind of equilibrium. Although its definition
is not as intuitive as the core, the kernel exists and is always non-empty. In addition, there is an algorithm
that converges to a payoff distribution in the kernel. The guarantee of finding a payoff distribution and the
existence of the algorithm make the kernel an attractive stability concept for applications.

2.5.1 Definition of the kernel
We recall that theexcessrelated to coalitionC for a payoff distribution x ise(C, x) = v(C)− x(C). We
saw that a positive excess can be interpreted as an amount of complaint for a coalition. We can also
interpret the excess as a potential to generate more utility. Let us consider that the agents are forming a
CSS = {C1, . . . , Ck}, and let us consider that the excess of a coalitionC /∈ S is positive. Agenti ∈ C
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can view the positive excess as a measure of his strength: if she leaves its current coalition inS and form
coalitionC, she has the power to generate some surpluse(C, x). When two agents want to compare their
strength, they can compare the maximum excess of a coalitionthat contains them, and the kernel is based
on this idea.

Definition 2.15 (Maximum surplus) For a TU game(N, v), themaximum surplussk,l(x) of agentk
over agentl with respect to a payoff distributionx is

sk,l(x) = max
C⊆N | k∈C, l/∈C

e(C, x).

For two agentsk andl, themaximum surplussk,l(x) of agentk over agentl with respect tox is the
maximum excessfrom a coalition thatincludesk but doesexcludel. This maximum surplus can be used
by agentk to show its strength over agentl: assuming it is positive and that the agent can claim all of
it, agentk can argue that it will be better off without agentl; hence it should be compensated with more
utility for staying in the current coalition. When any two agents in a coalition have the same maximum
surplus (except for a special case), the agents are said to bein equilibrium. A payoff distribution is in the
kernel when all agents are in equilibrium. The formal definitions follow:

Definition 2.16 (kernel) Let (N, v, S) be a TU game with coalition structure. Thekernelis the set of
imputationsx ∈ Imp(S) such that for every coalitionC ∈ S, if (k, l) ∈ C2, k 6= l, then we have either
sk,l(x)≥ sl,k(x) or xk = v({k}).

sk,l(x)< sl,k(x) calls for a transfer of utility fromk to l unless it is prevented by individual rationality,
i.e., by the fact thatxk = v({k}).

The kernel and the nucleolus are linked: the following result shows that the nucleolus is included in the
kernel. As a consequence, this guarantees that the kernel isnon-empty.

Theorem 2.5 The nucleolus is included in the kernel

Theorem 2.6 WhenImp 6= ∅, then the kernel is non-empty.

An approximation of the kernel is theǫ-kernel, where the equalitysk,l(x) = sl,k(x) above is replaced
by |sk,l(x)− sl,k(x)| ≤ ǫ. One property of the kernel is that agents with the same maximum surplus, i.e.,
symmetric agents, will receive equal payoff. For ensuring fairness, this property is important.

2.5.2 Computational Issues
One method for computing the kernel is the Stearns method (Stearns, 1968). The idea is to build a sequence
of side-payments between agents to decrease the differenceof surpluses between the agents. At each
step of the sequence, the agents with the largest maximum surplus difference exchange utility so as to
decrease their surplus: the agent with smaller surplus makes a payment to an agent with higher surplus
so as to decrease their surplus difference. After each side-payment, the maximum surplus over all agents
decreases. In the limit, the process converges to an elementin the kernel. Computing an element in the
kernel may require an infinite number of steps as the side payments can become arbitrarily small, and the
use of theǫ-kernel can alleviate this issue. A criteria to terminate Stearns method is proposed in (Shehory
and Kraus, 1999), and we present the corresponding algorithm in Algorithm 1.

Computing a kernel distribution is of exponential complexity. In Algorithm 1, computing the surpluses
is expensive, as we need to search through all coalitions that contains a particular agent and does not
contain another agent. Note that when a side-payment is performed, it is necessary to recompute the
maximum surpluses. The derivation of the complexity of the Stearns method to compute a payoff in the
ǫ-kernel can be found in (Klusch and Shehory, 1996b; Shehory and Kraus, 1999), and the complexity for
one side-payment isO(n · 2n). Of course, the number of side-payments depends on the precision ǫ and
on the initial payoff distribution. They derive an upper bound for the number of iterations: converging
to an element of theǫ-kernel requiresn log2(

δ0
ǫ·v(S) ), where δ0 is the maximum surplus difference

in the initial payoff distribution. To derive a polynomial algorithm, the number of coalitions must be
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Algorithm 1 Transfer scheme to converge to aǫ-kernel-stable payoff distribution for the CSS
compute-ǫ-kernel(ǫ, S)
repeat

for each coalitionC ∈ S do
for each pair (i, j) ∈ C, j 6= i do {compute the surplus for two members of a coalition in S}

sij ← max
R⊆N |(i∈R, j /∈R)

v(R)− x(R)

end for
δ←max(i,j)∈N2 |sij − sji|

(i⋆, j⋆)← argmax(i,j)∈N2 sij − sji
end for
if
(

xj⋆ − v({j⋆})< δ
2

)

then {payment should be individually rational}
d← xj⋆ − v({j⋆})

else
d← δ

2

xi⋆ ← xi⋆ + d

xj⋆ ← xj⋆ − d

end if
until δ

v(S) ≤ ǫ

bounded. The solution used in (Klusch and Shehory, 1996b; Shehory and Kraus, 1999) is to only consider
coalitions whose size is bounded in the intervalK1, K2. The complexity of the truncated algorithm is
O(n2 · ncoalitions) wherencoalitions is the number of coalitions with a size betweenK1 andK2, which
is a polynomial of orderK2.

2.5.3 Fuzzy Kernel
In order to take into account the uncertainty in the knowledge of the utility function, a fuzzy version of
stability concept can be used. Blankenburg et al. consider acoalition to be kernel-stable with a degree of
certainty (Blankenburg et al., 2003). This work also presents a side-payment scheme and shows that the
complexity is similar to the crisp kernel, and the idea from (Klusch and Shehory, 1996b) can be used for
ensuring a polynomial coalition formation algorithm. Thisapproach assumes a linear relationship of the
membership and coalition values.

2.6 Shapley Value

So far, the solution concepts we introduced focus on stability of the payoff distribution. The Shapley value
focuses on fairness. It was introduced by Shapley (Shapley,1953), who described the notion of fairness
in two different ways. The first one is an axiomatic approach:the Shapley value can be defined by a set
of axioms, each of them is a desirable property for fairness.The second approach considers a coalition
formation process in which agents enter the coalition one byone and obtain the marginal contribution as
payoff. This coalition formation process may be unfair because an agent’s payoff depends on the joining
order. The Shapley value provides fairness by using an average over all possible joining orders. We present
these two views on fairness. Then, we will survey computational issues and present some representations
that allows for polynomial computation of the Shapley value.

2.6.1 An Axiomatic Characterization
We want to define avalue functionφ which assigns an efficient allocationx to a TU game(N, v). What
properties should this value function satisfy? We now present few simple axioms. The first axiom uses the
definition of a dummy agent: an agenti is adummywhenv(C ∪ i)− v(C) = v(i) for all C ⊆N such that
i /∈ C.
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DUM (“Dummy actions”) : if agenti is a dummy thenxi = v({i}). In other words, if the presence of
agenti does not improve the worth of a coalition by more thanv({i}), the agent does not bring
anything to the coalition, and then, should obtain onlyv({i}).

SYM (“Symmetry”) : When two agents generate the same marginal contributions, they should be
rewarded equally: fori 6= j and∀C ⊆N such thati /∈ C and j /∈ S, if v(C ∪ {i}) = v(C ∪ {j}),
thenxi = xj .

ADD (“Additivity”) : For any two TU games(N, v) and(N, w) and corresponding payoff profilesx ∈
Rn andy ∈ Rn, the payoff profile should bex+ y for the TU game(N, v + w).

Each axiom makes sense and one would want a value function to satisfy them all. Actually, Shapley
showed that there is a unique value function that satisfies these three axioms.

Theorem 2.7 The Shapley value is the unique value that satisfies axioms DUM, SYM and ADD.

The theorem states that these three axioms uniquely define a value function, that is called theShapley
value. A proof of this theorem can be found in Osborne and Rubinstein (1994). To prove this results, one
needs to show the existence of a value function that satisfiesthe three axioms, and then prove the unicity
of the value function. In addition, one can prove that the axioms are independent. Finally, one can also
show that if one of the three axioms is dropped, it is possibleto find multiple value functions satisfying
the other two axioms.

The axioms SYM and DUM are clearly desirable. The last axiom,ADD, is harder to motivate in
some cases. If the valuation function of a TU game is interpreted as an expected payoff, then ADD is
desirable. Also, if we consider cost-sharing games and one TU game corresponds to sharing the cost of
one service, then ADD is desirable as the cost for a joint-service should be the sum of the cost of the
separate services. However, if we do not make any assumptions about the games(N, v) and (N, w),
the axiom implies that there is no interaction between the two games. In addition, the game(N, v + w)

may induce a behavior that may be unrelated to the behavior induced by either(N, v) or (N, w). Other
axiomatisations that do not use the ADD axiom have been proposed by Young (1985) and Myerson (1977).
These other axiomatizations reinforce the importance of the Shapley value.

2.6.2 Ordinal Marginal Contribution
Another interpretation of the Shapley value is based on the notion of ordered marginal contribution. The
marginal contribution of an agenti to a coalitionC ⊆N is mci(C) = v(C ∪ {i})− v(C). Let us consider
that a coalitionC is built incrementally with one agent at a time entering the coalition. Also consider that
the payoff of each agenti is its marginal contribution. For example,〈mc1(∅), mc2({1}), mc3({1, 2})〉

is an efficient payoff distribution for a game{1, 2, 3}, v). In this case, the value of each agent depends
on the order in which the agents enter the coalition, which may not be fair. For example, consider agents
that form a coalition to take advantages of price reduction when buying large quantities of a product.
Agents that start the coalition may have to spend large setupcosts, and agents that come later benefits
from the already large number of agents. To alleviate this issue, the Shapley value averages each agents’
payoff over all possible orderings: the value of agenti in coalitionC is the average marginal value over all
possible orders in which the agents may join the coalition.

Let π represent a joining order of the grand coalitionN : π can also be viewed as a permutation of
〈1, . . . , n〉. We writemc(π) the payoff vector where agenti obtainsmci({π(j) | j < i}). The payoff
vectormc(π) is called themarginal vector. Let us denote the set of all permutations of the sequence
〈1, . . . , n〉 asΠ(N). The Shapley values can then be defined as

Sh(N, v) =

∑

π∈Π(N) mc(π)

n!
.

We provide an example in Table 3 in which we list all the ordersin which the agents can enter the
grand coalition. The sum is over all joining orders, i.e., overn! terms. When computing the Shapley value
for one agent, one can avoid some redundancy by summing over all coalitions and noticing that:
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• Members ofC precedei in |C|! permutations.
• The remaining members succedei in |N \ (C ∪ {i})|! permutations, i.e. in(n− |C| − 1)! permuta-

tions.

These observations allow us to rewrite the Shapley value fora given agenti as:

Shi(N, v) =
∑

C⊆N\{i}

|C|!(n− |C| − 1)!

n!
(v(C ∪ {i})− v(C)) .

N = {1, 2, 3}

v({1}) = 0 v({2}) = 0 v({3}) = 0

v({1, 2}) = 90 v({1, 3}) = 80 v({2, 3}) = 70

v({1, 2, 3}) = 120

1 2 3

1← 2← 3 0 90 30
1← 3← 2 0 40 80
2← 1← 3 90 0 30
2← 3← 1 50 0 70
3← 1← 2 80 40 0
3← 2← 1 50 70 0

total 270 240 210

Shapley valueSh 45 40 35

Let y = 〈50, 40, 30〉

C e(C, Sh) e(C, y)

{1} -45 0
{2} -40 0
{3} -35 0
{1, 2} 5 0
{1, 3} 0 0
{2, 3} -5 0
{1, 2, 3} 0 0

This example shows that the Shapley value may not be in the core, and may not be the nucleolus.
Table 3 Example of a computation of Shapley value

Note that the example from Table 3 also demonstrates that in general the Shapley value is not in the
core or in the nucleolus.

2.6.3 Other properties
The Shapley value always exists and is unique. When the valuation function is superadditive, the Shapley
value is individually rational, i.e., it is an imputation. When the core is non-empty, the Shapley value
may not be in the core. However, when the valuation function is convex, the Shapley value is also group
rational, hence, it is in the core.

2.6.4 Computational Issues
The nature of the Shapley value is combinatorial, as all possible orderings to form a coalition need to be
considered. By using specific representations, it is possible to compute the Shapley value efficiently, and
we are surveying few representations.

This computational complexity can sometimes be an advantage as agents cannot benefit from
manipulation. For example, a single agent could benefit fromusing multiple identities to play some games.
However, the complexity of determining whether an agent canbenefit from such false names has been
shown to beNP-complete (Yokoo et al., 2005).

Bilateral Shapley Value
In order to reduce the combinatorial complexity of the computation of the Shapley value, Ketchpel

introduces the Bilateral Shapley Value (BSV ) (Ketchpel, 1994a). The idea is to consider the formation
of a coalition as a succession of merging between two coalitions. Two disjoint coalitionsC1 and C2
with C1 ∩ C2 = ∅, may merge whenv(C1 ∪ C2)≥ v(C1) + v(C2). When they merge, the two coalitions,
called founders of the new coalitionC1 ∪ C2, share the marginal utility as follows:BSV (C1) =

1
2v(C1) +

1
2 (v(C1 ∪ C2)− v(C2)) andBSV (C2) =

1
2v(C2) +

1
2 (v(C1 ∪ C2)− v(C1)). This is the expression of the
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Figure 2 Example of a graph with 5 agents

Shapley value in the case of an environment with two agents. In C1 ∪ C2, each of the founders gets half
of its ‘local’ contribution, and half of the marginal utility of the other founder. Given this distribution
of the marginal utility, it is rational forC1 and C2 to merge if∀i ∈ {1, 2}, v(Ci)≤BSV (Ci). Note
that symmetric founders get equal payoff, i.e., forC1, C2, C such thatC1 ∩ C2 = C1 ∩ C = C2 ∩ C = ∅,
v(C ∪ C1) = v(C ∪ C2)⇒BSV (C ∪ C1) =BSV (C ∪ C2). Given a sequence of successive merges from
the states where each agent is in a singleton coalition, we can use a backward induction to compute a
stable payoff distribution (Klusch and Shehory, 1996a). Though the computation of the Shapley value
requires looking at all of the permutations, the value obtained by using backtracking and the BSV only
focuses on a particular set of permutations, but the computation is significantly cheaper.

Weigthed graph games
Deng and Papadimitriou (1994) introduce a class of games called weighted graph games: they define a

TU game using an undirected weighted graphG = (V,W) whereV is the set of vertices andW : V → V

is the set of edges’ weights. For(i, j) ∈ V 2, wij is the weight of the edge between the verticesi andj.
The coalitional game(N, v) is defined as follows:

• N = V , i.e., each agent corresponds to one vertex of the graph.
• the value of a coalitionC ⊆N is the sum of the weights between any pairs of members ofC, i.e.

v(C) =
∑

(i,j)∈C2 wij .

We provide an example in Figure 2. This representation is succinct as we only need to providen2

values to represent the entire game. However, it is not a complete representation as some TU games
cannot be represented this way (e.g., it is not possible to represent a majority voting game). If we add
some restrictions on the weights, we can further guarantee some properties. For example, when all the
weights are nonnegative, then the game is convex, and then the game is guaranteed to have a non-empty
core. One other nice property of this representation is thatthe Shapley value can be computed in quadratic
time:

Theorem 2.8 Let (V, W ) be a weighted graph game. The Shapley value of an agenti is given by
Shi(N, v) =

∑

(i,j)∈N2,i6=j wij .

This theorem can be proved using the axioms defining the Shapley value.

Multi-issue representation
Conitzer and Sandholm (Conitzer and Sandholm, 2004) analyse the case where the agents are

concerned with multiple independent issues that a coalition can address. For example, performing a task
may require multiple abilities, and a coalition may gather agents that work on the same task but with
limited or no interactions between them. A characteristic functionv can be decomposed overT issues
when it is of the formv(C) =

∑T
t=1 vt(C), in which, for eacht, (N, vt) is a TU game. An agent may have

some specific capabilities, and hence, may not be able to workon all the issues. For a given issuet, we
denote byIt the set of agents that are concerned (i.e. that can participate) with the issuet.
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The Shapley value for agenti for the characteristic functionv is the sum of the Shapley values over
the t different issues:Shi(N, v) =

∑T
t=1 Shi(N, vt). When a small number of agents is concerned

about an issue, computing the Shapley value for the particular issue can be cheap. For an issuet, the
characteristic functionvt concerns only the agents inIt when ∀C1 ∈ C , C2 ∈ C such thatIt ∩ C1 =
It ∩ C2⇒ vt(C1) = vt(C2). When the characteristic functionv is decomposed overT issues and when
|It| agents are concerned about each issuet ∈ [1...T ], computing the Shapley value takesO(

∑T
t=1 2

|It|).

Marginal Contribution Networks (MC-nets)
Ieong and Shoham propose a representation in which the characteristic function is represented by a set

of “rules” (Ieong and Shoham, 2005). A rule is composed by a pattern and a value: the pattern tells which
agent must be present or absent from a coalition so that the value of the coalition is increased by the value
of the rule. This representation allows to represent any TU game.

More formally, each player is represented by a boolean variable and the characteristic vector of a
coalition is treated as a truth assignment. Each “rule” associates a patternφ and a weightw ∈ R. The
patternphi is a formula of propositional logic containing variables inN . A positive literal represents the
presence of an agent in a coalition, whereas a negative literal represents the absence of an agent in the
coalition. The value of a coalition is the sum over the valuesof all the rules that apply to the coalition.

When negative literals are allowed or when the weights can be negative, MC-nets can represent any
TU-game, hence this representation is complete. When the patterns are limited to conjunctive formula
over positive literals and weights are nonnegative, MC-nets can represent all and only convex games (in
which case, they are guaranteed to have a non-empty core).

Using this representation and assuming that the patterns are limited to a conjunction of variables, the
Shapley value can be computed in time linear to the size of theinput (i.e. the number of rules of the
MC-net).

2.7 A Special Class of TU games: Voting Games

The formation of coalitions is usual in parliaments or assemblies. It is therefore interesting to consider a
particular class of coalitional games that models voting inan assembly. For example, we can represent an
election between two candidates as a voting game where the winning coalitions are the coalitions of size
at least equal to half the number of voters. The formal definition follows:

Definition 2.17 (voting game) A game(N, v) is avoting gamewhen

• the valuation function takes only two values: 1 for the winning coalitions, 0 otherwise.
• v satisfiesunanimity: v(N) = 1

• v satisfiesmonotonicity: S ⊆ T ⊆N ⇒ v(S)≤ v(T ).

Unanimity and monotonicity are natural assumptions in mostcases. Unanimity reflects the fact that
all agents agree; hence, the coalition should be winning. Monotonicity tells that the addition of agents
in the coalition cannot turn a winning coalition into a losing one, which is reasonable for voting: more
supporters should not harm the coalition. A first way to represent a voting game is by listing all winning
coalitions. Using the monotonicity property, a more succinct representation is to list only theminimal
winning coalitions.

Definition 2.18 (Minimal winning coalition) A coalition C ⊆N is a minimal winning coalition iff
v(C) = 1 and∀i ∈ C v(C \ {i}) = 0.

We can now see how we formalize some common terms in voting: dictatorship, veto player and
blocking coalition.

Definition 2.19 (Dictator) Let(N, v) be a simple game. A playeri ∈N is adictatoriff {i} is a winning
coalition.

Note that with the requirements of simple games, it is possible to have more than one dictator!
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Definition 2.20 (Veto Player) Let (N, v) be a simple game. A playeri ∈N is avetoplayer ifN \ {i}
is a losing coalition. Alternatively,i is avetoplayer iff for all winning coalitionC, i ∈ C.

It also follows that a veto player is member of every minimal winning coalitions. Another concept is
the concept of a blocking coalition: it is a coalition that, on its own, cannot win, but the support of all its
members is required to win. Put another way, the members of a blocking coalition do not have the power
to win, but they have the power to lose.

Definition 2.21 (blocking coalition) A coalition C ⊆N is a blocking coalition iff C is a losing
coalition and∀S ⊆N \ C, S \ C is a losing coalition.

The following theorem characterizes the core of simple games.

Theorem 2.9 Let (N, v) be a simple game. The core of the game is non-empty iff there exists a veto
player and we havecore(N, v) = {x ∈ Imp | xi = 0 for each non-veto playeri}.

A variant of a voting game is a weighted voting game where eachagent has a weight and a coalition
needs to achieve a threshold or quota to be winning. This is a much more compact representation as we
only use to define a vector of weights and a threshold. However, this is not a complete representations as
some voting games cannot be represented as a weighted votinggame. The formal definition follows.

Definition 2.22 (weighted voting game) A game(N, v, q, w) is aweighted voting gamewhen

• w = (w1, w2 . . . , wn) is a vector of weights, one for each voter
• A coalitionC is winning (i.e.,(v(C) = 1) iff

∑

i∈C wi ≥ q, it is losing otherwise (i.e.,(v(C) = 0)
• v satisfies monotonicity:S ⊆ T ⊆N ⇒ v(S)≤ v(T ).

We will note a weighted voting game(N, wi∈N , q) as[q; w1, . . . , wn]. Note that the weights may not
represent the voting power of the player. Let us consider thefollowing weighted voting games:

• [10; 7, 4, 3, 3, 1]: The set of minimal winning coalitions is{{1, 2}{1, 3}{1, 4}{2, 3, 4}}. Player5,
although it has some weight, is a dummy. Player2 has a higher weight than player3 and4, but it is
clear that player2, 3 and4 have the same influence.

• [51; 49, 49, 2]: The set of winning coalitions is{{1, 2}, {1, 3}, {2, 3}}. It seems that the players
have symmetric roles, but it is not reflected in their weights.

The European Union uses a combination of weighted voting games (a decision is accepted when it is
supported by 55% of Member States, including at least fifteenof them, representing at the same time at
least 65% of the Union’s population).

The examples raise the subject of measuring the voting powerof the agents in a voting game. Multiple
indices have been proposed to answer these questions, and wenow present few of them. One central
notion is the notion ofpivotal player(also referred to asswing player): we say that a voteri is pivotal for
a coalitionC when it turns it from a losing to a wining coalition, i.e.,v(C) = 0 andv(C ∪ {i}) = 1. Letw
be the number of winning coalitions. For a voteri, letηi be the number of coalitions for whichi is pivotal,
i.e.,ηi =

∑

S⊆N\{i}

v(S ∪ {i})− v(S).

Shapley-Shubik index: it is the Shapley value of the voting game, its interpretation in this context is
the percentage of the permutations of all players in whichi is pivotal. “For each permutation, the
pivotal player gets one more point.” Another interpretation is that the index represent the expected
marginal utility assuming all joining orders are equally likely.

ISS(N, v, i) =
∑

C⊆N\{i}

|C|!(n− |C| − 1)!

n!
(v(C ∪ {i})− v(C)) .

One issue is that the voters do not trade the value of the coalition, though the decision that the voters
vote about is likely to affect the entire population.
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{1, 2, 3, 4} {3, 1, 2, 4}

{1, 2, 4, 3} {3, 1, 4, 2}

{1, 3, 2, 4} {3, 2, 1, 4}

{1, 3, 4, 2} {3, 2, 4, 1}

{1, 4, 2, 3} {3, 4, 1, 2}

{1, 4, 3, 2} {3, 4, 2, 1}

{2, 1, 3, 4} {4, 1, 2, 3}

{2, 1, 4, 3} {4, 1, 3, 2}

{2, 3, 1, 4} {4, 2, 1, 3}

{2, 3, 4, 1} {4, 2, 3, 1}

{2, 4, 1, 3} {4, 3, 1, 2}

{2, 4, 3, 1} {4, 3, 2, 1}

In red and underlined, the pivotal agent

1 2 3 4

Sh 7
12

1
4

1
12

1
12

winning coalitions:
{1, 2}

{1, 2, 3}

{1, 2, 4}

{1, 3, 4}

{1, 2, 3, 4}

In red and underlined, the pivotal agents

1 2 3 4

β 5
8

3
8

1
8

1
8

IB(N, v, i) 1
2

3
10

1
10

1
10

Table 4 Shapley-Schubik and the Banzhaff indices for the weighted voting game[7; 4, 3, 2, 1].

Banzhaff index: For each coalition, we determine which agent is a pivotal agent (more than one agent
may be pivotal). Theraw Banzhaff indexof a playeri is

βi =

∑

C⊆N\{i} v(C ∪ {i})− v(C)

2n−1
.

This index corresponds to the expected marginal utility assuming all coalitions are equally likely.

For a simple game(N, v), v(N) = 1 andv(∅) = 0, at least one playeri has a power indexβi 6= 0.
Hence,B =

∑

j∈N βj > 0. Thenormalized Banzhaff indexof playeri for a simple game(N, v) is
defined as

IB(N, v, i) =
βi

B
.

Coleman index: Coleman defines three indices (Coleman, 1970): the power of the collectivity to act
A= w

2n (A is the probability of a winning vote occurring); the power toprevent actionPi =
ηi

w (it
is the ability of a voter to change the outcome from winning tolosing by changing its vote); the
power to initiate actionIi =

ηi

2n−w (it is the ability of a voter to change the outcome from losingto
winning by changing its vote, the numerator is the same as inPi, but the denominator is the number
of losing coalitions, i.e., the complement of the one ofPi)

We provide in Table 4 an example of computation of the Shapley-Schubik and Banzhaff indices. This
example shows that both indices may be different. There is a slight difference in the probability model
between the Banzhafβi and Coleman’s indexPi: in Banzhaf’s, all the voters buti vote randomly whereas
in Coleman’s, the assumption of random voting also applies to the voteri. Hence, the Banzhaf index can
be written asβi = 2Pi ·A= 2Ii · (1−A).

The computational complexity of voting and weighted votinggames have been studied in Deng and
Papadimitriou (1994); Elkind et al. (2007). For example, the problem of determining whether the core is
empty is polynomial. The argument for this result is the following theorem: the core of a weighted voting
game is non-empty iff there exists a veto player. When the coreis non-empty, the problem of computing
the nucleolus is also polynomial, otherwise, it is anNP-hard problem. The problem of choosing the
weights so that they correspond to a given power index has also been tackled in de Keijzer et al. (2010).
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2.8 Games with Coalition Structure and Games with a priori Unions

We now turn to two special refinements of TU games that are defined using a CS. The first one assumes
that a CS has already been formed and the only problem to solveis how to share the value of each coalition.
The second one assumes that the grand coalition forms and that members of a coalition in the CS can be
represented as one “meta”-agent.

2.8.1 Games with Coalition Structure
In the description of the core and the Shapley value in Sections 2.3 and 2.6 and in most traditional work
in game theory, the superadditivity of the valuation function is not explicitly stated, but it is implicitly
assumed. When the grand coalition is formed, checking whether the core is empty amounts to checking
whether the grand coalition is stable (Wooldridge, 2009). We have already defined games with CS in
Section 2.3, and we recall it now.

Definition 2.23 (Game with coalition structure) A game with coalition structureis a triplet
(N, v, S), where(N, v) is a TU game, andS is a particular CS. In addition, transfer of utility is only
permitted within (not between) the coalitions ofS, i.e.,∀C ∈ S, x(C)≤ v(C).

Aumann and Drèze (1974) discuss why the coalition formationprocess may generate a CS that is
not the grand coalition. One reason they mention is that the valuation may not be superadditive (and
they provide some discussion about why it may be the case). Another reason is that a CS may “reflect
considerations that are excluded from the formal description of the game by necessity (impossibility
to measure or communicate) or by choice”. For example, the affinities can be based on location, or trust
relations, etc. Another way to understand this definition isto consider that the problems of deciding which
coalition forms and how to share the coalition’s payoff are decoupled: the choice of the coalition is made
first and results in the CS. Only the payoff distribution choice is left open. The agents are allowed to refer
to the value of coalition with agents outside of their coalition (i.e., opportunities they would get outside
of their coalition) to negotiate a better payoff. Aumann andDrèze use an example of researchers in game
theory that want to work in their own country, i.e., they wantto belong to the coalition of game theorists
of their country. They can refer to offers from foreign countries in order to negotiate their salaries. Note
that the agents’ goal is not to change the CS, but only to negotiate a better payoff for themselves.

First, we need to define the set of possible payoffs: the payoff distributions such that the sum of the
payoff of the members of a coalition in the CS does not exceed the value of that coalition. More formally:

Definition 2.24 (Feasible payoff) Let (N, v, S) be a TU game with CS. The set offeasible payoff
distributionsis X(N,v,S) = {x ∈ Rn | ∀C ∈ Sx(C)≤ v(C)}.

A payoff distributionx is efficientwith respect to a CSS when∀C ∈ S,
∑

i∈C xj = v(C). A payoff
distribution is animputationwhen it is efficient (with respect to the current CS) and individually rational
(i.e.,∀i ∈N , xi ≥ v({i})). The set of all imputations for a CSS is denoted byImp(S). We can now state
the definition of the core:

Definition 2.25 (Core) The core of a game(N, v, S) is the set of all PCs(S, x) such thatx ∈ Imp(S)

and∀C ⊆N ,
∑

i∈C xj ≥ v(C), i.e.,core(N, v, S) = {x ∈ Rn | ∀C ∈ S, x(C) = v(C)}.

We now provide a theorem by Aumann and Drèze which shows that the core satisfies a desirable
properties: if two agents can be substituted, then a core allocation must provide them identical payoffs.

Definition 2.26 (Substitutes) Let (N, v) be a game and(i, j) ∈N2. Agentsi andj are substitutesiff
∀C ⊆N \ {i, j}, v(C ∪ {i}) = v(C ∪ {j}).

Theorem 2.10 Let (N, v, S) be a game with coalition structure, leti and j be substitutes, and let
x ∈ core(N, v, S). If i andj belong to different members ofS, thenxi = xj .
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Aumann and Drèze made a link from a game with CS to a special superadditive game(N, v̂)

called the superadditive cover (Aumann and Drèze, 1974). First we need to introduce a notation: for a
coalition C ⊆N , we noteSC the set of all partitions ofC. The valuation function of the superadditive
cover v̂ is defined aŝv(C) = maxP∈SC

{
∑

T∈P v(T )
}

for all coalitionsC ⊆N \ ∅, and v̂(∅) = 0. In
other words,v̂(C) is the maximal value that can be generated by any partition ofC. They showed
thatcore(N, v, S) 6= ∅ iff core(N, v̂) 6= ∅ ∧ v̂(N) =

∑

C∈S v(C) and that whencore(N, v, S) 6= ∅, then
core(N, v, S) = core(N, v̂). This means that a necessary condition for(N, v, S) to have a non empty
core is thatS is an optimal CS.

Aumann and Drèze extend the definition of the core and the Shapley value as well as other stability
concepts (nucleolus, Bargaining set, kernel) (Aumann and Drèze, 1974).

2.8.2 Games with a priori unions
So far, a coalition has represented a set of agents that worked on its own. In a CS, the different coalitions
are intended to work independently of each other. We can alsointerpret a coalition to represent a group of
agents that is more likely to work together (because of personal or political affinities). The members of a
coalition do not mind working with other agents, but they want to be together and negotiate their payoff
together, which may improve their bargaining power. This isthe idea used in games with a priori unions.
Formally, a game with a priori unions is similar to a game withCS: it consists of a triplet(N, v, S) when
(N, v) is a TU game andS is a CS. However, we assume that the grand coalition forms. The problem is
again to define a payoff distribution.

Definition 2.27 (Game with a priori unions) A game with a priori unionsis a triplet(N, v, S), where
(N, v) is a TU game, andS is a particular CS. It is assumed that the grand coalition forms.

Owen (1977) proposes a value that is based on the idea of the Shapley value. The agents forms the
grand coalition by joining one by one. In the Shapley value, all possible joining orders are allowed. In the
Owen value, an agenti may join only when the last agent that joined is a member ofi’s coalition or when
the last agents(j1, . . . , jk) that joined before formed a coalition inS. This is formally captured using the
notion of a consistency with a CS:

Definition 2.28 (Consistency with a coalition structure) A permutationπ is consistentwith a CSS
when, for all(i, j) ∈ C2, C ∈ S andl ∈N , π(i)< π(l)< π(j) implies thatl ∈ C.

We denote byΠS(N) the set of permutations ofN that are consistent with the CSS. The number of
such permutations ism

∏

C∈S |C|! wherem is the number of coalitions inS. The Owen value is then
defined as follows:

Definition 2.29 (Owen value) Given a game with a priori union(N, v, S), the Owen value
Oi(N, v, S) of agenti is given by

Oi(N, v, S) =
∑

π∈ΠS(N)

mc(π)

|ΠS(N)|

In Table 5, we present the example used for the Shapley value and compute the Owen value. The
members of the coalition of two agents improve their payoff by forming a union.

2.9 Games with externalities

A traditional assumption in the literature of coalition formation is that the value of a coalition depends
solely on the members of that coalition. In particular, it isindependent of non-members’ actions. In
general, this may not be true: some externalities (positiveor negative) can create a dependency between
the value of a coalition and the actions of non-members. Sandholm and Lesser (1997) attribute these
externalities to the presence of shared resources (if a coalition uses some resource, they will not be
available to other coalitions), or when there are conflicting goals: non-members can move the world
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N = {1, 2, 3}
v({1}) = 0 v({2}) = 0 v({3}) = 0

v({1, 2}) = 90 v({1, 3}) = 80 v({2, 3}) = 70

v({1, 2, 3}) = 120

S1 = {{1, 2}, {3}} S2 = {{1, 3}, {2}}

1 2 3
1← 2← 3 0 90 30
1← 3← 2 ✕

2← 1← 3 90 0 30
2← 3← 1 ✕

3← 1← 2 80 40 0
3← 2← 1 50 70 0

total 220 200 60

Owen valueOi(N, v, S1) 55 50 15

1 2 3
1← 2← 3 ✕

1← 3← 2 0 40 80
2← 1← 3 90 0 30
2← 3← 1 50 0 70
3← 1← 2 80 40 0
3← 2← 1 ✕

total 220 80 180

Owen valueOi(N, v, S2) 55 20 45

Table 5 Example of the computation of an Owen value

farther from a coalition’s goal state. Ray and Vohra (1999) state that a “recipe for generating characteristic
functions is a minimax argument”: the value of a coalitionC is the valueC gets when the non-members
respond optimally so as to minimise the payoff ofC. This formulation acknowledges that the presence of
other coalitions in the population may affect the payoff of the coalitionC. As in Hart and Kurz (1983); Ray
and Vohra (1999), we can study the interactions between different coalitions in the population: decisions
about joining forces or splitting a coalition can depend on the way the competitors are organised. For
example, when different companies are competing for the same market niche, a small company might
survive against a competition of multiple similar individual small companies. However, if some of these
small companies form a viable coalition, the competition significantly changes: the other small companies
may now decide to form another coalition to be able to successfully compete against the existing coalition.
Another such example is a bargaining situation where agentsneed to negotiate over the same issues: when
agents form a coalition, they can have a better bargaining position, as they have more leverage, and because
the other party needs to convince all the members of the coalition. If the other parties also form coalition,
the bargaining power of the first coalition may decrease.

Two main types of games with externalities are described in the literature, both are represented by a
pair (N, v), but the valuation function has a different signature.

Games in partition function form (Thrall and Lucas, 1963):v : 2N ×S → R. This is an extension of
the valuation function of a TU game by providing the value of acoalition given the current coalition
structure (note thatv(C, S) is meaningful whenC ∈ S).

Games with valuations : v :N ×S → R. In this type of games, the valuation function directly assigns
a value to an agent given a coalition structure. One possibleinterpretation is that the problem of
sharing the value of a coalition to the members has already been solved.

The definitions of superadditivity, subadditivity and monotonicity can be adapted to games in partition
functions (Bloch, 2003). As an example, we provide the definition for superadditivity.

Definition 2.30 (superadditive games in partition function) A partition functionv is superadditive
when, for any CSS and any coalitionsC1 andC2 in S, we havev(C1 ∪ C2, S \ {C1, C2} ∪ {C1 ∪ C2})≥

v(C1, S) + v(C2, S).

The partition function may also have some regularities whentwo coalition merge: either they always
have a positive effect on the other coalition, or they alwayshave a negative one. More precisely, a partition
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function exhibitspositive spilloverswhen for any CSS and any coalitionsC1 and C2 in S, we have
v(C, S \ {C1, C2} ∪ {C1 ∪ C2})≥ v(C, S) for all coalitionsC 6= C1, C2 in S.

These regularities can be exploited when searching for an optimal CS. As shown by Michalak et al.
(2008), it is possible that the grand coalition is not the CS with maximal social welfare for a superadditive
partition function. If the partition function is both superadditive and exhibits a positive spillover, then the
grand coalition has maximum social welfare. The similar property holds for subadditive partition function
with negative spillovers.

We now turn to considering solution concepts for such games.The issue of extending the Shapley
value has a rich literature in game theory. We want the Shapley value to represent an average marginal
contribution, but there is a debate over which set of coalition structures. (Michalak, Rahwan, Marciniak,
Szamotulski and Jennings, 2010) provide references on different solutions and present three solutions in
more details.

Airiau and Sen (2010) considers the issue of the stability ofthe optimal CS and discusses a possible
way to extend the kernel for partition function games. Airiau and Sen (2009) consider coalition formation
in the context of games with valuations and propose a solution for myopic agents (an agent will join a
coalition only when it is beneficial, without considering long-terms effect).

Michalak et al. (2009) tackle the problem of representing such games and propose three different
representations that depends on the interpretation of the externalities. The first representation considers
the value of a coalition in a CS: the value of a coalition can bedecomposed into on term that is free
of externality and another term that models the sum of the uncertainty due to the formation of the other
coalitions. The two other representations consider that the contribution of a coalition in a CS: either by
providing the mutual influence of any two coalitions in a CS (outward operational externalities) or by
providing the influence of all the other coalitions on a givencoalition (inward operational externalities).
Michalak, Rahwan, Marciniak, Szamotulski and Jennings (2010) and Michalak, Rahwan, Marciniak,
Szamotulski, McBurney and Jennings (2010) extend the concept of MC-nets to games with partition
function.

2.10 Non-Transferable Utility Games (NTU games)

An underlying assumption behind a TU game is that agents havea common scale to measure the worth
of a coalition. Such a scale may not exist in every situation,which leads to the study of games where the
utility is non-transferable (NTU games). We start by introducing a particular type of NTU games called
Hedonic games.

In these games, agents have preferences over coalitions: each agent knows whether it prefers to be in
company of some agents rather than others. An agent may enjoymore the company of members ofC1
over members ofC2, but it cannot tell by how much it prefersC2 overC2. Consequently, an agent cannot
be compensated when it is not part of its favorite coalition.More formally, letN be a set of agents andNi

be the set of coalitions that contain agenti, i.e.,Ni = {C ∪ {i} | C ⊆N \ {i}}. For a CSS, we will note
S(i) the coalition inS containing agenti.

Definition 2.31 (Hedonic games) A Hedonic gameis a tuple(N, (�i)i∈N ) where

• N is the set of agents
• �i⊆ 2Ni × 2Ni is a complete, reflexive and transitive preference relationfor agent i, with the

interpretation that ifS �i T , agenti prefers coalitionT at most as much as coalitionS.

The notion of core can be easily extended for this type of games. Weaker versions of stability can
also be defined using the current CS formed and we now give the definition of stability concepts adapted
from Bogomolnaia and Jackson (2002).

Core stability: A CSS is core-stable iff ∄C ⊆N | ∀i ∈ C, C ≻i S(i).

Nash stability: A CSS is Nash-stable iff (∀i ∈N) (∀C ∈ S ∪ {∅}) S(i)%i C ∪ {i}. No player would
like to join any other coalition inS assuming the other coalitions did not change.
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Individual stability A CS S is individually stable iff (∄i ∈N) (∄C ∈ S ∪ {∅}) | (C ∪ {i} ≻i

S(i)) and (∀j ∈ C, C ∪ {i}%j C). No player can move to another coalition that it prefers without
making some members of that coalition unhappy.

Contractually individual stability: A CS S is contractually individually stable iff (∄i ∈N) (∄C ∈

S ∪ {∅}) | (C ∪ {i} ≻i S(i)) and (∀j ∈ C, C ∪ {i}%j C) and (∀j ∈ S(i) \ {i}, S(i) \ {i}%j

S(i)). No player can move to a coalition it prefers so that the members of the coalition it leaves
and it joins are better off.

If a CS is core-stable, no subset of agents has incentive to leave its respective coalition to form a new
one, this is the classic definition of the core in the context of hedonic games. In the other stability solution
concepts, the possible deviations feature a single agenti that leaves its current coalitionC1 to join a
different existing coalitionC2 or to form a singleton coalition. The difference between thethree notions is
the behavior of the members ofC1 andC2. For a Nash stableS, they are not considered: ifi prefers to join
an existing coalition, it is a valid deviation. This assumesthat the agents inC2 will accept agenti, which
is quite optimistic. In individual stability, the deviation is valid if no agent inC2 is against accepting agent
i. Finally, contractual individual stability adds a constraint on the agents fromC1: they have to agree on
agenti leaving them. The three stability concepts have the following inclusion: Nash stability is included
in Individual stability, which is included in contractual individual stability.

The literature in game theory focuses on finding conditions for the existence of the core. In the AI
literature, Elkind and Wooldridge have proposed a succinctrepresentation of Hedonic games Elkind and
Wooldridge (2009).

We now turn to the most general definition of an NTU game, whichuses a set of outcomes that can be
achieved by the coalitions. The formal definition is the following:

Definition 2.32 (NTU Game) A non-transferable utility game (NTU Game)(N, X, V, (≻i)i∈N ) is
defined by

• a set of agentsN ;
• a set of outcomesX;
• a function V : 2N → 2X that describes the outcomesV (C)⊆X that can be brought about by

coalitionC;
• a preference relation≻i (transitive and complete) over the set of outcomes for each agenti.

Intuitively, V (C) is the set of outcomes thatC can bring about by means of its joint action. The agents
have a preference relation over the outcomes.

Example 1:hedonic games as a special class of NTU games. Let(N, (�H
i )i∈N ) be a hedonic game.

• For each coalitionC ⊆N , create a unique outcomexC .
• For any two outcomesxS andxT corresponding to coalitionsS andT that contains agenti, We define
�i as follows:xS �i xT iff S �H

i T .
• For each coalitionC ⊆N , we defineV (C) asV (C) = {xC}.

Example 2:a TU game can be viewed as an NTU game. Let(N, v) be a TU game.

• We defineX to be the set of all allocations, i.e.,X = Rn.
• For any two allocations(x, y) ∈X2, we define�i as follows:x�i y iff xi ≥ yi.
• For each coalitionC ⊆N , we defineV (C) asV (C) = {x ∈ Rn |

∑

i∈N xi ≤ v(C)}. V (C) lists all
the feasible allocation for the coalitionC.

First, we can note that the definition of the core can easily bemodified in the case of NTU games.

Definition 2.33 core(V ) = {x ∈ V (N) | ∄C ⊂N, ∄y ∈ V (C), ∀i ∈ C y ≻i x}

An outcomex ∈X is blocked by a coalitionC when there is another outcomey ∈X that is preferred by
all the members ofC. An outcome is then in the core when it can be achieved by the grand coalition and
it is not blocked by any coalition. As is the case for TU game, it is possible that the core of an NTU game
is empty.
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3 Applications in multiagent systems

In some application, agents cooperate and share the value oftheir joint work. In some cases, it is possible
to use results from cooperative games to design the agents. In many other cases, some theory was missing
to incorporate some aspects of the environment, for exampleuncertainty, time constraints, manipulations
to name few issues. In this section, we start by introducing two generic applications that have been use by
the multiagent systems literature to motivate further research in cooperative games. Then, we provide an
overview of other applications that have been used in the multiagent system literature. We end the section
with some classes of games that have nice computational properties.

3.1 Task Allocation Problem

A task allocation problem can be easily represented by a coalition formation problem: a coalition of agents
is in charge of performing a task (or a subset of tasks). A taskmay require multiple agents to be performed
due to the following reasons:

• Complementary expertise may be required to perform a complex task, and many approaches assume
that no agent has all the required expertise to perform a complex task on its own (Kraus et al.,
2003, 2004; Manisterski et al., 2006; Shehory and Kraus, 1998). In the general case, a task can
be decomposed into subtasks, and the agents are able to perform a subset of all possible subtasks.

• All the agents have the required ability or expertise to perform a task, but they do not have enough
resources on their own to perform the task. For example, robots have the ability to move objects in a
plant, but multiple robots are required to move a heavy box (Aknine et al., 2004; Shehory and Kraus,
1998).

In addition, the valuation function of a coalitional game has a simple interpretation: it is the benefit of
the group of coalitions when the task is performed. The classical stability problem of coalitional games
appears since multiple coalitions may be able to perform a complex task, and some coalitions may be
better suited to perform a given task. Ideally, an agent should not have any incentive to join a different
coalition to work on a different set of tasks.

A generic task allocation problem can be described as follows: a coalition of agents forms to perform a
complex task and each agent in the coalition plays a role in the completion of the task (they can all have the
same or complementary roles). The completion of a task is rewarded by a payoff. The cost associated with
the task completion depends on the coalition members. The value of the coalition is the net benefit (payoff
minus cost) of completing the task. Hence, the task allocation problem is well-modeled by a coalition
formation problem where the value of a coalition depends only on its members. Note that in the case
where agents are not self-interested, the population of agents as a whole may try to maximise the total
benefit of completing the tasks. In this case, the agents are trying to optimise utilitarian social welfare and
search for the optimal CS (see Section 4.2).

Task allocation problems may be even more complex. First, the tasks may be inter-dependent. For
example in (Shehory and Kraus, 1998), there is a partial precedence order between the tasks. This
assumption is of particular importance in the transportation domain. The existence of task dependency
may promote cooperation between the agents as advocated in (Aknine and Shehory, 2005): the dependence
between the tasks may translate into a certain form of dependence between the agents. If agents realise
this fact, they may reciprocally help each other: agentA may help agentB to perform a task needed for
the completion of an important task for agentB, and vice versa.

In the generic model, the cost and benefit depends only on the members of the coalition. In
environments where the value of a task depends on its completion time, Kraus et al. suggested that there
should be a a cost associated with time it takes to decide on a coalition (Kraus et al., 2003, 2004). They
propose a variant of the task allocation problem where at each round, the reward to perform a task is
reduced. This forces the agents to decide rapidly whether toform a coalition for taking advantage of
the high reward. The first coalition that accepts the contract gets it and if multiple coalitions agree, one
coalition is chosen at random. Agents that are only capable of performing a subset of the sub-tasks must
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propose or join a coalition. At each round, they can propose acoalition or accept to be part of one. Unlike
in (Shehory and Kraus, 1998) where all the tasks are known in advance, in these works, a coalition is
formed incrementally for each task. The order of the tasks may play an important role in the overall
payoff to the agents.

If tasks arrive in a pattern, it may be efficient to form similar coalitions for similar tasks. Abdallah and
Lesser (2004) assume the existence of a hierarchy of agents .When an agent gets a task for which it does
not have the necessary resources, it can ask the agent above it in the hierarchy to take care of the task.
If agents placed below it can solve sub-tasks of the task, theagent can decompose the task and assign it
to the agents below in the hierarchy. Learning can be used to choose which agent can perform the task.
Abdallah and Lesser show that learning allows for faster andbetter task assignments.

Another issue that can arise in the task allocation problem is the need to have overlapping coalitions,
i.e., to have the possibility that agents are members of multiple coalitions. For example, an agenti may
have a unique ability that is required to complete two tasks.If i is restricted to be a member of a single
coalition, one task cannot be completed, which would be inefficient in the case wherei has enough
resources to help performing both tasks. An example is in a transportation domain, if each task is to
move an item between two points and a coalition is a set of vehicles that carry the item. Overlapping
coalitions would model this problem as multiple items couldbe moved by the same truck (Shehory and
Kraus, 1998).

The task allocation problem is in general a computationallyhard problem: when agents are limited to
perform a single task, the coalition problem resembles the set partitioning problem. When agents are able
to perform multiple tasks, the allocation problem gets closer to the set covering problem. In both cases,
these problems areNP-complete (Shehory and Kraus, 1998). A taxonomy is proposedto distinguish
different complexity classes of the task allocation problems (Lau and Zhang, 2003) based on three factors:
(1) Is the same task likely to be offered again? (2) Does the multiagent system have more than enough/just
enough/not enough resources to performing a set of tasks? (3) Is the reward intrinsic to the task, or does
it only depend on the members performing the task? They show that some combinations of factors lead
to polynomial problems, and other combinations have exponential complexity. Shehory and Kraus (1998)
restrict the set of possible coalitions by adding a constraint on the size of the coalition. This assumption
is motivated by the fact that negotiation with a large numberof partners becomes costly, and over a given
size, a coalition of agents will not be able to get any benefit.In this case, the size of the set of possible
coalitions is a constant, hence, the problem can be solved inpolynomial time (possibly a high order
polynomial though).

3.2 Electronic Marketplace

Coalition formation has also been used to model firms or agents in the electronic marketplace (Asselin
and Chaib-draa, 2006; Cornforth et al., 2004; Li et al., 2003; Li and Sycara, 2002; Sarne and Kraus, 2003,
2005; Tsvetovat et al., 2001; Vassileva et al., 2002). The field originated from a paper by Tsvetovat et al.
(2001) where consumer agents can form a coalition (i.e., a buying group) to benefit from the quantity
discount provided by sellers. From the point of view of a system designer, the problem is to form a CS,
and each coalition is forming a buying group. Desirable property of the CS formed include to be Pareto
optimal, i.e., no other CS should give more to a consumer without giving less to another one (Asselin and
Chaib-draa, 2006) and social welfare maximisation, which provides the greatest revenue to the buyers.

First, this problem can be modeled by coalitional games withnon-transferable utility as in practice, a
buyer may not pay another buyer to join a buying group (it is recognised that side payments could allow
for more efficient outcomes though). It is the model studied by Asselin and Chaib-draa (2006); their goal
is to define protocols that find a Pareto Optimal solutions, and they only propose a centralised solution.

One variant of the problem is to consider the cost of searching for other coalition members. For
example, there is a cost to advertise the possibility to forma buying group, to look for partners, to negotiate
price and payment (Sarne and Kraus, 2003). The goal of the agents is to increase the size of the coalition
so that the benefit from forming a coalition is worth the effort. The dilemma is about executing the task
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with the current configuration or starting a costly search tofind new partners. The work of Sarne and
Kraus analyses the equilibrium strategies.

Other variants include the problem introduced by Yamamoto and Sycara (2001). Unlike in the original
problem in (Tsvetovat et al., 2001), a buying group does not correspond to a particular item: each buyer
agent can have a list of single items or a disjunction of items. In addition, sellers can bid discount prices
to sell large volume of items. This allows a formulation thatis closer to a combinatorial auction. The
proposed solution assumes that each buying group is managedby an agent that has to solve the following
two problems: (1) given the requests from the buyer agents, the manager agent chooses the sellers and buys
the appropriate items, (2) the manager agent chooses the price paid by each buyer agent. To address the
first problem, the proposed algorithm performs a greedy search. To answer the second problem, Yamamoto
and Sycara use a surplus sharing rule that ensures a payoff distribution which is in the core. In (Li and
Sycara, 2002), the agents can bid in combinatorial auctions: agents bid a reservation value for a bundle
of items. This makes the problem even more complex since a winner determination problem has to be
solved and a stable payoff distribution must be found. The mechanism design aspect of this problem can
be found in (Li et al., 2003). Li and Sycara (2002) present an algorithm that computes an optimal coalition
and a payoff division in the core, but it is not guaranteed to be of polynomial complexity. Hence, they also
present an approximation algorithm that is polynomial.

A mathematical model using first-order differential equations is presented in (Lerman and Shehory,
2000). The model describes the dynamics of the coalitions and allows for computation of a steady state
equilibrium. The paper shows that a steady state equilibrium always exists, and that it yields higher utility
gain compared to the case where agents are buying on their own, or when leaving a coalition is not
allowed. However, the outcome is not guaranteed to be ParetoOptimal.

Vassileva et al. address long term coalitions (Breban and Vassileva, 2002; Vassileva et al., 2002): in
many other papers, a coalition is formed to complete a given task, and the coalition is disbanded when the
task is accomplished. In contrast, the goal is to form a coalition of agents that will collaborate for a long
period of time. The decision to leave a coalition and join a new one should also be a function of the trust
put in another agents, i.e., the belief that they will have successful interaction in the future.

Another application of coalition formation in the context of an electronic marketplace is service
oriented computing. A large number of services are offered on the Internet, at different prices and with
different quality. Blankenburg et al. (2006) propose the use of service Request Agent that can request
one (potentially) complex task and a Service Provider Agentthat can provide a service. The latter can
also, given a task and a set of service advertisements, compose services to form a plan that implements
the task. The service requester agents only pay the service provider agent if the task is performed on
time. The service provider agents must evaluate the risk involved in accepting a request. In addition, a
service provider may be involved in more than one coalition,i.e., it can have multiple clients at the same
time. Blankenburg et al. propose the use of fuzzy coalitionsto allow agents to be members of multiple
coalitions. The agents use a measure of risk from the finance literature, and they accept a proposal if the
risk is below a threshold. To distribute the payoff, Blankenburg et al. define the kernel for their fuzzy
coalition and use Stearns method to converge to a payoff distribution in the kernel.

3.3 Other Domains

Coalitions of agents have also been used in many other application domains, and we list some of them
in the following. We start with an application for gatheringinformation (Klusch and Shehory, 1996a,b).
An agent is associated with a local database, and to answer a query, an agent may require other agents.
When the agents form a coalition, all agents in the coalition must cooperate: the members share some of
their private data, e.g., dependency information. If an agent does not cooperate, it will not have access to
some information schema that are available to members of thecoalition. The coalition formation process
assumes an utilitarian mechanism, and each agent tries to maximise its expected utility. The bilateral
Shapley value is used to determine the payoff distribution in (Klusch and Shehory, 1996a). A kernel
oriented solution is proposed in (Klusch and Shehory, 1996b) for the same domain.
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Coalitions have been used to track a moving target using a sensor network, a problem introduced
in (Horling et al., 2001). The problem is to ensure that at least three agents are sensing the target at the
same time to perform triangulation. The problem becomes complex as the target is moving and sensors
and communication can be faulty. In (Sims et al., 2003), the goal is for the agents to self-organise and
form an appropriate coalition to track the target. The paperused a variant of the contract net protocol to
negotiate a coalition that will be used throughout the tracking. Two valuation functions are studied (local
and social utility) and different protocols are empirically tested. Soh et al. (2003) also solve a real-time
tracking problem. An initiator agent starts the coalition formation process by contacting the neighboring
agents that are most suitable for the particular task and engages in negotiation with each of them. Case
based reasoning is used to choose the most promising negotiation protocol. In addition, reinforcement
learning is used to estimate the utility of a coalition. The coalition formation process may or may not
succeed.

In machine learning, it is known it is possible to combine theresults of different classifier to increase
the accuracy of the classification. Aknine and Caillou (2004) and Plaza and Ontañón (2006) applied this
idea in a coalition formation setting. For example, in the work of Plaza and Ontañón, agents can form
committees (i.e., coalitions) to classify a new species of sponge. Each agent has its own expertise, a set
of cases, and uses case-based reasoning for the classification problem. In their work, Plaza and Ontañón
show how to decide when a committee is needed and how to selectthe agents to form a committee for a
new species of sponge.

Coalitions of agents have been used in the context of distribution and planning of infrastructure for
power transportation (Contreras et al., 1997, 1998; Poon etal., 1999). Poon et al. (1999) model the trading
process between firms that generate, transmit or distributepower using agents. Agents rank other agents
by possible gains and send the Bilateral Shapley Value of thepotential partner when it makes an offer. If
both agents send requests to each other, it is beneficial for them to work together and they form a single
entity. The process iterates until no further improvement is possible. In the power transmission domain,
the problem is to decide whether or not to create a new line or anew plant, and if so, how to share the cost
between the different parties involved. (Contreras et al.,1997, 1998) uses similar solutions as Yeung and
Poon.

Coalitions of agents have been used in the context of planning and scheduling. For example,
Pĕchoŭcek et al. (2002) tackle the problem of planning humanitarian relief operations, and the problem of
production planning in (P̆echoŭcek et al., 2000). For the humanitarian relief operation scenario, different
organisations can form coalitions to be more efficient and provide optimal help to the people. However,
the different groups that have different capabilities can also have different goals; hence, they might not
want to disclose all available information. In that context, the authors propose a formation of alliances:
provided some public information, the agents seek to form groups of agents with the same kind of goals.
These alliances can be viewed as long-term agreements between agents, and alliances define a partition
of the agents. Unlike alliances, coalitions are viewed as short-term agreements to perform a specific task,
and to reduce the search space, coalitions can form within analliance. In case of impossibility of forming
coalitions within an alliance, agents from different alliances can be used. The authors are interested in the
amount of information agents have to disclose: when it sendsa request, an agent may reveal private or
semi-private information. This can occur when an agent asksan agent of a different alliance to perform a
task (revealing that neither it nor its alliance can complete the task). An agent can also decide to disclose
private information when it wants to inform other agents, for instance, when they form alliances.

In the context of production planning, instead of using a centralised planning approach, Pĕchoŭcek et
al. want to use local coalition formation to execute tasks inan efficient manner. One requirement is that
agents know their possible collaborators well in order to minimise the communication effort, e.g., agents
have knowledge of the status of surrounding agents, so an agent may ask help from another agent if it
knows the agent is not busy. Caillou et al. use the scenario ofscheduling classes in a university (Caillou
et al., 2002), where a coalition is a schedule. This work considers non-transferable utility. Caillou et al.
propose a protocol where a set of acceptable coalitions is passed from agents to agents, and each time,
agents can add coalitions or remove coalitions that are not acceptable. The result of the protocol is a
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Pareto Optimal schedule. The protocol also considers re-using existing solutions to compute a solution to
a modified problem (e.g., when a class is removed from the schedule, or a professor is coming, previous
solutions of the problem can be used to accommodate these changes).

3.4 Some interesting classes of games from the computational point of view

We want to briefly introduce some classes of games that have been studied in the AI literature. Some of
these classes of games can be represented more compactly than by using2n values, one for each coalition,
using an underlying graph structure. In some restricted cases, some solution concepts can be computed
efficiently.

graph games.2 This class of games was introduced by Deng and Papadimitriou(1994). A game is a
pair 〈V, w〉 whereV is the set of agents and is also the set of edges of a weighted undirected graph(V, w)
wherew : v2→ R is the weight function, mapping an edge(i, j) ∈ V 2 to a real number. The value of a
coalitionC ⊆N is the sum of the weights of the sub-graph induced byC.

This representation is succinct, but not complete (e.g., a majority game cannot be represented using this
representation). If all the weights are nonnegative, then the game is convex (and consequently, the core is
non-empty), and testing the membership in the core can be performed in polynomial time. In addition, the
Shapley value can be computed in polynomial time.

minimum cost spanning tree games.A game is〈V, s, w〉 where〈V, w〉 is as in a graph game and
s ∈ V is the source node. For a coalitionC, we denote byΓ(C) the minimum cost spanning tree spanning
over the set of edgesC ∪ {s}. The value of a coalitionV \ {s} is given by

∑

(i,j)∈Γ(C) wi,j .
This class of game can model the problem of connecting some agents to a central node played by

the source nodes. Computing the nucleolus or checking whether the core is non-empty can be done in
polynomial time.

Network flow games.A flow network 〈V, E, c, s, t〉 is composed of a directed graph(V, E) with a
capacity on the edgec : V 2→ R+, a source vertexs and a sink vertext. A network flow is a function
f : E→ R+ that satisfies the capacity of an edge (∀(i, j) ∈ E, f(i, j)≤ c(i, j)) and that is conserved
(except for the source and sink), i.e., the total flow arriving at an edge is equal to the total flow leaving that
edge (∀j ∈ V ,

∑

(i,j)∈E f(i, j) =
∑

(j,k)∈E f(j, k)). The value of the flow is the amount flowing out of
the sink node.

In network flow game (Kalai and Xemel, 1982),〈V, E, c, s, t〉, the value of a coalitionC ⊆N is the
maximum value of the flow going through the flow network〈C, E, c, s, t〉.

This class of games can model a situation where some cities share a supply of water or some electricity
network. Kalai and Xemel (1982) proved that a network flow game is balanced, hence it has a non-empty
core. Bachrach and Rosenschein (2009) study a threshold version of the game and the complexity of
computing power indices.

Affinity games. The class ofaffinity gamesis a class of hedonic games introduced in Brânzei and
Larson (2009a,b). An affinity game is defined using a directed weigthed graph〈V, E, w〉 whereV is the
set of agents,E is the set of directed edges andw : E→ R is the weight of the edges.w(i, j) is the value
of agenti when it is associated with agentj. The value of agenti for coalitionC is vi(C) =

∑

j∈C w(i, j).
Some special classes of affinity games have a non-empty core (e.g. when the weights are all positive

or all negative). In this games, there may be a trade-off between stability and efficiency (in the sense of
maximizing social welfare) as the ratio between an optimal CS and a stable CS may be infinite.

Skill games.This class of games, introduced by Bachrach and Rosenschein(2008) is represented by a
triplet 〈N, S, T, u〉 whereN is the set of agents,S is the set of skills,T is the set of tasks, andu : 2T → R

provides a value to each set of tasks that is completed. Each agenti has a set of skillsS(i)⊆ S, each task
ti requires a set of skillsS(ti)⊆ S. A coalitionC can perform a taskt when each skill needed for the task
is the skill of at least a member ofC (i.e.∀s ∈ S(t), ∃i ∈ C such thatS(i) = s). The value of a coalitionC
is u(TC) whereTC is the set of tasks that can be performed byC.

2We introduce this class in Section 2.6 about the Shapley value.
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This representation is exponential in the number of agents,but variants of the representation lead
to polynomial representation. For example when the value ofa coalition is the number of tasks it can
accomplish, or when each task has a weight and the value of a coalition is the sum of the weights of the
accomplished tasks. In general, computing the solution concepts with these polynomial representation is
hard. However, in some special cases, checking whether the core is empty or computing an element of the
core can be performed in polynomial time. The problem of finding an optimal CS is studied in (Bachrach
et al., 2010).

Some more papers are studying the computational complexityof some subclasses of games, e.g. in
(Aziz et al., 2010; Greco et al., 2009) to name a few. We do not want to provide a full account of complexity
problem, which could be the topic of a survey paper on its own.

4 Coalition Structure Generation problem and related issues

In the previous sections, the focus was on individual agentsthat are concerned with their individual payoff.
In this section, we consider TU games(N, v) in which agents are concerned only about the society’s
payoff: the agents’ goal is to maximise utilitarian social welfare. The actual payoff of the agent or the value
of its coalition is not of importance in this setting, only the total value generated by the population matters.
This is particularly interesting for multiagent systems designed to maximize some objective functions. In
the following, an optimal CS denotes a CS with maximum socialwelfare. This may model multiagent
systems that are designed to optimise an objective function.

More formally, we consider a TU game(N, v), and we recall that a coalition structure (CS)s=

{S1, · · · , Sm} is a partition ofN , whereSi is the ith coalition of agents, andi 6= j⇒Si ∩ Sj = ∅

and ∪i∈[1..m]Si =N . S denotes the set of all CSs. The goal of the multiagent system is to locate
a CS that maximises utilitarian social welfare, in other words the problem is to find an element of
argmaxs∈S

∑

S∈s v(S).
The spaceS of all CSs can be represented by a lattice, and an example for apopulation of four

agents is provided in Figure 3. The first level of the lattice consists only of the CS corresponding to the
grand coalitionN = {1, 2, 3, 4}, the last level of the lattice contains CS containing singletons only, i.e.,
coalitions containing a single member. Leveli contains all the CSs with exactlyi coalitions. The number
of CSs at leveli is S(|N |, i), whereS is the Stirling Number of the Second Kind3. The Bell number,
B(n), represents the total number of CSs withn agents,B(n) =

∑n
i=0 S(n, k). This number grows

exponentially, as shown in Figure 4, and isO(nn) andω(n
n

2 ) (Sandholm et al., 1999). When the number
of agents is relatively large, e.g.,n≥ 20, exhaustive enumeration may not be feasible.

The actual issue is the search of the optimal CS. Sandholm et al. (1999) show that given a TU game
(N, v), finding the optimal CS is anNP-complete problem. In the following, we will consider centralised
search where a single agent is performing the search as well as the more interesting case of decentralised
search where all agents make the search at the same time on different parts of the search space. Before
doing so, we review some work where the valuation functionv is not known in advance. In a real
application, these values need to be computed; and this may be an issue on its own if the computations
are hard, as illustrated by an example by Sandholm and Lesser(1997) where the computation of a value
requires to solve a traveling salesman problem.

4.1 Sharing the computation of the coalition values

Before searching the space of CSs to find an optimal CS, the agents may need to compute the value of
each of the coalitions. We are interested in a decentralisedalgorithm that computes all the coalition values
in a minimal amount of time, and that requires minimum communication between the agents.

Shehory and Kraus were the first to propose an algorithm to share the computation of the coalition
values (Shehory and Kraus, 1998). In their algorithm, the agents negotiate which computation is
performed by which agent, which is quite demanding. Rahwan and Jennings proposed an algorithm
where agents, once they agree on an identification for each agent participating in the computation, know

3S(n, m) is the number of ways of partitioning a set of n elements intom non-empty sets.
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Level 1

Level 2

Level 3

Level 4{1}{2}{3}{4}

{1, 2}{3}{4} {1, 3}{2}{4} {1, 4}{2}{3}{1}{2, 3}{4}{1}{2, 4}{3}{1}{2}{3, 4}

{1, 2, 3}{4}{1, 2}{3, 4} {3}{1, 2, 4} {1, 4}{2, 3}{2}{1, 3, 4} {1, 3}{2, 4}{1}{2, 3, 4}

{1, 2, 3, 4}

Figure 3 Set of CSs for 4 agents.

Figure 4 Number of CSs in a population ofn agents.

exactly which coalition values to compute. This algorithm,called DCVC (Rahwan and Jennings, 2007)
outperforms the one by Shehory and Kraus. The key observation is that in general, it should take longer to
compute the value of a large coalition compared to a small coalition (i.e., the computational complexity
is likely to increase with the size of the coalition since more agents have to coordinate their activities).
Their method improves the balance of the loads by distributing coalitions of the same size to all agents.
By knowing the number of agentsn participating in the computation and an index number (i.e.,an integer
in the range{0..n}), the agents determine for each coalition size which coalition values to compute.
The algorithm can also be adapted when the agents have different known computational speed so as to
complete the computation in a minimum amount of time.
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4.2 Searching for the optimal coalition structure

The difficulty of searching for the optimal CS lies in the large search space, as recognised by existing
algorithms, and this is even more true in the case where thereexists externalities (i.e., when the valuation
of a coalition depends on the CS). For TU games with no externalities, some algorithms guarantee
finding CSs within a bound from the optimum when an incompletesearch is performed. Unfortunately,
such guarantees are not possible for games with externalities. We shortly discuss these two cases in the
following.

4.2.1 Games with no externalities
Sandholm et al. (1999) proposed a first algorithm that searches through a lattice as presented in Figure 3.
Their algorithm guarantees that the CS found,S, is within a bound from the optimalS⋆ when a sufficient
portion of the lattice has been visited. The bound considered is v(S)

v(S⋆) ≤K. They prove that to ensure a

bound, it is necessary to visit a least2n−1 CSs (Theorems 1 and 3 in (Sandholm et al., 1999)) which
corresponds to the first two levels of the lattice, i.e., the algorithm needs to visit the grand coalition and
all the CSs composed of 2 coalitions. The bound improves eachtime a new level is visited. An empirical
study of different strategies for visiting the other levelsis presented in (Larson and Sandholm, 2000).
Three different algorithms are empirically tested over characteristic functions with different properties:
1) subadditive, 2) superadditive, 3) picked from a uniform distribution in [0, 1] or in [0, |C|] (where|C|
is the size of the coalition). The performance of the heuristics differs over the different type of valuation
functions, demonstrating the importance of the propertiesof the characteristic function in the performance
of the search algorithm.

The algorithm by Dang and Jennings (2004) improves the one ofSandholm et al. (1999) for low bounds
from the optimal. For large bounds, both algorithms visit the first two levels of the lattice. Then, when
the algorithm by Sandholm et al. continues by searching eachlevel of the lattice, the algorithm of Dang
and Jennings only searches specific subset of each level to decrease the bound faster. This algorithm is
anytime, but its complexity is not polynomial.

These algorithms were based on a lattice as the one presentedin Figure 3 where a CS in leveli contains
exactlyi coalitions. The best algorithm to date has been developed byRahwan et al. and uses a different
representation called integer-partition (IP) of the search space. It is an anytime algorithm that has been
improved over a series of paper: (Rahwan, Ramchurn, Dang, Giovannucci and Jennings, 2007; Rahwan,
Ramchurn, Dang and Jennings, 2007; Rahwan and Jennings, 2008a,b; Rahwan, Ramchurn, Jennings and
Giovannucci, 2009). In this representation the CSs are grouped according to the sizes of the coalitions they
contain, which is called a configuration. For example, for a population of four agents, the configuration
{1, 3} represents CSs that contain a coalition with a singleton anda coalition with three agents. A smart
scan of the input allows to search the CSs with two coalitionsthe grand coalition and the CS containing
singletons only. In addition, during the scan, the algorithm computes the average and maximum value for
each coalition size. The maximum values can be used to prune the search space. When constructing a
configuration, the use of the maximum values of a coalition for each size permits the computation of an
upper bound of the value of a CS that follows that configuration, and if the value is not greater than the
current best CS, it is not necessary to search through the CSswith that configuration, which prunes the
search tree. Then, the algorithm searches the remaining configurations, starting with the most promising
ones. During the search of a configuration, a branch and boundtechnique is used. In addition, during the
search, the algorithm is designed so that no CS is evaluated twice. Empirical evaluation shows that the
algorithm outperforms any other current approach over different distributions used to generate the values
of the coalitions.

More recently, Service and Adams (2010a,b) designed an algorithm that uses dynamic programming
and that guarantees a constant factor approximation ratior in a given time. In particular, the latest
algorithm Service and Adams (2010a) guarantees a factor of18 in O(2n). Finally, Ueda et al. (2010)
propose to use a different representation, assuming that the value of a coalition is the optimal solution of
a distributed constraint optimization problem (DCOP). Thealgorithm uses a DCOP solver and guarantees
a bound from the optimum. Currently, it is difficult to compare all these different approaches.
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4.2.2 Games with externalities
The previous algorithm explicitly uses the fact that the valuation function only depends on the members of
the coalition, i.e., has no externalities. When this is not the case, i.e., when the valuation function depends
on the CS, it is still possible to use some algorithms, e.g., the one proposed in (Larson and Sandholm,
2000), but the guarantee of being within a bound from the optimal is no longer valid. Sen and Dutta use
genetic algorithms techniques (Sen and Dutta, 2000) to perform the search. The use of such technique
only assumes that there exists some underlying patterns in the characteristic function. When such patterns
exist, the genetic search makes a much faster improvement inlocating higher valued CS compared to
the level-by-level search approach. One downside of the genetic algorithm approach is that there is no
optimality guarantee. Empirical evaluation, however, shows that the genetic algorithm does not take much
longer to find a solution when the value of a coalition does depend on other coalitions.

More recently, Rahwan et al. and Michalak et al. consider theproblem for some class of externalities
and modify the IP algorithm for the games with externalities(Michalak et al., 2008; Rahwan, Michalak,
Jennings, Wooldridge and McBurney, 2009), however, they assume games with negative or positive
spillovers. Banerjee and Kraemer (2010) introduce a representation to represent games in partition
function games using types: each agent has a single type. They make two assumptions on the nature
of the externalities (based on the notions of competition and complementation) and they show that games
with negative or positive spillovers are special cases. They provide a branch and bound algorithm for the
general setting. They also provide a worst-case initial bound.

5 Issues for applying cooperative games

We now highlight issues that have emerged from the applications presented in Section 3. The protocols and
algorithms we cited there present some solutions to these issues. Some additional issues remain unsolved,
for example, dealing with agents that can enter and leave theenvironment at any time in an open, dynamic
environment. None of the current protocols can handle theseissues without re-starting computation, and
only few approaches consider how to re-use the already computed solution (Belmonte et al., 2004; Caillou
et al., 2002).

5.1 Stability and Dynamic Environments

Real-world scenarios often present dynamic environments.Agents can enter and leave the environment at
any time, the characteristics of the agents may change with time, the knowledge of the agents about the
other agents may change, etc.

The game-theoretic stability criteria are defined for a fixedpopulation of agents and the introduction
of a new agent in the environment requires significant computation to update a stable payoff distribution.
For example, for the kernel, all the agents need to check whether any coalition that includes the new
agent changes the value of the maximum surplus, which requires re-evaluatingO(2n) coalitions. Given
the complexity of the stability concept, one challenge thatis faced by the multiagent community is to
develop stability concepts that can be easily updated when an agent enters or leaves the environment.

In addition, if an agent drops during the negotiation, this may cause problems for the remaining agents.
For example, a protocol that guarantees a kernel stable payoff distribution is shown not to be ‘safe’
when the population of agents is changing: if an agenti leaves the formation process without notifying
other agents, the other agents may complete the protocol andfind a solution to a situation that does not
match the reality. Each time a new agent enters or leaves the population, a new process needs to be
restarted (Blankenburg and Klusch, 2004).

In an open environment, manipulations will be impossible todetect: agents may use multiple identifiers
(or false names) to pretend to be multiple agents, or the other way around, multiple agents may collude
and pretend to be a single agents, or agents can hide some of their skills. Hence, it is important to propose
solution concepts that are robust against such manipulations. We will come back later to some of the
solution that have been proposed: the anonymity-proof core(Yokoo et al., 2005) and anonymity-proof
Shapley value (Ohta et al., 2009).
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5.2 Uncertainty about Knowledge and Task

In real-world scenarios, agents will be required to handle some uncertainty. Different sources of
uncertainty have been considered in the literature:

• the valuation function is an approximation (Sandholm and Lesser, 1997) and agents may not use the
same algorithm. Hence, the agents may not know what is the true value.

• agents may not know some tasks (Blankenburg and Klusch, 2004) or the value of some coalitions. In
such cases, the agents play a different coalitional game that may reduce the payoff of some agents
compared to the solution of the true game.

• some information is private, i.e., an agent knows some property about itself, but does not know it for
other agents. In (Kraus et al., 2003), it is the cost incurredby other agents to perform a task that is
private. In (Chalkiadakis and Boutilier, 2010; Chalkiadakis et al., 2009), agents have a private type,
and the valuation function depends on the types of the coalition’s members.

• uncertainty about the outcome of an action (Chalkiadakis and Boutilier, 2010): when a coalition
makes an action, some external factors may influence the outcome of the actions. This can be captured
by a probability of an outcome given the action taken and the type of the members of the coalition.

• there are multiple possible worlds (Ieong and Shoham, 2008), which models the different possible
outcomes of the formation of a coalition. Agents know a probability distribution over the different
worlds. In addition, an agent may not be able to distinguish some worlds as it lacks information and
they know a partition of the worlds (called information sets), each set of the partition represent worlds
that appears as indistinguishable.

Some authors also consider that there is uncertainty in the valuation function without modeling a
particular source, for example in (Ketchpel, 1994b), each agent has an expectation of the valuation
function. In (Blankenburg and Klusch, 2005; Blankenburg etal., 2003) fuzzy sets are used to represent
the valuation function. In the first paper, the agents enter bilateral negotiations to negotiate Shapley value,
in the second paper, they define a fuzzy version of the kernel.

In the uncertainty model of Ieong and Shoham (2008), the definition of the core depends on the time
one reasons about it. They proposed three different definitions of the core that depend on the timing of
the evaluation: before the world is drawn orex-ante, not much information can be used; after the world
is drawn but before it is known, also calledex-interim, an agent knows to which set of its information set
the real world belongs, but does not know which one; finally when the world is announced to the agent or
ex-post, everything is known.

The model of Chalkiadakis and Boutilier (2010) combines uncertainty about the agent types and
uncertainty about the outcome of the action taken by the coalition. Each agent has a probabilistic belief
about the types of the other agents in the population. Chalkiadakis and Boutilier propose a definition of
the core, the Bayesian core (introduced in (Chalkiadakis and Boutilier, 2004)) in which no agent has the
belief that there exists a better coalition to form. As it maybe difficult to obtain all the probabilities and
reason about them, Chalkiadakis et al. (2009) propose to usea “point” belief: an agent guesses the type of
the other agents and reason with these guesses. The paper analyses the core, simple games (proving that
the core of a simple game is non-empty iff the game has a veto player) and some complexity result in this
games with belief.

5.3 Safety and Robustness

It is also important that the coalition formation process isrobust. For instance, communication links may
fail during the negotiation phase. Hence, some agents may miss some components of the negotiation
stages. This possibility is studied in (Blankenburg and Klusch, 2004) for the KCA protocol (Klusch and
Shehory, 1996b): coalition negotiations are not safe when some agents become unavailable (intentionally
or otherwise). In particular, the payoff distribution is not guaranteed to be kernel-stable. (Belmonte et al.,
2004) empirically studies the robustness of the use of a central algorithm introduced in (Belmonte et al.,
2002): the cost to compute a task allocation and payoff distribution in the core is polynomial, but it
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can still be expensive. In the case of agent failure, the computation needs to be repeated. Belmonte
et al. propose an alternative payoff division model that avoids such a re-computation, but the solution
is no longer guaranteed to be in the core, it is only close to the core. There is a trade-off between
computational efficiency and the utility obtained by the agent. They conclude that when the number
of agents is small, the loss of utility compared to the optimal is small; hence, the improvement of the
computational efficiency can be justified. For a larger number of agents, however, the loss of utility cannot
not justify the improvement in computational cost.

5.3.1 Protocol Manipulation
When agents send requests to search for members of a coalitionor when they accept to form a coalition,
the protocol may require disclosure of some private information (P̆echoŭcek et al., 2002). When the agents
reveal some of their information, the mechanism must ensurethat there is no information asymmetry
that can be exploited by some agents (Blankenburg et al., 2005). To protect a private value, some
protocol (Blankenburg and Klusch, 2004) may allow the addition of a constant offset to the private value,
as long as this addition does not impact the outcome of the negotiation.

Belmonte et al. study the effect of deception and manipulation of their model in (Belmonte et al.,
2004). They show that some agents can benefit from falsely reporting their cost. In some other
approaches (Blankenburg and Klusch, 2004; Conitzer and Sandholm, 2004), even if it is theoretically
possible to manipulate the protocol, it is not possible in practice as the computational complexity required
to ensure higher outcome to the malevolent agent is too high.For example, Conitzer and Sandholm (2004)
show that manipulating marginal-contribution based valuedivision scheme isNP-hard (except when the
valuation function has other properties, such as being convex).

Other possible protocol manipulations include hiding skills, using false names, colluding, etc. The
traditional solution concepts can be vulnerable to false names and to collusion (Yokoo et al., 2005). To
address these problems, it is beneficial to define the valuation function in terms of the required skills
instead of defining it over the agents: only skills, not agents, should be rewarded by the characteristic
function. In that case, the solution concept is robust to false names, collusion, and their combination. But
the agents can have incentive to hide skills. A straight, naive decomposition of the skills will increase the
size of the characteristic function, and Yokoo et al. (2006)propose a compact representation in this case.

5.4 Communication

While one purpose of better negotiation techniques may be to improve the quality of the outcome for the
agents, other goals may include decreasing the time and the number of messages required to reach an
agreement. For example, learning is used to decrease negotiation time in (Soh and Tsatsoulis, 2002). The
motivation of Lerman’s work (Lerman and Shehory, 2000) is todevelop a coalition formation mechanism
that has low communication and computation cost. In anotherwork, the communication costs are included
in the characteristic function (Tohmé and Sandholm, 1999).

The communication complexity of some protocols has been derived. For instance, the exponential
protocol in (Shehory and Kraus, 1999) and the coalition algorithm for forming Bilateral Shapley
Value Stable coalition in (Klusch and Shehory, 1996a) have communication complexity ofO(n2), the
negotiation based protocol in (Shehory and Kraus, 1999) isO(n22n), and it isO(nk) for the protocol
in (Shehory and Kraus, 1998) (wherek is the maximum size of a coalition). The goal of (Procaccia and
Rosenschein, 2006) is to analyse the communication complexity of computing the payoff of a player with
different stability concepts: they find that it isΘ(n) when either the Shapley value, the nucleolus, or the
core are used.

5.5 Scalability

When the population of heterogeneous agents is large, discovering the relevant agents to perform a
task may be difficult. In addition, if all agents are involvedin the coalition formation process, the cost
in time and computation will be large. To alleviate this scalability issue, a hierarchy of agents can be



34 S. AIRIAU

used (Abdallah and Lesser, 2004). When an agent discovers a task that can be addressed by agents below
this agent in the hierarchy, the agent picks the best of them to perform the task. If the agents below cannot
perform the task, the agent passes the task to the agent aboveit in the hierarchy and the process repeats.
The notion of clans (Griffiths and Luck, 2003) and congregations (Brooks and Durfee, 2003), where agents
gather together for a long period have been proposed to restrict the search space by considering only a
subset of the agents (see Section 5.6).

5.6 Long Term vs. Short Term

In general, a coalition is a short-lived entity that is “formed with a purpose in mind and dissolve when
that need no longer exists, the coalition ceases to suit its designed purpose, or critical mass is lost as
agents depart” (Horling and Lesser, 2004). It can be beneficial to consider the formation of long term
coalitions, or the process of repeated coalition formationinvolving the same agents. Vassileva et al. (2002)
explicitly study long term coalitions, and in particular the importance of trust in this content. Brooks and
Durfee (2003) refer to a long term coalition as a congregation. The purpose of a congregation is to reduce
the number of candidates for a successful interaction: instead of searching the entire population, agents
will only search in the congregation. The goal of a congregation is to gather agents, with similar or
complementary expertise to perform well in an environment in the long run, which is not very different
from a coalition. The only difference is that group rationality is not expected in a congregation. The notion
of congregation is similar to the notion of clans (Griffiths and Luck, 2003): agents gather not for a specific
purpose, but for a long-term commitment. The notion of trustis paramount in the clans, and sharing
information is seen as another way to improve performance.

5.7 Fairness

Stability does not necessarily imply fairness. For example, let us consider two CSsS and T with
associated kernel-stable payoff distributionxS andxT . Agents may have different preferences between
the CSs. It may even be the case that there is no CS that is preferred by all agents. If the optimal CS is
formed, some agents, especially if they are in a singleton coalition, may suffer from the choice of this CS.
Airiau and Sen (2010) propose a modification of the kernel to allow side-payment between coalitions to
compensate such agents.

Airiau and Sen (2009) consider partition function games with externalities. They consider a process
where, in turns, agents change coalition to improve their immediate payoff. They propose that the agents
share the maximal social welfare, and the size of the share isproportional to the expected utility of the
process. The payoff obtained is guaranteed to be at least as high as the expected utility. They claim that
using the expected utility as a base of the payoff distribution provides some fairness as the expected utility
can be seen as a global metric of an agent performance over theentire set of possible CSs.

5.8 Overlapping Coalitions

It is typically assumed that an agent belongs to a single coalition; however, there are some applications
where agents can be members of multiple coalitions. As explained in the task allocation domain (see
Section 3.1), the expertise of an agent may be required by different coalitions at the same time, and the
agent can have enough resources to be part of two or more coalitions. In a traditional setting, the use of the
same agenti by two coalitionsC1 andC2 would require a merge of the two coalitions. This larger coalition
U is potentially harder to manage, and a priori, there would not be much interaction between the agents in
C1 andC2, except for agenti. Another application that requires the use of overlapping coalition is tracking
targets using a sensor networks (Dang et al., 2007). In this work, a coalition is defined for a target, and as
agents can track multiple targets at the same time, they can be members of different coalitions.

The traditional stability concepts do not consider this issue. One possibility is for the agent to be
considered as two different agents, but this representation is not satisfactory as it does not capture the real
power of this agent. Shehory and Kraus propose a setting withoverlapping coalition (Shehory and Kraus,
1998): Each agent has a capacity, and performing a task may use only a fraction of the agent’s capacity.
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Each time an agent commits to a task, the possible coalitionsthat can perform a given task can change.
A mapping to a set covering problem allows to find the coalition. However, the study of the stability is
not considered. Another approach is the use of fuzzy coalition (Blankenburg et al., 2006): agents can be
members of a coalition with a certain degree that representsthe risk associated with being in that coalition.
Other work considers that the agents have different degree of membership, and their payoff depends on
this degree (Aubin, 1979; Mares, 2001; Nishizaki and Masatoshi, 2001). The protocols in (Lau and Zhang,
2003) also allow overlapping coalitions.

More recently, Chalkiadakis et al. (2010)4 have studied the notion of the core in overlapping coalition
formation. In their model, each agent has one resource and the agent contributes a fraction of that
resource to each coalition it participates in. The valuation functionv is then [0, 1]n→ R. A CS is no
longer a partition of the agents: a CSS is a finite list of vectors, one for each ‘partial’ coalition,i.e.,
S = (r1, . . . , rk). The size ofS is the number of coalitions, i.e.,k. The support ofrC ∈ S (i.e., the set
of indicesi ∈N such thatrCi 6= 0) is the set of agents forming coalitionC. For all i ∈N and all coalition
C ∈ S, rCi ∈ [0, 1]n represents the fraction of resource that agenti contributes to coalitionC; hence,
∑

C∈S rCi ≤ 1 (i.e., agenti cannot contributes more than 100% of its resource). A payoffdistribution
for a CSS of sizek is defined by ak-tuplex= (x1, . . . , xk) wherexC is the payoff distribution that
the agents obtain for coalitionC. If an agent is not in the coalition, it must not receive any payoff for
this coalition, hence(rCi = 0)⇒ (xC

i = 0). The total payoff of agenti is the sum of its payoffs over
all coalitionspi(CS, x) =

∑k
C=1 x

C
i . The efficiency criterion becomes∀rC ∈ S,

∑

i∈N xC
i = v(rC). An

imputation is an efficient payoff distribution that is also individually rational. We denote byI(S) the set
of all imputations for the CSS.

We are now ready to define the overlapping core. One issue is the kind of permissible deviations: when
an agent deviates, she can completely leave some coalitions, reduce her contribution in other coalitions,
or contributes to new coalitions. If she stills contribute to a coalition containing non-deviating agents, how
should they behave? They first may refuse to give any payoff tothe deviating agent, as she is seen as not
trustworthy. Agents that are not affected by the deviation may, however, consider that the deviators agents
did not fail them, and consequently, they may continue to share payoffs with the deviators. A last case
occurs when the deviators are decreasing their implicationin a coalition. This coalition may no longer
perform the same tasks, but it can still perform some. If there is enough value to maintain the payoff of
the non-deviators, the deviators may be allowed to share thesurplus generated. Each of these behaviors
give raise to different types of deviations, and consequently, different definition of a core: the conservative
core, the refined core and the optimistic core. The paper alsoprovides a characterization of conservative
core, properties of the different core, including a result showing that convex overlapping coalitional games
have a non-empty core.

5.9 Trust

The notion of trust can be an important metric to determine whom to interact with. This is particularly
important when the coalition is expected to live for a long term. In (Blankenburg et al., 2005), an agent
computes a probability of success of a coalition, based on a notion of trust which can be used to eliminate
some agents from future consideration. This probability isused to estimate the value of different coalitions
and help the agent in deciding which coalition to join or form. In (Vassileva et al., 2002), the decision to
leave or join a coalition is function of the trust put in otheragents. In this paper, the concept of trust
is defined as a belief that agents will have successful interaction in the future; hence, trust is used to
consider a subset of the entire population of agents for the formation of future coalitions. Trust is used to
compute coalitions, but agents do not compute a payoff distribution. Another work that emphasises trust
is (Griffiths and Luck, 2003) which introduces the concept ofclans. A clan is formed by agents that trust
each other with long-term commitments. Given the trust and an estimate of local gain, agents can accept to
join a clan. The idea behind this work is that agents that trust each other will be collaborative. Moreover,

4An earlier version is (Chalkiadakis et al., 2008)
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when an agent needs to form a coalition of agents, it will onlysearch partners in the clan, which reduces
the search space. Trust can therefore be very effective for scaling up in large society of agents.

5.10 Learning

When agents have to repeatedly form coalitions in the presence of the same set of agents, learning can be
used to improve performance of the coalition formation process both in terms of speed of the process and
in terms of better valuation.

A basic model of iteratively playing many coalitional gamesis presented in (Mérida-Campos and
Willmott, 2004): at each time step, a task is offered to agents that are already organised into coalitions.
The task is awarded to the best coalition. The model is made richer in (Mérida-Campos and Willmott,
2006) where the agents can estimate the value of a coalition and have a richer set of actions: as the agents
can fire members from a coalition, join a different coalition, or leave a coalition to replace some agents in a
different coalition. However, in both works, the agents arenot learning, they have a set of static strategies.
Empirical experiments compare the results over populations using either the same strategy or a mix of
strategies.

Chalkiadakis and Boutilier also consider a repeated coalition formation problem (Chalkiadakis and
Boutilier, 2004, 2008, 2010). The setting is a task allocation problem where agents know their own types
(i.e., skill to perform some type of tasks), but do not know the ones of other agents in the population.
Each time a coalition is formed, the agents will receive a value for that coalition. From the observation
of this value, the agents can update a belief about the types of other agents. When an agent is reasoning
about which coalition to form, it uses its beliefs to estimate the value of the coalition. This problem
can be formulated using a POMPD (Partially observable Markov Decision Process) where the agents
are maximising the long-term value of their decision over the repetition of the coalition formation
process. Solving a POMPD is a difficult task, and the POMPD forthe coalition formation problem grows
exponentially with the number of agents. In (Chalkiadakis and Boutilier, 2004), a myopic approach is
proposed. More recently, Chalkiadakis and Boutilier propose additional algorithms to solve that POMPD,
and empirically compare the solutions (Chalkiadakis and Boutilier, 2008).

6 Conclusion

Cooperative game theory has been studied from many decades now, and this survey shows this work
relevant to multiagent systems. A TU game is a simple mathematical object: it consists of a set of players
N and a valuation that maps any subset ofN to a real value. We saw that many solution concepts have
been proposed by game theory, and each of them has its pros andcons. The core is perhaps the most
intuitive solution promoting stability, but it may be empty. The nucleolus is theoretically quite appealing,
however, it is difficult to compute. The Shapley value, also difficult to compute, does not provide stability
but provides fairness.

Using a naive representation, the size of the input is exponential, hence, it is computationally expensive
to compute a solution concept. One contribution of the multiagent systems community to game theory has
been to investigate the computational properties of classes of games for various solution concepts under
various representations. We have tried to indicate these results in this paper, but this topic would probably
require a survey on its own.

Another contribution of the multiagent system community has been to propose solutions to issues that
are less interesting from a game theoretic point of view. Forexample, searching for an optimal coalition
structure or considering issues presented in Section 5 suchas uncertainty, the problem of overlapping
coalition, learning, etc. Some issues have not been successfully treat, for example the formation of
coalition in open environments.
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