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Abstract

Forming coalitions is a generic means for cooperation: [ggeopbots, web services, resources, firms, they
can all improve their performance by joining forces. The afseoalitions has been successful in domains
such as task allocations, sensor networks, and electroai&eatplaces. Forming efficient coalitions
requires the identification of matching synergies betweiferdnt entities (finding complementary
partners, or similar partners, or partners who add diwgrdit addition, the different parties must negotiate
a fair repartition of the worth created by the coalition. Tingt part of this paper is a tutorial on cooperative
game theory (also called coalitional games). We then sutiveydifferent scenarios and the key issues
addressed by the multiagent systems community.

1 Introduction

Coalition formation is an important tool for enabling coogi#on in agent societies. Social scientists and
economists have studied situations where individuals arsinbsses benefit from joining forces. The
coalition formation problem can be decomposed into twoptadilems. The first problem is tiselection

of the coalition members in the agent population. Then,dissumed that the members self-organise and
achieve their goals, and that the coalitema wholereceives a value, i.e., the cooperation of the coalition
members is rewarded, not the individual agents. The secantidgm is thesharingof this value between
its members. These two sub-problems cannot be treateddndeptly (Sandholm et al., 1999): a rational
agent will not accept to be a member of a coalition if it can gétigher reward by joining a different
coalition. Games that model such cooperation have beengwé&dly studied in the game theory literature
in a sub-field called “Cooperative game theory”. A centrahpof attention is the stability of the coalition:

it is preferable that agents do not have any incentive tceléla@ir current coalition to join a different one.
Unfortunately, there is no unique and accepted solutiomforee stability, there are different stability
criteria, with their own strengths and weaknesses.

Over the last decade, cooperative game theory has receieeglased attention in the multiagent
systems community as forming dynamic coalitions may leachdoe efficient artificial agent societies.
Joining a coalition may be beneficial for an agent: the usalaranembers’ resources may facilitate or
enable the solution of a problem. Cooperative game themphavided a great basis to build coalition
formation protocols, but additional issues have risen avtriying to apply them. In addition, computer
scientists provide insights about computational compjégsues. Due to the exponential size of the input
(when there are agents, there aiZ* coalitions, and each of them may generate a different valuapy
become quickly unfeasible to compute some solution fordaajues ofn.

Multiple scenarios, for example in the task allocation dovedShehory and Kraus, 1998) or in the
electronic marketplace domain (Tsvetovat et al., 2001 Haeught to light many issues and constraints
that classical game theory did not address, or some clagggen®es or representation that allow easier
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computation of some solution concepts. Some other isseaglated with dynamic environments: agents
can enter and leave the system at any time, new tasks mayrapgba environment, the environment
may be uncertain (uncertainty about the value of the coabti about the competence of other agents,
etc.). Safety and robustness issues should also be takeadobunt to guarantee a stable agent society.
In addition, researchers must design protocols that aneredo prevent the possibility of manipulation
or infiltration by agents or external forces. Another scener to consider that the goal of the agent is
to maximise utilitarian social welfare. This scenario id mderesting for game theory as sharing the
value between the members is no longer an issue. Howevandittte optimal organisation is still a hard
problem which can be addressed by Al techniques.

The first part, section 2, consists of a tutorial on coopegagame theory. We first survey the case in
which utility can be transferred between agents (i.e., egare allowed to make side payments between
them): the transferable utility games (TU games). This éniost important case treated by the game
theory literature. We introduce the stability conceptsTorgames and provide some results about their
complexity. We will also study one special type of TU gamet timdels voting situation, and some
extensions of TU games. We then briefly introduce the caseenfwetransfer or comparison of utility are
possible between agents: the non-transferable utilityega(NTU games) and provide some definitions of
stability concepts.

The rest of the paper introduces research from the multiaystems literature. We first present some
applications that have been used to study the formationaitmms in Section 3. In particular, we discuss
the task allocation domain, the electronic marketplace aiopand some variants. We also list some
additional domains where coalitions of agents have beed. UseSection 4 we survey the cooperative
case where the agents’ goal is to maximise utilitarian $ogédfare, i.e., the case where the utility of an
agent is the total utility of the population. We survey soreatcal algorithms that efficiently search for
the optimal partition of agents into coalitions. FinallySmction 5, we survey some issues raised by the
multiagent systems community for which game theory hde ljtr no) answer so far.

2 Tutorial on Cooperative Game Theory

One branch of game theory studies cooperation betweensagéet so-called cooperative game the-
ory (Kahan and Rapoport, 1984; Osborne and Rubinstein,; Fildg and Sudhdlter, 2007). The literature
is divided into two main models, one in which it is possiblectimpare utility between two agents and
transfer utility (the transferable utility games or TU gahend one in which comparison is not possible
(the non-transferable utility games or NTU games). In a Tohgaa coalition generates a worth, i.e., a
value achieved through cooperation. The members of a mraliive to share the value of their coalition,
hence they need to compare the utility between them and thsy Ioe able to be transfer some utilities
between them. In an NTU game, an agent has some preferenc¢hevdifferent coalitions, but they
cannot provide anything to compensate any agent.

We will introduce TU games in Section 2.1. The solution of angaconsists of a partition of the set
of agents into coalitions and a payoff distribution to shifue value of each coalition. One intuitive and
important solution, the core, has an important drawbaakséone games, there will not be any solution
in the core. Many other solution concepts have been propsedax the requirements of the core, and
we will study the most important ones (the stable set, théelies and the kernel). We will also study a
solution concept that fosters fairness: the Shapley value.

Then, we will study a particular type of TU games that modeingsituations. We will end the study
of TU games with few extensions. One extension assumes ¢iio8e.8) that the set of agents has already
been partitioned into coalitions, or that there exist soffinitles between agents. The second extension,
called games with externality (in Section 2.9), considen®gs in which the value of a coalition depends
on the other coalitions present in the environment.

We will then move on to a brief introduction of NTU games in @@t 2.10. We will first introduce
a subclass of NTU games called hedonic games before movitigeameneral definition of NTU games.
This will conclude the tutorial on cooperative game theory.
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2.1 Transferable Utility Games (TU games)

In the following, we use a utility-based approach and we mssthat “everything has a price”: each agent
has a utility function that is expressed in currency unitge Tise of a common currency enables the agents
to directly compare alternative outcomes, and it also essafide payments.

A TU game involves a set of playerg and a characteristic functian: 2¥ — R that provides a value
for each possible coalition or subset of agents. The chaxiatit function is common knowledge for the
entire population, and the value of a coalition depends onlthe players present in its coalition. Ina TU
games, two questions are asked simultaneously: whatiooalishould form (i.e., how to partition the set
N into coalitions), and how to share the value of a coalitiordoh of its members.

In general, itis not always possible to satisfy the intere$all players at the same time. Unfortunately,
there is no single criterion for characterising an accdptablution. After defining the TU games with
more details, we will present some desirable criterion fepkation, and then, we will present the main
solution concepts.

2.1.1 Notations and types of TU games

We consider a seV of n agents. Acoalition is a non-empty subset df. The setV is also known as
the grand coalition The set of all coalitions i& and its cardinality i2™. A coalition structure (CS)
S={C,---,Cy}isapartition ofN: each se€; is a coalition withU>,C; = N andi # j = C; NC; =

(). The set of all CSs is” and its size is of the orde?(n") andw(n?) (Sandholm et al., 1999). The
characteristic functiorfor valuation functiohv : 2V — R provides the worth or utility of a coalition. For
TU games, itis assumed that the valuation of a coalifiaioes not depend on the other coalitions present
in the population.

Definition 2.1 (TU game) A transferable utility game (TU game) is defined as a pair v) where N
is the set of agents, and: 2V — R is a characteristic function.

We now describe some types of valuation functions.

Additive (or inessential): VC1,Co C N [C1NCa =0, v(C; UC2) =v(Cy) 4+ v(C2). When a TU game
is additive,v(C) = >, .. v({i}), i.e., the worth of each coalition is the same whether its e
cooperate or not: there is no gain in cooperation or any gyeebetween coalitions, which explains
the alternative name (inessential) used for such games.

Superadditive: VC;,Co C N |[C1NCy =0, v(C; UC2) > v(Cy1) + v(Cs), in other words, any pair of
coalitions is best off by merging into one. In such environtsgsocial welfare is maximised by
forming the grand coalition and agents have an incentivertm the grand coalition.

Subadditive: VC1,Co C N [C1NCs =0 ,v(C1 UC2) <v(C1) + v(Co): the agents are best of when they
are on their own, i.e., cooperation is not desirable.

Convex games:First let us cal(C U {i}) — v(C) the marginal contribution of a playeto coalitionC,
i.e., it is the increase of value of coalitidhdue to the presence of agentWe call a valuation
convexfforall CC T andi ¢ T v(C U {i}) — v(C) <v(T U {i}) — v(T). So a valuation function
is convex when the marginal contribution of each playereases with the size of the coalition he
joins. Convex valuation functions are superadditive. Wi sge that such games have some nice
properties (e.g. the core of a convex game is non-empty).

Unconstrained. The valuation function can be superadditive for some doabt and subadditive for
others: some coalitions should merge when others shouldineseparated. This is the most difficult
and interesting environment.

The valuation function provides a value to a set of agents,tmandividual agents. Thepayoff
distribution « = (x4, - - - , x,,) describes how the worth of the coalition is shared betweeratients,
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- (8, 2)
1\’1 — Se,ie,8={Ci,....C},CiCN,i#£j=(CinC;) =0
v:2% - R
zeR”
TU game

Payoff configuration

Figure 1 What is solving TU games?

wherex; is the payoff of agent. We also use the notatiar(C) = .. ;. A payoff configuration (PC)
is a pair(S, z) whereS € . is a CS and: is a payoff distribution? denotes the set of all PCs.

The solution of a TU gaméV, v) is a PC: what are the coalitions that will form and how to distte
the worth of the coalitions (Figure 1). We are now going tospré some rationality concepts for PCs,
which describes good properties that a solution of the tioalformation should have.

2.1.2 Rationality concepts
We now discuss different rationality concepts for payofftdbutions, i.e., some properties that link the
coalition values to the agents’ individual payoff.

Efficiency: z(N) =v(N) the payoff distribution is an allocation of the whole worth tbhe grand
coalition to all the players. In other words, no utility isstat the level of the population.

Individual rationality: An agent will be a member of a coalition only when > v({i}), i.e., to be part
of a coalition, a player must be better off than when it is sroivn.

Group rationality: VC C N, z(C) > v(C), i.e., the sum of the payoffs of a coalition should be at least
the value of the coalition (there should not be any loss aletha of a coalition).

Pareto optimal payoff distribution: It may be desirable to have a payoff distribution where nanage
can improve its payoff without lowering the payoff of anattegent. More formally, a payoff
distributionz is Pareto optimal iff

PyeR"|Jie N| {yi >z andVj #4, y; > z;}.

Two notions will be helpful to discuss some solution consephe first is the notion afmputation
which is a payoff distribution with the minimal acceptabtstraints.

Definition 2.2 (Imputation)  An imputationis a payoff distribution that is efficient and individually
rational for all agents. The set of all imputations is dertbby Zmyp.

An imputation is a solution candidate for a payoff distribant and can also be used to object a payoff
distribution. The second notion is te&cessvhich measures the improvement due to a change of coalition
inaCS.

Definition 2.3 (Excess) The excesgelated to a coalitiorC given a payoff distribution: is e(C, z) =
v(C) — z(C).

We can provide two interpretation of the excess. First, iy ma@asure the total amount that the players
would gain or lose if they were to form coalitigh Whene(C, x) > 0, it means agents i@ would gain
some utility by formingC, hence they have an incentive in doing so. An agent can useathe of the
excess of a coalitiod as a measure of its strength, i.e., if it were to form the tioaliC, the agent
would be able to generate an additional value(@f, «). Another interpretation is to view the excess as
an amount of complaints: when the excess for a coalition gtige, it means that some utility is lost,
which is not acceptable! Some stability concepts (the Keané the nucleolus, see below) are based on
the excess of coalitions. The core can also be defined usenggttion of excess.
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The solution of the coalition formation problem is a P&, x). The problems of finding the CS (i.e.,
finding which coalitions are formed) and of finding a payoftdbution (i.e., sharing the value of the
coalitions between the members) cannot generally be depata the following, we are going to present
different solution concepts proposed in the literatureciHaas pros and cons, and none is clearly better
than all others.

2.2 The Stable Set

A first idea is to use the concept of dominance between outsdrmm non-cooperative game theory and
to apply it to the context of cooperative games.

Let z andy be two payoff distributions. We say thatdominatesy iff 37" C N such thatvi € T,
x; >y; andv(T) > z(T) and we noter > y. In other words, there exists a coaliti@hfor which each
member prefers the allocatianovery, and they can obtain this utility. This dominance relatioaymot
be complete, i.e., two payoff distributions may not be corapke. Also, dominance may not be transitive.
One way to characterise fairness is to ensure, for all agthasthere is no other payoff distribution that
dominates the current one. The idea of the stable set is beigttgether the payoff distributions that are
not comparable between each other, and that dominate soyo destributions outside the stable set.
The formal definition follows:

Definition 2.4 (Stable set) The stable setl’ is a set of imputations that satisfies the following
conditions:

Internal Stability: Vz €V, By €V suchthaty ~ x
External stability: Vz ¢ V, 3y € V such thaty > z.

In other words, internal stability ensures that no payoétrithution in the stable set dominates any
other payoff distribution in the stable set. External digbénsures that for any payoff distribution that is
not in the stable set, there exists one in the stable set timaihetes it. Hence, the stable set represents a
set of acceptable payoff distribution from a global pointvigw, which is akin to the Pareto Optimality
concept of non-cooperative game theory: individual plager prefer some distributions over others in the
stable set, but not all the players will have the same praé&a® Just as in non-cooperative game theory,
Pareto Optimality is accepted as a desirable equilibridtargon: the stable set can be viewed a desirable
property of a solution. Though in many situations, the saglt is guaranteed to be non-empty, it is not
always the case.

2.3 The Core

Let us assume that we have a TU gafé v) and that we want to form the grand coalition. The core,
which was first introduced by Gillies (Gillies, 1953), is theost attractive and natural way to define
stability. A payoff distribution is in theorewhen no set of agents have any incentive to form a different
coalition. More formally:

Definition 2.5 (Core) A payoff distribution: € R™ is in thecoreof a game N, v) iff  is an imputation
that is group rational, i.e.core(N,v) = {z € R" | 3,y z; =v(N) A VCC N z(C) >v(C)}

A payoff distribution is in the core when no group of agents &iay interest in rejecting it, i.e., no group
of agents can gain by forming a different coalition. Notet tifiés condition has to be true for all subsets
of N, in particular for all singletons, which ensures indivititagionality. The core can thus be defined as
a payoff structure that satisfies weak linear inequalifié® core is therefore closed and convex. Another
way to define the core is in terms of excess:

Definition 2.6 (Core)  The core is the set of payoff distributiere R™, suchthav¥R C N, e(R, z) <O0.
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In other words, a PC is in the core when there exists no coalitiat has a positive excess. This definition
is attractive as it shows that no coalition has any complaimth coalition’s demand can be granted.

There are, however, multiple concerns associated wittgulanotion of the core. First, the core can be
empty: the conflicts captured by the characteristic fumctannot satisfy all the players simultaneously.
When the core is empty, at least one player is dissatisfied dwytility allocation and therefore blocks
the coalition. Let us consider the following example fronaftan and Rapoport, 1984){ A, B}) = 90,
v({A, C}) =80, v({B,C})="70, andv(N) = 120. In this case, the core is the PC where the grand
coalition forms and the associated payoff distributiofbig, 40, 30). If v(N) is increased, the size of the
core also increases. Butif V) decreases, the core becomes empty.

The other issue with adopting the core as stability concepterns computational complexity. Check-
ing whether a payoff distribution is in the core/i§P-hard (Conitzer and Sandholm, 2004). Additionally,
determining the non-emptiness of the core, even for a sddiiee game, is\N“P-hard (Conitzer and
Sandholm, 2003), though there exists a transfer schement@igge to the core (Wu, 1977). In addition,
Dieckmann and Schwalbe (2002) introduce a process that teaal core allocation in non-superadditive
games.

Some classes of games, however, are guaranteed to haveeampoy-core. For example, a convex
game has a non-empty core. The set of games with non-emphesrbeen characterized independently
by Bondareva (1963) and Shapley (1967), and the result istias the Bondareva Shapley theorem. The
idea is to use a linear program to define the core.

min z(N)
(LP) { subject tar(C) > v(C) forall CC N, S #0

The linear constraints correspond to the group rationalitigditions. A feasible solution of (LP) is a
group rational payoff distribution. For a solution to be momof the core, it has to be efficient as well.
The group rationality assumption for the grand coalitioarguntees that(N) > v(N). The idea of (LP)
is to minimizez (V). Then, when the objective function reaches the valug o), it is clear that the core
of the game is non-empty. We now introduce some notationdatet® state the theorem.

First, we introduce a notation that encodes the members obatition in a vector form. The
lifieC

characteristic vectoryc of a coalitionC C N is vector ofR™ defined byyi = { Oifie N\C

. Next,

we introduce a weight function, which is called a map.
Definition 2.7 (Map) A mapis a function2™¥ \ () — R, that gives a positive weight to each coalition.

A special kind of map, the balanced map, can be thought of@eptage of time spent by the agents in
each coalition. For each agenthe sum of a balanced map for all coalitions that contamust sum up to
one. The following definition formalizes this idea. Notetttiee condition is an equality between vectors
of R™.

Definition 2.8 (Balanced map) A function\: 2V \ §) — R, is a balanced mayiff Yccn AC)xe =
XN-

We provide an example of a balanced map for three playershife Ta Using the definition of balanced
map, we are now ready to define a balanced game.

Definition 2.9 (Balanced game) A game is balancediff for each balanced map\ we have
>ccn.exzo MCOv(C) < v(N).

The definition of a balanced game may appear artificial. Heweétzappears in the dual of (LP), which
can be shown to be:

max ZCQN ycv(C)
(DLP) subject to{ 2 ccn Yexe = xn and,

yc > 0forallCC N,C #0.
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value ofAc x5

AC) = % if |C] :_2 for nonzero\¢
0 otherwise c\il1 2 3
Each of the row sums up to 1: —
forall i, we havelyi, o, +1yi . 4+ 1yi . =yt -1 {,2y |3 5 O
o 2A4{1,21 T 2A{1,3} T 24{2,3} {1,2,3} ' 1 1
or using the vector notatiofiy 1 2y + $xq1.3) + sx (2.3 = (1, 1, 1). {L,3} |5 0 3
{23 |0 3 3

Table 1 Example of a balanced map far= 3

The Bondareva-Shapley theorem is a consequence of théydih@orem of linear programming. This
theorem completely characterize the set of games with aenguty core. One standard application of
the Bondareva Shapley theorem is to prove that a market gasa hon-empty core (see (Osborne and
Rubinstein, 1994, Section 13.4)).

Theorem 2.1 (Bondareva-Shapley theorem) A TU game has a hon-empty core iff it is balanced.

There are few extensions to the concept of the core. As diedugbove, one main issue of the core
is that it can be empty. In particular, a member of a coalititay block the formation so as to gain a
very small payoff. When the cost of building a coalition is smkered, it can be argued that it is not
worth blocking a coalition for a small utility gain. Thetrong and weak e-core concepts model this
possibility. The constraints defining the strong (respettithe weak)e-core becom&T C N, z(T') >
v(T) — ¢, (respectivelyvT C N, z(T) > v(T) — |T| - €). In the weake-core, the minimum amount of
utility required to block a coalition is per player, wherdas the stronge-core, it is a fixed amount. If
one pickse large enough, the strong or wealkcore will be non-empty. When decreasing the value, of
there will be a threshold such that fdr< e thee’-core ceases to be non-empty. This specizdre is then
called thedleast core

Another way to relax the requirements of the core is to digimodify the game. Consider the linear
program (LP) and imagine that a feasible solution does ramtiré¢he value of the grand coalition. If one
could increase sufficiently the value of the grand coalititne core of the corresponding game would
become non-empty. This is the idea of tbast of stability(Bachrach et al., 2009). Given a TU game
(N,v) and a valueA € R, we consider the gam@V, v2) whereVC C N, v2(C) = v(C) andv®(N) =
v(N) + A. The cost of stability is then defined as the smallestuch that the core dfN, v2) is non-
empty.

In most traditional work in game theory, the superaddiivf the valuation function is not explicitly
stated, but it is implicitly assumed when the core is defiegarticular, this assumption ensures that
the grand coalition always emerges. That is one of the resasbi efficiency is defined with respect to
the grand coalition. In case of an unconstrained valuatimttfon, the grand coalition may not form,
and instead a different CS may emerge. We can define the coféSfpand we borrow the definitions
from (Chalkiadakis et al., 2008), but the definitions areilsimto (Dieckmann and Schwalbe, 2002;
Sandholm and Lesser, 1997).

A payoff distributionz is efficientwith respect to a C& whenvC € S, >, x; = v(C). A payoff
distribution is animputationwhen it is efficient (with respect to the current CS) and imdinally rational
(i.e.,Vie N, z; >v({i})). The set of all imputations for a CSis denoted by'mp(S). We can now state

the definition of the core:

Definition 2.10 (Core)  The core of a gaméN, v) is the set of all PC4S, ) such thate € Zmp(S)
andVC C N, > ... z; > v(C).
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We now introduce a special type of TU game that will be usdfultlefine other stability concepts
(the nucleolus and the kernel). Aumann and Dreze (1974)gz®phe definition of a game with CS:
in their definition, the CS formed by the agent is fixed (e.ge tb some external constraints such as
location). In this type of games, the agents’ goal is not tangje the CS, but simply to obtain a stable
payoff distribution. We will provide more information fohits type of games in Section 2.8.1. For now,
the definition of the game and the statement of the definitfdheocore suffice.

Definition 2.11 (Game with coalition structure) A game with coalition structurds a triplet
(N,v,S), where(N, v) is a TU game, and is a particular CS. In addition, transfer of utility is only
permitted within (not between) the coalitions%fi.e.,VC € S, z(C) < v(C).

For this type of games the core can be defined as follows:

Definition 2.12 (Core)  The core of agam@V, v, S) is the set of all PC$S, x) such thate € Zmp(S)
andVC C N, ..o v >v(C),i.e.,core(N,v,S) ={z cR" [ (VC €S, z(C) =v(C))}.

2.4 The nucleolus

The nucleolus has been introduced by Schmeidler (Schmek€9) for games with CS. L&V, v, S)
be a TU game with CS andbe a payoff distribution. Let us start the discussion bylfiexpthe definition
of the excess given in Section 2.1.2. Téecess(C, =) of coalition C at x is the quantitye(C, z) =
v(C) — z(C). For the nucleolus, we use the interpretation that the exisea measure of complaints:
whene(C, x) is positive, the members 6fshould complain that some utility is lost or not given to them
The vector of excesses over all the coalitions is one way &tuate the amount of complaints about a
payoff distribution. The goal of the nucleolus is to minimithis in a certain way.

Let us consider the game in Table 2 and we want to compare tyaffadistributionsz andy. A priori,
it is not clear which payoff should be preferred. One solutgto compare the two vectors of complaints
using the lexicographical order (it is the order of a dictipnor a phone bodj.

N={1,2,3}, v({i})=0forie{1,2,3} v({1,2})=5v({1,3})=6,v({2,3})=6 v(N)=38
Let us consider two payoff vectotis= (3, 3, 2) andy = (2, 3, 3).

JJ:<3,3,2> y:<273a3>
coalitionC | ¢(C, x) coalitionC | ¢(C, y)

{1} -3 {1} -2
{2} -3 {2} -3
{3} -2 {3} -3
{1, 2} -1 {1,2} 0
{1,3} 1 {1, 3} 1
{2, 3} 1 {2, 3} 0
{1,2,3} 0 {1,2,3} 0

Table 2 A motivating example for the nucleolus

Let ! be a sequence of reals. We denote by thereorderingof [ in decreasingprder. In the example,
e(z)=(-3,-3,-2,—1,1,1,0) and there(z)* =(1,1,0, -1, —2, —3, —3). The first entry ofe(x)>

is the maximum excess: the agents involved in the correspgradalition have the most valid complaint.
If the maximum excess af is larger than the one qf, theny should be preferred. If they have the

1The formal definition is the following:
Let(z, y) € (R™)?. We say that is greater or equal tay in thelexi-

X=y or
s t1<t<ms.tVis.t.1<i<txz, =y, andz; > y:

Definition 2.13 (Lexicographic ordering)

cographicabrdering, and we note >, y When{
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same maximum complaint, one can check the second entry enadkeithe reasoning. Hence, we use the
lexicographical ordering for comparing two payoff distritonsx andy: we say thate is preferred tay
whene(z)* <., e(y)”: there is a smaller amount of complaintsithan iny.

A payoff distribution is in the nucleolus when it yields thedst problematic” sequence of complaints
according to the lexicographical ordering. The nucleoluthe game is a set of payoff distributions such
that the corresponding vector of exce$s)” is minimal.

Definition 2.14  LetZmp be the set of all imputations. TmeicleolusNu (N, v) is the set
Nu(N,v)={z € Imp|Vy € Imp e(y)” >ics e(x)” }.

Recall that the core is a payoff distribution that has no daimts: for all coalition<, e(C, ) < 0. The
nucleolus relaxes the stability requirements of the coreigpossible that some coalition has a complaint.
This relaxation of the core stability requirements is erfotagguarantee that not only the nucleolus is non-
empty, but also that it contains at most one element. Hemesta using the nucleolus are guaranteed to
find an agreement, and it is unique.

Theorem 2.2 Let(N, v) be a TU game andmp is the set of imputations. #mp # 0,
then the nucleolu®’u(N, v) is non-empty

Theorem 2.3 The nucleolus haat most onelement.

The next property of the nucleolus shows its relation with ¢bre: when the core of a game is non-
empty, the nucleolus is included in the core. Hence, theemlus can be seen as a refinement of the
core. The intuition behind this result is that the core rezgino complaint. For a game with non-empty
core, some payoff distributions have no complaints, bunti&eolus, by picking the one with the lowest
complaint, will discriminate between these payoffs in tbeec

Theorem 2.4  Let(N, v) be a TU game with a non-empty core. THén(V, v) C core(N, v).

One drawback of the nucleolus is that it is difficult to comgut can be computed using a sequence
of linear programs of decreasing dimensions, but the sisacdh of these groups is exponential. In some
special cases, the nucleolus can be computed in polynomial(Kuipers et al., 2001; Deng et al., 2006;
Elkind and Pasechnik, 2009), but in the general case, cantptiie nucleolus is not guaranteed to be
polynomial. Only a few papers in the multiagent systems camity have used the nucleolus, e.g., (Yokoo
etal., 2006).

2.5 The kernel

The kernel is a stability concept that weakens the stalsgitjyirements of the core. It was first introduced
by Davis and Maschler (1965) and it is based on the idea tleatttength of an agent is measured by the
maximum excess that agent can obtain by forming a new amalitie., a different interpretation of the
kernel). An agent can consider a payoff distribution to beeptable by comparing its own ‘strength’ with
the ‘strength’ of other members of its coalition. When botkratg have equal strength, they do not have
any incentive to leave the coalition. When their strengtfedit the weaker agent can make a payment to
the stronger agent to balance out their strength and reach kind of equilibrium. Although its definition

is not as intuitive as the core, the kernel exists and is avmyn-empty. In addition, there is an algorithm
that converges to a payoff distribution in the kernel. Thargatee of finding a payoff distribution and the
existence of the algorithm make the kernel an attractiveilgtaconcept for applications.

2.5.1 Definition of the kernel

We recall that theexcesselated to coalitiorC for a payoff distribution x is(C, x) = v(C) — z(C). We
saw that a positive excess can be interpreted as an amouonhydlaint for a coalition. We can also
interpret the excess as a potential to generate more uliktyus consider that the agents are forming a
CSS={Ci,...,C,}, and let us consider that the excess of a coaliighS is positive. Agent € C
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can view the positive excess as a measure of his strengtie iegves its current coalition & and form
coalitionC, she has the power to generate some surgldisz). When two agents want to compare their
strength, they can compare the maximum excess of a codtfitidgrcontains them, and the kernel is based
on this idea.

Definition 2.15 (Maximum surplus)  For a TU game N, v), themaximum surplus, ;(z) of agentk
over agent with respect to a payoff distributionis
skal@) = ccn | hee, ige e(C,2).

For two agents: and!, the maximum surplus; ;(z) of agentk over agent with respect tar is the
maximum excedsom a coalition thaincludesk but doesexcludel. This maximum surplus can be used
by agentk to show its strength over agehtassuming it is positive and that the agent can claim all of
it, agentk can argue that it will be better off without agdntence it should be compensated with more
utility for staying in the current coalition. When any two ag®in a coalition have the same maximum
surplus (except for a special case), the agents are saiditogogiilibrium. A payoff distribution is in the
kernel when all agents are in equilibrium. The formal deifimis follow:

Definition 2.16 (kernel)  Let (N, v, S) be a TU game with coalition structure. Thernelis the set of
imputationsz € Zmp(S) such that for every coalitiod € S, if (k, ) € C2, k # 1, then we have either

ski(x) > sp k() or zp =v({k}).

spi(x) < spp(x) calls for a transfer of utility fronk to ! unless it is prevented by individual rationality,
i.e., by the fact that;, = v({k}).

The kernel and the nucleolus are linked: the following reslubws that the nucleolus is included in the
kernel. As a consequence, this guarantees that the kemahismpty.

Theorem 2.5 The nucleolus is included in the kernel
Theorem 2.6 WhenZmp # (), then the kernel is non-empty.

An approximation of the kernel is thekernel, where the equality, ;(z) = s; 1 (x) above is replaced
by |sk.i(z) — s1.x(x)| < e. One property of the kernel is that agents with the same maxirsurplus, i.e.,
symmetric agents, will receive equal payoff. For ensuraigniess, this property is important.

2.5.2 Computational Issues

One method for computing the kernel is the Stearns methed (S, 1968). The idea is to build a sequence
of side-payments between agents to decrease the diffecdrsgpluses between the agents. At each
step of the sequence, the agents with the largest maximuplusutifference exchange utility so as to
decrease their surplus: the agent with smaller surplus snalgayment to an agent with higher surplus
S0 as to decrease their surplus difference. After eachpagieent, the maximum surplus over all agents
decreases. In the limit, the process converges to an eldmém kernel. Computing an element in the
kernel may require an infinite number of steps as the side paigitan become arbitrarily small, and the
use of thes-kernel can alleviate this issue. A criteria to terminatea®s method is proposed in (Shehory
and Kraus, 1999), and we present the corresponding algofitiAlgorithm 1.

Computing a kernel distribution is of exponential comptgxin Algorithm 1, computing the surpluses
is expensive, as we need to search through all coalitiortsctivgtains a particular agent and does not
contain another agent. Note that when a side-payment i®mpeetl, it is necessary to recompute the
maximum surpluses. The derivation of the complexity of theags method to compute a payoff in the
e-kernel can be found in (Klusch and Shehory, 18%hehory and Kraus, 1999), and the complexity for
one side-payment i®(n - 2™). Of course, the number of side-payments depends on thesfmeeiand
on the initial payoff distribution. They derive an upper bdufor the number of iterations: converging
to an element of the-kernel requiresn logQ(%), where §y is the maximum surplus difference
in the initial payoff distribution. To derive a polynomialgarithm, the number of coalitions must be
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Algorithm 1 Transfer scheme to converge te-&ernel-stable payoff distribution for the CS
compute-<-kernel(e, S)
repeat
for each coalitionC € S do
for each pair (i, j) € C, j # ¢ do {compute the surplus for two members of a coalition in S}
Sij v(R) — z(R)

max
RCNI(i€R, j¢R)
end for
d < max(; jyen2 |Sij — Sl
(i*, j*) < argmax; jyen2 Sij — Sji
end for
if (z; —v({5*}) < g) then {payment should be individually rational}
d <z —v({5*})
else
d+ 3
Tix < T+ +d
Tjx <= Tj» — d
end if

a6
until ) <e

bounded. The solution used in (Klusch and Shehory, 1986ehory and Kraus, 1999) is to only consider
coalitions whose size is bounded in the interf&l, K>. The complexity of the truncated algorithm is
O(n? - Neoatitions) WNEIEN coaiitions IS the number of coalitions with a size betwekn and K, which

is a polynomial of ordefs.

2.5.3 Fuzzy Kernel

In order to take into account the uncertainty in the knowéed§the utility function, a fuzzy version of
stability concept can be used. Blankenburg et al. considealition to be kernel-stable with a degree of
certainty (Blankenburg et al., 2003). This work also présenside-payment scheme and shows that the
complexity is similar to the crisp kernel, and the idea fra@tuéch and Shehory, 198bcan be used for
ensuring a polynomial coalition formation algorithm. Thigproach assumes a linear relationship of the
membership and coalition values.

2.6 Shapley Value

So far, the solution concepts we introduced focus on staldithe payoff distribution. The Shapley value
focuses on fairness. It was introduced by Shapley (Shapf#$3), who described the notion of fairness
in two different ways. The first one is an axiomatic approdhk: Shapley value can be defined by a set
of axioms, each of them is a desirable property for fairn€éhe. second approach considers a coalition
formation process in which agents enter the coalition onertgyand obtain the marginal contribution as
payoff. This coalition formation process may be unfair hessaan agent’s payoff depends on the joining
order. The Shapley value provides fairness by using an geenzer all possible joining orders. We present
these two views on fairness. Then, we will survey computatidsssues and present some representations
that allows for polynomial computation of the Shapley value

2.6.1 An Axiomatic Characterization

We want to define &alue functionp which assigns an efficient allocatianto a TU game N, v). What
properties should this value function satisfy? We now prefav simple axioms. The first axiom uses the
definition of a dummy agent: an ageris adummywhenv(C U i) — v(C) = v(7) for all C C N such that
i¢cC.
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DUM (“Dummy actions”) : if agenti is a dummy therx; = v({:}). In other words, if the presence of
agent: does not improve the worth of a coalition by more thg#i}), the agent does not bring
anything to the coalition, and then, should obtain or{i}).

SYM (“Symmetry”) : When two agents generate the same marginal contributibey, $hould be
rewarded equally: foi # j andVC C N such thati ¢ C andj ¢ S, if v(CU {i}) =v(C U {j}),
thenz; = ;.

ADD (“Additivity”) : For any two TU gamesN, v) and(N, w) and corresponding payoff profilese
R™ andy € R™, the payoff profile should be + y for the TU gam& N, v 4+ w).

Each axiom makes sense and one would want a value functioatisfysthem all. Actually, Shapley
showed that there is a unique value function that satisfeessetthree axioms.

Theorem 2.7 The Shapley value is the unique value that satisfies axiomd,[3YM and ADD.

The theorem states that these three axioms uniquely defiaki@ function, that is called tHghapley
value A proof of this theorem can be found in Osborne and RubingtE994). To prove this results, one
needs to show the existence of a value function that sattsigethree axioms, and then prove the unicity
of the value function. In addition, one can prove that theard are independent. Finally, one can also
show that if one of the three axioms is dropped, it is possiblind multiple value functions satisfying
the other two axioms.

The axioms SYM and DUM are clearly desirable. The last axi&BD, is harder to motivate in
some cases. If the valuation function of a TU game is intégoras an expected payoff, then ADD is
desirable. Also, if we consider cost-sharing games and dhgdme corresponds to sharing the cost of
one service, then ADD is desirable as the cost for a jointisershould be the sum of the cost of the
separate services. However, if we do not make any assursptibout the game&V, v) and (N, w),
the axiom implies that there is no interaction between thegames. In addition, the ganfé&/, v + w)
may induce a behavior that may be unrelated to the behawdoiced by eithe(V, v) or (N, w). Other
axiomatisations that do not use the ADD axiom have been gexpby Young (1985) and Myerson (1977).
These other axiomatizations reinforce the importance@hapley value.

2.6.2 Ordinal Marginal Contribution

Another interpretation of the Shapley value is based on ttiem of ordered marginal contribution. The
marginal contribution of an agento a coalitionC C N is me;(C) = v(C U {i}) — v(C). Let us consider
that a coalitiorC is built incrementally with one agent at a time entering tbalition. Also consider that
the payoff of each ageritis its marginal contribution. For examplénc; (0), mea({1}), mes ({1, 2}))

is an efficient payoff distribution for a gan{d, 2, 3}, v). In this case, the value of each agent depends
on the order in which the agents enter the coalition, whicl nmat be fair. For example, consider agents
that form a coalition to take advantages of price reductitrenvbuying large quantities of a product.
Agents that start the coalition may have to spend large satats, and agents that come later benefits
from the already large number of agents. To alleviate tlsisgésthe Shapley value averages each agents’
payoff over all possible orderings: the value of agentcoalitionC is the average marginal value over all
possible orders in which the agents may join the coalition.

Let 7 represent a joining order of the grand coalitidh 7 can also be viewed as a permutation of
(1,...,n). We write mc() the payoff vector where agentobtainsmc;({m(j) | j < i}). The payoff
vectormce(w) is called themarginal vector Let us denote the set of all permutations of the sequence
(1,...,n)aslI(V). The Shapley values can then be defined as

Zwen(N) me(r)
n! ’
We provide an example in Table 3 in which we list all the ordarsvhich the agents can enter the
grand coalition. The sum is over all joining orders, i.egiovl terms. When computing the Shapley value
for one agent, one can avoid some redundancy by summing beeatitions and noticing that:

Sh(N,v) =
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e Members ofC precede in |C|! permutations.
e The remaining members succedm |N \ (C U {i})|! permutations, i.e. iin — |C| — 1)! permuta-
tions.

These observations allow us to rewrite the Shapley valua fven agent as:

sy = S D Uiy — i),

CCN\{i} "

v({1}) =0 v({2}) =0 v({3}) =0
N={1,2,3} v({1,2)=90 v({1,3})=80 v({2,3})="70
v({1,2,3}) =120

1 2 3 Lety = (50, 40, 30)

1423 0 9 30 C e(C,Sh) e(C,y)
1432 0 40 80 {1} -45 0
2+ 1<+3 90 0 30 {2} -40 0
2+3+1 50 0 70 {3} -35 0
312 80 40 0 {1,2} 5 0
321 50 70 0 {1,3} 0 0
total 270 240 210 {2,3} -5 0
Shapley valush 45 40 35 {1,2, 3} 0 0

This example shows that the Shapley value may not be in tleg and may not be the nucleolus.
Table 3 Example of a computation of Shapley value

Note that the example from Table 3 also demonstrates thatniergl the Shapley value is not in the
core or in the nucleolus.

2.6.3 Other properties

The Shapley value always exists and is unique. When the i@iuiinction is superadditive, the Shapley
value is individually rational, i.e., it is an imputation. & the core is non-empty, the Shapley value
may not be in the core. However, when the valuation functioconvex, the Shapley value is also group
rational, hence, it is in the core.

2.6.4 Computational Issues

The nature of the Shapley value is combinatorial, as alliptessrderings to form a coalition need to be
considered. By using specific representations, it is ptessgbcompute the Shapley value efficiently, and
we are surveying few representations.

This computational complexity can sometimes be an adventg) agents cannot benefit from
manipulation. For example, a single agent could benefit fteimg multiple identities to play some games.
However, the complexity of determining whether an agent lwamefit from such false names has been
shown to be\P-complete (Yokoo et al., 2005).

Bilateral Shapley Value

In order to reduce the combinatorial complexity of the cotapan of the Shapley value, Ketchpel
introduces the Bilateral Shapley ValuB£V) (Ketchpel, 1994). The idea is to consider the formation
of a coalition as a succession of merging between two coatiti Two disjoint coalition€; andCs
with C; N Cy = (), may merge when(C; UCs) > v(Cy) 4+ v(Cs2). When they merge, the two coalitions,
called founders of the new coalitigh U Co, share the marginal utility as follow&SV (C;) = %v(cl) +
2 ((C1 UCy) —v(C2)) andBSV (C2) = 2v(C2) + 5 (v(C1 UC2) — v(Cy)). This is the expression of the
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Figure 2 Example of a graph with 5 agents

Shapley value in the case of an environment with two agents, U C,, each of the founders gets half
of its ‘local’ contribution, and half of the marginal utgjitof the other founder. Given this distribution
of the marginal utility, it is rational folC; and C, to merge ifVi € {1, 2}, v(C;) < BSV(C;). Note
that symmetric founders get equal payoff, i.e., @gr Co, C such thatC; NCo =C;NC=C,NC =0,
v(CUCy)=v(CUCs) = BSV(CUC;)=BSV(CUC,). Given a sequence of successive merges from
the states where each agent is in a singleton coalition, weusa a backward induction to compute a
stable payoff distribution (Klusch and Shehory, 18p6Though the computation of the Shapley value
requires looking at all of the permutations, the value atgdiby using backtracking and the BSV only
focuses on a particular set of permutations, but the cortipate significantly cheaper.

Weigthed graph games

Deng and Papadimitriou (1994) introduce a class of gamésdoakighted graph games: they define a
TU game using an undirected weighted grgph (V, W) whereV is the set of verticesarid : V — V
is the set of edges’ weights. Fo, j) € V2, w;; is the weight of the edge between the verticesd ;.
The coalitional gaméN, v) is defined as follows:

e N =V,ie., each agent corresponds to one vertex of the graph.
e the value of a coalitiof C N is the sum of the weights between any pairs of membeis, k.

v(C) = Z(i,j)e@ Wi«

We provide an example in Figure 2. This representation igsisatas we only need to provide®
values to represent the entire game. However, it is not a Eimpepresentation as some TU games
cannot be represented this way (e.g., it is not possiblefesent a majority voting game). If we add
some restrictions on the weights, we can further guararte® properties. For example, when all the
weights are nonnegative, then the game is convex, and teagatie is guaranteed to have a non-empty
core. One other nice property of this representation istteShapley value can be computed in quadratic
time:

Theorem 2.8 Let (V, W) be a weighted graph game. The Shapley value of an agengiven by
Shi(N,v) = Z(i,j)eN?,i;ﬁj Wi -

This theorem can be proved using the axioms defining the 8haplue.

Multi-issue representation

Conitzer and Sandholm (Conitzer and Sandholm, 2004) amalys case where the agents are
concerned with multiple independent issues that a coalitem address. For example, performing a task
may require multiple abilities, and a coalition may gathgeras that work on the same task but with
limited or no interactions between them. A characterigtioctionv can be decomposed ové&rissues
whenitis of the formy(C) = ZtT:l v¢(C), in which, for each, (V, v;) is a TU game. An agent may have
some specific capabilities, and hence, may not be able to el the issues. For a given isstieve
denote byZ, the set of agents that are concerned (i.e. that can pati¢ipéth the issue.
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The Shapley value for agenffor the characteristic function is the sum of the Shapley values over
the ¢ different issues:Sh;(N,v) = Zthl Shi(N,v¢). When a small number of agents is concerned
about an issue, computing the Shapley value for the paatigssue can be cheap. For an issuthe
characteristic function; concerns only the agents iy whenV(C, € ¢, C> € € such thatZ; N C; =
Z; N Cy = v(C1) = v(C2). When the characteristic functianis decomposed oveF issues and when
|Z,| agents are concerned about each igsal...T|, computing the Shapley value tal@szle 21%:l),

Marginal Contribution Networks (MC-nets)

leong and Shoham propose a representation in which theatbastic function is represented by a set
of “rules” (leong and Shoham, 2005). A rule is composed byteepaand a value: the pattern tells which
agent must be present or absent from a coalition so that the whthe coalition is increased by the value
of the rule. This representation allows to represent any die

More formally, each player is represented by a boolean blriand the characteristic vector of a
coalition is treated as a truth assignment. Each “rule” eiases a patterg and a weightw € R. The
patternphi is a formula of propositional logic containing variablesin A positive literal represents the
presence of an agent in a coalition, whereas a negativallitepresents the absence of an agent in the
coalition. The value of a coalition is the sum over the valofsll the rules that apply to the coalition.

When negative literals are allowed or when the weights candgative, MC-nets can represent any
TU-game, hence this representation is complete. When therpstare limited to conjunctive formula
over positive literals and weights are nonnegative, MG-can represent all and only convex games (in
which case, they are guaranteed to have a hon-empty core).

Using this representation and assuming that the patteenlinaited to a conjunction of variables, the
Shapley value can be computed in time linear to the size ofripet (i.e. the number of rules of the
MC-net).

2.7 A Special Class of TU games: Voting Games

The formation of coalitions is usual in parliaments or adsléns. It is therefore interesting to consider a
particular class of coalitional games that models votingrirassembly. For example, we can represent an
election between two candidates as a voting game where tiréngi coalitions are the coalitions of size
at least equal to half the number of voters. The formal dégimitollows:

Definition 2.17 (voting game) A game(N, v) is avoting gamewhen

e the valuation function takes only two values: 1 for the wiigntoalitions, O otherwise.
e v satisfiesunanimity, v(N) =1
e v satisfiesnonotonicity S CT C N = v(S) <v(T).

Unanimity and monotonicity are natural assumptions in ntases. Unanimity reflects the fact that
all agents agree; hence, the coalition should be winningadétmicity tells that the addition of agents
in the coalition cannot turn a winning coalition into a logiane, which is reasonable for voting: more
supporters should not harm the coalition. A first way to repré a voting game is by listing all winning
coalitions. Using the monotonicity property, a more suctiepresentation is to list only thainimal
winning coalitions

Definition 2.18 (Minimal winning coalition) A coalition C C N is a minimal winning coalition iff
v(C)=1andVieCv(C\ {i})=0.

We can now see how we formalize some common terms in votirgatorship, veto player and
blocking coalition.

Definition 2.19 (Dictator)  Let(XV, v) be asimple game. A playée N is adictatoriff {i} is a winning
coalition.

Note that with the requirements of simple games, it is pdss$dhave more than one dictator!
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Definition 2.20 (Veto Player) Let (N, v) be a simple game. A playée N is avetoplayer if N \ {i}
is a losing coalition. Alternatively, is a vetoplayer iff for all winning coalitionC, i € C.

It also follows that a veto player is member of every minimahming coalitions. Another concept is
the concept of a blocking coalition: it is a coalition that, its own, cannot win, but the support of all its
members is required to win. Put another way, the members lfckihg coalition do not have the power
to win, but they have the power to lose.

Definition 2.21 (blocking coalition) A coalition C C N is a blocking coalitioniff C is a losing
coalition andvS C N \ C, S'\ C is a losing coalition.

The following theorem characterizes the core of simple game

Theorem 2.9 Let (N, v) be a simple game. The core of the game is non-empty iff thests exveto
player and we haveore(N, v) = {« € Zmp | x; = 0 for each non-veto player.

A variant of a voting game is a weighted voting game where eggmnt has a weight and a coalition
needs to achieve a threshold or quota to be winning. This iséhrmore compact representation as we
only use to define a vector of weights and a threshold. Howéwvisris not a complete representations as
some voting games cannot be represented as a weighted gatimgg The formal definition follows.

Definition 2.22 (weighted voting game) A game(N, v, ¢, w) is aweighted voting gamehen

e w=(wy,ws...,w,)Iisavector of weights, one for each voter
e AcaoalitionC is winning (i.e.,(v(C) = 1) iff 3, . w; > ¢, itis losing otherwise (i.e(v(C) = 0)
e v satisfies monotonicitys§ C T C N = v(S) <v(T).

We will note a weighted voting gameV, w;en, q) as[g; wi, . . ., w,]. Note that the weights may not
represent the voting power of the player. Let us considefalh@ving weighted voting games:

e [10; 7,4, 3,3, 1]: The set of minimal winning coalitions i§{1, 2}{1, 3}{1, 4}{2, 3, 4}}. Players,
although it has some weight, is a dummy. Pla¥dras a higher weight than playgrand4, but it is
clear that playe?, 3 and4 have the same influence.

e [51; 49,49, 2]: The set of winning coalitions i${1, 2}, {1, 3}, {2, 3}}. It seems that the players
have symmetric roles, but it is not reflected in their weights

The European Union uses a combination of weighted votingega@ decision is accepted when it is
supported by 55% of Member States, including at least fiftdahem, representing at the same time at
least 65% of the Union’s population).

The examples raise the subject of measuring the voting pofitbe agents in a voting game. Multiple
indices have been proposed to answer these questions, andwvpresent few of them. One central
notion is the notion opivotal player(also referred to aswing playe): we say that a voteris pivotal for
a coalitionC when it turns it from a losing to a wining coalition, i.e(C) = 0 andv(C U {i}) = 1. Letw
be the number of winning coalitions. For a votgeletn; be the number of coalitions for whiahs pivotal,
Le.ni= Y o(SU{i})—u(9).

SCN\{i}

Shapley-Shubik index: it is the Shapley value of the voting game, its interpretafio this context is
the percentage of the permutations of all players in whithpivotal. “For each permutation, the
pivotal player gets one more point.” Another interpretati® that the index represent the expected
marginal utility assuming all joining orders are equalkeliy.

ICl{(n —|C| = 1)!
n!

Iss(N,v, i)=Y

CEN\{i}

(v(CU{i}) —v(C)) .

One issue is that the voters do not trade the value of thetiomglihough the decision that the voters
vote about is likely to affect the entire population.
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{1,2,3,4} {3,1,2,4}
{1,2,4,3} {3,1,4,2}
{1,3,2,4} {3,2,1, 4} winning coalitions:
{1,3,4,2} {3,2,4,1} {1,2}
{1,4,2,3} {3,4,1,2} {1,2,3}
{1,4,3,2} {3,4,2,1} {1,2,4}
{2,1,3,4} {4,1,2,3} {1,3, 4}
{2,1,4,3) 4,1,3,2} {1,2,3,4}
{2,3,1,4} {4,2,1,3} In red and underlined, the pivotal agents
{2,3,4,1} {4,2,3,1}
{2,4,1,3} {4,3,1,2} 10234
{2,4,3,1} {4,3,2,1} B 5 3 1 1
In red and underlined, the pivotal agent 8 L &8 . 8 L 8
IB(N,v,i) 13 | 1L | L
1 2 3 4 2 10 10 10
ShlGlilmls

Table 4 Shapley-Schubik and the Banzhaff indices for the weighted voting game 3, 2, 1].

Banzhaff index: For each coalition, we determine which agent is a pivotahagmore than one agent
may be pivotal). Theaw Banzhaff indewf a playeri is

_ chv\{i} v(CU{i}) —v(C)

ﬂi 2n—1

This index corresponds to the expected marginal utilityiassg all coalitions are equally likely.

For a simple gaméN, v), v(N) = 1 andwv () = 0, at least one playerhas a power indeg; # 0.
Hence,B =3,y f; > 0. Thenormalized Banzhaff indedf player for a simple gameN, v) is
defined as

IB(N,U,i) = %

Coleman index: Coleman defines three indices (Coleman, 1970): the poweneotollectivity to act
A = 3% (Ais the probability of a winning vote occurring); the poweri@vent actionP; = - (it
is the ability of a voter to change the outcome from winnindasing by changing its vote); the
power to initiate actio; = 57— (it is the ability of a voter to change the outcome from losiag
winning by changing its vote, the numerator is the same &3%,ibut the denominator is the number
of losing coalitions, i.e., the complement of the ong%f

We provide in Table 4 an example of computation of the ShaBlgyubik and Banzhaff indices. This
example shows that both indices may be different. There Igjatslifference in the probability model
between the Banzhaf and Coleman’s inde¥®;: in Banzhaf’s, all the voters butvote randomly whereas
in Coleman’s, the assumption of random voting also appti¢ké voteri.. Hence, the Banzhaf index can
be written as3; = 2P, - A=2I; - (1 — A).

The computational complexity of voting and weighted votgegmes have been studied in Deng and
Papadimitriou (1994); Elkind et al. (2007). For example, pinoblem of determining whether the core is
empty is polynomial. The argument for this result is thedeling theorem: the core of a weighted voting
game is non-empty iff there exists a veto player. When the isanen-empty, the problem of computing
the nucleolus is also polynomial, otherwise, it is &fP-hard problem. The problem of choosing the
weights so that they correspond to a given power index hasbalen tackled in de Keijzer et al. (2010).
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2.8 Games with Coalition Structure and Games with a prioridts

We now turn to two special refinements of TU games that are eféfiising a CS. The first one assumes
that a CS has already been formed and the only problem toisdiesv to share the value of each coalition.
The second one assumes that the grand coalition forms anchémabers of a coalition in the CS can be
represented as one “meta’-agent.

2.8.1 Games with Coalition Structure

In the description of the core and the Shapley value in Sest®3 and 2.6 and in most traditional work
in game theory, the superadditivity of the valuation fuoiatis not explicitly stated, but it is implicitly
assumed. When the grand coalition is formed, checking whétleecore is empty amounts to checking
whether the grand coalition is stable (Wooldridge, 2009% Neve already defined games with CS in
Section 2.3, and we recall it now.

Definition 2.23 (Game with coalition structure) A game with coalition structurds a triplet
(N, v, S), where(N, v) is a TU game, and is a particular CS. In addition, transfer of utility is only
permitted within (not between) the coalitions%fi.e.,VC € S, 2(C) < v(C).

Aumann and Dréze (1974) discuss why the coalition formatimtess may generate a CS that is
not the grand coalition. One reason they mention is that #ieation may not be superadditive (and
they provide some discussion about why it may be the casa)th&nreason is that a CS may “reflect
considerations that are excluded from the formal desoriptif the game by necessity (impossibility
to measure or communicate) or by choice”. For example, thitéeds can be based on location, or trust
relations, etc. Another way to understand this definiticio isonsider that the problems of deciding which
coalition forms and how to share the coalition’s payoff aeealipled: the choice of the coalition is made
first and results in the CS. Only the payoff distribution deois left open. The agents are allowed to refer
to the value of coalition with agents outside of their caatit(i.e., opportunities they would get outside
of their coalition) to negotiate a better payoff. Aumann &réze use an example of researchers in game
theory that want to work in their own country, i.e., they wimbelong to the coalition of game theorists
of their country. They can refer to offers from foreign caieg in order to negotiate their salaries. Note
that the agents’ goal is not to change the CS, but only to regat better payoff for themselves.

First, we need to define the set of possible payoffs: the pastributions such that the sum of the
payoff of the members of a coalition in the CS does not exdeedalue of that coalition. More formally:

Definition 2.24 (Feasible payoff) Let (N,v,S) be a TU game with CS. The set fefasible payoff
distributionsis Xy ,,.s) = {z € R" | VC € Sz(C) < v(C)}.

A payoff distributionz is efficientwith respect to a C& whenvC € S, >, . z; = v(C). A payoff
distribution is animputationwhen it is efficient (with respect to the current CS) and irdirally rational
(i.e.,Vie N, z; > v({i})). The set of all imputations for a CSis denoted byfmp(S). We can now state
the definition of the core:

Definition 2.25 (Core)  The core of agam@V, v, S) is the set of all PC$S, x) such thatr € Zmp(S)
andVC C N, > ..o x; > v(C),i.e.,core(N,v,S) ={z € R" |VC € S, 2(C) =v(C)}.

We now provide a theorem by Aumann and Dréze which shows ligatoére satisfies a desirable
properties: if two agents can be substituted, then a caveatibn must provide them identical payoffs.

Definition 2.26 (Substitutes) Let (N, v) be a game andi, j) € N2. Agentsi and j are substitutesff
VCC N\ {i, j}v(CU{i}) =v(CU{j}).

Theorem 2.10 Let (N, v, S) be a game with coalition structure, létand j be substitutes, and let
x € core(N, v, S). If i andj belong to different members &f thenz; = ;.
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Aumann and Dréze made a link from a game with CS to a speciaradgditive game(NV, ©)
called the superadditive cover (Aumann and Dreze, 19743t fnie need to introduce a notation: for a
coalitionC C N, we note.#; the set of all partitions of. The valuation function of the superadditive
cover is defined asi(C) = maxpe s, {> pep v(T)} for all coaliionsC C N\ 0, andd(0) = 0. In
other words,?(C) is the maximal value that can be generated by any partitiod.cofhey showed
thatcore(N, v, S) # 0 iff core(N, 0) # 0 A 0(N) =Y ;.5 v(C) and that whemore(N, v, S) # 0, then
core(N,v,S) = core(N, v). This means that a necessary condition(fdf, v, S) to have a non empty
core is thatS is an optimal CS.

Aumann and Dréeze extend the definition of the core and thel®haplue as well as other stability
concepts (nucleolus, Bargaining set, kernel) (Aumann aia& 1974).

2.8.2 Games with a priori unions

So far, a coalition has represented a set of agents that diorkés own. In a CS, the different coalitions
are intended to work independently of each other. We caniailepret a coalition to represent a group of
agents that is more likely to work together (because of petsor political affinities). The members of a
coalition do not mind working with other agents, but they wimbe together and negotiate their payoff
together, which may improve their bargaining power. Thithesidea used in games with a priori unions.
Formally, a game with a priori unions is similar to a game v@th: it consists of a tripletV, v, S) when
(N,v)isaTU game and is a CS. However, we assume that the grand coalition formes.pftblem is
again to define a payoff distribution.

Definition 2.27 (Game with a priori unions) A game with a priori unions a triplet(V, v, S), where
(N, v)isaTU game, and is a particular CS. It is assumed that the grand coalitionigt

Owen (1977) proposes a value that is based on the idea of #q@e§hvalue. The agents forms the
grand coalition by joining one by one. In the Shapley valligg@ssible joining orders are allowed. In the
Owen value, an agemimay join only when the last agent that joined is a membéisafoalition or when
the last agent§jy, . . ., jx) that joined before formed a coalition i This is formally captured using the
notion of a consistency with a CS:

Definition 2.28 (Consistency with a coalition structure) A permutationr is consistentwith a CSS
when, for all(i, j) € C?,C € Sandl € N, 7(i) < w(l) < w(j) implies thatl € C.

We denote byl¢ (V) the set of permutations d@¥ that are consistent with the C& The number of
such permutations isx [ [ 5 |C|! wherem is the number of coalitions i5. The Owen value is then
defined as follows:

Definition 2.29 (Owen value) Given a game with a priori union(V, v, S), the Owen value
O;(N, v, S) of agenti is given by

me(m)

Oi(N,v,8)= > (V)]

w€llg(N)

In Table 5, we present the example used for the Shapley valdecampute the Owen value. The
members of the coalition of two agents improve their paygffdrming a union.

2.9 Games with externalities

A traditional assumption in the literature of coalition ffimation is that the value of a coalition depends
solely on the members of that coalition. In particular, itinsependent of non-members’ actions. In
general, this may not be true: some externalities (positiveegative) can create a dependency between
the value of a coalition and the actions of non-members. I$z@indand Lesser (1997) attribute these
externalities to the presence of shared resources (if atiooalises some resource, they will not be
available to other coalitions), or when there are conflgctgjoals: non-members can move the world
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N={1,2,3}
v({1}) =0 v({2}) =0 v({3})=0
v({1,2)=90  v({1,3})=80 v({2,3})="70
v({1,2,3}) =120

Sy={{1,2}, {3}} Sy ={{1, 3}, {2}}

1 2 3 1 2 3
12«3 0 90 30 1+2+«+3 O
1+3+2 O 13«2 0 40 80
2+ 1«3 90 0 30 2+ 1+3 90 0 30
23«1 O 2+ 3«1 50 0 70
3+ 1+2 80 40 O 3+ 1«2 80 40 0
3+ 2«1 50 70 0 3+ 2«1 O
total 220 200 60 total 220 80 180
Owen valueD;(N, v, S1) 55 50 15 Owen valueO; (N, v, Ss) 55 20 45

Table 5 Example of the computation of an Owen value

farther from a coalition’s goal state. Ray and Vohra (19%&festhat a “recipe for generating characteristic
functions is a minimax argument”: the value of a coalitidis the valueC gets when the non-members
respond optimally so as to minimise the payofflofThis formulation acknowledges that the presence of
other coalitions in the population may affect the payoffraf toalitionC. As in Hart and Kurz (1983); Ray
and Vohra (1999), we can study the interactions betweeardifit coalitions in the population: decisions
about joining forces or splitting a coalition can depend loa Way the competitors are organised. For
example, when different companies are competing for theesaarket niche, a small company might
survive against a competition of multiple similar indivalismall companies. However, if some of these
small companies form a viable coalition, the competitigm#icantly changes: the other small companies
may now decide to form another coalition to be able to sudagsompete against the existing coalition.
Another such example is a bargaining situation where age@d to negotiate over the same issues: when
agents form a coalition, they can have a better bargainisgipn, as they have more leverage, and because
the other party needs to convince all the members of thetmalif the other parties also form coalition,
the bargaining power of the first coalition may decrease.

Two main types of games with externalities are describediénliterature, both are represented by a
pair (N, v), but the valuation function has a different signature.

Games in partition function form  (Thrall and Lucas, 1963): : 2V x .# — R. This is an extension of
the valuation function of a TU game by providing the value obalition given the current coalition
structure (note thai(C, S) is meaningful wher® € S).

Games with valuations: v : N x . — R. In this type of games, the valuation function directly gasi
a value to an agent given a coalition structure. One possibdepretation is that the problem of
sharing the value of a coalition to the members has alreaely belved.

The definitions of superadditivity, subadditivity and méstcity can be adapted to games in partition
functions (Bloch, 2003). As an example, we provide the diédinifor superadditivity.

Definition 2.30 (superadditive games in partition functior) A partition functionv is superadditive
when, for any CS and any coalition€; andC; in S, we havey(C; U Ca, S \ {C1, C2} U{C1 UCs}) >
v(C1, S) +v(Ce, S).

The partition function may also have some regularities wimancoalition merge: either they always
have a positive effect on the other coalition, or they alwgige a negative one. More precisely, a partition
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function exhibitspositive spilloversvhen for any CSS and any coalition®; andC, in S, we have
v(C, S\ {C1, Ca} U{C1 UC2}) >v(C, S) for all coalitionsC # Cq,Cs in S.

These regularities can be exploited when searching for #mapCS. As shown by Michalak et al.
(2008), it is possible that the grand coalition is not the Gt waximal social welfare for a superadditive
partition function. If the partition function is both supelditive and exhibits a positive spillover, then the
grand coalition has maximum social welfare. The similaperty holds for subadditive partition function
with negative spillovers.

We now turn to considering solution concepts for such ganhbs.issue of extending the Shapley
value has a rich literature in game theory. We want the Skagmhie to represent an average marginal
contribution, but there is a debate over which set of caalistructures. (Michalak, Rahwan, Marciniak,
Szamotulski and Jennings, 2010) provide references oereliff solutions and present three solutions in
more details.

Airiau and Sen (2010) considers the issue of the stabilitthefoptimal CS and discusses a possible
way to extend the kernel for partition function games. Airdaand Sen (2009) consider coalition formation
in the context of games with valuations and propose a salftio myopic agents (an agent will join a
coalition only when it is beneficial, without consideringitpterms effect).

Michalak et al. (2009) tackle the problem of representinghsgames and propose three different
representations that depends on the interpretation ofxfeeralities. The first representation considers
the value of a coalition in a CS: the value of a coalition cardbeomposed into on term that is free
of externality and another term that models the sum of thedainty due to the formation of the other
coalitions. The two other representations consider thattmntribution of a coalition in a CS: either by
providing the mutual influence of any two coalitions in a C8t¢zard operational externalities) or by
providing the influence of all the other coalitions on a giwerlition (inward operational externalities).
Michalak, Rahwan, Marciniak, Szamotulski and Jenningsl@2Gand Michalak, Rahwan, Marciniak,
Szamotulski, McBurney and Jennings (2010) extend the qgarmeMC-nets to games with partition
function.

2.10 Non-Transferable Utility Games (NTU games)

An underlying assumption behind a TU game is that agents daemmon scale to measure the worth
of a coalition. Such a scale may not exist in every situatigrich leads to the study of games where the
utility is non-transferable (NTU games). We start by intwobhg a particular type of NTU games called
Hedonic games

In these games, agents have preferences over coalitiaaisagent knows whether it prefers to be in
company of some agents rather than others. An agent may emgoy the company of members ©&f
over members of, but it cannot tell by how much it prefecs over C,. Consequently, an agent cannot
be compensated when it is not part of its favorite coalitdore formally, letV be a set of agents aud;
be the set of coalitions that contain ageénite., AV; = {CU {i} | C C N \ {i}}. For a CSS, we will note
S(4) the coalition inS containing agent.

Definition 2.31 (Hedonic games) A Hedonic gamés a tuple(N, (=), 5 ) Where

e N isthe set of agents
e =,C 2{\/ X 2§V is a complete, reflexive and transitive preference relation agenti, with the
interpretation that ifS >=; 7', agent: prefers coalitionI” at most as much as coalitios.

The notion of core can be easily extended for this type of gaéeaker versions of stability can
also be defined using the current CS formed and we now giveetfiitibn of stability concepts adapted
from Bogomolnaia and Jackson (2002).

Core stability: A CSS is core-stable iff 3C C N | Vi € C,C =; S(i).

Nash stability: A CSS is Nash-stable iff (Vi € N) (VC € SU{0}) S(¢) zZ; C U {i}. No player would
like to join any other coalition ilf assuming the other coalitions did not change.
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Individual stability A CS S is individually stable iff (Fie N)(@CecSU{D})|(CU{i} =,
S(4)) and (V5 €C, CU{i} z; C). No player can move to another coalition that it prefers wuith
making some members of that coalition unhappy.

Contractually individual stability: A CS S is contractually individually stable iff ($i € N) (3C €
SU{D}) [ (CU{i} =; S(i)) and (Vj €C, CU{i} 1, C) and (V5 € S(i) \ {i}, S()\ {i} =,
S(i)). No player can move to a coalition it prefers so that the membéthe coalition it leaves
and it joins are better off.

If a CS is core-stable, no subset of agents has incentivete liés respective coalition to form a new
one, this is the classic definition of the core in the contéxisalonic games. In the other stability solution
concepts, the possible deviations feature a single agtrdt leaves its current coalitiofy to join a
different existing coalitiorCs or to form a singleton coalition. The difference betweenttiree notions is
the behavior of the members 6f andC,. For a Nash stabl§, they are not considered:iiprefers to join
an existing coalition, it is a valid deviation. This assurttest the agents iff; will accept agent, which
is quite optimistic. In individual stability, the deviatias valid if no agent irC; is against accepting agent
i. Finally, contractual individual stability adds a consttaon the agents frord; : they have to agree on
agent; leaving them. The three stability concepts have the folhgwnclusion: Nash stability is included
in Individual stability, which is included in contractualdividual stability.

The literature in game theory focuses on finding conditianstliie existence of the core. In the Al
literature, Elkind and Wooldridge have proposed a sucemutesentation of Hedonic games Elkind and
Wooldridge (2009).

We now turn to the most general definition of an NTU game, whisbs a set of outcomes that can be
achieved by the coalitions. The formal definition is thedaling:

Definition 2.32 (NTU Game) A non-transferable utility game (NTU GaméyN, X, V, (>;)ien) iS
defined by

e asetof agentsv;

e aset of outcomeX;

e a functionV : 2V — 2% that describes the outcomds(C) C X that can be brought about by
coalitionC;

e apreference relation; (transitive and complete) over the set of outcomes for egenta.

Intuitively, V(C) is the set of outcomes thétcan bring about by means of its joint action. The agents
have a preference relation over the outcomes.
Example 1:hedonic games as a special class of NTU games(Net=*),_,) be a hedonic game.

e For each coalitio® C N, create a unique outcome.

e Forany two outcomesg andz corresponding to coalition$ andT that contains agerf We define
= as follows:zg »=; z7 iff S =7 T.

e For each coalitio C N, we definel’(C) asV'(C) = {z¢}.

Example 2:a TU game can be viewed as an NTU game.(l)étv) be a TU game.

e We defineX to be the set of all allocations, i.eX, = R".

e For any two allocationéz, y) € X2, we define=; as follows:z =; y iff z; > y;.

e For each coalitiorf C N, we defineV (C) asV(C) = {z € R™ | >,y z: <v(C)}. V(C) lists all
the feasible allocation for the coalitigh

First, we can note that the definition of the core can easiljbdified in the case of NTU games.
Definition 2.33  core(V)={z € V(N)|3CC N, fycV(C),Vi€Cy ~; v}

An outcomer € X is blocked by a coalitio® when there is another outcomes X that is preferred by
all the members of. An outcome is then in the core when it can be achieved by thedycoalition and

it is not blocked by any coalition. As is the case for TU garhés possible that the core of an NTU game
is empty.
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3 Applications in multiagent systems

In some application, agents cooperate and share the vatheiojoint work. In some cases, it is possible
to use results from cooperative games to design the agantmry other cases, some theory was missing
to incorporate some aspects of the environment, for exammiertainty, time constraints, manipulations
to name few issues. In this section, we start by introducir@generic applications that have been use by
the multiagent systems literature to motivate furtheraesein cooperative games. Then, we provide an
overview of other applications that have been used in théiageint system literature. We end the section
with some classes of games that have nice computationadgireq

3.1 Task Allocation Problem

A task allocation problem can be easily represented by diomeflormation problem: a coalition of agents
is in charge of performing a task (or a subset of tasks). Ak require multiple agents to be performed
due to the following reasons:

e Complementary expertise may be required to perform a contpk, and many approaches assume
that no agent has all the required expertise to perform a lBxrtpsk on its own (Kraus et al.,
2003, 2004; Manisterski et al., 2006; Shehory and Kraus81L99 the general case, a task can
be decomposed into subtasks, and the agents are able tonperfubset of all possible subtasks.

e All the agents have the required ability or expertise to quenfa task, but they do not have enough
resources on their own to perform the task. For example tsdieve the ability to move objects in a
plant, but multiple robots are required to move a heavy bds{Ae et al., 2004; Shehory and Kraus,
1998).

In addition, the valuation function of a coalitional games laasimple interpretation: it is the benefit of
the group of coalitions when the task is performed. The wakstability problem of coalitional games
appears since multiple coalitions may be able to performmaptex task, and some coalitions may be
better suited to perform a given task. Ideally, an agentishoot have any incentive to join a different
coalition to work on a different set of tasks.

A generic task allocation problem can be described as fallaxcoalition of agents forms to perform a
complex task and each agent in the coalition plays a rolesictimpletion of the task (they can all have the
same or complementary roles). The completion of a task ianded by a payoff. The cost associated with
the task completion depends on the coalition members. Tlhe @dthe coalition is the net benefit (payoff
minus cost) of completing the task. Hence, the task allongproblem is well-modeled by a coalition
formation problem where the value of a coalition dependy onl its members. Note that in the case
where agents are not self-interested, the population aftages a whole may try to maximise the total
benefit of completing the tasks. In this case, the agentsying to optimise utilitarian social welfare and
search for the optimal CS (see Section 4.2).

Task allocation problems may be even more complex. Firsttakks may be inter-dependent. For
example in (Shehory and Kraus, 1998), there is a partialegiernce order between the tasks. This
assumption is of particular importance in the transpatatiomain. The existence of task dependency
may promote cooperation between the agents as advocat&khimé and Shehory, 2005): the dependence
between the tasks may translate into a certain form of deperedbetween the agents. If agents realise
this fact, they may reciprocally help each other: agémhay help agenB to perform a task needed for
the completion of an important task for agéhtand vice versa.

In the generic model, the cost and benefit depends only on thebars of the coalition. In
environments where the value of a task depends on its coimpliéine, Kraus et al. suggested that there
should be a a cost associated with time it takes to decide oaldgion (Kraus et al., 2003, 2004). They
propose a variant of the task allocation problem where ab eagnd, the reward to perform a task is
reduced. This forces the agents to decide rapidly whethéorto a coalition for taking advantage of
the high reward. The first coalition that accepts the cohats it and if multiple coalitions agree, one
coalition is chosen at random. Agents that are only capdhperdorming a subset of the sub-tasks must
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propose or join a coalition. At each round, they can propaseadition or accept to be part of one. Unlike
in (Shehory and Kraus, 1998) where all the tasks are knowmlvarece, in these works, a coalition is
formed incrementally for each task. The order of the taskg play an important role in the overall
payoff to the agents.

If tasks arrive in a pattern, it may be efficient to form simitaalitions for similar tasks. Abdallah and
Lesser (2004) assume the existence of a hierarchy of ag@éftien an agent gets a task for which it does
not have the necessary resources, it can ask the agent atiwovbe hierarchy to take care of the task.
If agents placed below it can solve sub-tasks of the taskagieat can decompose the task and assign it
to the agents below in the hierarchy. Learning can be usetidose which agent can perform the task.
Abdallah and Lesser show that learning allows for fastertzeiter task assignments.

Another issue that can arise in the task allocation probkethe need to have overlapping coalitions,
i.e., to have the possibility that agents are members ofiphelitoalitions. For example, an agenmnay
have a unique ability that is required to complete two talksis restricted to be a member of a single
coalition, one task cannot be completed, which would befizieht in the case wheré has enough
resources to help performing both tasks. An example is iramsportation domain, if each task is to
move an item between two points and a coalition is a set ofclehithat carry the item. Overlapping
coalitions would model this problem as multiple items cobédmoved by the same truck (Shehory and
Kraus, 1998).

The task allocation problem is in general a computationtadigd problem: when agents are limited to
perform a single task, the coalition problem resemblesé¢heartitioning problem. When agents are able
to perform multiple tasks, the allocation problem gets etds the set covering problem. In both cases,
these problems ar&P-complete (Shehory and Kraus, 1998). A taxonomy is propdsetistinguish
different complexity classes of the task allocation praid€Lau and Zhang, 2003) based on three factors:
(2) Is the same task likely to be offered again? (2) Does thidagent system have more than enough/just
enough/not enough resources to performing a set of task$® 3 reward intrinsic to the task, or does
it only depend on the members performing the task? They shatwsbme combinations of factors lead
to polynomial problems, and other combinations have exptalecomplexity. Shehory and Kraus (1998)
restrict the set of possible coalitions by adding a constran the size of the coalition. This assumption
is motivated by the fact that negotiation with a large nundfgrartners becomes costly, and over a given
size, a coalition of agents will not be able to get any benkfithis case, the size of the set of possible
coalitions is a constant, hence, the problem can be solvgmblymomial time (possibly a high order
polynomial though).

3.2 Electronic Marketplace

Coalition formation has also been used to model firms or agenthe electronic marketplace (Asselin
and Chaib-draa, 2006; Cornforth et al., 2004; Li et al., 2Q0and Sycara, 2002; Sarne and Kraus, 2003,
2005; Tsvetovat et al., 2001; Vassileva et al., 2002). THd Ggginated from a paper by Tsvetovat et al.
(2001) where consumer agents can form a coalition (i.e.,yangwroup) to benefit from the quantity
discount provided by sellers. From the point of view of a egsdesigner, the problem is to form a CS,
and each coalition is forming a buying group. Desirable prgpof the CS formed include to be Pareto
optimal, i.e., no other CS should give more to a consumerawitigiving less to another one (Asselin and
Chaib-draa, 2006) and social welfare maximisation, whicvides the greatest revenue to the buyers.
First, this problem can be modeled by coalitional games with-transferable utility as in practice, a
buyer may not pay another buyer to join a buying group (it tbgmised that side payments could allow
for more efficient outcomes though). It is the model studigd\bselin and Chaib-draa (2006); their goall
is to define protocols that find a Pareto Optimal solutiond,tary only propose a centralised solution.
One variant of the problem is to consider the cost of seagchin other coalition members. For
example, there is a cost to advertise the possibility to fabuying group, to look for partners, to negotiate
price and payment (Sarne and Kraus, 2003). The goal of thetsgeto increase the size of the coalition
so that the benefit from forming a coalition is worth the dffdihe dilemma is about executing the task
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with the current configuration or starting a costly searcliirtd new partners. The work of Sarne and
Kraus analyses the equilibrium strategies.

Other variants include the problem introduced by YamamatbSycara (2001). Unlike in the original
problem in (Tsvetovat et al., 2001), a buying group does natspond to a particular item: each buyer
agent can have a list of single items or a disjunction of itdmaddition, sellers can bid discount prices
to sell large volume of items. This allows a formulation tisatloser to a combinatorial auction. The
proposed solution assumes that each buying group is mahggedagent that has to solve the following
two problems: (1) given the requests from the buyer agdmgsnianager agent chooses the sellers and buys
the appropriate items, (2) the manager agent chooses tteegaid by each buyer agent. To address the
first problem, the proposed algorithm performs a greedycbedp answer the second problem, Yamamoto
and Sycara use a surplus sharing rule that ensures a pagwibdiion which is in the core. In (Li and
Sycara, 2002), the agents can bid in combinatorial auctiagents bid a reservation value for a bundle
of items. This makes the problem even more complex since aawidetermination problem has to be
solved and a stable payoff distribution must be found. Theharism design aspect of this problem can
be found in (Li et al., 2003). Li and Sycara (2002) presentlgarédhm that computes an optimal coalition
and a payoff division in the core, but it is not guaranteedgo@fypolynomial complexity. Hence, they also
present an approximation algorithm that is polynomial.

A mathematical model using first-order differential eqoasi is presented in (Lerman and Shehory,
2000). The model describes the dynamics of the coalitiodsadiows for computation of a steady state
equilibrium. The paper shows that a steady state equilibdlways exists, and that it yields higher utility
gain compared to the case where agents are buying on their@wmhen leaving a coalition is not
allowed. However, the outcome is not guaranteed to be Péxgtinal.

Vassileva et al. address long term coalitions (Breban arssiMva, 2002; Vassileva et al., 2002): in
many other papers, a coalition is formed to complete a giask, tand the coalition is disbanded when the
task is accomplished. In contrast, the goal is to form a tioalof agents that will collaborate for a long
period of time. The decision to leave a coalition and join & nee should also be a function of the trust
put in another agents, i.e., the belief that they will havecegsful interaction in the future.

Another application of coalition formation in the context an electronic marketplace is service
oriented computing. A large number of services are offerethe Internet, at different prices and with
different quality. Blankenburg et al. (2006) propose the afservice Request Agent that can request
one (potentially) complex task and a Service Provider Adleat can provide a service. The latter can
also, given a task and a set of service advertisements, cag@vices to form a plan that implements
the task. The service requester agents only pay the servisdpr agent if the task is performed on
time. The service provider agents must evaluate the ristdyied in accepting a request. In addition, a
service provider may be involved in more than one coalitien, it can have multiple clients at the same
time. Blankenburg et al. propose the use of fuzzy coalittonallow agents to be members of multiple
coalitions. The agents use a measure of risk from the finatecatlre, and they accept a proposal if the
risk is below a threshold. To distribute the payoff, Blarikery et al. define the kernel for their fuzzy
coalition and use Stearns method to converge to a payofftditibn in the kernel.

3.3 Other Domains

Coalitions of agents have also been used in many other agiplicdomains, and we list some of them
in the following. We start with an application for gatherimformation (Klusch and Shehory, 1986).

An agent is associated with a local database, and to answegrg, @n agent may require other agents.
When the agents form a coalition, all agents in the coalitiastncooperate: the members share some of
their private data, e.g., dependency information. If amagees not cooperate, it will not have access to
some information schema that are available to members afahiiion. The coalition formation process
assumes an utilitarian mechanism, and each agent triestonise its expected utility. The bilateral
Shapley value is used to determine the payoff distributiofkilusch and Shehory, 1988 A kernel
oriented solution is proposed in (Klusch and Shehory, bp&f the same domain.
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Coalitions have been used to track a moving target using soseretwork, a problem introduced
in (Horling et al., 2001). The problem is to ensure that aseldree agents are sensing the target at the
same time to perform triangulation. The problem becomesptexras the target is moving and sensors
and communication can be faulty. In (Sims et al., 2003), tha ¢ for the agents to self-organise and
form an appropriate coalition to track the target. The paysed a variant of the contract net protocol to
negotiate a coalition that will be used throughout the timgkTwo valuation functions are studied (local
and social utility) and different protocols are empirigaisted. Soh et al. (2003) also solve a real-time
tracking problem. An initiator agent starts the coalitionnhation process by contacting the neighboring
agents that are most suitable for the particular task andgaggin negotiation with each of them. Case
based reasoning is used to choose the most promising nigotmotocol. In addition, reinforcement
learning is used to estimate the utility of a coalition. Thml¢tion formation process may or may not
succeed.

In machine learning, it is known it is possible to combine tbsults of different classifier to increase
the accuracy of the classification. Aknine and Caillou (9004d Plaza and Ontafién (2006) applied this
idea in a coalition formation setting. For example, in the'kvof Plaza and Ontafién, agents can form
committees (i.e., coalitions) to classify a new speciegpohge. Each agent has its own expertise, a set
of cases, and uses case-based reasoning for the classifipeablem. In their work, Plaza and Ontafién
show how to decide when a committee is needed and how to $keéeagents to form a committee for a
new species of sponge.

Coalitions of agents have been used in the context of digtoib and planning of infrastructure for
power transportation (Contreras et al., 1997, 1998; Poah,e&999). Poon et al. (1999) model the trading
process between firms that generate, transmit or distriimuesr using agents. Agents rank other agents
by possible gains and send the Bilateral Shapley Value gbttential partner when it makes an offer. If
both agents send requests to each other, it is beneficididan to work together and they form a single
entity. The process iterates until no further improvemerdassible. In the power transmission domain,
the problem is to decide whether or not to create a new linenemaplant, and if so, how to share the cost
between the different parties involved. (Contreras etl@9,7, 1998) uses similar solutions as Yeung and
Poon.

Coalitions of agents have been used in the context of plgnaimd scheduling. For example,
Pechowtek et al. (2002) tackle the problem of planning humanitaraief operations, and the problem of
production planning in chowgek et al., 2000). For the humanitarian relief operatiomade, different
organisations can form coalitions to be more efficient armvigie optimal help to the people. However,
the different groups that have different capabilities ckso &iave different goals; hence, they might not
want to disclose all available information. In that contdke authors propose a formation of alliances:
provided some public information, the agents seek to forougs of agents with the same kind of goals.
These alliances can be viewed as long-term agreementsdretgents, and alliances define a partition
of the agents. Unlike alliances, coalitions are viewed astgierm agreements to perform a specific task,
and to reduce the search space, coalitions can form withalliance. In case of impossibility of forming
coalitions within an alliance, agents from different alli@s can be used. The authors are interested in the
amount of information agents have to disclose: when it sengsjuest, an agent may reveal private or
semi-private information. This can occur when an agent askagent of a different alliance to perform a
task (revealing that neither it nor its alliance can comgpthe task). An agent can also decide to disclose
private information when it wants to inform other agents,ifstance, when they form alliances.

In the context of production planning, instead of using amised planning approachgbhoitek et
al. want to use local coalition formation to execute taskarirefficient manner. One requirement is that
agents know their possible collaborators well in order taimise the communication effort, e.g., agents
have knowledge of the status of surrounding agents, so amt awgy ask help from another agent if it
knows the agent is not busy. Caillou et al. use the scenasatwduling classes in a university (Caillou
et al., 2002), where a coalition is a schedule. This work idEms non-transferable utility. Caillou et al.
propose a protocol where a set of acceptable coalitionssisggafrom agents to agents, and each time,
agents can add coalitions or remove coalitions that are ce#pdable. The result of the protocol is a
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Pareto Optimal schedule. The protocol also considersirgexisting solutions to compute a solution to
a modified problem (e.g., when a class is removed from thedsitbgeor a professor is coming, previous
solutions of the problem can be used to accommodate theagesia

3.4 Some interesting classes of games from the computbgioimd of view

We want to briefly introduce some classes of games that haye $tedied in the Al literature. Some of
these classes of games can be represented more compacthythsing2” values, one for each coalition,
using an underlying graph structure. In some restricteds;asome solution concepts can be computed
efficiently.

graph games? This class of games was introduced by Deng and Papadim{{t@®4). A game is a
pair (V, w) whereV is the set of agents and is also the set of edges of a weighticared graphV, w)
wherew : v? — R is the weight function, mapping an ed¢je j) € V2 to a real number. The value of a
coalitionC C N is the sum of the weights of the sub-graph induced by

This representation is succinct, but not complete (e.gajamty game cannot be represented using this
representation). If all the weights are nonnegative, thergiime is convex (and consequently, the core is
non-empty), and testing the membership in the core can herpexd in polynomial time. In addition, the
Shapley value can be computed in polynomial time.

minimum cost spanning tree gamesA game is(V, s, w) where(V, w) is as in a graph game and
s € V is the source node. For a coalitiGnwe denote by'(C) the minimum cost spanning tree spanning
over the set of edgesU {s}. The value of a coalitio” \ {s} is given by} ; ;o) wi;-

This class of game can model the problem of connecting soraetago a central node played by
the source node. Computing the nucleolus or checking whether the core isampty can be done in
polynomial time.

Network flow games.A flow network (V, E, ¢, s, t) is composed of a directed gragpl, ) with a
capacity on the edge: V2 — R*, a source vertex and a sink vertex. A network flow is a function
f: E— RT that satisfies the capacity of an edg&i(j) € E, f(i, j) < c(i, 7)) and that is conserved
(except for the source and sink), i.e., the total flow argdvéim an edge is equal to the total flow leaving that
edge {j €V, Z(i)j)eE f@i,j) = Z(M)eE f (4, k)). The value of the flow is the amount flowing out of
the sink node.

In network flow game (Kalai and Xemel, 1982}/, E, ¢, s, t), the value of a coalitio@ C N is the
maximum value of the flow going through the flow netwdék E, c, s, t).

This class of games can model a situation where some citée alsupply of water or some electricity
network. Kalai and Xemel (1982) proved that a network flow gasbalanced, hence it has a non-empty
core. Bachrach and Rosenschein (2009) study a threshadibmenf the game and the complexity of
computing power indices.

Affinity games. The class ofaffinity gameds a class of hedonic games introduced in Branzei and
Larson (2008,b). An affinity game is defined using a directed weigthed gréphE, w) whereV is the
set of agentsE is the set of directed edges and E — R is the weight of the edges:(i, j) is the value
of agenti when it is associated with ageftThe value of agentfor coalitionC is v;(C) = >_ . w(i, 7).

Some special classes of affinity games have a non-empty egrewhen the weights are all positive
or all negative). In this games, there may be a trade-off betwstability and efficiency (in the sense of
maximizing social welfare) as the ratio between an optintla@id a stable CS may be infinite.

Skill games.This class of games, introduced by Bachrach and Roseng@w8) is represented by a
triplet (N, S, T, u) whereN is the set of agents is the set of skills7" is the set of tasks, and: 27 — R
provides a value to each set of tasks that is completed. Epsitishas a set of skill$ (i) C S, each task
t; requires a set of skill§(¢;) C S. A coalitionC can perform a taskwhen each skill needed for the task
is the skill of at least a member 6f(i.e.Vs € S(t), 3i € C such thatS (i) = s). The value of a coalitiod
is u(T¢) whereTg is the set of tasks that can be performed’by

2We introduce this class in Section 2.6 about the Shapley value.
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This representation is exponential in the number of agdntsyariants of the representation lead
to polynomial representation. For example when the valua obalition is the number of tasks it can
accomplish, or when each task has a weight and the value dldi@o is the sum of the weights of the
accomplished tasks. In general, computing the solutioceois with these polynomial representation is
hard. However, in some special cases, checking whetheptieésempty or computing an element of the
core can be performed in polynomial time. The problem of figdin optimal CS is studied in (Bachrach
etal., 2010).

Some more papers are studying the computational complekispme subclasses of games, e.g. in
(Aziz etal., 2010; Greco et al., 2009) to name a few. We do raottwio provide a full account of complexity
problem, which could be the topic of a survey paper on its own.

4 Coalition Structure Generation problem and related issues

In the previous sections, the focus was on individual ag#atsare concerned with their individual payoff.
In this section, we consider TU gaméd, v) in which agents are concerned only about the society’s
payoff: the agents’ goal is to maximise utilitarian soci@lfare. The actual payoff of the agent or the value
of its coalition is not of importance in this setting, onlettotal value generated by the population matters.
This is particularly interesting for multiagent systemsigaeed to maximize some objective functions. In
the following, an optimal CS denotes a CS with maximum sowifare. This may model multiagent
systems that are designed to optimise an objective function

More formally, we consider a TU gamgV, v), and we recall that a coalition structure (CS¥-
{S1,---,Sn} is a partition of N, whereS; is the i*" coalition of agents, and+# j = S; ns; =0
and U;e(1..,S; = N. . denotes the set of all CSs. The goal of the multiagent systeto locate
a CS that maximises utilitarian social welfare, in other a@@the problem is to find an element of
argmaxsc. v y_ge, U(S).

The space? of all CSs can be represented by a lattice, and an example fopalation of four
agents is provided in Figure 3. The first level of the lattioagists only of the CS corresponding to the
grand coalitionN = {1, 2, 3, 4}, the last level of the lattice contains CS containing sitayie only, i.e.,
coalitions containing a single member. Leventains all the CSs with exactiycoalitions. The number
of CSs at level is S(|N|, i), whereS is the Stirling Number of the Second KihdThe Bell number,
%(n), represents the total number of CSs withagents,%(n) =", S(n, k). This number grows
exponentially, as shown in Figure 4, andl¢n™) andw(n 3 ) (Sandholm et al., 1999). When the number
of agents is relatively large, e.g.,> 20, exhaustive enumeration may not be feasible.

The actual issue is the search of the optimal CS. Sandholm @t989) show that given a TU game
(N, v), finding the optimal CS is atv’P-complete problem. In the following, we will consider cealised
search where a single agent is performing the search as svésleanore interesting case of decentralised
search where all agents make the search at the same timefenewlifparts of the search space. Before
doing so, we review some work where the valuation functiois not known in advance. In a real
application, these values need to be computed; and this may lissue on its own if the computations
are hard, as illustrated by an example by Sandholm and LEE3@Y) where the computation of a value
requires to solve a traveling salesman problem.

4.1 Sharing the computation of the coalition values

Before searching the space of CSs to find an optimal CS, th&sg®y need to compute the value of
each of the coalitions. We are interested in a decentradiggaithm that computes all the coalition values
in a minimal amount of time, and that requires minimum comication between the agents.

Shehory and Kraus were the first to propose an algorithm toesha& computation of the coalition
values (Shehory and Kraus, 1998). In their algorithm, thenés) negotiate which computation is
performed by which agent, which is quite demanding. Rahwah Jennings proposed an algorithm
where agents, once they agree on an identification for eaatit @grticipating in the computation, know

3S(n, m) is the number of ways of partitioning a set of n elements intnon-empty sets.
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exactly which coalition values to compute. This algorithoalled DCVC (Rahwan and Jennings, 2007)
outperforms the one by Shehory and Kraus. The key obsematibat in general, it should take longer to
compute the value of a large coalition compared to a smalitmoa(i.e., the computational complexity
is likely to increase with the size of the coalition since magents have to coordinate their activities).
Their method improves the balance of the loads by distmigutioalitions of the same size to all agents.
By knowing the number of agentsparticipating in the computation and an index number @e integer

in the range{0..n}), the agents determine for each coalition size which doalivalues to compute.
The algorithm can also be adapted when the agents haveediffenown computational speed so as to
complete the computation in a minimum amount of time.
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4.2 Searching for the optimal coalition structure

The difficulty of searching for the optimal CS lies in the largearch space, as recognised by existing
algorithms, and this is even more true in the case where thasts externalities (i.e., when the valuation
of a coalition depends on the CS). For TU games with no exiiesa some algorithms guarantee
finding CSs within a bound from the optimum when an incompsgtarch is performed. Unfortunately,
such guarantees are not possible for games with exteasalitie shortly discuss these two cases in the
following.

4.2.1 Games with no externalities

Sandholm et al. (1999) proposed a first algorithm that seartdirough a lattice as presented in Figure 3.
Their algorithm guarantees that the CS fouSigis within a bound from the optim&* when a sufficient
portion of the lattice has been visited. The bound consdjimg% < K. They prove that to ensure a
bound, it is necessary to visit a least~! CSs (Theorems 1 and 3 in (Sandholm et al., 1999)) which
corresponds to the first two levels of the lattice, i.e., tlyg@thm needs to visit the grand coalition and
all the CSs composed of 2 coalitions. The bound improves gimeha new level is visited. An empirical
study of different strategies for visiting the other levedgresented in (Larson and Sandholm, 2000).
Three different algorithms are empirically tested overrahteristic functions with different properties:
1) subadditive, 2) superadditive, 3) picked from a unifonstribution in [0, 1] or in [0, |C|] (where|C|

is the size of the coalition). The performance of the heigssliffers over the different type of valuation
functions, demonstrating the importance of the propedidise characteristic function in the performance
of the search algorithm.

The algorithm by Dang and Jennings (2004) improves the oBawndholm et al. (1999) for low bounds
from the optimal. For large bounds, both algorithms visé fiist two levels of the lattice. Then, when
the algorithm by Sandholm et al. continues by searching st of the lattice, the algorithm of Dang
and Jennings only searches specific subset of each levetteade the bound faster. This algorithm is
anytime, but its complexity is not polynomial.

These algorithms were based on a lattice as the one preseftigdire 3 where a CS in levékontains
exactly: coalitions. The best algorithm to date has been developdRblbyvan et al. and uses a different
representation called integer-partition (IP) of the skaygace. It is an anytime algorithm that has been
improved over a series of paper: (Rahwan, Ramchurn, Damya@hucci and Jennings, 2007; Rahwan,
Ramchurn, Dang and Jennings, 2007; Rahwan and Jennindga,B0Rahwan, Ramchurn, Jennings and
Giovannucci, 2009). In this representation the CSs areggraccording to the sizes of the coalitions they
contain, which is called a configuration. For example, foopuation of four agents, the configuration
{1, 3} represents CSs that contain a coalition with a singletoneacmhlition with three agents. A smart
scan of the input allows to search the CSs with two coalititvesgrand coalition and the CS containing
singletons only. In addition, during the scan, the algonitomputes the average and maximum value for
each coalition size. The maximum values can be used to phesedarch space. When constructing a
configuration, the use of the maximum values of a coalitiorefach size permits the computation of an
upper bound of the value of a CS that follows that configuratamd if the value is not greater than the
current best CS, it is not necessary to search through then@®shat configuration, which prunes the
search tree. Then, the algorithm searches the remainirfigucetions, starting with the most promising
ones. During the search of a configuration, a branch and bmahaique is used. In addition, during the
search, the algorithm is designed so that no CS is evaluaded.tEmpirical evaluation shows that the
algorithm outperforms any other current approach oveerkffit distributions used to generate the values
of the coalitions.

More recently, Service and Adams (2@llf) designed an algorithm that uses dynamic programming
and that guarantees a constant factor approximation ratioa given time. In particular, the latest
algorithm Service and Adams (20d)0guarantees a factor @‘ in O(2™). Finally, Ueda et al. (2010)
propose to use a different representation, assuming tbattlie of a coalition is the optimal solution of
a distributed constraint optimization problem (DCOP). algorithm uses a DCOP solver and guarantees
a bound from the optimum. Currently, it is difficult to compaall these different approaches.
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4.2.2 Games with externalities

The previous algorithm explicitly uses the fact that thesatibn function only depends on the members of
the coalition, i.e., has no externalities. When this is netdhse, i.e., when the valuation function depends
on the CS, it is still possible to use some algorithms, el ,ane proposed in (Larson and Sandholm,
2000), but the guarantee of being within a bound from thenagitis no longer valid. Sen and Dutta use
genetic algorithms techniques (Sen and Dutta, 2000) toparthe search. The use of such technique
only assumes that there exists some underlying patterhs ichiaracteristic function. When such patterns
exist, the genetic search makes a much faster improvemdatating higher valued CS compared to
the level-by-level search approach. One downside of thetgealgorithm approach is that there is no
optimality guarantee. Empirical evaluation, howeveryghithat the genetic algorithm does not take much
longer to find a solution when the value of a coalition doessdepon other coalitions.

More recently, Rahwan et al. and Michalak et al. consideptioblem for some class of externalities
and modify the IP algorithm for the games with externali(iglichalak et al., 2008; Rahwan, Michalak,
Jennings, Wooldridge and McBurney, 2009), however, thesurag games with negative or positive
spillovers. Banerjee and Kraemer (2010) introduce a reptation to represent games in partition
function games using types: each agent has a single typg. mhke two assumptions on the nature
of the externalities (based on the notions of competitiah@mplementation) and they show that games
with negative or positive spillovers are special casesyTievide a branch and bound algorithm for the
general setting. They also provide a worst-case initiahiou

5 Issues for applying cooperative games

We now highlight issues that have emerged from the applicatpresented in Section 3. The protocols and
algorithms we cited there present some solutions to thesess Some additional issues remain unsolved,
for example, dealing with agents that can enter and leaverttieonment at any time in an open, dynamic
environment. None of the current protocols can handle tresses without re-starting computation, and
only few approaches consider how to re-use the already caugolution (Belmonte et al., 2004; Caillou
etal., 2002).

5.1 Stability and Dynamic Environments

Real-world scenarios often present dynamic environmégsnts can enter and leave the environment at
any time, the characteristics of the agents may change inith the knowledge of the agents about the
other agents may change, etc.

The game-theoretic stability criteria are defined for a fipegulation of agents and the introduction
of a new agent in the environment requires significant coatput to update a stable payoff distribution.
For example, for the kernel, all the agents need to checkhehetny coalition that includes the new
agent changes the value of the maximum surplus, which resjué-evaluating)(2™) coalitions. Given
the complexity of the stability concept, one challenge tkdaced by the multiagent community is to
develop stability concepts that can be easily updated whexgant enters or leaves the environment.

In addition, if an agent drops during the negotiation, thés/roause problems for the remaining agents.
For example, a protocol that guarantees a kernel stableffpdigtribution is shown not to be ‘safe’
when the population of agents is changing: if an agdeaves the formation process without notifying
other agents, the other agents may complete the protocdirahd solution to a situation that does not
match the reality. Each time a new agent enters or leavesdpelation, a new process needs to be
restarted (Blankenburg and Klusch, 2004).

In an open environment, manipulations will be impossiblédtect: agents may use multiple identifiers
(or false names) to pretend to be multiple agents, or ther ethg around, multiple agents may collude
and pretend to be a single agents, or agents can hide sonwrafiiiis. Hence, it is important to propose
solution concepts that are robust against such manipokati/e will come back later to some of the
solution that have been proposed: the anonymity-proof ¢éokoo et al., 2005) and anonymity-proof
Shapley value (Ohta et al., 2009).
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5.2 Uncertainty about Knowledge and Task

In real-world scenarios, agents will be required to handlene uncertainty. Different sources of
uncertainty have been considered in the literature:

e the valuation function is an approximation (Sandholm ansske, 1997) and agents may not use the
same algorithm. Hence, the agents may not know what is teeviiue.

e agents may not know some tasks (Blankenburg and Klusch,)20@4e value of some coalitions. In
such cases, the agents play a different coalitional gamanrthg reduce the payoff of some agents
compared to the solution of the true game.

e some information is private, i.e., an agent knows some ptppdout itself, but does not know it for
other agents. In (Kraus et al., 2003), it is the cost incubyedther agents to perform a task that is
private. In (Chalkiadakis and Boutilier, 2010; Chalkiatadt al., 2009), agents have a private type,
and the valuation function depends on the types of the caabtmembers.

e uncertainty about the outcome of an action (Chalkiadaki Bautilier, 2010): when a coalition
makes an action, some external factors may influence themetof the actions. This can be captured
by a probability of an outcome given the action taken andythe bf the members of the coalition.

e there are multiple possible worlds (leong and Shoham, 2008ch models the different possible
outcomes of the formation of a coalition. Agents know a phbilitst distribution over the different
worlds. In addition, an agent may not be able to distingu@heworlds as it lacks information and
they know a partition of the worlds (called information 3e&ach set of the partition represent worlds
that appears as indistinguishable.

Some authors also consider that there is uncertainty in gheation function without modeling a
particular source, for example in (Ketchpel, 1884each agent has an expectation of the valuation
function. In (Blankenburg and Klusch, 2005; Blankenburglet2003) fuzzy sets are used to represent
the valuation function. In the first paper, the agents eritatdral negotiations to negotiate Shapley value,
in the second paper, they define a fuzzy version of the kernel.

In the uncertainty model of leong and Shoham (2008), the itiefinof the core depends on the time
one reasons about it. They proposed three different defirsitof the core that depend on the timing of
the evaluation: before the world is drawnet-ante not much information can be used; after the world
is drawn but before it is known, also called-interim an agent knows to which set of its information set
the real world belongs, but does not know which one; finallgwthe world is announced to the agent or
ex-post everything is known.

The model of Chalkiadakis and Boutilier (2010) combineseautainty about the agent types and
uncertainty about the outcome of the action taken by thdtewal Each agent has a probabilistic belief
about the types of the other agents in the population. Clddikis and Boutilier propose a definition of
the core, the Bayesian core (introduced in (ChalkiadakisEoutilier, 2004)) in which no agent has the
belief that there exists a better coalition to form. As it niegydifficult to obtain all the probabilities and
reason about them, Chalkiadakis et al. (2009) propose ta tm@int” belief: an agent guesses the type of
the other agents and reason with these guesses. The papeearibe core, simple games (proving that
the core of a simple game is non-empty iff the game has a vay@pland some complexity result in this
games with belief.

5.3 Safety and Robustness

It is also important that the coalition formation processoisust. For instance, communication links may
fail during the negotiation phase. Hence, some agents mayg sime components of the negotiation
stages. This possibility is studied in (Blankenburg andskhy 2004) for the KCA protocol (Klusch and
Shehory, 1996): coalition negotiations are not safe when some agentsecmavailable (intentionally
or otherwise). In particular, the payoff distribution istguaranteed to be kernel-stable. (Belmonte et al.,
2004) empirically studies the robustness of the use of aalelgorithm introduced in (Belmonte et al.,
2002): the cost to compute a task allocation and payoffilligion in the core is polynomial, but it
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can still be expensive. In the case of agent failure, the ctatipn needs to be repeated. Belmonte
et al. propose an alternative payoff division model thatidscuch a re-computation, but the solution
is no longer guaranteed to be in the core, it is only close éodbre. There is a trade-off between
computational efficiency and the utility obtained by the rdgdhey conclude that when the number
of agents is small, the loss of utility compared to the optimamall; hence, the improvement of the
computational efficiency can be justified. For a larger nunatbagents, however, the loss of utility cannot
not justify the improvement in computational cost.

5.3.1 Protocol Manipulation

When agents send requests to search for members of a coalitwamen they accept to form a coalition,
the protocol may require disclosure of some private infdiome(PEchoutek et al., 2002). When the agents
reveal some of their information, the mechanism must enthaethere is no information asymmetry
that can be exploited by some agents (Blankenburg et al5)20® protect a private value, some
protocol (Blankenburg and Klusch, 2004) may allow the addibf a constant offset to the private value,
as long as this addition does not impact the outcome of thetiatipn.

Belmonte et al. study the effect of deception and maniputatf their model in (Belmonte et al.,
2004). They show that some agents can benefit from falselgrtiag their cost. In some other
approaches (Blankenburg and Klusch, 2004; Conitzer andi®dm, 2004), even if it is theoretically
possible to manipulate the protocol, it is not possible gcfice as the computational complexity required
to ensure higher outcome to the malevolent agent is too kighexample, Conitzer and Sandholm (2004)
show that manipulating marginal-contribution based valivesion scheme i&V’P-hard (except when the
valuation function has other properties, such as beingeognv

Other possible protocol manipulations include hidinglskilsing false names, colluding, etc. The
traditional solution concepts can be vulnerable to falseeswmand to collusion (Yokoo et al., 2005). To
address these problems, it is beneficial to define the valudtinction in terms of the required skills
instead of defining it over the agents: only skills, not ageshould be rewarded by the characteristic
function. In that case, the solution concept is robust teefalames, collusion, and their combination. But
the agents can have incentive to hide skills. A straighyendecomposition of the skills will increase the
size of the characteristic function, and Yokoo et al. (2Q8@pose a compact representation in this case.

5.4 Communication

While one purpose of better negotiation techniques may bmapodve the quality of the outcome for the
agents, other goals may include decreasing the time andutivder of messages required to reach an
agreement. For example, learning is used to decrease atgotime in (Soh and Tsatsoulis, 2002). The
motivation of Lerman’s work (Lerman and Shehory, 2000) idéwelop a coalition formation mechanism
that has low communication and computation cost. In anatiogk, the communication costs are included
in the characteristic function (Tohmé and Sandholm, 1999).

The communication complexity of some protocols has beeivetkr For instance, the exponential
protocol in (Shehory and Kraus, 1999) and the coalition dilgm for forming Bilateral Shapley
Value Stable coalition in (Klusch and Shehory, 18pB8ave communication complexity @(n?), the
negotiation based protocol in (Shehory and Kraus, 1998)(is?2"), and it isO(n"*) for the protocol
in (Shehory and Kraus, 1998) (whekds the maximum size of a coalition). The goal of (Procaccid an
Rosenschein, 2006) is to analyse the communication cotityptEhcomputing the payoff of a player with
different stability concepts: they find that it &(n) when either the Shapley value, the nucleolus, or the
core are used.

5.5 Scalability

When the population of heterogeneous agents is large, disogvthe relevant agents to perform a
task may be difficult. In addition, if all agents are involviedthe coalition formation process, the cost
in time and computation will be large. To alleviate this sddlity issue, a hierarchy of agents can be
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used (Abdallah and Lesser, 2004). When an agent discovesk thtt can be addressed by agents below
this agent in the hierarchy, the agent picks the best of tiogmetform the task. If the agents below cannot

perform the task, the agent passes the task to the agent iliovlee hierarchy and the process repeats.

The notion of clans (Griffiths and Luck, 2003) and congregeti(Brooks and Durfee, 2003), where agents
gather together for a long period have been proposed taatetkte search space by considering only a

subset of the agents (see Section 5.6).

5.6 Long Term vs. Short Term

In general, a coalition is a short-lived entity that is “ferthwith a purpose in mind and dissolve when
that need no longer exists, the coalition ceases to suite#ggded purpose, or critical mass is lost as
agents depart” (Horling and Lesser, 2004). It can be beaétficiconsider the formation of long term
coalitions, or the process of repeated coalition formaitiwolving the same agents. Vassileva et al. (2002)
explicitly study long term coalitions, and in particulaetimportance of trust in this content. Brooks and
Durfee (2003) refer to a long term coalition as a congregafitie purpose of a congregation is to reduce
the number of candidates for a successful interactione@usbf searching the entire population, agents
will only search in the congregation. The goal of a congregais to gather agents, with similar or
complementary expertise to perform well in an environmarthie long run, which is not very different
from a coalition. The only difference is that group ratiatyak not expected in a congregation. The notion
of congregation is similar to the notion of clans (Griffitheda_uck, 2003): agents gather not for a specific
purpose, but for a long-term commitment. The notion of tiegbaramount in the clans, and sharing
information is seen as another way to improve performance.

5.7 Fairness

Stability does not necessarily imply fairness. For examfde us consider two CS8§ and 7 with
associated kernel-stable payoff distributiog andz. Agents may have different preferences between
the CSs. It may even be the case that there is no CS that igneicbtey all agents. If the optimal CS is
formed, some agents, especially if they are in a singletalitaan, may suffer from the choice of this CS.
Airiau and Sen (2010) propose a modification of the kernelloweside-payment between coalitions to
compensate such agents.

Airiau and Sen (2009) consider partition function game$witternalities. They consider a process
where, in turns, agents change coalition to improve theinédiate payoff. They propose that the agents
share the maximal social welfare, and the size of the shagreortional to the expected utility of the
process. The payoff obtained is guaranteed to be at leasgjlags the expected utility. They claim that
using the expected utility as a base of the payoff distridsuirovides some fairness as the expected utility
can be seen as a global metric of an agent performance oventine set of possible CSs.

5.8 Overlapping Coalitions

It is typically assumed that an agent belongs to a singletamal however, there are some applications
where agents can be members of multiple coalitions. As eeafain the task allocation domain (see
Section 3.1), the expertise of an agent may be required Ifsrélift coalitions at the same time, and the
agent can have enough resources to be part of two or mordéi@osliln a traditional setting, the use of the
same agentby two coalitionC; andC, would require a merge of the two coalitions. This larger itiwa

U is potentially harder to manage, and a priori, there wouldyeanuch interaction between the agents in
C; andC,, except for agent Another application that requires the use of overlappivagition is tracking
targets using a sensor networks (Dang et al., 2007). In tbi&,va coalition is defined for a target, and as
agents can track multiple targets at the same time, they&amgmbers of different coalitions.

The traditional stability concepts do not consider thisigssOne possibility is for the agent to be
considered as two different agents, but this representatinot satisfactory as it does not capture the real
power of this agent. Shehory and Kraus propose a settingowéHapping coalition (Shehory and Kraus,
1998): Each agent has a capacity, and performing a task neagnig a fraction of the agent’s capacity.
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Each time an agent commits to a task, the possible coalitfatscan perform a given task can change.
A mapping to a set covering problem allows to find the coalitidowever, the study of the stability is
not considered. Another approach is the use of fuzzy coalifBlankenburg et al., 2006): agents can be
members of a coalition with a certain degree that represeatisk associated with being in that coalition.
Other work considers that the agents have different dedgreembership, and their payoff depends on
this degree (Aubin, 1979; Mares, 2001; Nishizaki and Masg#@t@001). The protocols in (Lau and Zhang,
2003) also allow overlapping coalitions.

More recently, Chalkiadakis et al. (20%0)ave studied the notion of the core in overlapping coalition
formation. In their model, each agent has one resource amdglent contributes a fraction of that
resource to each coalition it participates in. The valuafinctionv is then[0, 1]* —R. A CS is no
longer a partition of the agents: a GSis a finite list of vectors, one for each ‘partial’ coalitioire.,
S=(r,...,r*). The size ofS is the number of coalitions, i.ek, The support of¢ € S (i.e., the set
of indicesi € N such that¢ # 0) is the set of agents forming coalitiéh For alli € N and all coalition
ce S, r¢ €0,1]" represents the fraction of resource that agenbntributes to coalitiorC; hence,

Y ces r¢ <1 (i.e., agenti cannot contributes more than 100% of its resource). A pagistfibution
for a CSS of sizek is defined by a&-tuple x = (z*, ..., z¥) wherezC is the payoff distribution that
the agents obtain for coalitiof. If an agent is not in the coalition, it must not receive anygiafor
this coalition, hencér¢ = 0) = (z§ = 0). The total payoff of agent is the sum of its payoffs over
all coalitionsp; (C'S, z) = S-k_, «$. The efficiency criterion becomes € S, ., 2§ = v(r). An
imputation is an efficient payoff distribution that is alsmlividually rational. We denote b§(.S) the set
of all imputations for the CS.

We are now ready to define the overlapping core. One issue ldrikd of permissible deviations: when
an agent deviates, she can completely leave some coalitehsce her contribution in other coalitions,
or contributes to new coalitions. If she stills contribudetcoalition containing non-deviating agents, how
should they behave? They first may refuse to give any paydffaaleviating agent, as she is seen as not
trustworthy. Agents that are not affected by the deviati@yrnowever, consider that the deviators agents
did not fail them, and consequently, they may continue taespayoffs with the deviators. A last case
occurs when the deviators are decreasing their implicatian coalition. This coalition may no longer
perform the same tasks, but it can still perform some. Iféligerenough value to maintain the payoff of
the non-deviators, the deviators may be allowed to sharsutmus generated. Each of these behaviors
give raise to different types of deviations, and consedygtifferent definition of a core: the conservative
core, the refined core and the optimistic core. The paperpitsddes a characterization of conservative
core, properties of the different core, including a redutivging that convex overlapping coalitional games
have a non-empty core.

5.9 Trust

The notion of trust can be an important metric to determinermwtto interact with. This is particularly
important when the coalition is expected to live for a longrteln (Blankenburg et al., 2005), an agent
computes a probability of success of a coalition, based atiamof trust which can be used to eliminate
some agents from future consideration. This probabilitysisd to estimate the value of different coalitions
and help the agent in deciding which coalition to join or fotm(Vassileva et al., 2002), the decision to
leave or join a coalition is function of the trust put in ottegents. In this paper, the concept of trust
is defined as a belief that agents will have successful idtierain the future; hence, trust is used to
consider a subset of the entire population of agents foradhadtion of future coalitions. Trust is used to
compute coalitions, but agents do not compute a payoffibligion. Another work that emphasises trust
is (Griffiths and Luck, 2003) which introduces the conceptlahs. A clan is formed by agents that trust
each other with long-term commitments. Given the trust anelstimate of local gain, agents can accept to
join a clan. The idea behind this work is that agents that #ash other will be collaborative. Moreover,

4An earlier version is (Chalkiadakis et al., 2008)
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when an agent needs to form a coalition of agents, it will a@girch partners in the clan, which reduces
the search space. Trust can therefore be very effectiveéding up in large society of agents.

5.10 Learning

When agents have to repeatedly form coalitions in the presefihe same set of agents, learning can be
used to improve performance of the coalition formation peschoth in terms of speed of the process and
in terms of better valuation.

A basic model of iteratively playing many coalitional gamsspresented in (Mérida-Campos and
Willmott, 2004): at each time step, a task is offered to agémat are already organised into coalitions.
The task is awarded to the best coalition. The model is maderin (Mérida-Campos and Willmott,
2006) where the agents can estimate the value of a coalitidhave a richer set of actions: as the agents
can fire members from a coalition, join a different coalitionleave a coalition to replace some agentsin a
different coalition. However, in both works, the agentsraotlearning, they have a set of static strategies.
Empirical experiments compare the results over populatigsing either the same strategy or a mix of
strategies.

Chalkiadakis and Boutilier also consider a repeated ¢oalfiormation problem (Chalkiadakis and
Boutilier, 2004, 2008, 2010). The setting is a task allaraproblem where agents know their own types
(i.e., skill to perform some type of tasks), but do not know tines of other agents in the population.
Each time a coalition is formed, the agents will receive ai@dbr that coalition. From the observation
of this value, the agents can update a belief about the tyfpether agents. When an agent is reasoning
about which coalition to form, it uses its beliefs to estienéte value of the coalition. This problem
can be formulated using a POMPD (Partially observable MaiRecision Process) where the agents
are maximising the long-term value of their decision oves tkpetition of the coalition formation
process. Solving a POMPD is a difficult task, and the POMPDHercoalition formation problem grows
exponentially with the number of agents. In (Chalkiadakid 8outilier, 2004), a myopic approach is
proposed. More recently, Chalkiadakis and Boutilier ps#padditional algorithms to solve that POMPD,
and empirically compare the solutions (Chalkiadakis andtHtier, 2008).

6 Conclusion

Cooperative game theory has been studied from many decagesand this survey shows this work
relevant to multiagent systems. A TU game is a simple mathiead@bject: it consists of a set of players
N and a valuation that maps any subsef\ofo a real value. We saw that many solution concepts have
been proposed by game theory, and each of them has its prosoasdThe core is perhaps the most
intuitive solution promoting stability, but it may be empihe nucleolus is theoretically quite appealing,
however, it is difficult to compute. The Shapley value, algfiatilt to compute, does not provide stability
but provides fairness.

Using a naive representation, the size of the input is exptialehence, it is computationally expensive
to compute a solution concept. One contribution of the ragnt systems community to game theory has
been to investigate the computational properties of ctagbgames for various solution concepts under
various representations. We have tried to indicate thesgtsdn this paper, but this topic would probably
require a survey on its own.

Another contribution of the multiagent system communitg baen to propose solutions to issues that
are less interesting from a game theoretic point of view.dx@mple, searching for an optimal coalition
structure or considering issues presented in Section 5 asieincertainty, the problem of overlapping
coalition, learning, etc. Some issues have not been suoligsiseat, for example the formation of
coalition in open environments.

Acknowledgment

This article originated from the related work of my disstdia, under the supervision of Sandip Sen.
| would like to thank him for reviews and comments about eaniersions of this paper. | also thank



Cooperative Games and Multiagent Systems 37

Krzysztof R. Apt. for sharing his notes. | would also like tabk Ulle Endriss for his comments. An
earlier version of this article has been used as lecturesriotehe 12th European Agent Systems Summer
School held in Saint-Etienne, France.

References

Abdallah, S. and Lesser, V. (2004), Organization-basepetive coalition formatiorin ‘IAT 04’.

Airiau, S. and Sen, S. (2009), A fair payoff distribution fagopic rational agent$n ‘Proceedings of the
Eighth International Conference on Autonomous Agents aottidyent Systems (AAMAS-09)'.

Airiau, S. and Sen, S. (2010), On the stability of an optin@lition structurejn ‘Proceedings of the
19th European Conference on Atrtificial Intelligence (EC8I10)’, pp. 203-208.

Aknine, S. and Caillou, P. (2004), Agreements without disegents,jn ‘Proceedings of the 16th
Eureopean Conference on Atrtificial Intelligence, ECAI'2Q(p. 3—7.

Aknine, S., Pinson, S. and Shakun, M. F. (2004), ‘A multi+g#geoalition formation method based on
preference modelsGroup Decision and Negotiatioh3(6), 513-538.

Aknine, S. and Shehory, O. (2005), ‘Coalition Formationn€essions, Task Relationships and Complex-
ity Reduction’,ArXiv Computer Science e-prints

Asselin, F. and Chaib-draa, B. (2006), ‘Performance ofvgafé agents in non-transferable payoff group
buying’, Journal of Experimental and Theoretical Artificial Integjéncel8(1), 1-32.

Aubin, J.-P. (1979)Mathematical Methods of Game and Economic TheNgrth-Holland.

Aumann, R. J. and Dréze, J. H. (1974), ‘Cooperative gamels @gtlition structures’nternational
Journal of Game Theor$(4), 217-237.

Aziz, H., Brandt, F. and Harrenstein, P. (2010), Monotongpawative games and their threshold versions,
in ‘Proceedings of the 9th International Conference on Automas Agents and Multiagent Systems:
volume 1 - Volume 1’, AAMAS '10, International FoundationrfAutonomous Agents and Multiagent
Systems, Richland, SC, pp. 1107-1114.

Bachrach, Y., Elkind, E., Meir, R., Pasechnik, D., Zuckeni., Rothe, J. and Rosenschein, J. (2009),
The cost of stability in coalitional gameis, ‘'SAGT'09: 2nd International Symposium of Algorithmic
Game Theory’, pp. 122-134.

Bachrach, Y., Meir, R., Jung, K. and Kohli, P. (2010), Caatitil structure generation in skill gamés,
‘Proceedings of the Twenty-Fourth AAAI Conference on Acidi Intelligence (AAAI-10)’, pp. 703—
708.

Bachrach, Y. and Rosenschein, J. (2009), ‘Power in threshetwork flow games’Autonomous Agents
and Multi-Agent Systenis8, 106—-132. 10.1007/s10458-008-9057-6.

Bachrach, Y. and Rosenschein, J. S. (2008), Coalitiondll gkines,in ‘Proc. of the 7th Int. Conf. on
Autonomous Agents and Multiagent Systems (AAMAS-08)’, pp23—-1030.

Banerjee, B. and Kraemer, L. (2010), Coalition structureegation in multi-agent systems with mixed
externalitiesjn ‘Proceedings of the 9th International Conference on Autemies Agents and Multia-
gent Systems: volume 1 - Volume 1', AAMAS '10, Internatiofradundation for Autonomous Agents
and Multiagent Systems, Richland, SC, pp. 175-182.

Belmonte, M.-V., Conejo, R., de-la Cruz, J.-L. P. and RuizT H2002), A stable and feasible payoff
division for coalition formation in a class of task orien@aimainsjn ‘ATAL '01: Revised Papers from
the 8th International Workshop on Intelligent Agents VIBpringer-Verlag, London, UK, pp. 324—-334.



38 S. AIRIAU

Belmonte, M.-V,, Conejo, R., de-la Cruz, J.-L. P. and RuiZ[.§2004), A robust deception-free coalition
formation modeljn ‘Proceedings of the 2004 ACM symposium on Applied compu(igC '04)’,
ACM Press, New York, NY, USA, pp. 469-473.

Blankenburg, B., Dash, R. K., Ramchurn, S. D., Klusch, M. dadnings, N. R. (2005), Trusted kernel-
based coalition formatiorin ‘Proceedings of the fourth international joint conferenceAutonomous
agents and multiagent systems’, ACM Press, New York, NY, [J8A 989-996.

Blankenburg, B., He, M., Klusch, M. and Jennings, N. R. (90®isk-bounded formation of fuzzy
coalitions among service agenis, ‘Proceedings of 10th International Workshop on Coopeegativ
Information Agents’.

Blankenburg, B. and Klusch, M. (2004), On safe kernel statdalition forming among agentén
‘Proceedings of the third International Joint Conference Autonomous Agents and Multiagent
Systems’.

Blankenburg, B. and Klusch, M. (2005), Bsca-f: EfficientZyaalued stable coalition forming among
agentsjn ‘Proceedings of the IEEE International Conference on ligieht Agent Technology (IAT)’,
IEEE Computer Society Press.

Blankenburg, B., Klusch, M. and Shehory, O. (2003), Fuzzsn&kstable coalitions between rational
agents,in ‘Proceedings of the second international joint confereaneAutonomous agents and
multiagent systems (AAMAS-03)’, ACM Press.

Bloch, F. (2003), Non-cooperative models of coalition fatian in games with spillovein C. Carraro,
ed., ‘The endogenous formation of economic coalitionsiy&d Elgar, chapter 2, pp. 35-79.

Bogomolnaia, A. and Jackson, M. O. (2002), ‘The stabilittheflonic coalition structuresGames and
Economic BehavioB88(2), 201-230.

Branzei, S. and Larson, K. (208 Coalitional affinity gamesn ‘Proceedings of the International Joint
Conference on Atrtificial Intelligence (IJCAI-09)", pp. 1341320.

Branzei, S. and Larson, K. (2009 Coalitional affinity gamesjn ‘Proc of the 8th Int. Conf. on
Autonomous Agents and Multiagent Systems (AAMAS 2009)’, T-84.

Breban, S. and Vassileva, J. (2002), A coalition formatioachanism based on inter-agent trust
relationshipsin ‘AAMAS '02: Proceedings of the first international joint ci@nence on Autonomous
agents and multiagent systems’, ACM Press, New York, NY, 8A 306-307.

Brooks, C. H. and Durfee, E. H. (2003), ‘Congregation folioratin multiagent systemsAutonomous
Agents and Multi-Agent System(d.-2), 145-170.

Caillou, P., Aknine, S. and Pinson, S. (2002), A multi-agaathod for forming and dynamic restructuring
of pareto optimal coalitionsn ‘AAMAS '02: Proceedings of the first international joint ciemence on
Autonomous agents and multiagent systems’, ACM Press, Naw, XY, USA, pp. 1074-1081.

Chalkiadakis, G. and Boutilier, C. (2004), Bayesian reioément learning for coalition formation under
uncertainty,in ‘Proceedings of the third International Joint ConferenoeAaitonomous Agents and
Multiagent Systems(AAMAS’04)’.

Chalkiadakis, G. and Boutilier, C. (2008), Sequential sieci making in repeated coalition formation
under uncertaintyin ‘Proc. of the 7th Int. Conf. on Autonomous Agents and Muléag Systems
(AAMAS-08)'.

Chalkiadakis, G. and Boutilier, C. (2010), ‘Sequentiallpti;mal repeated coalition formation’,
Autonomous Agents and Multi-Agent Systémregppear. Published online November 2010.



Cooperative Games and Multiagent Systems 39

Chalkiadakis, G., Elkind, E. and Jennings, N. R. (2009), @é&rcoalitional games with beliefsn
‘Proceedings of the 21st international jont conference aotifiéal intelligence’, Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, pp. 85-90.

Chalkiadakis, G., Elkind, E., Markakis, E. and JenningsRN(2008), Overlapping coalition formation,
in ‘Proceeedings of the 4th International Workshop on Inteand Network Economics (WINE2008)’,
pp. 307-321.

Chalkiadakis, G., Elkind, E., Markakis, E. and Jennings, R\. (2010), ‘Cooperative games with
overlapping coalitions’Journal of Artificial Intelligence Resear@®, 179-216.

Coleman, J. S. (1970), ‘The benefits of coalitidpyblic Choice8, 45-61.

Conitzer, V. and Sandholm, T. (2003), Complexity of deterimg nonemptiness of the coiig,'Proceed-
ings of the International Joint Conference on Atrtificialdihigence (IJCAI)'.

Conitzer, V. and Sandholm, T. (2004), Computing shapleyes| manipulating value division schemes,
and checking core membership in multi-issue domairn®roceedings of the 19th National Conference
on Artificial Intelligence (AAAI-04)", pp. 219-225.

Contreras, J., Klusch, M., Shehory, O. and Wu, F. (1997) litmaformation in a power transmission
planning environmentn ‘Proceeding of the Second International Conference ortieghé\pplications
of Multi-Agent Systems, PAAM97'.

Contreras, J., Klusch, M. and Yen, J. (1998), Multi-agerdlition formation in power transmission
planning: a bilateral shapley value approaich,Proceedings of the Fourth International Conference
on Atrtificial Intelligence Planning Systems’.

Cornforth, D., Kirley, M. and Bossomaier, T. (2004), Agergtérogeneity and coalition formation:
Investigating market-based cooperative problem solvingroceedings of the third International Joint
Conference on Autonomous Agents and Multiagent Systems{A8'04)’.

Dang, V. D., Dash, R. K., Rogers, A. and Jennings, N. R. (200¥Erlapping coalition formation for
efficient data fusion in multi-sensor networks, ‘Proceedings of the Twenty-First Conference on
Artificial Intelligence (AAAI-06)’, pp. 635—640.

Dang, V. D. and Jennings, N. R. (2004), Generating coalgtonctures with finite bound from the optimal
guaranteesin ‘Proceedings of the third International Joint ConferenoeAaitonomous Agents and
Multiagent Systems(AAMAS’04)’.

Davis, M. and Maschler, M. (1965), ‘The kernel of a coopemtgjame’,Naval Research Logistics
Quarterly12.

de Keijzer, B., Klos, T. and Zhang, Y. (2010), Enumeratiod eract design of weighted voting gamis,
‘Proc. of the 9th Int. Conf. on Autonomous Agents and MuléiagSystems (AAMAS-2010)’, pp. 391—
398.

Deng, X., Fang, Q. and Sun, X. (2006), Finding nucleolus af flimme,in ‘SODA '06: Proceedings of
the seventeenth annual ACM-SIAM symposium on Discreterdlgn’, ACM Press, New York, NY,
USA, pp. 124-131.

Deng, X. and Papadimitriou, C. H. (1994), ‘On the complexity cooperative solution concetps’,
Mathematical Operation Researd®(2), 257-266.

Dieckmann, T. and Schwalbe, U. (2002), ‘Dynamic coaliti@rniation and the core’Journal of
Economic Behavior & Organizatio#%(3), 363-380.



40 S. AIRIAU

Elkind, E., Goldberg, L. A., Goldberg, P. and Wooldridge, {2007), Computational complexity of
weighted threshold games) ‘Proceedings of the Twenty-Second AAAI Conference on Aaitifi
Intelligence (AAAI-07)’, pp. 718-723.

Elkind, E. and Pasechnik, D. (2009), Computing the nuckeofuveighted voting game#) ‘SODA09:
20th ACM-SIAM Symposium on Discrete Algorithms’, pp. 328353

Elkind, E. and Wooldridge, M. (2009), Hedonic coalition sieih ‘Proc. of the 8th Int. Conf. on
Autonomous Agents and Multiagent Systems (AAMAS-09)’, p7—424.

Gillies, D. B. (1953), Some theorems onperson games, PhD thesis, Department of Mathematics,
Princeton University, Princeton, N.J.

Greco, G., Malizia, E., Palopoli, L. and Scarcello, F. (20@9n the complexity of compact coalitional
games,in ‘Proceedings of the 21st international jont conference dfifigal intelligence’, Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, pp. 182-1

Griffiths, N. and Luck, M. (2003), Coalition formation thrglu motivation and trusin ‘Proceedings of
the second international joint conference on Autonomoesitsgpnd multiagent systems (AAMASO03)’,
ACM Press, New York, NY, USA.

Hart, S. and Kurz, M. (1983), ‘Endogenous formation of diatis’, Econometricéb1(4).

Horling, B. and Lesser, V. (2004), ‘A survey of multi-agemganizational paradigmsThe Knowledge
Engineering Review9, 281-316.

Horling, B., Vincent, R., Maliller, R., Shen, J., Becker, Rawlins, K. and Lesser, V. (2001), Distributed
sensor network for real time trackingn ‘Proceedings of the fifth international conference on
Autonomous agents(Agents’01)’, ACM Press, New York, NY,A)8p. 417-424.

leong, S. and Shoham, Y. (2005), Marginal contribution nat€ompact representation scheme for
coalitional gamedn ‘EC '05: Proceedings of the 6th ACM conference on Electraoimmerce’, ACM
Press, New York, NY, USA, pp. 193-202.

leong, S. and Shoham, Y. (2008), Bayesian coalitional game®roceedings of the Twenty-Second
AAAI Conference on Atrtificial Intelligence (AAAI-08)’, pp95—-100.

Kahan, J. P. and Rapoport, A. (1984 heories of Coalition FormatigrLawrence Erlbaum Associates,
Publishers.

Kalai, E. and Xemel, E. (1982), ‘Totally balanced games aamies of flow’,Mathematics of Operations
Researcly, 476-478.

Ketchpel, S. P. (19%), The formation of coalitions among self-interested aggnt'Proceedings of the
Eleventh National Conference on Atrtificial Intelligencpfy. 414-419.

Ketchpel, S. P. (1999, Forming coalitions in the face of uncertain rewards.,Proceedings of the
Eleventh National Conference on Atrtificial Intelligencpfy. 414-419.

Klusch, M. and Shehory, O. (1985 Coalition formation among rational information ageritsR. van
Hoe, ed., ‘Seventh European Workshop on Modelling Autonasnégents in a Multi-Agent World’,
Eindhoven, The Netherlands.

Klusch, M. and Shehory, O. (1985 A polynomial kernel-oriented coalition algorithm forti@nal
information agentsn ‘Proceedings of the Second International Conference oridgent Systems’,
AAAI Press, pp. 157 — 164.



Cooperative Games and Multiagent Systems 41

Kraus, S., Shehory, O. and Taase, G. (2003), Coalition foomavith uncertain heterogeneous informa-
tion, in ‘Proceedings of the second international joint conferemcAutonomous agents and multiagent
systems’, ACM Press, pp. 1-8.

Kraus, S., Shehory, O. and Taase, G. (2004), The advantdgesypromising in coalition formation with
incomplete informationin ‘Proceedings of the third International Joint ConferenneAutonomous
Agents and Multiagent Systems(AAMAS’04)'.

Kuipers, J., Faigle, U. and Kern, W. (2001), ‘On the compatabf the nucleolus of a cooperative game’,
International Journal of Game TheoB0(1), 79-98.

Larson, K. S. and Sandholm, T. W. (2000), ‘Anytime coalit&tructure generation: an average case study’,
Journal of Experimental & Theoretical Artificial Intelligee12(1), 23—-42.

Lau, H. C. and Zhang, L. (2003), Task allocation via multeag coalition formation: Taxonomy,
algorithms and complexityn ‘15th IEEE International Conference on Tools with Artificiatelligence
(ICTAI 2003)", pp. 346-350.

Lerman, K. and Shehory, O. (2000), Coalition formation fngke-scale electronic markeis, Proceed-
ings of the Fourth International Conference on MultiAgepstems (ICMAS-2000)’, IEEE Computer
Society.

Li, C., Rajan, U., Chawla, S. and Sycara, K. (2003), Mecharidor coalition formation and cost
sharing in an electronic marketpladae,‘ICEC '03: Proceedings of the 5th international conference
on Electronic commerce’, ACM Press, New York, NY, USA, pp-88.

Li, C. and Sycara, K. (2002), Algorithm for combinatorialattion formation and payoff division in
an electronic marketplace ‘Proceedings of the first international joint conferencefatonomous
agents and multiagent systems(AAMAS '02)’, ACM Press, NemKYNY, USA, pp. 120-127.

Manisterski, E., David, E., Kraus, S. and Jennings, N. ROG20Forming efficient agent groups for
completing complex task# ‘Proceedings of the Fifth International Joint Conferennedoitonomous
Agents and Multiagent Systems AAMAS-06’.

Mares, M. (2001), ‘Fuzzy cooperative games: cooperatidh vague expectationsStudies in fuzziness
and soft computin@2.

Mérida-Campos, C. and Willmott, S. (2004), Modelling ctah formation over time for iterative
coalition gamesin ‘Proceedings of the third International Joint ConferenneAmtonomous Agents
and Multiagent Systems(AAMAS’'04)'.

Mérida-Campos, C. and Willmott, S. (2006), The effect oEnetjeneity on coalition formation in iterated
request for proposal scenarias, ‘Proceedings of the Forth European Workshop on Multi-Agent
Systems (EUMAS 06)’.

Michalak, T., Dowell, A., McBurney, P. and Wooldridge, M.0@8), Optimal coalition structure gener-
ation in partition function game# ‘Proceeding of the 2008 conference on ECAI 2008’, IOS Press,
Amsterdam, The Netherlands, The Netherlands, pp. 388-392.

Michalak, T., Rahwan, T., Marciniak, D., Szamotulski, Mdafennings, N. R. (2010), Computational
aspects of extending the shapley value to coalitional gamisexternalitiesjn ‘Proceeding of the
2010 conference on ECAI 2010: 19th European Conference tifickl Intelligence’, 10S Press,
Amsterdam, The Netherlands, The Netherlands, pp. 197—202.

Michalak, T., Rahwan, T., Marciniak, D., Szamotulski, M.cBUrney, P. and Jennings, N. R. (2010),
A logic-based representation for coalitional games witltemalities,in ‘Proceedings of the 9th
International Conference on Autonomous Agents and MutiagSystems: volume 1 - Volume 1,



42 S. AIRIAU

AAMAS '10, International Foundation for Autonomous Ageratsd Multiagent Systems, Richland,
SC, pp. 125-132.

Michalak, T., Rahwan, T., Sroka, J., Dowell, A., Wooldri¢iye, McBurney, P. and Jennings, N. R. (2009),
On representing coalitional games with externalitiesProceedings of the 10th ACM conference on
Electronic Commerce 09 (EC'09)'.

Myerson, R. B. (1977), ‘Graphs and cooperation in ganidathematics of Operations Resea@;225—
229.

Nishizaki, I. and Masatoshi, M. S. (2001), ‘Fuzzy and mudjertive games for conflict resolution’,
Studies in Fuzziness and Soft Compugdg

Ohta, N., Conitzer, V., Satoh, Y., lwasaki, A. and Yokoo, M0Q9), Anonimity-proof shapley value:
Extending shapley value for coalitional games in open emvirentsjn ‘Proc. of the 8th Int. Conf. on
Autonomous Agents and Multiagent Systems (AAMAS-09)'.

Osborne, M. J. and Rubinstein, A. (1994)Course in Game Theorfhe MIT Press.

Owen, G. (1977), Values of games with a priori unionsQ. M. R. Hein, ed., ‘Mathematical Economics
and Game Theory: Essays in Honor of Oskar Morgenstern’n§erj New York.

Péchowiek, M., Mdik, V. and Barta, J. (2002), ‘A knowledge-based approachaalition formation’,
IEEE Intelligent Systenmk/(3), 17—-25.

Péchowtek, M., Maik, V. and ¢Stépankova, O. (2000), Coalition formation in manufaoymulti-
agent systemsn ‘Proceedings of the 11th International Workshop on Datelzaxl Expert Systems
Applications (DEXA0O0)'.

Peleg, B. and Sudhdlter, P. (200ifjtroduction to the theory of cooperative cooperative ggr2ad edn,
Springer.

Plaza, E. and Ontafién, S. (2006), ‘Learning collaborattoategyies for committees of learning agents’,
Journal of Autonomous Agents and Multi-Agent Systes(), 429-461.

Poon, A. S. Y., Yeung, C. S. K. and Wu, F. F. (1999), ‘Game tagcal multi-agent modeling of coalition
formation for multilateral tradeslEEE Transactions on Power Systed{8).

Procaccia, A. D. and Rosenschein, J. S. (2006), The comieioriccomplexity of coalition formation
among autonomous agenits, Proceedings of the Fifth International Joint Conferensedoitonomous
Agents and Multiagent Systems AAMAS-06'.

Rahwan, T. and Jennings, N. R. (2007), ‘An algorithm forritisiting coalitional value calculations among
cooperating agentsArtificial Intelligencel71(8-9), 535-567.

Rahwan, T. and Jennings, N. R. (2@)8Coalition structure generation: Dynamic programmingetae
anytime optimizationjn ‘Proceedings of the 23rd conference on artificial intelige (AAAI-08)’,
pp. 156-161.

Rahwan, T. and Jennings, N. R. (2@8)8An improved dynamic programming algorithm for coalition
structure generationn ‘Proceedings of the 7th international conference on Automgs Agents and
Multi-Agent Systems (AAMAS-08)'.

Rahwan, T., Michalak, T., Jennings, N. R., Wooldridge, Vd &cBurney, P. (2009), Coalition structure
generation in multi-agent systems with positive and nggakternalitiesin ‘Proceedings of the 21st
International Joint Conference on Atrtificial Intelligen@@CAI-09)’.



Cooperative Games and Multiagent Systems 43

Rahwan, T., Ramchurn, S. D., Dang, V. D., Giovannucci, A. dadnings, N. R. (2007), Anytime
optimal coalition structure generatian, ‘Proceedings of the Twenty-Second Conference on Atrtificial
Intelligence (AAAI-07)’, pp. 1184-1190.

Rahwan, T., Ramchurn, S. D., Dang, V. D. and Jennings, N. B®0qR Near-optimal anytime coalition
structure generatiorin ‘Proceedings of the Twentieth International Joint Confieee on Artificial
Intelligence (IJCAI'Q7)’, pp. 2365-2371.

Rahwan, T., Ramchurn, S. D., Jennings, N. R. and GiovannAcgR009), ‘An anytime algorithm for
optimal coalition structure generatiodournal of Artificial Intelligence Resear@¥, 521-567.

Ray, D. and Vohra, R. (1999), ‘A theory of endogenous caalitstructures’ Games and Economic
Behavior26, 286—336.

Sandholm, T. and Lesser, V. R. (1997), ‘Coalitions amongmatationally bounded agent#\l Journal
94(1-2), 99-137.

Sandholm, T. W,, Larson, K. S., Andersson, M., Shehory, @.Bohmé, F. (1999), ‘Coalition structure
generation with worst case guarantedstjficial Intelligencel11(1-2), 209-238.

Sarne, D. and Kraus, S. (2003), The search for coalitiondtion in costly environment# ‘Cooperative
Information Agents VII, 7th International Workshop, CIA@®), Helsinki, Finland, August 27-29, 2003,
Proceedings’, Vol. 2782 dfecture Notes in Computer Scien&pringer Berlin / Heidelberg.

Sarne, D. and Kraus, S. (2005), Cooperative exploratiohénetectronic marketplace) ‘Proceedings
of the Twentieth National Conference on Artificial Intetligce’, AAAI Press AAAI Press / The MIT
Press, pp. 158-163.

Schmeidler, D. (1969), ‘The nucleolus of a characteristinction game’,SIAM Journal of applied
mathematicd 7.

Sen, S. and Dutta, P. S. (2000), Searching for optimal eoalstructuresin ‘ICMAS '00: Proceedings of
the Fourth International Conference on MultiAgent Systéi@dAS-2000)’, IEEE Computer Society,
Washington, DC, USA, p. 287.

Service, T. and Adams, J. (204)Q Approximate coalition structure generation,‘Proceedings of the
Twenty-Fourth AAAI Conference on Artificial Intelligenc&QAI-10)’, pp. 854—859.

Service, T. and Adams, J. (204)0 ‘Constant factor approximation algorithms for coalitistructure
generation’ Autonomous Agents and Multi-Agent Systepmsl—17. Published online February 2010.

Shapley, L. (1953), A value for n-person gamiesH. Kuhn and A. Tucker, eds, ‘Contributions to the
Theory of Games’, Vol. 2, Princeton University Press, Retna, NJ.

Shehory, O. and Kraus, S. (1998), ‘Methods for task allocatia agent coalition formationArtificial
Intelligencel01(1-2), 165-200.

Shehory, O. and Kraus, S. (1999), ‘Feasible formation oflitoas among autonomous agents in
nonsuperadditve environment€pmputational Intelligencé5, 218—-251.

Sims, M., Goldman, C. V. and Lesser, V. (2003), Self-orgatiin through bottom-up coalition formation,
in ‘Proceedings of the second international joint conferemeeAutonomous agents and multiagent
systems (AAMASO03)’, ACM Press, New York, NY, USA, pp. 867487

Soh, L.-K. and Tsatsoulis, C. (2002), Satisficing coalittormation among agentsn ‘AAMAS '02:
Proceedings of the first international joint conference omofilomous agents and multiagent systems’,
ACM Press, New York, NY, USA, pp. 1062-1063.



44 S. AIRIAU

Soh, L.-K., Tsatsoulis, C. and Sevay, H. (2003), ‘A satisficinegotiated, and learning coalition formation
architecture’ Distributed Sensor Networks: A Multiagent Perspectipe 109-138.

Stearns, R. E. (1968), ‘Convergent transfer schemes farsep gamesTransactions of the American
Mathematical Society34(3), 449-459.

Thrall, R. M. and Lucas, W. F. (1963), ‘N-person games inipart function form’, Naval Research
Logistics Quarterlyl((1), 281-298.

Tohmé, F. and Sandholm, T. (1999), ‘Coalition formationgaeses with belief revision among bounded-
rational self-interested agentdournal of Logic and Computatio®(6), 793-815.

Tsvetovat, M., Sycara, K. P., Chen, Y. and Ying, J. (2001)stGmer coalitions in electronic markets,
in ‘Agent-Mediated Electronic Commerce lll, Current IssuesAigent-Based Electronic Commerce
Systems (includes revised papers from AMEC 2000 Workshdppringer-Verlag, London, UK,
pp. 121-138.

Ueda, S., lwasaki, A., Yokoo, M., Silaghi, M. C., Hirayama,dtd Matsui, T. (2010), Coalition structure
generation based on distributed constraint optimizaiiofRProceedings of the Twenty-Fourth AAAI
Conference on Artificial Intelligence (AAAI-10)’, pp. 19263.

Vassileva, J., Breban, S. and Horsch, M. (2002), ‘Agentari@g mechanism for making long-term
coalitions based on decision making and truStmputational Intelligencé&8(4), 583-595.

Wooldridge, M. (2009)An Introduction to MultiAgent Systennd edn, Wiley.

Wu, L. S.-Y. (1977), ‘A dynamic theory for the class of gamdgwwmonempty cores’SIAM Journal on
Applied Mathematic82(2), 328—-338.

Yamamoto, J. and Sycara, K. (2001), A stable and efficienebepalition formation scheme for e-
marketplacesin ‘AGENTS ’01: Proceedings of the fifth international confece on Autonomous
agents’, ACM Press, New York, NY, USA, pp. 576-583.

Yokoo, M., Conitzer, V., Sandholm, T., Ohta, N. and Iwas&ki(2005), Coalitional games in open anony-
mous environmentsn ‘Proceedings of the Twentieth National Conference on Aitfilntelligence’,
AAAI Press AAAI Press / The MIT Press, pp. 509-515.

Yokoo, M., Conitzer, V., Sandholm, T., Ohta, N. and lwasaki(2006), A compact representation scheme
for coalitional games in open anonymous environment&roceedings of the Twenty First National
Conference on Atrtificial Intelligence’, AAAI Press AAAI Pse / The MIT Press, pp. —.

Young, H. P. (1985), ‘Monotonic solutions of cooperativergs’, International Journal of Game Theory
14, 65-72.



