
Cooperative Heterogeneous Computing
for Parallel Processing on CPU/GPU Hybrids

Changmin Lee and Won W. Ro
School of Electrical and Electronic Engineering

Yonsei University
Seoul 120-749, Republic of Korea

{exahz, wro}@yonsei.ac.kr

Jean-Luc Gaudiot
Department of Electrical Engineering and

Computer Science, University of California
Irvine, CA 92697-2625

gaudiot@uci.edu

Abstract

This paper presents a cooperative heterogeneous com-
puting framework which enables the efficient utilization of
available computing resources of host CPU cores for CUDA
kernels, which are designed to run only on GPU. The pro-
posed system exploits at runtime the coarse-grain thread-
level parallelism across CPU and GPU, without any source
recompilation. To this end, three features including a work
distribution module, a transparent memory space, and a
global scheduling queue are described in this paper. With
a completely automatic runtime workload distribution, the
proposed framework achieves speedups as high as 3.08
compared to the baseline GPU-only processing.

1. Introduction

General-Purpose computing on Graphics Processing
Units (GPGPU) has recently emerged as a powerful com-
puting paradigm because of the massive parallelism pro-
vided by several hundreds of processing cores [4, 15]. Un-
der the GPGPU concept, NVIDIA R© has developed a C-
based programming model, Compute Unified Device Ar-
chitecture (CUDA), which provides greater programmabil-
ity for high-performance graphics devices. As a matter of
fact, general-purpose computing on graphics devices with
CUDA helps improve the performance of many applications
under the concept of a Single Instruction Multiple Thread
model (SIMT).

Although the GPGPU paradigm successfully provides
significant computation throughput, its performance could
still be improved if we could utilize the idle CPU resource.
Indeed, in general, the host CPU is being held while the
CUDA kernel executes on the GPU devices; the CPU is not
allowed to resume execution until the GPU has completed
the kernel code and has provided the computation results.

The main motivation of our research is to exploit parallelism
across the host CPU cores in addition to the GPU cores.
This will eventually provide additional computing power
for the kernel execution while utilizing the idle CPU cores.
Our ultimate goal is thus to provide a technique which even-
tually exploits sufficient parallelism across heterogeneous
processors.

The paper proposes Cooperative Heterogeneous Com-
puting (CHC), a new computing paradigm for explicitly
processing CUDA applications in parallel on sets of hetero-
geneous processors including x86 based general-purpose
multi-core processors and graphics processing units. There
have been several previous research projects which have
aimed at exploiting parallelism on CPU and GPU. How-
ever, those previous approaches require either additional
programming language support or API development. As
opposed to those previous efforts, our CHC is a software
framework that provides a virtual layer for transparent exe-
cution over host CPU cores. This enables the direct execu-
tion of CUDA code, while simultaneously providing suffi-
cient portability and backward compatibility.

To achieve an efficient cooperative execution model, we
have developed three important techniques:

• A workload distribution module (WDM) for CUDA
kernel to map each kernel onto CPU and GPU

• A memory model that supports a transparent memory
space (TMS) to manage the main memory with GPU
memory

• A global scheduling queue (GSQ) that supports bal-
anced thread scheduling and distribution on each of the
CPU cores

We present a theoretical analysis of the expected perfor-
mance to demonstrate the maximum feasible improvement
of our proposed system. In addition, the performance eval-
uation on a real system has been performed and the results



Kernel_func<<<>>>();

Serial code

Serial code
CPU GPU

waiting

(a)

Kernel_func<<<>>>();

Serial code

Serial code
CPU GPU

Execution time reduction

(b)

Figure 1. Execution flow of CUDA program: limitation where CPU stalls (a) and cooperative execution
in parallel (b).

show that speedups as high as 3.08 have been achieved. On
average, the complete CHC system shows a performance
improvement of 1.42 over GPU-only computation with 14
CUDA applications.

The rest of the paper is organized as follows. Section 2
reviews related work and Section 3 introduce the existing
CUDA programming model and describe motivation of this
work. In Section 4, we presents the design and limitations
of the CHC framework. Section 5 gives preliminary results.
Finally, we conclude this work in Section 6.

2. Related work

There have been several prior research projects which
aim at mapping an explicitly parallel program for graphics
devices onto multi-core CPUs or heterogeneous architec-
tures. MCUDA [18] automatically translates CUDA codes
for general purpose multi-core processors, applying source-
to-source translation. This implies that the MCUDA tech-
nique translates the kernel source code into a code written in
a general purpose high-level language, which requires one
additional step of source recompilation.

Twin Peaks [8] maps an OpenCL-compatible program
targeted for GPUs onto multi-core CPUs by using the
LLVM (Low Level Virtual Machine) intermediate repre-
sentation for various instruction sets. Ocelot [6], which
inspired our runtime system, uses a dynamic translation
technique to map a CUDA program onto multi-core CPUs.
Ocelot converts at runtime PTX code into an LLVM code
without recompilation and optimizes PTX and LLVM code
for execution by the CPU. The proposed framework in this
paper is largely different from these translation techniques
(MCUDA, Twin Peaks, and Ocelot) in that we support co-
operative execution for parallel processing over both CPU
cores and GPU cores.

In addition, EXOCHI provides a programming environ-

ment that enhances computing performance for media ker-
nels on multicore CPUs with Intel R© Graphics Media Ac-
celerator (GMA) [20]. However, this programming model
uses the CPU cores only for serial execution. The Merge
framework has extended EXOCHI for the parallel execu-
tion on CPU and GMA; however, it still requires APIs and
the additional porting time [13]. Lee et al. have presented
a framework which aims at porting an OpenCL program
on the Cell BE processor [12]. They have implemented a
runtime system that manages software-managed caches and
coherence protocols.

Ravi et al. [17] have proposed a compiler and a run-
time framework that generate a hybrid code running on both
CPU and GPU. It dynamically distributes the workload, but
the framework targets only for generalized reduction appli-
cations, while our system targets to map general CUDA ap-
plications. Qilin [14], in the most relevant study to our pro-
posed framework, has shown an adaptive kernel mapping
using a dynamic work distribution. The Qilin system trains
a program to maintain databases for the adaptive mapping
scheme. In fact, Qilin requires and strongly relies on its own
programming interface. This implies that the system cannot
directly port the existing CUDA codes, but rather program-
mers should modify the source code to fit their interfaces.
As an alternative, CHC is designed for seamless porting of
the existing CUDA code on CPU cores and GPU cores. In
other words, we focus on providing backward compatibility
of CUDA runtime APIs.

3. Motivation

One of the major roles of the host CPU for the CUDA
kernel is limited to controlling and accessing the graphics
devices, while the GPU device provides a massive amount
of data parallelism. Fig. 1(a) shows an example where the
host controls the execution flow of the program only, while



the device is responsible for executing the kernel. Once a
CUDA program is started, the host processor executes the
program sequentially until the kernel code is encountered.
As soon as the host calls the kernel function, the device
starts to execute the kernel with a large number of hard-
ware threads on the GPU device. In fact, the host processor
is held in the idle state until the device reaches the end of
the kernel execution.

As a result, the idle time causes an inefficient utilization
of the CPU hardware resource of the host machine. Our
CHC system is to use the idle computing resource with con-
current execution of the CUDA kernel on both CPU and
GPU (as described in Fig. 1(b)). Considering that the fu-
ture computer systems are expected to incorporate more
cores in both general purpose processors and graphics de-
vices, parallel processing on CPU and GPU would become
a great computing paradigm for high-performance appli-
cations. This would be quite helpful to program a sin-
gle chip heterogeneous multi-core processor including CPU
and GPU as well. Note that Intel R© and AMD R© have al-
ready shipped commercial heterogeneous multi-core pro-
cessors.

In fact, CUDA is capable of enabling asynchronous con-
current execution between host and device. The concurrent
execution returns a control to the host before the device has
completed a requested task (i.e., non-blocking). However,
the CPU that has the control can only perform a function
such as memory copy, setting other input data, or kernel
launches using streams. The key difference on which we
focus is in the use of idle computing resources with concur-
rent execution of the same CUDA kernel on both CPU and
GPU, thereby easing the GPU burden.

4. Design

An overview of our proposed CHC system is shown in
Fig. 2. It contains two runtime procedures for each kernel
launched. Each kernel execution undergoes those proce-
dures. The first includes the Workload Distribution Mod-
ule (WDM), designed to apply the distribution ratio to the
kernel configuration information. Then, the modified con-
figuration information is delivered to both the CPU loader
and the GPU loader. Two sub-kernels (KernelCPU and
KernelGPU ) are loaded and executed, based on the modi-
fied kernel configurations produced by the WDM.

The second procedure is designed to translate the PTX
code into the LLVM intermediate representation (LLVM
IR). As seen in Fig. 2, this procedure extracts the PTX code
from the CUDA binary to prepare the LLVM code for co-
operative computing. On the GPU device, our runtime sys-
tem passes the PTX code through the CUDA device driver,
which means that the GPU executes the kernel in the orig-
inal manner using the PTX-JIT compilation. On the CPU

Kernel Configuration 
Information

CUDA Executable Binary

PTX Assembly Code

Workload 
Distribution Module PTX-to-LLVMLLVM PTX

C
H

C
 

Fr
am

ew
or

k

GPU

CUDA Driver (PTX-JIT)

Main Memory

KernelCPU

CoreCore

CPU

LLVM-JIT

Global Scheduling Queue

- - -

CPU Loader GPU Loader

KernelGPU

SM SM

Global Memory

---

Abstraction Layer for TMS

Figure 2. An overview of the CHC runtime
system.

core side, CHC uses the PTX translator provided in Ocelot
in order to convert PTX instructions into LLVM IR [6]. This
LLVM IR is used for a kernel context of all thread blocks
running on CPU cores, and LLVM-JIT is utilized to execute
the kernel context [11].

The CUDA kernel execution typically needs some start-
up time to initialize the GPU device. In the CHC frame-
work, the GPU start-up process and the PTX-to-LLVM
translation are simultaneously performed to hide the PTX-
to-LLVM translation overhead.

4.1. Workload distribution module and
method

The input of WDM is the kernel configuration informa-
tion and the output specifies two different portions of the
kernel, each for CPU cores and the GPU device. The kernel
configuration information contains the execution configura-
tion which provides the dimension of a grid and that of a
block. The dimension of a grid can be efficiently used for
our workload distribution module.

In order to divide the CUDA kernel, the workload distri-
bution module determines the amount of the thread blocks
to be detached from the grid considering the dimension of
the grid and the workload distribution ratio as depicted in
Fig. 3. As a result, WDM generates two additional exe-
cution configurations, one for CPU and the other for GPU.
WDM then delivers the generated execution configurations
(i.e., the output of the WDM) to the CPU and GPU load-
ers. With these execution configurations, each loader now
can make a sub-kernel by using the kernel context such as



kernel_func<<<dGrid, dBlock>>>();

dGrid { x, y }
Work Distribution Flow

sub1_dGrid.x := dGrid.x
sub1_dGrid.y := dGrid.y CPURatio

sub2_dGrid.x := dGrid.x
sub2_dGrid.y := dGrid.y GPURatio

CPU Loader GPU Loader
sub1_dGrid sub2_dGrid

LLVM PTX

Abstraction Layer

Sub-Kernel 2Sub-Kernel 1

Kernel Grid

Core0 Core1

Queue for Work Sharing

Figure 3. Work distribution flow and kernel
mapping to CPU and GPU.

LLVM and PTX.
Typically, WDM assigns the front portion of thread

blocks to the GPU-side, while the rest is assigned to the
CPU-side. Therefore, the first identifier of the CPU’s sub-
kernel will be (dGrid.y×GPURatio) + 1. Then, each thread
block can identify the assigned data with the identifier since
both sides have an identical memory space.

In order to find the optimal workload distribution ratio,
we can probably predict the runtime behavior such as the
execution delay on CPU cores. However, it is quite hard to
predict characteristics of a CUDA program since the run-
time behavior strongly relies on dynamic characteristics of
the kernel [1, 10]. For this reason, Qilin used an empirical
approach to achieve their proposed adaptive mapping [14].
In fact, our proposed CHC also adopts a heuristic approach
to determine the workload distribution ratio. Then, the CHC
framework performs the dynamic work distribution at run-
time based on this ratio. The proposed work distribution can
split the kernel according to the granularity of thread block.

4.2. Memory consolidation for transparent
memory space

A programmerwriting CUDA applications should assign
memory spaces in the device memory of the graphics hard-
ware. These memory locations (or, addresses) are used for
the input and output data. In the CUDA model, data can be
copied between the host memory and the dedicated memory
on the device. For this purpose, the host system should pre-
serve pointer variables pointing to the location in the device
memory.

As opposed to the original CUDA model, two differ-
ent memory addresses exist for one pointer variable in our

proposed CHC framework. The key design problem is
caused by the fact that the computation results of the CPU
side are stored into the main memory that is different from
the device memory. To address this problem, we propose
and design an abstraction layer, Transparent Memory Space
(TMS), to preserve two different memory addresses in a
pointer variable at a time.

Accessing memory addresses. The abstraction layer
uses double pointers data structures (similar to [19]) for
pointer variables to map one pointer variable onto two mem-
ory addresses: for the main memory and the device mem-
ory. As seen in Fig. 4, we have declared the abstrac-
tion layer that manages a list of the TMS data structures.
Whenever a pointer variable is referenced, the abstraction
layer translates the pointer to the memory addresses, for
both CPU and GPU. For example, when a pointer vari-
able (e.g., d out) is used to allocate device memory using
cudaMalloc(), the framework assigns memory spaces
both on the device memory and the host memory. The ad-
dresses of these memory spaces are stored in a TMS data
structure (e.g., TMS1), and the framework maps the pointer
variable on the TMS data structure. Thus, the runtime
framework can perform the address translation for a pointer
variable.

Launching a kernel. For launching a kernel, pointer
variables defined in advance may be used as arguments of
the kernel function. At that time, the CPU and GPU load-
ers obtain each translated address from the mapping table
so that each sub-kernel could retain actual addresses on its
memory domain.

Merging separated data. After finishing the kernel com-
putation, the computation results are copied to the host
memory (cudaMemcpy()) to perform further operations.
Therefore, merging the data of two separate memory do-
mains is required. To reduce memory copy overhead, the
framework traces memory addresses which are modified by
the CPU-side computation.

4.3. Global scheduling queue for thread
scheduling

GPU is a throughput-oriented architecture which shows
outstanding performance with applications having a large
amount of data parallelism [7]. However, to achieve mean-
ingful performance from the CPU side, scheduling thread
blocks with an efficient policy is important.

Ocelot uses a locality-aware static partitioning scheme
in their proposed thread scheduler, which assigns each
thread block considering load balancing between neighbor-
ing worker thread [6]. However, this static partitioning
method probably causes some cores to finish their execution
early. In our scheduling scheme, we allow a thread block to
be assigned dynamically to any available core. For this pur-



float *h_in;
float *h_out;

...
cudaMalloc(d_in, size);
cudaMalloc(d_out, size);

...
cudaMemcpy(d_in, h_in, size, ...);
kernel_func<<<...>>>(d_in, d_out);
cudaMemcpy(h_out, d_out, size, ...);

...

d_out

0xC

0xD

TMS1

GPU Dedicated Memory

Main Memory

CPU Loader GPU Loader

KernelCPU KernelGPU

(0xB, 0xD)(0xA, 0xC)

d_in

0xA

0xB

TMS0pointers

d_in

d_out

values

TMS0

TMS1

Mapping Table Abstraction Layer

Output by GPU computation

Output by CPU computation

↑ 0xD

↑ 0xC

Abstraction layer

d_out points to address of TMS1

Figure 4. Anatomy of transparent memory space.

pose, we have implemented a work sharing scheme using a
Global Scheduling Queue (GSQ) [3]. This scheduling al-
gorithm enqueues a task (i.e., a thread block) into a global
queue so that any worker thread on an available core can
consume the task. Thus, this scheduling scheme allows a
worker thread in each core to pick up only one thread block
and achieve load balancing. In addition, any core which
finishes the assigned thread block so early would handle an-
other thread block without being idle.

4.4. Limitations on global memory consis-
tency

CHC emulates the global memory on the CPU-side as
well. Thread blocks in the CPU can access the emulated
global memory and perform the atomic operations. How-
ever, our system does not allow the global memory atomic
operations between the thread blocks on the CPU and the
thread blocks on the GPU to avoid severe performance
degradation. In fact, discrete GPUs have their own memory
and communicate with the main memory through the PCI
express, which causes long latency problems. This archi-
tectural limit suggests that the CHC prototype need not pro-
vide global memory atomic operations between CPU and
GPU.

5. Results

The proposed CHC framework has been fully imple-
mented on a desktop system with two Intel XeonTM X5550
2.66 GHz quad-core processors and an NVIDIA GeForceTM

9400 GT device. The aim of the CHC framework is to
demonstrate the feasibility of the parallel kernel execution
on CPU and GPU to improve CUDA execution on low-end
GPUs. This configuration is also applicable to a single-chip

heterogeneous multi-core processor that has an integrated
GPU, which is generally slower than discrete GPUs.

We adapt 14 CUDA applications which do not have the
global memory synchronization across CPU and GPU at
runtime; twelve from the NVIDIA CUDA Software Devel-
opment Kit (SDK) [16], SpMV [2], and MD5 hashing [9].
Table 1 summarizes these applications and kernels.

From left to right the columns represent the application
name, the number of computation kernels, the number of
thread blocks in the kernels, a description of the kernel, and
work distribution ratio used in the CHC framework. We
measured the execution time of kernel launches and com-
pared CHC framework against the GPU-only computing.
The validity of the CHC results was compared to a compu-
tation result that has been executed on a CPU only.

5.1. Initial analysis

For the initial analysis, we have measured the execution
delay using only the GPU device and the delay using only
the host CPU (through the LLVM JIT compilation tech-
nique [5, 6, 11]). In addition, the workload has been config-
ured either as executing only one thread block or as execut-
ing the complete set of thread blocks.

The maximum performance improvement achievable
based on the initial execution delays can be experimentally
deduced, as depicted in Table 2. Fig. 5 shows the way
to find it; the x-axis represents the workload ratio in terms
of thread blocks assigned to the CPU cores against thread
blocks on the GPU device. With having more thread blocks
on the CPU cores, fewer thread blocks would be assigned
to the GPU device. Therefore, the execution delay for GPU
is proportionally reduced along the x-axis.

From the above observation, the maximum value be-
tween the CPU execution delay and the GPU execution de-
lay at a given workload ratio can be considered as the total



Table 1. Test Applications
Applications 

(Abbreviation) # Kernels # Thread Blocks Description 

3DFD 
(3DFD) 1 20x20 3D finite difference computation 

Binomial Options Pricing 
(BINO) 1 512x1 European options under binomial model 

Black Scholes 
(BLKS) 1 480x1 European options by Black-Scholes formula 

Mersenne Twister 
(MERT) 2 32x1 Mersenne twister random number generator and 

Cartesian Box-Muller transformation 
Matrix Multiplication 

(MAT) 1 128x128 Matrix multiplication: C = A * B. 

Monte Carlo 
(MONT) 2 256x1 European options using Monte Carlo approach 

Scalar Product 
(SCALAR) 1 128x1 Scalar products of input vector pairs 

Scan 
(SCAN) 3 256x1 Parallel prefix sum 

Convolution Texture 
(CONV) 2 192x128 Image convolution filtering 

Transpose 
(TRANS) 2 128x256 Matrix transpose 

Sobol QRNG 
(QRNG) 1 1x100 Sobol’s quasi-random number generator 

Vector Addition 
(VEC) 1 196x1 Vector addition: C = A + B 

Sparse matrix-vector 
multiplicationa 

(SPMV) 
2 1024x1 Matrix-vector multiplication: y += A * x 

MD5 Hashing 
(MD5) 2 33312x1 MD5 hashing (MD5 calculation and search) 

a. Compressed Sparse Row (CSR) format is used. 

1

10

100

1000

10000

GPU=100 CPU=100

Ex
ec

ut
io

n 
Ti

m
e 

(m
s)

Workload Ratio (%) GPU Only
CPU Only

Maximum reduction in execution time
when using the cooperation computing

Optimal work distribution ratio

Figure 5. Prediction of performance improve-
ment with initial analysis.

execution delay. Therefore, the crossing point of two lines
in Fig. 5 gives the optimal distribution ratio as well as the
maximum performance with the initial data and the mathe-
matical analysis.

5.2. Performance improvements of CHC
framework

Table 2 shows the maximum performance and the opti-
mal distribution ratio obtained from the initial analysis. In
addition, the actual execution time and the actual work dis-
tribution ratio using CHC are also presented. In fact, the
optimal distribution ratio is used to determine the work dis-
tribution ratio on CHC.

Fig. 6 shows the performance improvements of CHC
normalized to GPU-only computations according to the ac-
tual distribution ratio; as expected, the performance of CHC
improves compared to the execution delay using only GPU.
The speedup is achieved, ranging from 0.46x for MERT up
to 3.08x for VEC. The average speedup of the CHC frame-
work is 1.42x.

More in detail, the applications with exponential,
trigonometric, or power arithmetic operations (BINO,
BLKS, MERT, MONT, and CONV) show little performance
improvement. In fact, the execution time of these appli-
cations on CPU is much higher compared to the execution
time on GPU. This is due to the fact that the GPU device
normally provides special functional units for those oper-
ations. On the other hand, the applications without those
arithmetic operations (TRANS, VEC, SPMV, and MD5) show
relatively higher speedups.



Table 2. Initial analysis and CHC results

Abbreviation Thread 
Blocks Workload 

Execution Time (ms) Initial Analysis CHC Results 

CPU Only GPU Only Maximum 
Performance 

Optimal Ratio 
(CPU:GPU) 

Actual 
Performance 

Actual Ratio 
(CPU:GPU) 

3DFD 20x20 20x1 19.468 7.144 104.52 26.8:73.2 117.32 10.0:90.0 20x20 389.36 142.88 

BINO 512x1 1x1 17.43 1.15 556.06 6.2:93.8 559.44 4.7:95.3 512x1 8926.6 593.0 

BLKS 480x1 1x1 1.08 0.03 16.98 3.3:96.7 17.02 0.6:99.4 480x1 520.20 17.557 

MERT 32x1 1x1 13.62 1.55 44.73 10.3:89.7 108.26 3.1:96.9 32x1 435.94 49.85 

MAT 128x128 128x1 44.23 12.84 1274.15 22.5:77.5 1453.19 18.0:82.0 128x128 5661.8 1644.1 

MONT 256x1 1x1 8.47 0.28 69.90 3.2:96.8 79.39 3.1:96.9 256x1 2170.1 72.23 

SCALAR 128x1 1x1 0.22 0.04 4.79 16.6:83.4 4.86 25.0:75.0 128x1 28.86 5.74 

SCAN 256x1 1x1 0.014 0.004 0.87 23.2:76.8 1.01 9.4:90.6 256x1 3.75 1.13 

CONV 192x128 192x1 8.45 0.15 19.51 1.8:98.2 19.51 0.8:99.2 192x128 1082.3 19.53 

TRAN 128x256 128x1 0.20 0.25 28.81 55.5:44.8 29.29 50.0:50.0 128x256 52.21 64.29 

ORNG 1x100 1x1 0.05 0.01 0.87 21.8:78.2 0.90 16.0:84.0 1x100 5.22 1.46 

VEC 196x1 1x1 0.005 0.011 0.68 68.5:31.5 0.70 44.9:55.1 196x1 1.01 2.17 

SPMV 1024x1 1x1 0.003 0.001 1.17 38.2:61.8 1.45 25.0:75.0 1024x1 3.07 1.90 

MD5 33312x1 1x1 0.002 0.004 52.14 64.7:35.3 56.34 64.0:36.0 33312x1 80.55 147.84 

1.42 
1.56 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

3DFD BINO BLKS MERT MAT MONT SCALAR SCAN CONV TRANS QRNG VEC SPMV MD5 Average

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

9400GT CHC Ideal

Figure 6. Normalized performance speedup of CHC over the GPU-only processing.

6. Conclusions

The paper has introduced three key features for the
efficient exploitation of the thread level parallelism pro-
vided by CUDA on the CPU multi-cores in addition to the
GPU device. The proposed CHC framework provides a
tool set which enables CUDA binary to run on CPU and
GPU, without imposing source recompilation. The exper-
iments demonstrate that the proposed framework success-
fully achieves efficient parallel execution and that the per-
formance results obtained are close to the values deduced

from the theoretical analysis. We believe the cooperative
heterogeneous computing can be utilized in the future het-
erogeneous multi-core processors which are expected to in-
clude even more GPU cores as well as CPU cores.

As future work, we will first develop a dynamic control
scheme on deciding the workload distribution ratio. We
also plan to design an efficient thread block distribution
technique considering data access patterns and thread di-
vergence. We believe CHC can eventually provide a so-
lution for the degradation of performance due to the irreg-
ular memory access and thread divergence in the original



CUDA execution model. In fact, the future CHC frame-
work needs to address the performance trade-offs consider-
ing the CUDA application configurations on various GPU
and CPU models. In addition, we will discuss the overall
speedups considering the transition overhead to find the op-
timal configuration for the CHC execution model.

7. Acknowledgments

We thank all of the anonymous reviewers for their com-
ments. This work was supported by the Basic Science Re-
search Program through the National Research Foundation
(NRF) of Korea, which is funded by the Ministry of Ed-
ucation, Science and Technology [2009-0070364]. This
work is also supported in part by the US National Science
Foundation under Grant No. CCF-0541403. Any opinions,
findings, and conclusions as well as recommendations ex-
pressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foun-
dation.

References

[1] A. Bakhoda, G. Yuan, W. Fung, H. Wong, and T. Aamodt.
Analyzing cuda workloads using a detailed gpu simulator.
In Performance Analysis of Systems and Software, 2009. IS-
PASS 2009. IEEE International Symposium on, pages 163
–174, april 2009.

[2] N. Bell and M. Garland. Cusp: Generic parallel algorithms
for sparse matrix and graph computations, 2010.

[3] R. D. Blumofe and C. E. Leiserson. Scheduling multi-
threaded computations by work stealing. J. ACM, 46:720–
748, September 1999.

[4] A. R. Brodtkorb, C. Dyken, T. R. Hagen, J. M. Hjelmervik,
and O. O. Storaasli. State-of-the-art in heterogeneous com-
puting. Sci. Program., 18:1–33, January 2010.

[5] C. Cifuentes and V. M. Malhotra. Binary translation: Static,
dynamic, retargetable? In Proceedings of the 1996 Inter-
national Conference on Software Maintenance, ICSM ’96,
pages 340–349, Washington, DC, USA, 1996. IEEE Com-
puter Society.

[6] G. F. Diamos, A. R. Kerr, S. Yalamanchili, and N. Clark.
Ocelot: a dynamic optimization framework for bulk-
synchronous applications in heterogeneous systems. In Pro-
ceedings of the 19th international conference on Parallel
architectures and compilation techniques, PACT ’10, pages
353–364, New York, NY, USA, 2010. ACM.

[7] M. Garland and D. B. Kirk. Understanding throughput-
oriented architectures. Commun. ACM, 53:58–66, Nov.
2010.

[8] J. Gummaraju, L. Morichetti, M. Houston, B. Sander, B. R.
Gaster, and B. Zheng. Twin peaks: a software platform for
heterogeneous computing on general-purpose and graphics
processors. In Proceedings of the 19th international confer-
ence on Parallel architectures and compilation techniques,

PACT ’10, pages 205–216, New York, NY, USA, 2010.
ACM.

[9] M. Juric. Cuda md5 hashing.
[10] A. Kerr, G. Diamos, and S. Yalamanchili. A characteriza-

tion and analysis of ptx kernels. In Proceedings of the 2009
IEEE International Symposium on Workload Characteriza-
tion (IISWC), IISWC ’09, pages 3–12, Washington, DC,
USA, 2009. IEEE Computer Society.

[11] C. Lattner and V. Adve. Llvm: A compilation framework
for lifelong program analysis & transformation. In Proceed-
ings of the international symposium on Code generation and
optimization: feedback-directed and runtime optimization,
CGO ’04, pages 75–, Washington, DC, USA, 2004. IEEE
Computer Society.

[12] J. Lee, J. Kim, S. Seo, S. Kim, J. Park, H. Kim, T. T. Dao,
Y. Cho, S. J. Seo, S. H. Lee, S. M. Cho, H. J. Song, S.-B.
Suh, and J.-D. Choi. An opencl framework for heteroge-
neous multicores with local memory. In Proceedings of the
19th international conference on Parallel architectures and
compilation techniques, PACT ’10, pages 193–204, New
York, NY, USA, 2010. ACM.

[13] M. D. Linderman, J. D. Collins, H. Wang, and T. H. Meng.
Merge: a programming model for heterogeneous multi-core
systems. In Proceedings of the 13th international confer-
ence on Architectural support for programming languages
and operating systems, ASPLOS XIII, pages 287–296, New
York, NY, USA, 2008. ACM.

[14] C.-K. Luk, S. Hong, and H. Kim. Qilin: Exploiting paral-
lelism on heterogeneous multiprocessors with adaptive map-
ping. In Microarchitecture, 2009. MICRO-42. 42nd Annual
IEEE/ACM International Symposium on, pages 45 –55, dec.
2009.

[15] J. Nickolls and W. Dally. The gpu computing era. Micro,
IEEE, 30(2):56 –69, march-april 2010.

[16] NVIDIA. Nvidia cuda sdks.
[17] V. T. Ravi, W. Ma, D. Chiu, and G. Agrawal. Compiler

and runtime support for enabling generalized reduction com-
putations on heterogeneous parallel configurations. In Pro-
ceedings of the 24th ACM International Conference on Su-
percomputing, ICS ’10, pages 137–146, New York, NY,
USA, 2010. ACM.

[18] J. A. Stratton, S. S. Stone, and W.-M. W. Hwu. Languages
and compilers for parallel computing. chapter MCUDA: An
Efficient Implementation of CUDA Kernels for Multi-core
CPUs, pages 16–30. Springer-Verlag, Berlin, Heidelberg,
2008.

[19] C. Tian, M. Feng, and R. Gupta. Supporting speculative
parallelization in the presence of dynamic data structures.
In Proceedings of the 2010 ACM SIGPLAN conference on
Programming language design and implementation, PLDI
’10, pages 62–73, New York, NY, USA, 2010. ACM.

[20] P. H. Wang, J. D. Collins, G. N. Chinya, H. Jiang, X. Tian,
M. Girkar, N. Y. Yang, G.-Y. Lueh, and H. Wang. Exochi:
architecture and programming environment for a heteroge-
neous multi-core multithreaded system. In Proceedings of
the 2007 ACM SIGPLAN conference on Programming lan-
guage design and implementation, PLDI ’07, pages 156–
166, New York, NY, USA, 2007. ACM.


