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Abstract— In this paper, we present a decentralized co-
ordination algorithm that allows a robotic swarm to locate
and track a dynamic perimeter. A cooperative communication
scheme is used by the team to rapidly detect a perimeter.
Collision-free cycling behavior emerges by composing simple
reactive control laws. The decentralized framework could po-
tentially allow the algorithm to scale to many robots. Extensive
simulation results and experiments verify the validity and
scalability of the proposed cooperative control scheme.

I. INTRODUCTION

Many applications of multi-robot cooperation have been
studied including area coverage, search and rescue, manip-
ulation, exploration and mapping, and perimeter detection
[1], [2], [3], [4], [5], [6], [7]. The reader is referred to [8]
for a survey on cooperative mobile robotics.

Perimeter detection has a wide range of uses in several
areas, including: (1) Military, i.e., locating minefields or
surrounding a target, (2) Nuclear/Chemical Industries, i.e.,
tracking radiation/chemical spills, (3) Oceans, i.e., tracking
oil spills, and (4) Space, i.e., planetary exploration. In many
cases, humans are used to perform these dull and/or dan-
gerous tasks, but if robotic swarms could replace humans,
it could be beneficial.

A perimeter is an area enclosing some type of substance.
Consider two types of perimeters: (1) static and (2) dy-
namic. A static perimeter does not change over time, i.e.,
possibly a minefield. Dynamic perimeters are time-varying
and expand/contract over time, i.e., a radiation leak.

In perimeter detection tasks, a robotic swarm locates
and surrounds a substance, while dynamically reconfiguring
as additional robots locate the perimeter. Obviously, the
robots must be equipped with sensors capable of detecting
whatever substance they are trying to track. Substances
could be airborne, ground-based, or underwater. If the
perimeter moves with a velocity greater than the robots
can move, then the perimeter cannot be tracked. Abrupt
perimeter changes requiring sharp turns may be difficult to
track because of the robots’ limited turning radius. See Fig.
1 for an example of a perimeter, an oil spill.1
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Fig. 1. Example perimeter: Oil spill.

A variety of perimeter detection and tracking approaches
have been proposed in the literature. Bruemmer, et al.,
present an interesting approach in which a swarm is able
to autonomously locate and surround a water spill using
social potential fields implemented with IR, chirps, and
light sensing [1]. Authors in [4] show outdoor perimeter
surveillance over a large area using a swarm that investi-
gates alarms from intrusion detection sensors. Marthaler and
Bertozzi develop a snake algorithm to locate and surround
a perimeter represented by a concentration function [9].
In [10], potential fields are used to allow a swarm to
uniformly surround a target, while avoiding obstacles and
evading threats. Authors in [11] use mobile sensing nodes
to estimate dynamic boundaries.

In this paper, a decentralized, cooperative hybrid system
is presented utilizing biologically-inspired emergent behav-
ior. Each controller is composed of finite state machines
and it is assumed that the robots have a suite of sensors
and can communicate only within a certain range. A relay
communication scheme is used. Once a robot locates the
perimeter, it broadcasts the location to any robots within
range. As each robot receives the perimeter location, it too
begins broadcasting, in effect, forming a relay. Other groups
have used the terms perimeter and boundary interchange-
ably, but in this paper, there is a distinct difference. The
perimeter is the chemical substance being tracked, while
the boundary is the limit of the exploration area.

The rest of the paper is organized as follows: Section 2
details the cooperative hybrid controller. Section 3 presents
simulation and experimental results. In Section 4, we give
concluding remarks and future directions.
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II. COOPERATIVE HYBRID CONTROLLER

The last few years have seen active research in the
development of architectures for multi-robot coordination.
These architectures have focused on providing different ca-
pabilities to the group of robots. For instance, ALLIANCE
[12], a behavior-based software architecture, has focused on
fault-tolerant cooperative control.

The theory of hybrid systems [13] offers a convenient
framework to model the multi-robot system engaged in a
perimeter detection and tracking task. In our previous work
[14], we developed an object-oriented software architecture
that supports hierarchical composition of robot agents and
behaviors or modes. Key features of the software architec-
ture are summarized below.

• Architectural hierarchy: The building block for de-
scribing the system architecture is an agent that com-
municates with its environment via shared variables
and also communication channels. In this application,
the team of mobile sensors defines the group agent.
The group agent receives information about the area
i.e., boundary where the perimeter is located.

• Behavioral hierarchy: The building block for describ-
ing a flow of control inside an agent is a mode. A
mode is basically a hierarchical state machine, that is,
a mode can have submodes and transitions connecting
them. Modes can be connected to each other through
entry and exit points. We allow the instantiation of
modes so that the same mode definition can be reused
in multiple contexts.

• Discrete and Continuous variable updates: Discrete
updates are specified by guards labeling transitions
connecting the modes. Such updates correspond to
mode-switching, and are allowed to modify variables
through assignment statements.

The state of a robot agent is given by x ∈ Rn, its
evolution is determined by a set of differential equations:

ẋ = fq(x,u) (1)

u = kq(x, z) (2)

where u ∈ Rm is the control vector, q ∈ Q ⊂ Z is the
control mode for the node, Q is a finite set of control mode
indices, Z denotes the set of positive integers, and z ∈ Rp

is the information about the external world available either
through sensors or through communication channels. The
robot agent contains modes describing behaviors that are
available to the robot.

For simplicity, the MARHES car-like platform was mod-
eled with the unicycle model:

ẋi = vi cos θi

ẏi = vi sin θi (3)

θ̇i = ωi

where xi, yi, θi, vi, and ωi are the x-position, y-position,
orientation angle, linear velocity, and angular velocity of

robot i, respectively. Note that vi ranges from −2 ≤ vi ≤
2 m/s, while ωi ranges from −0.3 ≤ ωi ≤ 0.3 rad/s.
These ranges come from extensive tests of our platform.
Refer to Fig. 2 for a view of the platform and model.

(xi, yi)

θi

C

Fig. 2. (a) Platform and (b) Unicycle model.

The overall finite automaton consists of three states: (1)
Random Coverage Controller (RCC), (2) Potential Field
Controller (PFC), and (3) Tracking Controller (TC). These
three controllers are composed such that the sensor/robot
network is able to locate and track a perimeter. See Fig. 3
for a hierarchical state diagram of the cooperative hybrid
system developed herein. In the next section, details of the

read discrete bool DetectedPoint, PerimeterDetected;

PerimeterDetected == false
DetectedPoint== true

Tracking TC

PerimeterDetected == true

Random Coverage RCC Potential Field PFC

DetectedPoint == true

PerimeterDetected == true

PerimeterDetected == false

Fig. 3. Overall finite automaton.

controller agents are presented.

A. Random Coverage Controller

The goal of the Random Coverage Controller (RCC) is to
efficiently cover as large an area as possible while searching
for the perimeter and avoiding collisions. The robots move
fast in this state to quickly locate the perimeter. The RCC
consists of three states: (1) spiral search, (2) boundary
avoidance, and (3) collision avoidance. The spiral search
is a random search for effectively covering the area. The
boundary and collisions are avoided by adjusting the angular
velocity.

The logarithmic spiral, seen in many instances in nature,
is used for the search pattern. In [15], a spiral search pattern
such as that used by moths is utilized for searching an area.
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It has been shown that the spiral search is not optimal, but
effective [16]. Some examples are hawks approaching prey,
insects moving towards a light source, sea shells, spider
webs, and so forth.

Specifically, the linear and angular velocity controllers
are:

vi = vs

(
1 − e−t

)
(4)

ωi = aebθi (5)

where vs is a positive constant, a is a constant and b > 0.
If a > 0 (< 0), then the robots move counterclockwise
(clockwise). Collision and boundary (limit of the explo-
ration area here) avoidance are handled in simulation by
sharply turning, while in experiments, the robots back up
and turn, then go forward.

B. Potential Field Controller

Potential fields have been used by a number of groups
for controlling a swarm [10], [7], [6], [1], [3]. In [7],
a method using artificial potentials and virtual bodies is
shown in which the robot network forms regular polygons
upon uniformly surrounding a target. In [6], virtual potential
fields and graph theory are used for area coverage. In [3],
a potential field method is used that is inspired by an
algorithm observed in wolf packs.

The Potential Field Controller (PFC) uses an attractive
potential which allows the robots to quickly move to the
perimeter once it has been detected. The first robot to detect
the perimeter broadcasts its location to the other robots. If a
robot is within range, then the PFC is used to quickly move
to the perimeter. Otherwise, the robot will continue to use
the RCC unless it comes within range, at which point it
will switch to the PFC. As a robot moves towards the goal,
if it detects the perimeter before it reaches the goal, it will
switch to the TC. Note that the robots move with constant
linear speed when using the PFC. The PFC has two states:
(1) attractive potential and (2) collision avoidance.

The attractive potential, Pa(xi, yi), is [17]:

Pa(xi, yi) =
1
2
ε[(xi − xg)2 + (yi − yg)2], (6)

where (xi, yi) is the position of robot i, ε is a positive
constant, and (xg, yg) is the position of the attractive point
(goal). The attractive force, Fa(xi, yi), is derived below.

Fa(xi, yi) = −∇Pa(xi, yi) = −
[

∂Pa

∂xi
∂Pa

∂yi

]

Fa(xi, yi) = ε

[
xg − xi

yg − yi

]
=

[
Fa,xi

Fa,yi

]
(7)

Equation (7) is used to get the desired orientation angle,
θi,d, of robot i:

θi,d = arctan 2(Fa,yi , Fa,xi) (8)

Depending on θi and θi,d, the robot will turn the optimal
direction to quickly line up with the goal using the following

proportional angular velocity controller:

ωi = ± k (θi,d − θi), (9)

where k = ωmax

2π and ωmax = 0.3 rad/s and θi is the
orientation angle of robot i.

Collisions are avoided in the same manner as in the RCC.

C. Tracking Controller

The Tracking Controller (TC) changes ω and v and in
order to track the perimeter and avoid collisions, respec-
tively. Cyclic behavior emerges as multiple robots track the
perimeter. In [18], cyclic pursuit is presented in which each
robot follows the next robot (1 follows 2, 2 follows 3, etc.).
The robots move with constant speed and a proportional
controller is used to handle orientation. Note that collisions
are ignored. The TC differs from [18] in that each robot’s
objective is to track the perimeter, while avoiding collisions.
There are no restrictions on robot order and v is not
constant.

The robots’ goal in this state is to accurately track
the perimeter counterclockwise. The TC consists of two
states: (1) tracking, and (2) collision avoidance. Tracking
is accomplished by adjusting the robots’ angular velocity.
On the other hand, collisions are avoided by changing the
linear velocity.

III. RESULTS

The hybrid system has been verified in Matlab, Gazebo,
and in experiments, which are described below.

A. Matlab

A Matlab2 simulation is shown in Fig. 4 with a dynamic
perimeter (expanding at 12.5 mm/s). Notice that the robots
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Fig. 4. Matlab simulation showing five robots tracking a dynamic perime-
ter.

2http://www.mathworks.com
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are still able to track the expanding perimeter. The bang-
bang angular velocity controller is:

ωi =
{ −ωt inside perimeter

ωt outside perimeter,
(10)

where ωt = 0.1 rad/s. A look-ahead distance is defined
to be the sensor point directly in front of the robots. If
the omnidirectional sensor has detected the perimeter and
the look-ahead distance is inside the perimeter, then the
robot will turn right. Otherwise, the robot turns left. This
zigzagging behavior is often seen in moths following a
pheromone trail to its source [19].

B. Gazebo

A Gazebo [20] experiment was developed to verify the
simulation results from Matlab. Our platform, the Tamiya
TXT-1, has similar characteristics to the ClodBuster model
in Gazebo. Each robot is equipped with odometers, a pan-
tilt-zoom camera, and a sonar array. Position and orientation
are estimated using the odometers. The camera is used for
tracking the perimeter. It is pointed down and to the left on
each robot to allow the robots to track the perimeter at a
small offset. The sonar array is used to avoid collisions.

A simulation is shown in Fig. 5 in which a robot searches
for, locates, and tracks a perimeter while avoiding collisions.
An environment was created to represent an oil spill in a

Fig. 5. Gazebo simulation showing camera view on the right.

grassy area. The perimeter and boundary are represented by
a black cylinder (oil) and gray walls, respectively.

Gazebo allows real world problems to be debugged that
could be difficult to model in Matlab, i.e., a blobfinder. For
example, in Matlab a binary sensor (bang-bang controller)
was used to track the perimeter. In Gazebo, a blobfinder
(proportional controller) was used which allowed for much
smoother tracking. In fact, a nearly identical proportional
controller was implemented for experiments.

To the best of our knowledge, dynamic perimeters can
not be modeled yet in Gazebo. When simulating multiple

robots with textures, i.e., the grass and the wall, the simu-
lations started to slow down, whereas without textures, the
simulations ran at close to real-time. Gazebo is becoming a
powerful tool for verifying cooperative control systems as
processing power increases and more models are defined.

C. Experimental

The MARHES multi-vehicle testbed consists of ten
Tamiya TXT-1 R/C trucks. Each truck is capable of speeds
up to 2 m/s in either direction, has double-steering, and can
be operated indoors or outdoors. A suite of sensors are avail-
able including a stereo-vision system, a Global Positioning
System (GPS), an Inertial Measurement Unit (IMU), IR,
odometer wheel sensors, and ultrasonic rangefinders. Each
robot is equipped with wireless communication capabilities
and an embedded computer (e.g., PC-104 or laptop) running
in Linux for high-level control. Low-level control is handled
through the Controller Area Network (CAN) sensor/control
robot interface.3

In Gazebo and in these experiments, an inexpensive
camera (blobfinder algorithm) is being used to detect the
perimeter. Smooth tracking is accomplished with the fol-
lowing proportional angular velocity controller:

ωi = kP (γo − γi), (11)

where kP > 0, and γo and γi are the areas outside the
perimeter and inside the perimeter seen by the blobfinder,
respectively. Counterclockwise tracking is assumed which
implies that the robot will turn left (right) if the robot is
too far outside (inside) the perimeter.

An experiment is shown in Fig. 6 in which three robots
search for, locate, and track a perimeter while avoiding
collisions. Refer to Figs. 7 and 8 for trajectory and state

Fig. 6. Indoor experimental setup for perimeter detection.

transitions plots, respectively. Collision avoidance is ac-
complished through the use of IR sensors while posi-
tion/orientation information comes from the encoders. R1

locates the perimeter first and begins tracking. It broadcasts
its location to the other robots, who upon receiving the
location, enter the PFC. R2 locates the perimeter next,
followed by R3. Notice in Fig. 7 that the perimeter is
not exactly like the perimeter in Fig. 6, but it is fairly

3http://marhes.okstate.edu/
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accurate and allows the user to infer the location of the
perimeter. Refer to Figs. 9 and 10 for plots of the linear
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and angular velocities, respectively. Notice that the robots
move with almost constant linear speed and the angular
speed is sinusoidal, indicating the robots are tracking the
perimeter. The large spike in Fig. 9 at approximately 55 s
occurs when a robot detects an obstacle and starts to move
in reverse.

To verify the accuracy of the low-level control system,
the errors between the actual and desired velocities were
plotted in Figs. 11 and 12. Note in Fig. 11 that the error
is relatively small the majority of the time, except when
a robot goes in reverse to avoid an obstacle, i.e., at 55 s.
There will almost always be a moderate amount of error
in the angular velocity because the robots are constantly
switching in an effort to track the perimeter.

A second experiment was run in which all of the robots
were placed next to the perimeter. The robots start tracking
the perimeter. After one lap or so, a section of the perimeter
is removed to show that the swarm can still track this
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Fig. 9. Robots tracking with nearly constant speed.
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Fig. 10. Angular velocities become sinusoidal indicating the robots are
tracking the perimeter.
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Fig. 11. Accurate linear velocity provided by low-level control unit.

dynamic perimeter. Refer to Fig. 13 for a trajectory plot.
Note that the robots were able to adjust as a section of
the perimeter was removed. Also, R1 ran low on batteries
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Fig. 13. Three robots tracking a perimeter where part of the perimeter is
removed. R1 runs low on batteries and stops.

and began to have trouble tracking the perimeter until it
completely stopped.

IV. CONCLUSIONS

A decentralized, cooperative hybrid system was shown
that allows a group of nonholonomic robots to search for,
detect, and track a dynamic perimeter with limited commu-
nication, while avoiding collisions and reconfiguring on-the-
fly as additional robots locate the perimeter or the perimeter
shape changes. The algorithm has been extensively tested
in Matlab, Gazebo, and experimentally.

Currently, the performance of the team is being evaluated
based on different communication schemes. Also, methods
are being investigated to estimate the dynamic perimeter as
it evolves and to reduce the searching time.
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