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Abstract

Effective coordination of agents’ actions in partially-observable domains is a major chal-
lenge of multi-agent systems research. To address this, many researchers have developed
techniques that allow the agents to make decisions based on estimates of the states and
actions of other agents that are typically learnt using some form of machine learning algo-
rithm. Nevertheless, many of these approaches fail to provide an actual means by which the
necessary information is made available so that the estimates can be learnt. To this end,
we argue that cooperative communication of state information between agents is one such
mechanism. However, in a dynamically changing environment, the accuracy and timeliness
of this communicated information determine the fidelity of the learned estimates and the
usefulness of the actions taken based on these. Given this, we propose a novel information-
sharing protocol, post-task-completion sharing, for the distribution of state information. We
then show, through a formal analysis, the improvement in the quality of estimates produced
using our strategy over the widely used protocol of sharing information between nearest
neighbours. Moreover, communication heuristics designed around our information-sharing
principle are subjected to empirical evaluation along with other benchmark strategies (in-
cluding Littman’s Q-routing and Stone’s TPOT-RL) in a simulated call-routing application.
These studies, conducted across a range of environmental settings, show that, compared to
the different benchmarks used, our strategy generates an improvement of up to 60% in the
call connection rate; of more than 1000% in the ability to connect long-distance calls; and
incurs as low as 0.25 of the message overhead.

1. Introduction

A central challenge in multi-agent systems (MAS) research is to design mechanisms for
coordinating agents that have partial, possibly mutually inconsistent, and inaccurate views
of the system so that they can generate consistent solutions to complex, distributed prob-
lems. In such settings, the problem solving steps of one agent can influence those of another
where they act on a common overall problem or use a set of sharable resources. Thus, to
coordinate successfully, the agents need to cooperate by assisting each other to make better
choices about the actions they take.1 This cooperation is made more difficult because the
individual agents usually have restricted capability in performing expensive computational

1. A different philosophy studied by MAS researchers is that of using competitive agents to find solutions
to distributed problems (Takahashi & Tanaka, 2003; Walsh & Wellman, 2003). Here, however, we
specifically focus on cooperative agents and thus we are firmly in the realms of cooperative distributed
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activities (due to limited memory, CPU cycles, communication bandwidth, and/or commu-
nication latency) and because the target environment is usually characterised by continuous
and unpredictable changes which, in turn, necessitate continuous adaptation of the problem
solving process by the agents.

To overcome these problems and to coordinate effectively, the agents need a mechanism
to act adaptively such that a consistent overall solution is generated. In this context, multi-
agent coordination is typically based on techniques of modelling the states of other agents
and enabling an agent to take actions based on these models (Dutta, Moreau, & Jennings,
2003; Dutta & Sen, 2003) (see section 2 for more details). However, given that the agents
can only directly observe a limited subset of the system, they need to be provided with
some information about the unobservable states to generate such models. To achieve this,
we believe the agents should share some of their knowledge about their own locally observed
states (at a suitable level of abstraction). This knowledge can then be used by the receiving
agents to take more informed actions for better coordination. Note that in this approach,
the agents cooperate by voluntarily distributing information in the system to facilitate the
problem solving process. Nevertheless, practical resource bounds such as limited bandwidth
and latency prohibit the use of exhaustive communication so that all agents could be made
aware of the status of all other agents at all times. Thus the communication must be
selective and aim to communicate the minimal amount of information that is necessary for
effective coordination.

Given such constraints, it is not practical (nor possible in most cases) to generate models
of all agents in the system that are accurate and up-to-date. Nevertheless, the agents can
usually generate estimates of the un-observed states to take coordination decisions. Further,
in dynamically changing systems, the agents should have a way of updating these estimates
to adapt their problem solving decisions with the changing environment for generating
quality solutions.

Now, in many applications, reinforcement learning (Sutton & Barto, 1998) (RL) has
been successfully used (Ernst, Glavic, & Wehenkel, 2004; Mahadevan, Marchalleck, Das, &
Gosavi, 1997; Tong, 2002) to generate such adaptive estimates in dynamic environments
(see section 2 for a discussion of other alternatives). RL uses prior experience of performing
tasks to develop a model of the environment. Specifically, a reinforcement learning agent
receives a certain “reward” for taking an action in a given state, that acts as feedback to
indicate the quality of performance against the context defined by the state-action pair.
Using such rewards, RL is capable of incrementally generating robust estimates of the
outcomes of different actions in different states. Such estimates provide the agent with a
generic (independent of the problem) mathematical reasoning mechanism to take adaptive
decisions in dynamic environments. In particular, the Q-learning (Watkins & Dayan, 1992)
variant of RL is widely used because it allows estimates to be learnt without having prior
knowledge about the system dynamics. Using Q-learning, with suitable training of the
agent, where it is allowed to repeatedly take different actions in different states, the correct
environment model can be learned from rewards. However, the assumptions underlying this
result are that the agent is able to observe all environmental states and receive all rewards
accurately for any action taken at any state. But, in practical MASs, this assumption is

problem solving systems (Allsopp, Beautement, Bradshaw, Durfee, Kirton, Knoblock, Suri, Tate, &
Thompson, 2002; Lesser & Erman, 1988; Mailler, Lesser, & Horling, 2003).
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impossible to realise because an agent can only observe a part of the complete system. This
implies that it can only perceive the result of its actions within its local environment and
that it may not be able to observe immediately and correctly the actions (or, their effects)
taken by other agents.

To overcome the above-mentioned limitations, we have developed an effective and effi-
cient communication protocol that a set of cooperative agents can use to learn the estimates
of unobserved states in a dynamic environment. In particular, we present a novel principle
of post-task-completion (PTC) information sharing. In this, agents take actions for solving
a given task using their current estimates of the system states and then distribute their
local state information to one another only after the task is completed. No communication
is assumed during the period of task processing. Then, information is shared between those
agents who cooperate to complete the task. Upon receiving this information, the agents,
subsequently, update their previous estimates of the states of the other agents.

This protocol is completely generic since it is not developed based on any domain or
problem-specific assumptions (see analysis of section 5). However, specific instances of
PTC can be implemented for a given problem domain. For example, in section 4, we
describe such an instance of PTC implemented in a call routing problem where the agents
attempt to estimate available bandwidth on nodes.2 The fact that PTC is not based on any
domain-specific assumptions implies that it can be used in cooperative multi-agent problems
other than call routing and to verify this, we are currently studying its applicability in a
distributed fault detection application with promising initial results (Dutta, Jennings, &
Moreau, 2005).

The PTC protocol is distinct from the relatively standard approach of updating esti-
mates using the information from only nearest neighbours (hereafter, referred to as NN)
while processing a task which forms the basis of a family of routing protocols (Hedrick,
1988; Tanenbaum, 2003). 3 To emphasise this fact, we choose to compare the quality of
estimates learned using the PTC principle against that of NN. Specifically, the NN protocol
allows information to be shared between direct neighbours only, whereas our protocol allows
information to be shared between a cooperative group of agents. Furthermore, our protocol
ensures more timely communication which, therefore, leads to more up-to-date estimates
than NN (section 5 establishes these formally).

There has also been other research (Shen, Lesser, & Carver, 2003; Xiang, 1996; Xuan,
Lesser, & Zilberstein, 2001) that has studied how sharing information between agents can
aid cooperative problem solving. Typically, these approaches treat communication as a
distinct part of an agent’s overall decision-making problem and show how its incorporation
aids in solving the latter (section 2 has more details). But, there has been little in the
way of a systematic study of developing a communication protocol that is both practically
applicable (in terms of it being based on realistic assumptions) and effective (in terms
of improving performance) in real-life MAS. Our work, on the other hand, investigates a
specific communication protocol that has both the above desirable characteristics.

2. In this application, the “state” of an agent is the bandwidth availability of its node. More details follow
in section 4.

3. In our example application domain, a node i’s “nearest” neighbours are those nodes that are within i’s
transmission range, those with whom i can directly communicate.
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Against this background, in this paper, we evaluate PTC using two main approaches.
First, by a mathematical analysis we demonstrate that the estimates generated by our
approach are indeed more up-to-date than NN. Second, the effectiveness of our protocol
is measured using a simulated distributed resource allocation problem.4 In particular, we
use a simulated wireless telephone network where the agents have to allocate bandwidth
to connect calls. Communication heuristics, based upon the PTC principle, are devised to
be used by the agents in this domain (see section 6 for a discussion). The performance of
these are compared against two well-known algorithms used for network routing: Boyan
and Littman’s Q-routing (Boyan & Littman, 1993) and Stone and Veloso’s Team Par-
titioned Opaque Transition Reinforcement Learning (TPOT-RL) (Stone & Veloso, 1999).
The former is chosen because it is one of the most widely used benchmarks in learning-based
network routing applications (Caro & Dorigo, 1998a; Peshkin & Savova, 2002; Stone, 2000).
The latter has attracted attention more recently by being shown to be useful in a variety
of domains (Stone, 2000). Hence, we believe these algorithms are reasonable benchmarks
for empirical verification of PTC. Therefore, using both the formal analysis and empirical
comparisons is sufficient to be able to firmly establish the merits of PTC.5

Empirical studies have been conducted over a wide range of environmental settings
by selecting different network topologies, network loads, and dynamically changing load
patterns. These studies indicate very promising results for PTC. In particular, we observe
substantial improvements in the rate of successfully connected calls (up to 60%) and the
ability to route calls to distant destinations with high network load (more than 1000%); both
achieved by incurring a much lower communication cost in terms of information message
rate (as low as 0.25) by our PTC protocol compared to the benchmark strategies in the
experimental settings used; all results being statistically significant at the 95% confidence
level.

The following summarises our contributions towards advancing the state of the art:

• We argue for the use of information sharing based on realistic assumptions to improve
cooperative distributed problem solving.

• We propose a communication protocol independent of problem-specific features —
post-task-completion sharing — for generating good estimates that learning agents
can use for better cooperation.

4. We choose resource allocation because it is a generic task domain widely used in practical MAS (Chaib-
draa, 1995; Cockburn & Jennings, 1996; Jennings, Norman, & Faratin, 1998). Therefore, we believe it
is a reasonable choice to test our information-sharing strategy. A preliminary empirical investigation of
our information-sharing mechanism in this domain can be found in the work of Dutta, Dasmahapatra,
Gunn, Jennings, and Moreau (2004).

5. We also attempted to compare our algorithm with a global broadcast mechanism in which all agents
issue a broadcast of their local state information whenever their states change. This mechanism was
designed to verify whether system performance improves by transmitting all state-change information to
all agents. Nevertheless, it is unsuitable to be used in a practical application due to its exorbitant message
overhead. This was verified when we deployed it as a stand-alone application on a single machine with a
dual 2.2 GHz AMD Opteron processor and 2GB memory in which it ran out of memory on the smallest
topology and with the lightest load used in our experiments. However, a distributed implementation of
the broadcast algorithm could be a matter of future study.
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• We establish, using formal analysis, the advantage of the PTC protocol in generating
more accurate estimates by ensuring a more timely distribution of information than
the NN information-sharing protocol.

• We demonstrate the effectiveness of the PTC protocol using empirical studies in a
representative multi-agent resource-allocation problem under a wide variety of envi-
ronmental settings and against a range of other strategies.

The remainder of this paper is organised as follows. Section 2 discusses the general
principles of multi-agent coordination and focuses on the specific approach of using machine
learning techniques in this context. Also, the role of communication in these is analysed. In
section 3, the characteristics of the cooperative multi-agent system on which we exemplify
our research are outlined. It also contains a brief description of the network application
that we simulate to empirically evaluate our communication principle. Section 4 presents
a qualitative argument of the importance of using cooperative communication to improve
learning. Also, how the PTC principle is implemented in the context of our example appli-
cation is highlighted. Moreover, brief descriptions of the implementations of the benchmark
algorithms (Q-routing and TPOT-RL) in this application are presented. Section 5 presents
a formal analysis of the advantage of our strategy over the nearest-neighbour protocol in
generating more accurate estimates. Subsequently, a detailed description of the simulation
is provided in section 6. Section 7 describes the performance measures against which the
various strategies are compared. It also analyses the results from our empirical studies.
Finally, section 8 presents concluding remarks and identifies avenues of future work.

2. Related Work

In this section, we first review the major theoretical and empirical works on cooperative
MAS that are developed around the theme of generating reliable estimates of unobserved
states from limited interactions and adapting decisions in response to dynamic environments
(section 2.1). Then, section 2.2 discusses cooperative MAS applications based on RL. As
identified in section 1, RL makes adaptive decision-making possible without explicit domain
knowledge or pre-defined rules of coordination. So it is used as the basic decision-making
framework of our agents. This review specifically focuses on the use of communication
in these applications and analyses the practical feasibility of the methods proposed. The
shortcomings of these approaches are identified and the contributions of our research towards
alleviating them is highlighted. Finally, section 2.3 discusses relevant literature in the area
of network bandwidth estimation which is similar to our application domain and identifies
how our learning-based approach differs from these.

2.1 Cooperative Multi-Agent Systems for Resource Allocation

In the following, we discuss the major research contributions in the area of cooperative
MAS designed for resource allocation problems.
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2.1.1 Functionally Accurate Cooperation

The functionally accurate, cooperative (FA/C) approach advocates the exchange of partial,
tentative solutions of local problems among agents to generate consistent partial solutions
(a distributed speech recogniser application, based on this concept, is developed by Lesser
and Erman 1988). In turn, this helps to generate predictive information about future partial
solutions that furthers the build-up of a consistent global solution. However, the cost to
obtain complete and up-to-date information to build a completely consistent solution can
be prohibitively large because of communication delays. Hence, in such situations, it is
more practical (cost effective) to achieve a global solution that may have a tolerable degree
of inconsistency via the timely exchange of partial, tentative solutions. Thus FA/C is
based on the use of communication to generate consistent estimates of the global problem
solving scenario, as identified as a key requirement in section 1. Nevertheless, FA/C only
discusses “what” is to be done, viz., agents should cooperate with partial solutions to reach
an acceptable solution quality. It does not provide a recipe of “how” it could be achieved.
Our work, on the other hand, advocates a specific communication strategy for the agents
to improve the learning of state estimates which, in turn, would improve the cooperative
problem solving. Moreover, we provide both a formal analysis and empirical results to
justify the benefits of our strategy, something which the FA/C approach does not do.

2.1.2 Organisational Structuring

Some researchers have incorporated organisational structures — patterns of information and
control relationships that exist between the agents and the distribution of problem-solving
abilities among them — into the agent models (Carley & Gasser, 1999). The idea is that
such structures give an agent a broad, high-level knowledge about how the system solves
problems, the roles that agents play, its own position in the network, and how they are
connected. Imposing these structures, therefore, essentially, resolves the requirement (see
section 1) of maintaining high-fidelity estimates of the portions of a system that the agents
cannot directly monitor. This is analogous to the way human organisations are formed
to solve complex tasks that are beyond the capability of “rationally bounded” (March &
Simon, 1958) individuals. In our work, the agents do not follow pre-defined structures of
roles and relationships. Instead, they learn, via cooperative communication, the estimates
of the agents’ states so that the dependencies can be inferred and the optimal actions can be
taken. Thus, our cooperation model is applicable across domains without requiring explicit
organisation structures to be specified.

2.1.3 Sophisticated Local Control

The sophisticated local control methodology (for example, the partial global planning (PGP)
approach Durfee & Lesser, 1991) advocates that the cooperating agents should reason about
how to exchange information to resolve inconsistencies, whom to interact with to improve
cooperation, what information exchange can achieve that objective, and the like.

Now, in PGP, the agents form contracts, plan their actions and interactions, negotiate
over plans, use organisational information to guide their planning and problem-solving
decisions, tolerate inconsistent views, and converge on acceptable network performances
in dynamic environmental conditions. In this model, each agent maintains its own set
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of PGP’s — a set of local plans that represent the agent’s view of the global problem
solving situation. They are updated by the exchange of local, partial plans among agents
and reflect the most recent network scenario in terms of achieving the global solution.
Hence, this methodology addresses the requirement (see section 1) of state estimation using
cooperative communication.

Elaborating on the PGP approach, the TAEMS (Task Analysis, Environment Modelling,
and Simulation) framework (Decker, 1995a, 1995b) was developed to model the impact that
the characteristics of a task environment can have on coordination. Using TAEMS, coordi-
nation is achieved by three broad areas of agent behaviour: how and when to communicate
and construct non-local views of the current problem solving situation; how and when to
exchange the partial results of problem solving; how and when to make/break commitments
made to other agents about what results will be available and when. The generalised par-
tial global planning (GPGP) consists of a group of coordination mechanisms based on the
above broad behavioural types (Decker & Lesser, 1995). Depending on the characteristics
of the task environment, agents select the appropriate coordination mechanism. Unlike
PGP, however, GPGP distinguishes local scheduling of an agent from its coordination ac-
tivities: the coordination mechanisms provide an agent non-local views of the problem and
the local scheduler creates plans (including both local actions and non-local effects via such
actions) to improve global system-wide utility by using information from the coordination
mechanisms. Thus, GPGP is developed around the principle of selecting actions based on
estimates of the non-local states, as identified in section 1.

However, both PGP and GPGP employ, albeit flexibly, a set of predetermined coor-
dination mechanisms. Such preplanned coordination can prove to be inadequate against
all sorts of contingencies that can occur in domains where agents maintain incomplete,
incorrect views of the world state (which change non-deterministically) and may even fail
without prior indication. In contrast, our approach of learning to map the agents’ views of
the world states to the selection of actions which would guarantee the improvement of the
global system performance, requires no such pre-specified coordination rules.

2.1.4 Teamwork Based on Joint Intentions

Probably the most comprehensive cooperative MAS framework existing in current literature
is STEAM (Tambe, 1997) (see also Jennings, 1995; Rich & Sidner, 1997). It is developed
around the principles of the joint intentions theory (Cohen & Levesque, 1991) and joint
commitments (Jennings, 1993). To coordinate, the agents maintain a “joint persistent
goal” (JPG) that the team is jointly committed to for doing some team activity, while
mutually believing that they are doing it. Agents in STEAM arrive at a JPG by exchanging
speech acts: “request”, that they use to announce their individual partial commitments
about attaining the global goal, and “confirm”, which establishes that an agent has the
same partial commitment to the one who made the “request”. Further, STEAM borrows
principles from the “shared plans” model (Grosz & Kraus, 1996) to ensure team coherence
so that all team members follow a common solution path.

Although STEAM provides a principled framework for reasoning about coordination
in teamwork, achieving a joint belief in large systems of widely distributed agents is, in
most cases, likely to be a performance bottleneck rather than an advantage because of the
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excessive communication required to achieve it. This is especially true in environments
where the agents have to re-plan the task execution process in response to environmental
changes. Although STEAM treats this issue by using a replanning protocol, it requires
the re-establishment of joint commitments among all the team members. A significant
amount of communication overhead (message flow and delay) might be incurred before
this is achieved which can degrade the quality of service significantly in some applications.
Thus it is important to have a cooperation model that allows the agents to continue solving
the overall task without requiring them to establish a system-wide commitment whenever
replanning occurs. Our learning-based cooperation model has this advantage.

2.2 Learning-Based Cooperative Multi-Agent Systems

Now we review some key applications that use machine learning techniques for solving
multi-agent cooperation problems.

2.2.1 Q-Routing in Dynamic Networks

RL is applied to the problem of cooperative distributed problem solving in a seminal piece
of work by Boyan and Littman (Boyan & Littman, 1993) where they solve a network packet
routing problem. In their paper, they model each communication node on an irregular 6×6
grid as a reinforcement learner who maintains estimates of the delays in routing packets to
different destinations. To route a packet to a given destination, an agent requests each of
its neighbouring agents for their delay estimates for that destination node. Upon receiving
the delay estimates of its neighbours, the requesting agent chooses the neighbour with the
minimum delay estimate to forward the packet. It then updates, using standard Q-learning,
its prior delay estimate for that destination with the estimate that it received from this
neighbour.

The authors of this paper demonstrate, using empirical studies, that their approach
enables the agents to learn better policies (in terms of choosing a neighbouring agent for
routing to a given destination) than a hand-coded shortest path algorithm. The differences
are more pronounced when the network load increases indicating that the learning algo-
rithm is able to adapt routing decisions (the paths along which packets are routed) under
dynamic network conditions. In addition, the authors test their algorithm with changes in
the network topology (by manually breaking the links between certain nodes) and in the
pattern of call traffic (changing different regions in the network where calls can originate
and terminate). They demonstrate that their Q-routing algorithm successfully adapts to
these changes and performs better than the deterministic shortest path algorithm.

In their work, therefore, Boyan and Littman have used a simple communication protocol
to allow the agents to cooperatively share their own knowledge about the packet routing
delays. Nevertheless, the communication protocol they have used only allows an agent
to inform its immediate neighbour about its own knowledge. This method would incur
long latency for information to reach agents further away. As a result, considering states
change continuously, the information can become outdated by the time an agent receives
it. Such outdated information would then be of little use to generate reliable estimates
of the non-local states. In this context, therefore, it is envisaged that by allowing state-
change information to be shared between the group of cooperating agents only after task
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completion, the agents can maintain more accurate estimates of their non-local states.
This, in turn, can improve the overall performance of the cooperative MAS as achieved by
Boyan and Littman (1993). Moreover, in their work, the agents update their Q-estimates
with the estimates received from direct neighbours. Note that in so doing, one learner
depends on the estimates learned by another. Thus, this approach (essentially, a TD(0)-
type learning Sutton, 1988) has the potential pitfall that “bad” estimates are propagated
due to the poor learning of one agent. PTC, on the other hand, advocates transmitting
the actual states of individual agents to the others in a group. Thus, PTC is not envisaged
to have the shortcomings of the approach of Boyan and Littman (1993). To verify this,
we choose the Q-routing algorithm as one of our benchmarks for empirically evaluating the
performance advantage of PTC.

2.2.2 Team Partitioned Opaque Transition Reinforcement Learning

The Team Partitioned, Opaque Transition Reinforcement Learning algorithm (TPOT-
RL) (Stone, 2000) has the objective to make the learning task easier in a MAS by reducing
the state space dimensionality. It does this by mapping the state onto a limited number of
action-dependent features. Analogous methods of state aggregation have been used in other
reinforcement learning algorithms (e.g., McCallum, 1996; Singh, Jaakkola, & Jordan, 1995)
to reduce the size of the learning task. However, TPOT-RL differs from these approaches
because it emphasises deriving a set of small yet informative features for effective learning.
More specifically, these features are used to represent the short term effect of actions that an
agent may take. Thus, the agents learn the utility of selecting actions with respect to their
own feature space. This is especially useful when the agents cannot observe or immediately
influence the actions taken by other agents (such as in many practical multi-agent settings,
in particular, network routing). That TPOT-RL is an effective algorithm is demonstrated
by its successful application across multiple domains (Stone & Veloso, 1999).

The authors have evaluated the TPOT-RL algorithm in a simulated network routing
environment. The action-dependent features in this case are the load levels of a node’s
adjacent links. The agents transmit their delay estimates along with a packet while routing
the latter. Furthermore, these estimates, collected at the corresponding destination nodes,
are distributed to the nodes who participated in the routing after fixed time intervals.
Thus, TPOT-RL in fact uses communication to distribute information among the agents.
Their empirical studies demonstrate that TPOT-RL outperforms (performance measure is
average packet delivery time) the shortest path and Q-routing protocols when learning is
done under switching traffic conditions — the algorithm is trained under conditions where
the selection of packet sources and destinations are changed to form two different traffic
patterns. Nevertheless, the following limitations are envisaged in this work. First, identify-
ing action-dependent features from local observations only can lead to loss of information.
This is because not all non-local state changes may be reflected in an agent’s immediate
state space but such information may be required by an agent to select actions. Thus, in
such circumstances, explicit knowledge of the non-local states is necessary. Second, as a
consequence of the above-mentioned problem, the fidelity of the derived estimates would
deteriorate. This, in turn, would decrease the overall performance of the system. Third, in
the work of Stone (2000), since the agents update their estimates based on others’ estimates
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and not using the actual states, a similar shortcoming as identified in section 2.2.1 of learn-
ing bad estimates can occur. In contrast, our work attempts to alleviate these limitations
by distributing the actual node states to keep the agents informed of the non-local states.
Finally, in TPOT-RL, information is distributed at regular intervals (Stone, 2000), how-
ever, a formal way of specifying this interval is not prescribed. This is an arbitrary scheme
which can result in large latencies in information reaching target nodes. Hence, estimates
generated based on such information may not be up-to-date. PTC, on the other hand,
distributes information immediately after task completion, thus, attempting to minimise
the latency. Again, because of its claimed effectiveness and broad applicability, we choose
TPOT-RL as the second benchmark for empirical evaluation against PTC.

2.2.3 Policy Gradient Search

Another approach of using RL for cooperative distributed problem solving is that of policy
gradient search (Sutton, McAllester, Singh, & Mansour, 2000). A policy, in a RL context, is
a mapping from a state on to an action. The policy is thus a function of a set of parameters
which are variables defining the local state and, hence, influencing the action selection.
A policy gradient search is a mechanism that tries to optimise the parameter values such
that the average long-term reward of the learners is maximised. For example, in a network
routing problem, these parameters can be the destination of the packet and the outgoing link
a router (agent) selects for that destination (note these parameters are locally observable to
an agent) while the reward is a measure of utility (or, sometimes the negative cost) that an
action achieves given the parameter values. In the network routing domain, the reward can
be the negative trip time for a packet to reach its destination node. In the policy gradient
approach, it is assumed that each agent (the individual learners) receives the reward of
all actions taken by all agents at every time step.6 It is only this reward information
that is globally known by the agents. Thus the policy gradient algorithm is model free —
independent of domain models and knowledge about others’ states and actions. Individual
agents adjust their policy parameters in the direction of the gradient of the average reward
that they compute using the global reward information — hence the term policy gradient.
Therefore, communication of reward values is key to allow the learners to optimise the
parameter values. However, the dependence on the global reward information to update
the policy parameters can be a bottleneck in systems where the communication bandwidth is
limited and there is a finite latency in messages to propagate (as in most practical systems).
These constraints can lead to very slow responsiveness to environment changes in agents
using the policy-gradient approach. Moreover, broadcasting rewards by all agents in highly
dynamic environments (such as, networks experiencing heavy loads) can cause the network
to completely saturate by the reward messages (as observed in our implementation of the
global broadcast strategy, stated in section 1) resulting in a very inefficient system.

This method is used to build cooperative MAS by Williams (1992), Baxter and Bartlett (1999),
and Peshkin and Savova (2002), among others. All of these works demonstrate that the
policy-gradient search achieves reasonable performance (in terms of average routing delay)
compared to other benchmark algorithms such as the shortest path algorithm. However,

6. More realistically, each agent may broadcast the reward it receives to all other agents. Hence, the agents
may receive the reward signals from the entire system with some delay.
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in the works of both Williams (1992) and Baxter and Bartlett (1999), an exceedingly large
amount of time is required for the learners to converge. This is because the learners need
the global reward information to update their policy parameters which results in a slow
optimisation of the parameters. This puts a restriction on the applicability of this ap-
proach to build practical systems. A similar limitation is likely in the work of Peshkin and
Savova (2002) although the authors do not provide these results. In addition, with the high
communication overhead incurred, this approach is likely to be unsuitable for implementing
practical MASs.

In contrast to the uninhibited communication required in the policy gradient search
approach, in our work, communication is used as a controlled strategy to inform the agents
about the portions of the global state that are relevant to their action selection. Thus, we
believe our work offers a superior practical solution to the policy gradient approach.

2.2.4 Communication Decisions in Multi-Agent Coordination

Xuan, Lesser, and Zilberstein (2001) advocate that communication decisions are integral to
an agent’s decision to coordinate in a cooperative, distributed MAS. The authors consider
that each agent solves a local Markov Decision Process (MDP) (Feinberg & Schwartz, 2001)
that generates both a communication action and a state-changing action at every decision
sub-stage. The agents are only given local observability (i.e., they cannot observe the
states of other agents). However, they can observe the communication actions of other
agents. The important reason for introducing a communication decision in an agent’s local
MDP, as argued in this paper, is that communication incurs cost. Hence, an agent should
employ reasoning to decide when communication is required such that the overall utility
earned from the agent’s decisions is maximised. In this context, this work extends the
theoretical analysis of multi-agent MDP of Boutilier (1999) where the agents are assumed
to have global state information. Specifically, the authors propose two simple heuristics to
generating communication decisions that aim to reduce the computational complexity of
solving the full MDP to generate the optimal global policy.

As we are interested in studying the impact of communication on the performance of a
cooperative MAS, the work of Xuan et al. (2001) is related to our research. However, while
they analyse whether communication is necessary at any stage of an agent’s decision, we
consider communication to be inevitable. We analyse, both quantitatively and empirically,
the impact of a specific information-sharing protocol, PTC, on the performance of a MAS.
Our work differs from that of Xuan et al. (2001) in the following additional ways. Firstly,
in their work, the agents are assumed to iterate through a sequence of communicate and
act stages synchronously. We adopt a more generic approach of completely asynchronous
behaviour. Secondly, they assume to be instantaneous communication; thus, information
sent by an agent is received by another immediately. On the contrary, we consider a more
realistic scenario where there is a finite delay associated with communication. Finally, the
communication heuristics that they propose are based on each agent individually monitor-
ing their own progress towards achieving a commonly agreed upon goal. In our work, we
consider fundamentally distributed task processing where an agent can take a local action
and the actions of multiple agents together complete a task (more on this in section 3).
Hence, in our work, individual agents cannot monitor the progress of a task execution pro-
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cess towards completion; they are only capable of taking their local actions using estimates
of the unobserved states.

2.2.5 Other Machine Learning Algorithms

The motivation for PTC initially may appear to be similar to conventional supervised
learning (SL) (Widrow & Hoff, 1960), where the actual outcome of a multi-stage prediction
problem is fed back to the individual learners (predictors). However, they differ on the
following critical issues:

• In SL, only the final outcome (such as whether a prediction was “correct”) acts as the
source of information for the learners to update their prediction algorithm. In contrast,
PTC allows a learner to gain knowledge about how the states of other agents in the
cooperative group change along with the outcome.

• In SL, an agent typically learns a mapping from its own actions onto the outcomes
of a multi-stage prediction problem. PTC, however, allows an agent to consider the
impact of the states of other agents on the final outcome of the task.

• Typically, SL is used for prediction in stationary environments. On the other hand,
we evaluate the competence of PTC in maintaining high-fidelity estimates in funda-
mentally dynamic and uncertain environments.

Also, PTC is distinct from the approach of using eligibility traces in which a learner
is provided with the knowledge of the entire sequence of state transitions after a complete
training episode (i.e., after starting from the start state and reaching the goal state) (Mitchell,
1997). In the latter, an agent, upon reaching the goal state after executing a series of ac-
tions, updates in reverse order (i.e., starting from the goal state and moving to the starting
state) its Q-estimates for each state transition. In a practical MAS, however, it is not pos-
sible for a single agent to observe all transitions occurring during a task processing episode
as assumed in the approach using eligibility traces. Further, in a large and complex MAS,
the computational load incurred by a single agent attempting to take decisions based on
its knowledge of all state-transitions sequences of every task would be too prohibitive to be
realised in practice. In this situation, therefore, our research contributes towards developing
a practical and effective means of distributing state information to improve learning. In so
doing, it removes the requirement of an agent having to maintain the entire chain of state
transitions in its memory. Rather, it allows the agents to acquire an overall picture of the
state-changes in the cooperative group that perform a task, which, in turn, allows them to
take decisions for effective coordination.

2.3 Network Bandwidth Estimation

Network bandwidth availability directly impacts the performance of networked applica-
tions such as web services, peer-to-peer systems, and mobile networks. Therefore, effective
estimation and prediction of bandwidth availability have attracted considerable attention
in the networks community. Our application of PTC to do bandwidth estimation and
routing, therefore, bears close resemblance to this line of research. In this paper, we use
Q-learning (Watkins & Dayan, 1992) for bandwidth estimation because it generates robust
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and flexible estimates from observations. Therefore, to generate the estimate, it needs to
observe the bandwidth availability pattern. In network bandwidth estimation, such knowl-
edge is harnessed by either active or passive measurements. The former is done by injecting
perturbation traffic into the network and then assessing the states based on the statisti-
cal characteristics of this traffic (Jain & Dovrolis, 2002). However, in applications such as
limited-bandwidth ad-hoc networks, such perturbation traffic wastefully consumes valuable
bandwidth. A related approach adopted in the agent’s community is that of using mobile
agents or “ants” to harness traffic conditions across the networks and update node routing
tables (Caro & Dorigo, 1998a, 1998b). In low-bandwidth networks, the introduction of
such extraneous agents can still impact bandwidth usage. Besides, the security and privacy
problems associated with the use of mobile agents have made their applicability in real-
life systems debatable. Alternatively, passive measurements are done by offline analysis of
actual traffic traces (Lai & Baker, 1999; Ribeiro, Coates, Riedi, Sarvotham, Hendricks, &
Baraniuk, 2000). However, in our case, we require estimation to be online so that we can
cope with the dynamic conditions during the operational period of the system. Therefore,
PTC generates bandwidth estimates by using information disseminated by the cooperative
agents while they route calls. Further, the passive measurement approaches typically esti-
mate bandwidth by assuming a network model that can affect the estimation fidelity. For
instance, in the work of Ribeiro et al. (2000), a network path is modelled as a single queue
which disregards the effects of variable queueing delays along that path on the estimate.
By choosing Q-learning, we aim to develop a statistical model of bandwidth availability by
continuous monitoring without getting constrained by any predefined models.

3. Task Domain Characteristics

In most MAS, complex tasks are performed by groups of agents. Generally speaking, the
problem solving activities of such agents may be executed in parallel to generate the final so-
lution. But, in many cases, constraints over processing different, but related, parts of a task
by different agents may require the task execution process to be partially sequentialised with
appropriate scheduling between parallel executions (Maley, 1988; Parunak, Baker, & Clark,
2001). As a simple example, we can consider a car factory where the units manufacturing
the different parts of a car can run in parallel (satisfying mutual compatibility) while the
final assembly comes into play only after all the parts are correctly manufactured (Jennings
& Bussmann, 2003). Alternatively, the nature of a task can enforce a strictly sequential
processing. For example, in a distributed transportation system, delivery of goods between
two points requires a set of cargo movements in sequence. In this paper, we exemplify the
application of our PTC principle in a sequential domain. However, the choice of a sequen-
tial domain does not indicate a limitation of PTC; PTC is not based on any assumption of
sequential task processing (section 4 has more details). Nevertheless, this is a reasonable
choice since several key MAS applications such as sensor networks (Viswanathan & Varsh-
ney, 1997), supply chains (Denkena, Zwich, & Woelk, 2004), telecommunication bandwidth
allocation (Minar, Kramer, & Maes, 1999), among others, feature, to different extents and
at different levels of granularity, sequential task processing. Here, it should be clarified that
although individual tasks are considered sequential, the entire multi-agent system would
typically be performing multiple such sequential tasks simultaneously and asynchronously.
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Further, the individual agent activities in our example application are considered equivalent
to allocating resources. This is because in many practical MAS applications, such as the
ones mentioned above, the agents essentially allocate resources such as network bandwidth,
processor cycles, etc. to complete tasks.

Specifically, in this research, we consider a wireless telephone network (TN) as a repre-
sentative application in which to implement communication heuristics based on PTC and
evaluate these empirically. Note, however, that this choice does not limit the applicability
of our results. This is because this application has characteristics that are common to many
real-world large-scale distributed systems and hence our solutions are also more generally
applicable. These include: multiple agents situated in different portions of the system (a
network node is modelled as an agent), agents having incomplete views of the activities and
states of others, and agents having to coordinate their local (routing) decisions in order
to successfully achieve a global task (routing a call from source to destination). Moreover,
there is a clear measure of success which is proportional to the bandwidth usage efficiency,
or, equivalently, to the total number of successfully routed calls.

The TN uses circuit-switched communication where node bandwidth has to be allocated
end to end (from a call source to destination) to establish calls. Each routing node is treated
as an agent. A node has a certain amount of bandwidth that can be allocated to a certain
maximum number of calls simultaneously. Each agent can monitor the load (the amount of
bandwidth allocated to calls) on its node and can communicate only with the nodes within
its transmission range — the set of “neighbour” nodes. Calls of finite duration can originate
from and be destined to any node. Calls originate (so, terminate) continuously. Therefore,
the load on the nodes continue to vary with time. The objective of any such agent is to
allocate bandwidth and forward a call to one of its neighbours such that the probability
of the call getting routed via the least congested (with the maximum available bandwidth)
path is maximised. Routing a call at a given time along the least congested path at that time
ensures an efficient use of bandwidth, hence, increases the number of successfully routed
calls in the system. The forwarding is based on the agent’s estimate of the congestion levels
across the network, i.e., its estimate of the unobserved states. Hence, the task is completed
by a sequence of such allocations and forwarding by multiple distributed agents. In this
scenario, the agents continually process tasks (i.e., route calls from source to destination as
new calls originate). We refer to the process of routing a call as a task processing episode.
Section 5 uses this notion of episodic tasks to explain the difference between the estimates
generated by PTC and the NN protocols. A detailed description of the simulation of various
agent activities during such episodes is provided in section 6.

The next section expands on the PTC principle and outlines how information sharing
based on this principle is designed in the TN domain. Furthermore, the implementations
of the benchmark strategies, Q-routing and TPOT-RL are also explained.

4. Sharing Information to Improve Learning

To implement effective learning in dynamic environments by sharing local knowledge be-
tween agents, the communication strategy should satisfy the following criteria:
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• Time efficient distribution: There is a latency associated with communication.
Hence, the more timely the information that is communicated to an agent, the more
likely the information is up-to-date.

• Accuracy of information: In continuously changing environments, it is impossible
for all agents to remain synchronised with state changes at all times. Nevertheless,
the more accurate the information received, the better.

Given these desiderata, here PTC is proposed as an effective strategy for distributing
the local state information of agents.

Definition 1 Post-task-completion information sharing refers to the distribution of local
state information between a group of cooperative agents, by way of a mechanism that depends
on the allowed agent interactions, only after the completion of tasks undertaken by the
agents.

The motivation for using this scheme is to let an agent that participated in completing
a collaborative task have an indication of the state changes of the other agents in the group
that resulted from processing that task. Such information is then useful for making more
informed decisions while processing any subsequent task. In a dynamic system, the world
states change while the agents process a given task. Therefore, by delaying the transmission
of information until the task is completed, this protocol ensures that all those agents who
participated in the task completion process are informed about these state changes and
how that affects the outcome of the task. In so doing, we hypothesise that by using this
mechanism the agents would be able to distribute information in a time-efficient manner and
learn reasonably accurate estimates, thereby satisfying the requirements identified above.
The analysis presented in section 5 establishes our hypothesis by comparing the timeliness
and estimate qualities of PTC against those of the NN protocol.

It is important to note that PTC is a general principle and specific instances of PTC
can be implemented in a given problem. Our implementation of PTC in the TN domain,
discussed in section 4.2, is just such an instance. Further, although we exemplify the ap-
plicability of PTC in a sequential domain, the protocol is not designed around any such
assumption. Note that in applications where task processing between agents occurs in-
dependent of one another and in a purely parallel fashion, the objective of maintaining
estimates of other agents’ states becomes redundant. Rather, in such systems, a central
task allocator that allocates sub-tasks to the parallely executing agents would be a more
suitable approach. However, if the processing of a sub-task by an agent requires estimates
of the others (due to some dependencies between them), PTC can be used to distribute
information between these processors. Moreover, if the sub-tasks in such systems, in turn,
require sequential processing, our information-sharing protocol can be used in that context.
Therefore, we can argue that communication strategies based on the PTC principle can be
suitably designed to be applicable at various levels of granularity in domains other than the
one chosen in this paper.

In the remainder of this section, we first outline the basics of Q-learning. Subsequently,
we describe how PTC is implemented in a TN to improve the distributed learning of band-
width availability. The Q-routing and TPOT-RL implementations are also described in the
same light.
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4.1 Q-learning Basics

Q-learning is an algorithm to learn the optimal action an agent can take such that the
discounted cumulative utility of a sequential decision problem is maximised. In general, RL
achieves this task by assuming full knowledge of the reward generated for any action in any
state and the resultant state after an action is taken. A formal description of RL requires
that the environment be represented by a 4 -tuple: 〈S,A,T ,∇〉, where S is a finite set of
states, A a finite set of agent actions, T : S × A → P(S) a probability distribution P over
states generated by a given action taken in a given state, and r : S × A → R returns a
scalar value (the reward) as a result of an action taken in a state. Now, the policy of a RL
agent π : S → A is a mapping of state on to actions. Given a policy π, the value function
V π(st) refers to the cumulative reward that the agent receives by following π starting at
state st and all subsequent states st+i, i ≥ 1. Thus,

V π(st) = E

[

∞
∑

i=0

γirπ
t+i

]

. (1)

where γ (0 ≤ γ < 1) is a discount factor that determines the relative weights of immediate
and delayed rewards, and rπ refers to the reward received at each state transition following
policy π. Note the expected value is used because r typically defines a probability distri-
bution over the outcomes generated by taking an action in a given state. In the above
expression, the agent’s “life” is assumed to be infinite, hence the sum is over an infinite
sequence. The optimal policy π∗ is:

π∗ = argmax
π

V π(s),∀s. (2)

The action generated at any state s by the optimal policy π∗ is:

π∗(s) = argmax
a

E

[

rπ(s, a) + γ
∑

s′

T (s, a, s′)V π∗(s′)

]

, (3)

where V π∗ represents the value function corresponding to the optimal policy π∗. Expression
(3) indicates that the optimal policy can be acquired by learning the optimal value function
for all states. Nevertheless, in so doing, complete knowledge about the r and T functions
is necessary. However, in most practical domains, an accurate knowledge of these two
functions is not possible.

Against this background, the usefulness of Q-learning is to learn the optimal policy
without having to learn the optimal value function. The key to achieving this is the following
substitution:

Qπ(s, a) ≡ rπ(s, a) + γ
∑

s′

T (s, a, s′)V π∗(s′). (4)

The optimal policy can be calculated if an agent learns the Q(s, a) values as,

π∗(s) = argmax
a

Q(s, a), (5)
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and the optimal value function is computed as,

V π∗(s) = max
a

Q(s, a). (6)

A recursive definition of the Q values is thus,

Qπ(s, a) ≡ rπ(s, a) + γ
∑

s′

T (s, a, s′)max
a′

Q(s′, a′). (7)

Without any knowledge of the reward and state transition functions, the true Q-values
(shown in (7)) can be estimated through repeated training. In particular, the following
training rule, due to Watkins and Dyan, allows the estimated values, Q̂, to converge to
their true values (Watkins & Dayan, 1992):

Q̂n+1(s, a)← (1− α)Q̂n(s, a) + α[r(s, a) + γ max
a′

Q̂n(s′, a′)]. (8)

Here, s and a are the state and action, respectively, updated for the n+1th training iteration,
α (0 ≤ α ≤ 1) generates a decaying weighted average of the current Q̂-estimate and the
revised value, and s′ is the resultant state after taking action a in state s according to the
current policy. By adjusting (gradually reducing) the value of α, the Q̂-estimates can be
demonstrated to converge to the actual Q-values (Watkins & Dayan, 1992). In this research,
we let our agents use the training rule (8) to learn the Q-values.

4.2 Strategies for Sharing Information in the Cooperative Bandwidth

Allocation Problem

Assuming a TN has a set of agents A, we consider an arbitrary subset of A, N = {ai |
i = 1, ..., n} (where n is the cardinality of N ), that processes a given task at a given time.
In so doing, an agent in N considers one of its neighbours to forward a call (refer to the
discussion in section 3). This decision is based on the agent’s Q-estimates. Specifically, we
use a Q-table for each agent ai where an entry Qi(n, k) represents the expected utility of
choosing neighbour ak when the call destination is an (note the size of the Q-table for each
agent is | A | × | K |, where K is the set of neighbour agents). In particular, for a TN, we
chose the Q-values to represent the expected availability of free bandwidth (BW) channels on
nodes along the various paths from ak to an. Note, in this representation of the Q-function,
n is the goal state (the fact that the call has to be routed to an) of the agent and the
current state is i (the fact that the call is currently with ai). So, effectively, the agent learns
to forward a call along the path with the maximum available BW to reach the goal state
from the current state. This representation has the advantage that all intermediate state
transitions (the sequence of nodes that the call has to be routed through) are collapsed into
one effective transition from the current state to the goal state. The Q-value, therefore,
signifies the “effective utility” (in terms of the available bandwidth; the higher the value of
which the better is the utility in terms of successfully routing a call) of selecting a given
neighbour to reach the goal state. This Q-value is learned from the information distributed
by the information-sharing strategies, described shortly. Note, a similar Q-function has
been used previously by researchers studying adaptive routing using Q-learning (Boyan &
Littman, 1993).
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In the above context, an agent (ai) who wants to route a call to a destination node (an)
using a set of nodes that have the highest expected BW availability, chooses the neighbour
a′k such that a′k = argmax

ak

Qi(n, k), where the maximisation is over all neighbouring agents

of ai. In our empirical study, we use Boltzmann’s exploration (Watkins, 1989), a standard
scheme for probabilistically choosing a neighbour as opposed to this deterministic strategy.
An instance of agent a1’s request to its neighbour a2 to forward a call towards the desti-
nation node an is shown in Figure 1(a). Being cooperative, a2 will accept the request if it
has the available capacity. After forwarding the request, a1 pre-allocates one unit of call
channel bandwidth (Figure 1(b)) for the partially connected call until it is either successfully
connected or dropped (as described shortly). The forwarding continues (Figure 1,(b)) until
the destination node (an) is reached. At this point, a message is transmitted back along
the route through which the call was routed to inform each agent that the call has actually
connected. Each agent then allocates one unit of call channel bandwidth to complete a
circuit from the source to destination (before this, the nodes had only pre-allocated band-
width) (Figure 1(c)). Also, using this message, agents transmit their local state values to
other agents on the route. Hence, those agents that cooperated on a task (routing the call)
share among themselves their local state information after the task is completed (after the
sequence of requests reach the destination node). In this way, therefore, the PTC principle
(see definition 1) has been instantiated specifically in the TN domain. More details on this
follows shortly.

(c)
Allocate 

Final  route

(b)

(a)

Network

Call  destinationCall  source

drop  call

no bandwidth with a3

a3a2
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an sends connect message
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a2 forwards request

an

a3a2
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a1 re
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 a2
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Figure 1: The call forwarding process

However, the forwarding process stops if an agent is contacted that has no unallocated
call channel bandwidth. Then, the agent transmits a message to inform those on the route to
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drop the partially connected call and deallocate the pre-allocated bandwidth (Figure 1(d)).
In addition, the worst case setup time of a call is bounded by an upper limit for the time that
the agents can continue with the forwarding process. After this time, the call is dropped
if it has not connected. This time is equivalent to the maximum delay a caller would
experience between dialling a number and hearing the ring tone. 7 Finally, if an agent,
while forwarding the call, detects a cycle in the route taken by the sequence of requests
it generates a message with a penalty and transmits it to the agents on the cycle. This
penalty, an exponentially decreasing function with the distance of a node from the loop end,
is subsequently used by those agents to update their estimates such that the occurrence of
further cycles is reduced. Moreover, while penalising, the agents on the loop de-allocate the
previously pre-allocated bandwidth since loops are redundant portions of a call path (for
more details, see section 6.2).

In the preceding, we presented a broad description of the sequential bandwidth allocation
task performed by the routing agents. In the following, we first explain how the PTC
principle is implemented in this setting. Then, the implementations of the benchmarks in
this domain are presented. A more detailed discussion of our system implementation is
provided in section 6.

4.2.1 Post-Task-Completion Information Sharing

Consider (as described above) a call is routed from a1 (source) to an (destination) along
the path a1...an. In the instantiation of the PTC principle, agent an starts communi-
cating its own local state (in a TN a node’s state is represented by the available BW
units on that node) when the BW allocation process completes at time t at an, thereby,
establishing a complete circuit from source to destination. Agent an communicates this
information to an−1. Thus, an−1 updates its prior estimate of an’s available BW units
Qn−1(n, n) with the new state information using the standard Q-update rule (equation 8):
Qn−1(n, n)← (1−α)Qn−1(n, n) + α s(n, t), where s(n, t) represents the local state of an at
time t and is the “reward” for the Q-learner to update its prior Q-estimate. Subsequently,
an−1 communicates to an−2 its own local state at time t′ s(n− 1, t′) (t′ 6= t, because of the
latency in communication between neighbour agents) and the information it had received
from an. Alternatively, it can use its own state information and that received from an to
communicate a summary information that captures the overall state of the path being used
to route the call. Section 6.3 outlines two heuristics of doing this.8 Agent an−2 similarly
updates its prior estimate of the bandwidth availability Qn−2(n, n−1) using the information
received from an−1. This procedure of distributing their own and the previously received
state information continues until the source agent (here, a1) is reached. Typically, the in-
formation about the states of multiple nodes is used to generate a summary estimate of the
state of the downstream route as described in section 6.3. The distinction between local
state (an agent’s own state) and non-local state (another agent’s state) is lost in aggre-

7. In case of the above two conditions, we do not use any backtracking to search for alternative paths. This
keeps the routing protocol simple and makes the analysis of the system behaviour easy. Moreover, this
simplification should not impact the overall conclusions of this research since inclusion of backtracking
would impact all strategies equally.

8. Such summarisation of state information is separate from the basic PTC principle which simply states
that information is shared between a cooperating group after task completion.
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gating information of multiple nodes to maintain a summary of call routes. However, this
is not a problem in a TN since the knowledge of path bandwidth availability is sufficient
for an agent to take effective routing decisions (selecting a subsequent node to forward a
call request). On the other hand, maintaining the information of individual nodes would
necessitate each agent solving a computationally expensive least-cost-path problem before
every routing decision. However, in a different domain, it is entirely possible for an agent
to maintain separate state estimates of other agents in the cooperative group while using
the same PTC principle.

The realisation of PTC in the TN domain allows one agent at a time to communicate
information to its immediate neighbour. This is because: (i) one agent (in a TN, the
destination node) detects the completion of a task, which, subsequently, starts transmitting
state information; (ii) an agent can communicate to its immediate neighbour only; and
(iii) state information transmission follows a sequence (from the destination node towards
the source) due to the previous two reasons. However, in a different multi-agent domain,
a realisation of PTC may involve multiple agents sharing information at the same time
depending on the interactions possible between agents.

In this particular instantiation of PTC, only those nodes who participated in routing a
call share information. So, the state information of the other nodes in the system is not
distributed. But, the decision of which agents should be informed about which system states
is a separate problem. In this paper we advocate PTC as a specification for distributing
information among those agents who cooperate on a task after task completion. Therefore,
distributing information among the routing nodes follows this specification. Nevertheless,
in our ongoing research, we are investigating the problem of how we can determine which
agents within a cooperative group should be notified of a certain piece of state information
after task completion and the consequence of such selective distribution.

The communicated state information acts as the “reward” for Q-learning. Therefore,
the accuracy and the timeliness of this information is critical in determining the quality of
the Q-estimates. This, in turn, directly impacts the effectiveness of an agent’s decision to
route calls.

4.2.2 Q-routing

The Q-routing algorithm is based on the NN protocol (as discussed in section 2.2.1). In
Q-routing (hereafter, referred to as QR), an agent ai, after forwarding a call to neighbour
ai+1, receives the latter’s current best estimate of the BW availability to reach destination
an. Thus, neighbour ai+1 informs ai with Q̂i+1 = min(si+1,max

ai+2

Qi+1(n, i + 2)), where the

maximisation is done over all neighbours ai+2 of ai+1. Since, on a given path in a TN,
the node with the minimum bandwidth availability determines the maximum number of
calls that can be placed via that path, ai+1 determines the minimum of its own bandwidth
availability (its “state”, denoted by si+1) and its estimate of the subsequent path. Agent
ai, upon receiving this estimate, updates its prior estimate Qi(n, i + 1) as: Qi(n, i + 1) ←
(1 − α)Qi(n, i + 1) + α Q̂i+1. This process of asking neighbours and receiving the latter’s
estimates continues until the destination is reached (see Figure 1(c)) or the forwarding
process is terminated (see Figure 1(d)). The way the Q-estimates are updated in QR is
similar to the update rule used in PTC as shown in section 4.2.1. The difference, however,
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is in the reward: whereas in QR, the reward is the estimate of the immediate neighbour, in
PTC, it is a summary of the actual state information of all subsequent path agents.

4.2.3 TPOT-RL

TPOT-RL is implemented in our TN domain following the description given by Stone (2000).
The characteristic features of TPOT-RL (see Stone, 2000 for more details) are implemented
as follows: (i) a partitioning function and (ii) an action-dependent feature function (where
the activity-window parameter is chosen as 100, and the usage-threshold for a link con-
necting to a neighbour is set to 5.0 — half the maximum bandwidth capacity of a node,
defined in section 7.2), both identical to those of Stone (2000); and (iii) the reward update-
interval is set to 100. Section 6.2 explains in more detail how these parameters are used by
the agents to learn estimates and route calls. While forwarding a call, a node using TPOT-
RL transmits to the subsequent node its current estimate about the bandwidth availability
to reach the given call destination. Each agent also records the amount of bandwidth usage
on each of the links connecting to its neighbours. Its Q-values estimate the bandwidth
availability to reach a given destination via a given neighbour for the given link usage level,
monitored over the past activity-window time steps. A call-forwarding decision is taken by
using a Boltzmann exploration over the Q-estimates. Reward distribution occurs in TPOT-
RL every update-interval time steps. More specifically, for all calls that are successfully
connected, the corresponding destination nodes accumulate the information that was trans-
mitted by the forwarding nodes along the call paths. Then, after every update-interval
time steps, these destination nodes start sending the accumulated information back along
the corresponding call paths. An agent located along such a call route, updates its Q-values
after receiving this information. So, a node ak along the path a1, · · · , ak, · · · , an, gets the
estimates (as opposed to the actual node states) of its subsequent nodes ak+1, · · · , an, us-
ing which it updates its Q-value. Note that we have used aggregation of the information
received from subsequent agents similar to that in PTC (section 4.2.1).

5. The Advantage of the PTC Sharing Principle

In this section, we present a formal analysis to explain the advantage of our information
sharing model in generating better learning than the NN protocol. While this establishes
the benefits of PTC on a theoretical ground, it also provides an explanation for the per-
formance improvements observed in our empirical studies. In the following, we first state
our assumptions and notations that will be used in later discussions. The rest of this sec-
tion develops a formal representation of the timeliness of distributing information by both
strategies. This representation is then used to compare the accuracies of the non-local state
information in each case.

5.1 Basic Assumptions and Notations

In section 3, it was stated that we consider task episodes that require the sequential par-
ticipation of the appropriate agents for successful completion. In this context, our analysis
focuses on a particular set of agents N = {a1, ..., an} where agent a1 initiates the task
execution process by receiving a new task. Also, we assume, without loss of generality, that
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the order in which the agents process tasks is: a1 → · · · → an. This assumption implies
that, in this task processing instance, a1 uses its knowledge of the states of other agents and
selects a2 to forward the task, a2 similarly selects a3, and so on until an−1 selects an which
is the agent at which the task processing is completed (this was described in section 4.2 in
the context of a TN). Note that N represents one possible set of agents that can complete
the task (equivalently, in a network, there can be multiple routes through which a call can
be routed to the destination). The state estimates that the agents use to select the sub-
sequent agent are generated using communicated information of the unobserved states via
the particular communication strategy used by the agents (PTC or NN). Thus, focusing on
one particular set (in this case, N ) simplifies the analysis of how a communication strategy
affects the accuracy of a given agent’s knowledge of the agents in that set. Since N is arbi-
trarily selected, it is equivalent to selecting any other set of agents. Therefore, the results
of our analysis do not depend on which N is chosen.

Further, we consider that the agents process tasks that are generated continuously (as
per section 3). To this end, let the symbol tc denote the fixed time after which successive
tasks are generated. Such an assumption of periodicity in the task environment is made to
simplify our analysis. Subsequently, in section 5.6, we show that even under more general,
non-periodic environments, the same general conclusions hold.

In the sequence of agents that jointly participate in executing the task, there is the
notion of a “subsequent” agent (and, for that matter, a “preceding” agent) for any agent
except the last (the first). We represent the agent subsequent to an agent ai by the identifier
ai+1 and the one preceding ai by ai−1.

The agent state, as per section 4.2, is represented by a real-valued function s. For
example, in a network, this can represent the load level, or, equivalently, the fraction of
the total bandwidth used on a node. Also as discussed in section 4.2, an agent learns
these agent states, using the communicated information from other agents, to decide which
subsequent agent to choose. The actual state of agent ai (as observed by ai itself) at time
t is represented by s(i, t). Agent ai’s knowledge of aj’s state at time t is s′(i, j, t) (i 6= j).
The knowledge that ai has of the agents in N at time t is represented by:

St
i = {s′(i, j, t) | j = 1, ..., n}. (9)

The corresponding set of actual state values of the agents in N is represented by:

St = {s(j, t) | j = 1, ..., n}. (10)

Note that in dynamic systems these states change with time. For example, the load level of
a communication node varies with time. Thus, without timely updates, the known values
can be different from the actual state values.

As noted earlier, agent ai uses St
i to select the subsequent agents to whom it forwards

a task. This decision, in turn, affects the overall utility earned from processing tasks in the
system. The exact function used by an agent to determine the subsequent agent depends
on the task and the domain characteristics. In a TN, for example, an agent can select a
subsequent agent for which it estimates that the average load on all nodes from that agent
to the destination node is minimised. Thus, this decision has the effect of using the least
congested path every time a call has to be set up which, in turn, maximises the number
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of calls routed in the system. Our analysis does not depend on the exact form of the
decision function. Rather, it studies the delay between consecutive reinforcements of state
information by a given information-sharing strategy that generate the knowledge s′(i, j, t).
The s′(i, j, t) values act as the parameters in an agent’s decision function. Hence, it can be
concluded that the closer these values are to the true states (which, as stated earlier, change
with time), the higher is the accuracy of the agent’s decision. Intuitively, the shorter the
delay in sharing information, the more up-to-date is the information maintained. Thus, the
more effective an agent’s decision. In the following subsections, we analyse the timeliness
of information sharing by the different communication strategies.

5.2 Timeliness of Information Distribution in NN

In this section, we compute the delay incurred by an agent to get the state information
from the others in N using the NN strategy. For this, we focus on a1’s knowledge about
the states of {a1, ..., an} at time t. At this time, a1 has the knowledge of its actual state
s(1, t). However, its knowledge of the other agents s′(1, j, t) (j = 2, ..., n) are different
from the corresponding true states by an amount equal to | s(j, t) − s′(1, j, t) |. Note
that the information that an agent maintains at a given time is the result of the previous
communication that occurred between the agents (refer to section 4.2.2 for a discussion on
how a particular implementation (QR) of the NN protocol works).

Since tasks originate every tc time steps, an agent aj (j = 1, ..., n − 1) requests its
subsequent agent aj+1 for the latter’s knowledge every tc time steps. Following a request
at any time t, aj receives the response from aj+1 after a delay of 2∆t, assuming the request
arrives at aj+1 after a delay of ∆t, and the response of aj+1 comes back to aj after a further
delay of ∆t, at t+2∆t. Note here ∆t refers to the communication delay of a message between
directly communicating agents. Referring to the discussion in section 4.2.2, we note that
aj+1 provides the information that it has of the set of agents {aj+1, ..., an}.

9 However,
aj+1’s knowledge are based on the information it received from aj+2 on its previous request
to aj+2. The previous request of aj+1 to aj+2 was during the processing of the previous
task at t + ∆t − tc for which it had received a response at t + ∆t − tc + 2∆t (i.e., after
a delay of ((tc − ∆t) − 2∆t)). In a similar way, that response of aj+2 to aj+1 contained
information that aj+2 received from its previous request to aj+3. That request of aj+2 to
aj+3 was at t + 2∆t − 2tc for which it had received a response at t + 2∆t − 2tc + 2∆t

(i.e., after a delay of (2(tc − ∆t) − 2∆t)). Extending this procedure to all subsequent
agents, therefore, at time t + 2∆t, the information that aj has of any other subsequent
agent ak is the state of ak delayed by an amount (d − 1)(tc − ∆t) − 2∆t + ∆t, where
d = k− j. Note here, an extra ∆t is added to the delay because although the response was
received at t + (d− 1)∆t− (d− 1)tc + 2∆t, but this contained information about ak at time
t + (d− 1)∆t− (d− 1)tc + 2∆t−∆t.

The above description is summarised in Table 1. In this table, the rows represent
agents (with the agent numbers increasing from top to bottom) and the columns represent
time (with time farther in the past as we move from left to right). More specifically, in

9. Note that in section 4.2.2, we discussed QR, where a summary of the states of the subsequent agents is
communicated. In this formalisation, we consider an agent maintains separate records of the states of
other agents. Such a consideration helps explain the impact of a given communication strategy on the
accuracy of an agent’s knowledge.
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Table 1: Time diagram for nearest-neighbour sharing

Agent ← Time

a1 (t + 2∆t) (t + 2∆t− tc) · · · (t + 2∆t− (n− 2)tc)
a2 (t + ∆t + 2∆t− tc) · · · (t + ∆t + 2∆t− (n − 2)tc)
...

...
an−1 (t + (n− 2)∆t + 2∆t− (n− 2)tc)

Table 1, each element represents a time when an agent (represented by the row number)
received the information from its subsequent agent. In particular, it focuses on agent a1 and
assumes that it has requested a2 for the latter’s knowledge at time t. Therefore, a1 receives
information from a2 at t+2∆t (row 1, column 2 in Table 1). However, the knowledge about
the subsequent agents that a2 provides a1 are based on the requests that these agents made
at times further delayed in the past. These are the first element of each row. Hence, at time
t + 2∆t, the set of state information of the agents {a1, ..., an} that a1 has is the following:

St+2∆t
1 = {s(1, t + 2∆t)} ∪ {s(i, t + (i− 2)∆t + 2∆t− (i− 2)tc −∆t) | i = 2, ..., n}. (11)

Note that, an additional ∆t is subtracted in the u values of all subsequent agents in (11).
This is because, while Table 1 shows the last time an agent received information from its
subsequent agent, this information is, in fact, delayed by an amount of ∆t; hence, the ∆t

is subtracted. For clarity, t + 2∆t in (11) is replaced by t′. Thus,

St′

1 = {s(1, t′)} ∪ {s(i, t′ + (i− 2)∆t− (i− 2)tc −∆t) | i = 2, ..., n}. (12)

The true states of these agents, at time t′, are

St′ = {s(i, t′) | i = 1, ..., n}. (13)

Thus, (12) shows that the knowledge that agent a1 has of any other agent in N is
delayed by an amount that depends on the distance (number of hops) between them. More
specifically, the knowledge that an agent, say ai, has of another agent, say aj , that is k hops
away is delayed by an amount:

tNNdelay = (k − 1)(tc −∆t) + ∆t. (14)

This measure of delay incurred in NN will be compared to the same in PTC.

5.3 Timeliness of Information Distribution in PTC

In this section, we compute the delay incurred by an agent to get the state information
from the others in N using the PTC protocol. Similar to the analysis in section 5.2, we
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assume that a task originates every tc time steps when a1 initiates the processing of the
task and forwards the request to the remaining agents {a2, ..., an}. In the PTC sharing
protocol, the state information of agents are communicated only after a task is completed.
Since new tasks are processed every tc time steps, it can be inferred that the distribution of
state information by the agents occur every tc time steps (i.e., after every task completion
phase and assuming that the communication delay between any two directly communicating
nodes remains the same).

n

t

1 2 3

Agent

Information  transmission

n  communicating to  n−12  communicating to  1

t + (n−2)

t + (n−2) − tc

t + (n−2) −2 tc −2 tct

t− tc T
im

e

t

t

t

Figure 2: Time diagram for PTC sharing

Therefore, an transmits its state information to an−1 at time t (i.e., when a task com-
pletes at time t, for any value of t), and then at t + tc, t + 2tc, and so on. Given this, an−1

transmits its own state and the information received from an to an−2 at t + ∆t, and then
at t + ∆t + tc, t + ∆t + 2tc, and so on (considering the delay of ∆t for the information to
reach an−1 from an). Extending this process, it can be inferred that a2 transmits its own
state and its knowledge of the set of agents {a3, ..., an} to a1 at t + (n − 2)∆t, and then
at t + (n − 2)∆t + tc, t + (n − 2)∆t + 2tc, and so on. Figure 2 shows this process. In this
figure, each agent is labelled with the time at which it transmits its state information to
its previous agent. Thus the state information that agent a1 receives from its subsequent
agent (in this case, a2) contains the information of the rest of N delayed by multiples of
∆t. Thus, a1 has the following information about the subsequent agent states (assuming it
received information from a2 at time t′):

St′

1 = {s(i, t′ − (i− 1)∆t) | i = 1, ..., n}. (15)

The true states of these agents at this time t′, shown in (13), however, are different from
these values.

Thus, (15) shows that the information that agent a1 has of any other agent in N is
delayed by an amount that depends on the distance (number of hops) between them. More
specifically, the information that an agent, say ai, has of another agent, say aj , that is k

hops away is delayed by an amount:

tPTCdelay = k∆t. (16)

In the following section, we use the delay measures computed in (16) and (14) to establish
the advantage of PTC compared to NN.
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5.4 Comparing Timeliness of Information Distribution in PTC and NN

The analysis of section 5.3 shows that using the PTC strategy, an agent, say i, after the
completion of a task episode, receives the local state information of another agent j after
a delay of k∆t (see formula (16)), where k is the hop count between i and j. In the
NN strategy, on the other hand, agent i receives j’s state information after a delay of
(k − 1)(tc − ∆t) + ∆t (see formula (14)). Comparing the delays, the following can be
concluded.

Proposition 1 The delay for non-local information to reach an agent is less using PTC
than using NN if the task environment periodicity is greater than the round trip communi-
cation delay of a message between directly communicating agents.

This is because, for k > 1,

tc > 2∆t⇒ k∆t < (k − 1)(tc −∆t) + ∆t. (17)

In a typical MAS, the interval between successive episodes of task execution (tc) is much
longer than the communication latency between two directly communicating agents (∆t).10

Hence, the delay due to PTC is, for all practical purposes, much less than that of NN.

Having established that PTC distributes information in a more time-efficient manner
than NN, we now focus on analysing how this characteristic of PTC creates more up-to-date
information.

5.5 Improved Estimation Accuracy using PTC

In this section, the improved time-efficient information distribution of PTC is mapped to the
improved quality of information learned by PTC over NN. The key idea is that, the shorter
the delay between successive information messages, the more accurate is the knowledge of
the actual states.

As stated before, node states vary dynamically over time. However, at a given time,
the state of a node can have a certain value from a certain set of values, say V. Also, a
node ni retains its state sm,11 where sm ∈ V and m ∈ {1, · · · ,M}, where M =| V |, for a
certain length of time, say lm. We consider that a certain node ni is dynamically estimating
the states of another node nj that is at a distance of k hops from ni. Given the above
information, we want to compute the expected value for a given number of state changes
that can occur in nj in a given time duration, say tD. We hypothesise that if tD increases,
so does the expected value for any number of state changes within tD. Therefore, if ni

receives information from nj with higher delays then it loses more state-change information
of the latter. Since NN has a greater delay than PTC (section 5.4), it incurs a higher loss
of state-change information than PTC. In this context, we define the following:

10. For example, in the type of communication networks we are studying in this research, the typical delay
between successive calls is of the order of minutes, whereas the communication latency between adjacent
nodes is of the order of milliseconds.

11. The representation s(i, t) used earlier in this section to identify the state value of agent ai at time t is
replaced with sm. In the current discussion, since we are considering one agent and the different state
values that it can take, the identifier i and time t are dropped for an easier notation. Nevertheless,
∀i,∀t,∃m, s(i, t) = sm.
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Definition 2 Given a set of states V = {sm | m = 1, ...,M} (M =| V |), where each
state value sm lasts for a time-length of lm, and a time duration tD, where tD <

∑

lm, a
coverage of size h from V on tD, represented by c(h,V, tD), is a set of h different states
of V (h ≤M) such that

∑

h

li ≤ tD.

Using the above, the expected value of h different state changes of nj within a time-interval
tD is given by:

number of possible c(h + 1,V, tD)
(

M
h+1

) , (18)

where the numerator counts all possible coverages of size h + 1 (hence, having h different
state changes) from V on tD. The denominator enumerates all possible ways of choosing
h + 1 different states from V.

Now, if we consider a duration t′D > tD (t′D <
∑

lm),12 then it is trivial to identify
that every c(h,V, tD) will also be a c(h,V, t′D), for all h. This is because, all combinations
of li’s that “fit” within tD would necessarily fit within t′D. Therefore, it can be said that
⌊c(h,V, t′D)⌋ = c(h,V, tD). Hence, the numerator of (18) with tD replaced by t′D would
at least be equal to that for tD. The above reasoning brings us to the conclusion that the
expected value for observing K different state changes (for any K) increases with increasing
delay between successive observations. Thus, more state-change information is lost as the
delay between observations increases. Since, according to section 5.4, PTC achieves a lower
delay than NN between successive observations, the following can be concluded.

Proposition 2 PTC incurs a lower loss of state-change information than NN.

The analysis presented so far assumes a periodic environment where the task episodes
repeat after intervals of constant length. In the following, we present a similar analysis with
the periodic assumption removed and demonstrate that the same conclusions hold.

5.6 Non-periodic Task Environment

The analyses presented in sections 5.2 and 5.3 are based on the assumption that task com-
pletion episodes repeat every tc time steps, with a constant tc. Therefore, the formulas (14)
and (16) were derived using only one of these episodes. In a more general setting, however,
the task processing episodes would be non-periodic, with the time between successive task
completion episodes varying. In that case, these formulas have to be computed considering
the successive episodes as opposed to only one. In this context, note that the information
dissemination delay of NN alone (formula (14)) depends on the value of tc. Therefore, the
assumption of non-periodic episodes impacts the delay terms of only NN. The following
discussion indicates how to account for the non-periodicity.

Considering the case described before in section 5.2 where agent ai maintains the state
of aj which is k hops away. In a non-periodic situation, formula (14) changes to,

tNNdelay =
k−1
∑

m=1

tj−m
c − (k − 2)∆t, (19)

12. If tD =
P

lm, then the expected value of observing h state-changes is equal to 1, for all h. If tD >
P

lm,
then we can apply the same reasoning as above for the modified duration t′′D, where tD ≡ t′′D(mod

P

lm)
to reach the same conclusions.
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where, t
j−1
c (for any j) represents the most recent episode, t

j−2
c the second most recent

episode, and so on.
Using a method similar to that discussed in section 5.4, tPTCdelay given by (16) can be

compared to tNNdelay given by (19). Therefore, we can conclude tPTCdelay < tNNdelay if:

2(k − 2)∆t <

k−2
∑

m=1

tj−m
c . (20)

The following summarises this observation.

Proposition 3 In a non-periodic task environment, the information dissemination delay
is less for PTC than for NN if the time between any two successive task originations is
greater than the round trip communication delay of a message between directly communi-
cating agents.

This is because (from condition (20)), for m ≥ 1,

tj−m
c > 2∆t⇒ tPTCdelay < tNNdelay. (21)

Proposition 3 is similar to proposition 1. It is true for all practical purposes because the
time interval between successive task processing episodes is typically much greater than the
round-trip communication delay of a message between directly communicating nodes.

Since the delay between successive information received is smaller in PTC than in NN,
it can be shown similar to section 5.5, that under the non-periodic task assumption, the
knowledge about the non-local states generated by PTC captures the changes in these states
better than that by NN.

Proposition 4 In a non-periodic task environment, PTC incurs a lower loss of state-
change information than NN.

The preceding analysis demonstrates that, under all practical purposes, the timeliness of
information distribution and the quality of non-local state information learned by our PTC
information-sharing strategy are better than the nearest-neighbour strategy under general
non-periodic environments. With these theoretical results, it is reasonable to infer that
PTC allows the agents to take better informed decisions than NN, which, in turn, generates
better system performance. To demonstrate this further, the practical advantage of PTC is
evaluated using empirical analysis in a simulated wireless telephone network. The following
section describes the simulation environment.

6. Implementing Information-Sharing Strategies in a Simulated Wireless

Telephone Network

In this section, we first enumerate a number of important physical properties and func-
tional characteristics of this application. These properties are simulated in our system to
appropriately capture their effects on its performance. Subsequently, we describe our imple-
mentation of a cooperative resource allocation system for routing calls in a circuit-switched
network. In particular, it elaborates the implementations of the PTC, QR, and TPOT-RL
strategies (described in section 4.2) in the simulation. Finally, we present two heuristics
based on the PTC principle for aggregating state information (described in section 4.2.1).
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6.1 Domain Properties

We assume the following characteristic properties of our simulation of a TN. These prop-
erties are typical of the broad class of wireless meshed networks (Krag & Buettrich, 2004)
where a set of wireless nodes with limited communication bandwidth radio-communicate
with those within their transmission range. Note that these properties correspond to the
more general description of the TN domain presented in section 3.

• The communication nodes have limited bandwidth. Therefore, the number of calls
that can be handled by a node is limited.

• A node can only communicate with the nodes that are within its transmission range
(its immediate neighbours).

• Calls can originate/terminate at any node. These calls originate throughout the sim-
ulation and last for a finite duration (thus, indicating a continuous usage of the net-
work).

• A node’s total available bandwidth is divided into two segments: the call channel and
the control channel. The former is used to route calls and the latter to communicate
information and control messages.

• The resource available at a node is its call-channel bandwidth. One unit of this is
allocated for each call routed via the node. The bandwidth units of the nodes on a
call path are occupied throughout the duration of a call to establish a circuit. Thus,
we consider a circuit-switched network where bandwidth is allocated end to end to
establish calls.

• Each node is modelled as an agent. Every agent has the aim of forwarding a call
to the neighbour it believes is the first node on a path to the destination with the
maximum call-channel bandwidth availability.

• We define the state of a node at a given time as the ratio of the call channel bandwidth
units it has unallocated to the maximum number of units that it can handle. Each
agent has perfect knowledge of the state of the node it represents and estimates of the
states of other agents.

6.2 Cooperative Bandwidth Allocation for Call Routing

In section 4.2, we described broadly how the routing agents allocate bandwidth in sequence
to connect a call between the source and destination nodes. Here, a more detailed descrip-
tion of our implementation of this system is presented. To this end, we identify from the
discussion of section 4.2 that the different actions of agents are in response to four types
of information message: (i) request to forward a call (mr), (ii) request to connect a call
(mc), (iii) request to drop a call (md), and (iv) request to penalise loop agents (mp). In
the following, these activities are elaborated. To facilitate this discussion, we first define
the following set of variables used in our description: N , set of total agents in the network
{a1, ..., aN}, where N = |N |; Ki, set of Ki neighbours of agent ai (Ki = |Ki|); a Q-function
Qi for each agent ai, where Qi : N × Ki → [0, 1]. The Q-function Qi(n, d) is ai’s estimate
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of the bandwidth availability in the nodes on all paths to ad (∈ N ) via its neighbour an

(∈ Ki); s(i): actual node state of ai; Bj,k,...,z: a set of node states {s(j), s(k), ..., s(z)};
Ei(d): feedback information provided by ai about its estimate of call channel bandwidth
units available over all routes to ad from ai; EKi

(d), a set of Ej(d) feedback estimates from
all aj in Ki; Ri, a reward computed by ai from node state values that it receives via commu-
nication from other nodes. In TPOT-RL, however, there is a difference in the representation
of the Q-estimates from that described above. This is because, in TPOT-RL, an agent uses
an action-dependent feature function, which summarises the local effects of its actions, to
estimate bandwidth availability. This function is based on the bandwidth-usage level on the
links connecting ai to its neighbours. Thus, if the variable li,n denotes the portion of ai’s
total call-channel bandwidth being used for calls that are routed via its neighbour an, then
ai’s Q-estimate for bandwidth availability to reach a destination ad via an is: Qi(ei,n, n, d).
In this, ei,n is “high” if the value of li,n, measured over a certain activity-window time
interval in the past, is more than a certain threshold, or “low” otherwise (section 4.2.3
specifies the values used for these parameters in our experiments).

A message of type mr, mc, or md contains the following information: ids of the call
source (as) and destination (ad), the set of ids of the nodes through which it has been
routed (path), the time of origination (to, on the global clock) and setup (tlive, an absolute
interval) of the call, and (depending on the information-sharing strategy used) a set of
node state values Bk,...,z. The current global time is represented by t. An mp-type message
contains, instead of the call source id, the id of the node where the loop starts. Also, on a
given route, ai+1(mT ) (T can be r, c, d, or p) returns the agent id at a position one hop
closer to the call destination ad(mT ) than the current agent ai, while ai−1(mT ) returns the
id one hop closer to the call source as(mT ). However, as(mp) denotes the source of the loop
and not the call source node.

With this in place, Figure 3 shows the agent activities. Upon receiving an mr (line 1),
an agent (say, ai) checks whether it has no unallocated bandwidth or the call forwarding
process has lasted beyond the maximum setup time limit (line 2). In either case, the
forwarding process is stopped and ai transmits an md (line 5), generated from mr (line 4)
to refer the appropriate call represented by mr, to the previous agent. Upon receiving md

(line 33), an agent frees up the pre-allocated call channel bandwidth (line 34) and sends the
same md to the previous agent (line 36) until as(md) is reached.

If neither of the conditions in line 3 are satisfied, ai first checks if a loop has occurred (by
checking if path(m) includes its own id). If it has (line 7), ai generates an mp-type message
(line 8) and computes a penalty p = (−1)0.9x+1 (line 10), where x is the hop count from ai

to the end of the loop (i.e., where the loop was first detected). This penalty amount is added
to mp (line 11). Also, the source node id in mp is set to be the id of the node where the
loop was detected (line 12). Then this mp message is transmitted to the previous agent on
the loop (line 13). Upon receiving an mp-type message (line 50), ai uses the penalty in mp

to update its prior Q-estimate of the destination node; depending on whether the strategy
used is TPOT-RL or not, one of the updates (line 52 or 54, respectively) gets executed.
Subsequently, if ai is not the agent where the loop was detected (line 55), it computes a new
penalty which is an exponentially decreasing function of the distance of that node from the
loop end, adds this to mp, and de-allocates the pre-allocated bandwidth for this call (line
57). Finally, it transmits the mp to the previous agent (line 58). The intuition here is that
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//for a message m in control channel Ci of agent ai

1. if(mr) // CALL FORWARD MESSAGE
2. if (s(i) == 0||t > (to(mr) + tlive(mr))) // no available bandwidth
3. // or, time exceeded setup time
4. md ← deriveF rom(mr);//generate drop call message
5. inform(ai−1(mr), md); // inform drop call to previous agent
6. else
7. if(loop(mr)) // loop detected in current call route
8. mp ← deriveF rom(mr); //generate penalty message
9. x← mp.loopEndHopCount(ai);//distance of ai from the loop end

10. penalty = (−1)0.9x+1;//penalty amount, x = 0 for the first loop agent
11. mp.addPenalty(penalty);
12. mp.setSourceNode(ai); //set the source node id to the node where the loop was detected
13. inform(ai−1(mr), mp);//penalise previous loop agent
14. if(ad(mr) == ai) //this node is the destination
15. mc ← deriveF rom(mr);//generate connect call message
16. allocateUnitBandwidth(mc);
17. if PTC //see sections 6.3.1, and 6.3.2
18. append s(i) to mc;
19. if TPOT-RL//see section 4.2.3
20. storeMessage(mr);// accumulate estimates
21. inform(ai−1(mr), mc);// inform connect to previous agent
22. else
23. //select a neighbour based on Q-estimates for the given destination
24. aj ← selectNeighbour(Qi, ad(mr));
25. preAllocateCall(mr); //pre-allocate bandwidth
26. if TPOT-RL
27. append Qi(ei,i+1, ad(mr), ai+1) to mr ;// send own estimate
28. inform(aj, mr);// forward call to selected agent
29. if QR //see section 4.2.2
30. //selected neighbour aj returns its local estimate of bandwidth availability
31. Ej(ad(mr))← min(s(j), max

ak∈Kj

Qj(ad(mr), ak))

32. Qi(ad(mr), aj)← (1 − α)Qi(ad(mr), aj) + αEj(ad(mr));
33. else if(md) // DROP CALL MESSAGE
34. deAllocateCall(md);//de-allocate bandwidth
35. if(ai 6= as(md)) //if not source
36. inform(ai−1(md), md);
37. else if(mc) // CONNECT MESSAGE
38. if TPOT-RL and mr

c//reward message in TPOT-RL
39. Ri ← computeReward(Bai+1(mr

c ),...,ad(mr
c ));

40. Qi(ei,i+1, ad(mr
c), ai+1(mr

c))← (1 − α)Qi(ei,i+1, ad(mr
c), ai+1(mr

c)) + αRi;
41. else
42. allocateUnitBandwidth(mc);
43. if PTC //see sections 6.3.1, and 6.3.2
44. // compute reward using own estimate and others’
45. Ri ← computeReward(Bai+1(mc),...,ad(mc));

46. Qi(ad(mc), ai+1(mc))← (1 − α)Qi(ad(mc), ai+1(mc)) + αRi;
47. append s(i) to mc;
48. if(ai 6= as(mc)) //if not source
49. inform(ai−1(mc), mc);
50. else if(mp) // PENALTY MESSAGE
51. if TPOT-RL
52. Qi(ei,i+1, ad(mp), ai+1(mp))← (1 − α)Qi(ei,i+1, ad(mp), ai+1(mp)) + αmp.penalty;
53. else
54. Qi(ad(mp), ai+1(mp))← (1 − α)Qi(ad(mp), ai+1(mp)) + αmp.penalty;
55. if(ai 6= as(mp))
56. d← mp.loopEndHopCount(ai);//distance of ai from the loop end

57. penalty = (−1)0.9d+1; mp.addPenalty(penalty); deAllocate(mp);//de-allocate bandwidth
58. inform(ai−1(mp), mp);
59. if TPOT-RL //tasks specific to TPOT-RL
60. monitorLinkUsage(Ki); //measure usage of all li,j , aj ∈ Ki

61. if(t % update-interval == 0)
62. for all accumulated mr

63. mr
c ← deriveF rom(mr); //create reward message

64. inform(ai−1(mr), mr
c); //transmit upstream along this mr ’s route

65. t← t + 1;

Figure 3: Agent actions in response to various message types
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the further a node is from the loop end, the less it is responsible for causing the looping to
occur. Hence, the lower the penalty it gets.13

After checking for cycles, ai then checks if it is the destination of the current call (line
14). If it is, it will allocate one bandwidth unit (line 16) and send an mc (generated from mr

for reasons cited before) to the previous agent on the route of this call (line 21) to continue
this process of allocation (line 42) and sending the message (line 49) until as(mc) is reached;
at which point a complete circuit is established. However, if an agent uses the TPOT-RL
strategy, before sending the mc (line 21), it stores the estimates obtained along with the
mr (line 20); how such estimates are propagated in TPOT-RL is described shortly.

In the two information-sharing heuristics that we have designed based on PTC (described
in sections 6.3.1 and 6.3.2), an agent ai attaches its own node state (s(i)) to the message
mc (lines 18 and 47).14 Each path agent ai, using PTC, upon receiving an mc that contains
the node state information transmitted from other agents, computes a reward Ri as a
function of the set of communicated state values Bai+1(mc),...,ad(mc) contained in mc (line
45). Sections 6.3.1 and 6.3.2 define two heuristics for calculating this reward value. In
either case, however, the reward is used to update the prior Q-estimates (line 46). The
update rule follows standard Q-learning, where α is the learning rate (see section 4.1).
Thus, the agents cooperatively volunteer their local information to one another to improve
their estimates of the unobserved node states.

On the other hand, if ai is not the destination for this call, it selects one of its neighbours
(excluding the one from which it received the mr) to forward the call request (line 24). This
is done by defining a probability distribution over ai’s set of Q-estimates of its neighbours.
In particular, the probability of selecting a neighbour aj is given by:

Pr(aj) =
exp(

Qi(ad(m),aj )
τ

)
∑

ak∈Ki,ak 6=ai−1(mr)

exp(Qi(ad(m),ak)
τ

)
. (22)

Note that equation 22 refers to the selection mechanism when PTC or QR is used. If
TPOT-RL is used, then, Qi(ei,j, ad(m), aj) replaces the Q-values in equation 22. Here τ

is the “temperature” parameter (range: [0,1]) and controls how much the relative differ-
ences between various Q-estimates would affect the relative probabilities of selection (the
smaller the τ , the larger the skewness). This is a standard heuristic called Boltzmann
exploration (Watkins, 1989) to probabilistically choose between alternative options. Sub-
sequently, ai pre-allocates a bandwidth unit of its call channel (line 25) and forwards mr

to aj (line 28). In the QR strategy, the selected neighbour aj responds to ai with its own
estimate Ej(ad(mr)) of bandwidth availability on routes to the destination ad(mr) (line
31) which is equal to min(s(j), max

ak∈Kj

Qj(ad(mr), ak)) (refer to section 4.2.2). The requesting

13. In our experiments, we have observed that this heuristic substantially reduces the number and size of
loops. Hence, it effectively reduces wasteful use of resources, since loops represent redundant portions
of a call path.

14. The PTC principle advocates information distribution only after task completion. However, a task
execution process can fail (e.g., call routing failing in our example application). Note that in this
situation, PTC can use the task failure as the event to trigger information distribution. We have used
this concept and introduced information distribution after call failures. So far, we have observed that
the BW allocation quality is better than distributing information only after call successes.
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agent ai uses this estimate Ej(ad(m)) to update its prior estimate Qi(ad(m), aj) (line 32).
In TPOT-RL, ai appends its Q-estimate to the mr (line 27) before forwarding the latter to
aj . This is how the sequence of estimates gets propagated along with the call forwarding
request in TPOT-RL.

Now we describe a number of activities that an agent performs only if TPOT-RL is used.
First, ai monitors the link usage levels for all its neighbours (line 60). This information
is used to compute the value of ei,j (j ∈ Ki), as described before. Second, every update-
interval time steps (line 61), ai starts sending reward messages along the paths of those
calls that terminated at ai during that period (for those mr’s that it had stored during
that period). Specifically, these reward messages are analogous to the mc type message,
except that no bandwidth is allocated when an agent receives one (as opposed to bandwidth
being allocated when an mc is received (line 38)). To distinguish from mc, we denote these
messages as mr

c for our description in Figure 3. Every update-interval, for each mr stored
over the past interval, ai creates an mr

c (line 63) and sends this to the neighbour (line 64)
which is the immediate upstream node along that call path. Upon receiving an mr

c, an
agent computes a reward using an aggregation of the information of the subsequent path
nodes (line 39) (similar to PTC) and updates its Q-values with this reward (line 40) before
sending the mr

c upstream. It should be noted here, the information used by the agents to
compute the reward in TPOT-RL are the Q-estimates that the agents had appended while
forwarding the mr. Therefore, the set Bai+1(mr

c),...,ad(mr
c) in line 57 represents estimates

and not actual node states. We have used the same aggregation method for TPOT-RL as
described in section 6.3.2.

The above discussion corresponds to a more detailed description of the general domain
description of section 3. As identified in that description and observed in the above sys-
tem description, the decision to select a specific neighbour to forward a call is critical in
determining how effective the system is in successfully routing calls. Since this decision is
taken based on the Q-estimates, the more accurately they reflect the true node bandwidth
availabilities, the better informed are the decisions taken by an agent. It is emphasised that
the information-sharing strategy plays a key role in determining the estimation accuracy.
In the following, we formulate two simple heuristics of PTC that are used to define the
computeReward function in our simulations.

6.3 PTC Sharing Heuristics

The discussion on agent interactions in section 6.2 explains how the agents using PTC delay
transmitting the information until a call is connected. In this case, the agents along the
call path can aggregate the information received from those “downstream” and pass on
that information to the previous path agent. We have formulated two simple heuristics for
information aggregation based on PTC, viz., to average the state estimates (termed PTC-
A) and to take the minimum state estimate (termed PTC-M). These are described in the
following.15

15. Here, it should be noted that the formal analysis in section 5 is based on the agents having separate
estimates of individual agents. Maintaining an aggregate estimate on a set of agents, however, reduces the
computational complexity at decision time in our simulations. Alternatively, for example, with estimates
of individual nodes, the run-time complexity of determining the least cost path between any two nodes
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6.3.1 PTC Inform Average Capacity (PTC-A)

In Figure 3, upon receiving the mc, an agent using the PTC-A heuristic computes a reward
value Ri by averaging the states of all nodes on the route from ai to ad as:

Ri =

∑

k∈{ai+1,...,ad}

s(k)

L(ai, ad)
, (23)

where L(ai, ad) is the hop count on this route from ai to ad. This describes how the function
computeReward of Figure 3 is implemented. Subsequently, this reward is used to update its
prior Q-estimate. Thus the estimates are updated with the information about the resource
usage on the “downstream” nodes on the path of this call.

6.3.2 PTC Inform Minimum Capacity (PTC-M)

This is similar to PTC-A: but instead of average available capacity, the minimum available
capacity is used as reward. For example, agent ai using the PTC-M heuristic computes the
reward as:

Ri = min(s(i + 1), ..., s(d)). (24)

This is a more conservative estimate of bandwidth availability than the average capacity
model. Thus it has the advantage that the probability of a dropped call due to agents
overestimating the bandwidth availability is reduced. This heuristic is also used to aggregate
estimates in TPOT-RL in our experiments.

7. Experimental Evaluation

Based on the scenario discussed in section 6, we have conducted a series of experiments to
empirically evaluate the effectiveness of PTC compared to the benchmarks (QR and TPOT-
RL). In this section we start by enumerating the measures chosen as indicators of system
performance. Subsequently, the results obtained from the experiments on these measures
are analysed.

7.1 Performance Measures

The following measures are chosen to evaluate the performance of a given communication
strategy in improving learning in a TN.

7.1.1 Number of Successful Calls

The overall objective of the cooperative agent network is to maximise the number of suc-
cessfully routed calls, given the set of resources (call-channel bandwidth) available, the rate
at which new calls originate, and the duration calls remain connected (hold up resource).
Thus, the average number of successful calls determine how successful a learning algorithm
has been given the above parameter values. In our system, we record the total number of

is quadratic in the number of nodes in the graph (the worst case run time of Dijkstra’s single-source
shortest path algorithm Cormen, Leiserson, Rivest, & Stein, 2001).
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calls that have originated (NO) and the total number of those calls that have been suc-
cessfully routed (NC). Thus, the value x = NC

NO
determines the fraction of successful calls

routed over the time period in which the measurements are taken.

In addition to measuring the number of calls successfully routed, we keep track of the
number of calls that could be connected if the agents had global knowledge about the
network bandwidth availability and if call routing could be done instantaneously. This is
computed by globally searching for the availability of a path for each call. This search is
done instantaneously at the beginning of each simulation time step. We term this essentially
idealistic procedure the “Instantaneous Zero Delay Search” (IZDS). Since, in practice, it
takes a finite number of time steps to connect a call, the IZDS is repeated at every time step
until either it finds a path or the call is dropped/connects. 16 In case of the former outcome,
the NCizds count is incremented by 1. The value xizds = NCizds

NO
gives a hard upper limit

to the call success rate under the given conditions.17 The learning strategies are compared
both against the absolute success rate (x) values and the percentage deviation of success
rate from IZDS, xizds−x

xizds
. It is infeasible for any practical system to attain the IZDS success

rate because, in practice, there is a finite amount of delay to connect a call as opposed to
the instantaneous connection in IZDS. Also, the agents in a practical system attempt to
connect a call by forwarding it one hop at a time based on their individual estimates of
the world states. IZDS, on the other hand, takes a global and accurate view of the entire
network to find the least cost path.

7.1.2 Successful Routes of Different Lengths

The call success rate metric, described in section 7.1.1, measures the overall rate of successful
calls in the system. This is an important performance measure because it indicates how the
system performs at a broad scale. So it is an indicator of how successful a communication
strategy is in improving the system performance. However, it does not indicate how effective
the strategy is at connecting calls at a given distance (since the success rate metric counts
all calls in the system).

In our case, calls can be required to be routed to destination nodes that are at various
distances from the nodes of origin. Calls destined for nodes that are at short distances are
relatively easier to route than those further away. This is because more accurate estimates
of the load at nodes that are nearer can be maintained. As shown in the analysis of section 5,
the farther an agent, the longer is the delay for the information to arrive and, thus, the less
up-to-date are the estimates. Therefore, it is less probable for a call to be routed successfully
to such a distant node. A communication strategy that allows better success rates at longer
distances can, therefore, be considered more competent than another that achieves a poorer
success rate at long distances (all other conditions being equal).

Thus we measure the number of successful call connections for various distances between
the call source and destination nodes. More specifically, the minimum hop count (say, d)
between the source and destination of a call is computed (global knowledge of the network

16. Thus, IZDS is guaranteed to find a path if one is found by the actual routing algorithm, but not necessarily
vice versa.

17. Note, IZDS is not an optimal measure. Since it tries to connect a call as soon as one originates, it is
essentially a greedy strategy. Some other scheduling strategy, say that uses some form of lookahead
before attempting to place a call, may outperform IZDS.

441



Dutta, Jennings, & Moreau

topology is used to measure this distance) and the success counter (NCd) of calls at distance
d is incremented if such a call is successfully connected. In this manner, a success rate for
calls at a distance d can be computed as xd = NCd

NOd
, where NOd stands for the number of

calls originated with a source-destination distance of d. For different values of d, therefore,
the different xd values could be used to compare the ability of different communication
strategies to place calls at different lengths.

7.1.3 Reward Information Messages

The agents in our system use different message types for communication (section 6.2 enu-
merates these). However, the most important among these are the ones that carry the
reward information by which the local knowledge of one agent is transmitted to another.
This is because using this information, the agents update their prior estimates of the net-
work load level. Therefore, these messages contribute directly to the quality of learning and
to the overall performance of the system in allocating resources to place calls. In QR, for
example, this is the message that an agent receives from its neighbour after handing over
to the latter a call forwarding request (see section 4.2.2 for details). Therefore, at each call
forwarding step, a new message is generated by the contacted agent and transmitted to
the contacting agent. In the PTC-based models, on the other hand, these are the mc type
messages, transmitted after a call connects, that contain the summary reward information
(sections 6.3.1 and 6.3.2 have the details). Note, this is only one message generated by
the destination node after every successful routing and transmitted upstream along the call
path. 18 Although several other types of messages (e.g., mr, mp, and md) are exchanged
between the agents, it is the messages that contain the reward that affect the learning
quality the most. On the other hand, in our implementation of TPOT-RL, an agent, while
forwarding a call, transmits along with the call, its own estimate of the bandwidth avail-
ability along paths to the call destination. Subsequently, this information is used to update
the Q-values of the agents (see Section 7.2 for details). Therefore, these messages affect the
learning of agents in the way that mc does in PTC. Hence, the message rate for TPOT-RL
is measured by counting these messages.

The number of such messages can, therefore, be used as a measure of the efficiency of
a given communication strategy — the lower the number of messages, the higher is the
efficiency (assuming a given value of some other performance measure such as call success
rate). More specifically, the total number of information exchanges (represented by m,
say) for transmitting the agents’ local knowledge to one another is computed at every T

time steps during a simulation. The value r = m
T

, therefore, gives the rate of messages
transmitted in the entire system during the interval T . The total simulation is divided
into several intervals and the values of r over each such interval generate an overall time-
variation of the message rate. The different communication strategies are then compared
against various message rates.

18. We have recently conducted a study where PTC shares information also after a call fails to connect.
This modification, obviously, increases the message rate although still keeping it lower than that of QR
and TPOT-RL. However, it allows better bandwidth allocation than the PTC reported in this article
and also deals with failure detection, something the current PTC is not capable of (Dutta et al., 2005).
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Figure 4: 36 node irregular grid

(a) 50 node random graph (b) 100 node random graph

Figure 5: Random network topologies

7.2 Results and Analysis

In this section, the performance of QR, PTC-A, PTC-M, and TPOT-RL are compared
against the measures described in section 7.1.

Experiments are conducted on a number of different network topologies. In the following,
we report our results and observations based on some of those. Figures 4 and 5 show,
respectively, a 36-node irregular grid and two randomly generated topologies — a 50-node
random graph (Figure 5(a)), and a 100-node random graph (Figure 5(b)). The 36-node
irregular grid topology has been used in previous papers on the application of RL in network
routing (see section 2.2 for a discussion on these papers) and thus we choose it to make valid
comparisons. To verify our conclusions across a wider range of topologies, we tested the
same against random graphs (figures 5(a) and 5(b) show two such examples) of different
sizes.19 In all figures, the nodes are numbered for ease of reference. The edges between
nodes indicate that those nodes are within each other’s radio range. Note that the random
graphs are designed such that any node is linked to only those within a certain maximum
radial distance which simulates the transmission range of wireless nodes.

The following parameter values were used for all experiments reported henceforth (unless
otherwise stated): learning rate α = 0.03, Boltzmann exploration temperature τ = 0.1,

19. Various other topologies were used with varying number of nodes and connectivity patterns and the
same general trends in the results were observed. Hence, here, we report on three sample topologies.
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call setup time of 36, 50, and 100 time steps for the topologies in figures 4, 5(a) and 5(b),
respectively. We allowed for a larger call setup time in the bigger topologies to give allowance
for the larger size of the networks. An average call duration of 20 times the setup time was
used. The “load” in the network is set by assigning a probability with which calls originate
at every time step in the network. This call origination probability was varied to study
the effect of different network loads on the performance. Calls were allowed to originate
and terminate on any randomly selected node. We have tested the strategies using both
(i) a constant-load simulation where the call origination probability is maintained the same
throughout a simulation run, and (ii) a dynamically changing load simulation where the
call origination probability is changed during the course of a simulation run. We have used
different numbers and values of the call origination probability changes in a single simulation
run to test the effect of various degrees of load fluctuations on the performance of PTC,
QR, and TPOT-RL. In these dynamic settings, the call origination probability is changed
at equal intervals in a simulation run. A single simulation run lasted for 500,000 time
steps for the topology in Figure 4, for 1,000,000 time steps for the topology in Figure 5(a),
and for 2,000,000 time steps for the topology in Figure 5(b). Results are averaged over 10
simulation runs (these figures are statistically significant at the 95% confidence level). Also,
every node had a maximum call channel capacity of 10 units.

The following sections discuss the results on the overall success of the various commu-
nication heuristics in connecting calls (in section 7.2.1), the effectiveness of these heuristics
in successfully connecting long-distance calls (in section 7.2.2), and the overhead due to
communicating messages (in section 7.2.3).

7.2.1 Performance — Call Success Rate

We anticipate that the higher the accuracy of learned estimates of unobserved states, the
more capable the agents will be of routing calls to the destination via the most appropriate
paths. Hence, in turn, the higher will be the call success rate and the lower the deviation
from the IZDS success rate. In the following, the results from constant load are presented
first followed by those obtained from dynamically varying load.

Constant Load. We experimented with all strategies to calculate: (i) the call success
rates, and (ii) the percentage deviation of the measured success rate from the IZDS, un-
der steady state conditions (i.e, when the call throughput in the system reached a steady
value).20 The average success rate and the average IZDS success rate, both computed during
the steady state phase of the simulation, are further averaged over 10 simulation runs for a
given value for the call origination probability. Further, call success rate is measured against
various call origination probabilities to test the impact of network load on the success rate.
These measurements are repeated for each of the three topologies.

In more detail, Table 2 shows the average steady state success rates achieved by the
different strategies and by IZDS used alongside these strategies for different network loads
(call origination probabilities) in the topology of Figure 4. Tables 3 and 4 show the same

20. Note, our TN application represents a dynamic system where node bandwidth availability changes with
time (new calls are placed and existing calls terminate). The Q-values estimate the bandwidth avail-
ability. So, as bandwidth availability changes, so do the Q-values. However, the call success rate is an
overall system measure which reaches a steady state when a constant call origination probability is used.
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Table 2: Call success rates for all strategies — topology of Figure 4

Load
QR PTC-A PTC-M TPOT-RL

Avg Stdev IZDS Avg Stdev IZDS Avg Stdev IZDS Avg Stdev IZDS

0.1 50.94 0.0048 72.66 50.98 0.0076 72.11 51.85 0.0052 70.25 25.74 0.0022 99.57
0.2 32.41 0.0034 60.69 32.64 0.0037 60.56 33.02 0.0039 58.86 19.94 0.0016 97.65
0.4 19.99 0.0018 55.37 20.27 0.0021 55.23 20.38 0.002 52.79 14.82 0.0009 89.44
0.6 14.87 0.0012 54.87 15.07 0.0011 53.44 15.08 0.0014 50.6 11.52 0.0012 85.2

Table 3: Call success rates for all strategies — topology of Figure 5(a)

Load
QR PTC-A PTC-M TPOT-RL

Avg Stdev IZDS Avg Stdev IZDS Avg Stdev IZDS Avg Stdev IZDS

0.1 57.31 0.0042 81.75 58.15 0.0052 81.67 58.49 0.0052 80.9 12.18 0.0027 99.99
0.2 37.11 0.002 69.75 37.32 0.0028 68.73 37.65 0.0026 68.33 10.21 0.0011 99.8
0.4 22.98 0.0012 61.44 23.35 0.0012 62.6 23.51 0.0013 60.43 7.46 0.0007 99.8
0.6 17.17 0.001 58.8 17.47 0.0009 61.29 17.49 0.0008 57.53 6.11 0.0004 99.8

measurements for the topologies in Figure 5(a) and 5(b), respectively. The results indicate
that the average steady state call success rate (shown under column “Avg” in these tables)
achieved with PTC-M dominates that of the other strategies under different network loads.
For example, in Table 2, when the load is 0.1, PTC-M achieves a steady state average call
success rate of 51.85%, PTC-A achieves 50.98%, QR 50.94%, and TPOT-RL 25.74%. As
indicated by the analysis of section 5, PTC maintains more up-to-date information of the
network states. Thus, using PTC, the agents are capable of taking better informed decisions
of forwarding a call which, in turn, ensures a higher likelihood of successful connections.
This is reflected in the (statistically significant) higher call success rate achieved by PTC-
M over all other strategies. In particular, since the minimum-capacity heuristic restricts
overestimation of the node bandwidth availability, it generates a slightly better success rate
than the average capacity heuristic.

Table 4: Call success rates for all strategies — topology of Figure 5(b)

Load
QR PTC-A PTC-M TPOT-RL

Avg Stdev IZDS Avg Stdev IZDS Avg Stdev IZDS Avg Stdev IZDS

0.1 35.79 0.0032 66.52 35.86 0.0034 65.58 37.34 0.003 62.65 8.53 0.0031 99.88
0.2 24.17 0.0017 57.41 24.56 0.002 59.18 24.8 0.0014 54.27 6.12 0.0013 99.83
0.4 15.88 0.0011 54.01 16.16 0.0007 55.53 16.18 0.0008 50.72 4.79 0.0006 99.9
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Figure 6: Improvement of call success rate deviation from IZDS relative to QR and TPOT-
RL — topology of Figure 4
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Figure 7: Improvement of call success rate deviation from IZDS relative to QR and TPOT-
RL — topology of Figure 5(a)

We have also measured the improvements in the success rate values achieved from the
PTC-based information strategies relative to those of QR and TPOT-RL. To do so, first
the success rate deviation from IZDS is computed as p = xizds−x

xizds
(see section 7.1.1). Sub-

sequently, pPTC−M and pPTC−A are compared to pQR and pTPOT−RL as:
pQR−pPTC

pQR
and

pTPOT−RL−pPTC

pTPOT−RL
, respectively. The graphs in Figure 6 show the relative improvements of

the average success rate deviation from IZDS achieved by using PTC over QR (Figure 6(a))
and over TPOT-RL (Figure 6(b)) when the topology in Figure 4 is used. Note that in this
figure a greater negative value indicates less of a deviation from the IZDS relative to QR or
TPOT-RL, and, hence, a better performance of PTC. From these graphs, a significant im-
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Figure 8: Improvement of call success rate deviation from IZDS relative to QR and TPOT-
RL — topology of Figure 5(b)

provement is observed in PTC-M relative to both QR and TPOT-RL under different values
of network load (statistical significance is tested at the 95% confidence level). For example,
(see the row corresponding to “Load” = 0.1 in Table 2) with a call origination probability
of 0.1, the deviation of the call success rate from the IZDS is 26.2% (= 70.25−51.85

70.25 ) for
PTC-M and 29.9% (=72.66−50.94

72.66 ) for QR. Therefore, the success rate due to PTC-M is
12.37% (=| 26.2−29.9

29.9 |) closer to IZDS relative to that of QR. The success rate deviation
from the IZDS for PTC-A also remains lower relative to QR. Similarly, comparing PTC-M
with TPOT-RL at the same load level, PTC-M achieves a 26.2% deviation from IZDS while
the corresponding figure for TPOT-RL is 74.15% (=99.57−25.74

99.57 ). Therefore, the success rate
due to PTC-M is 64.66% (=| 26.2−74.15

74.15 |) closer to IZDS relative to that of TPOT-RL. The
performance of PTC-M dominates that of PTC-A (although both perform better than QR
and TPOT-RL) because of the conservative nature of the minimum capacity heuristic com-
pared to the average capacity (as stated above). These observations further strengthen our
analysis in section 5 that by providing better quality estimates, PTC performs closer to the
IZDS than QR. An additional observation is that with increasing load, the relative improve-
ment of PTC over QR and TPOT-RL reduces. Thus, in Figure 6(a), the improvement of
PTC-M over QR is 12.37% with load of 0.1, while it is only 3.7% with load of 0.6. Similarly,
in Figure 6(b), PTC-M is 64.66% better than TPOT-RL at load 0.1, but 18.82% better at
load 0.6. Note that an increase in load implies reduction in the time between successive
task processing episodes since calls originate more frequently with increased load. As ex-
plained in section 5, the smaller the value of the interval between successive task processing
episodes, the less up-to-date are the estimates generated. Therefore, with an increase in
the load, the performance differences between PTC and the other strategies decrease.

We observe identical trends in the performances of PTC-M relative to the benchmarks
with the other topologies. Figure 7 shows the results for the topology in Figure 5(a), and
Figure 8 for the topology in Figure 5(b).
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Dynamically Changing Load. In contrast to the steady-state call success rate mea-
sured with constant load, here we present the time-variation of the call success rate as the
network load fluctuates. This captures the responsiveness of the system call success rate to
dynamically changing load levels given a particular information-sharing strategy. To this
end, Figure 9(a) shows the time-variation of the call success rates of PTC-M, QR, and
TPOT-RL as the call origination probability is increased from 0.1 to 0.6 in a simulation
run using the topology of Figure 4.21 It demonstrates that the PTC (in this case we show
PTC-M; PTC-A is excluded from the results since it performs slightly worse than PTC-M
and better than QR and TPOT-RL) call success rate remains the highest both when the
load level is 0.1 (before time = 50) and when it increases to 0.6 (after time = 50). The call
success rates of all strategies suffer a drop with the increase in load level since the nodes
have only limited bandwidth to allocate calls, a result that we have observed previously
with constant load (see Table 2). We further experimented with multiple load fluctuations
over a simulation run. Figure 9(b) shows the results when the load level changes between
five different values: 0.1, 0.2, 0.4, 0.6, and 0.8 in that order. In all cases, PTC is observed
to have the highest call success rate out of PTC-M, QR, and TPOT-RL. Note that in these
results, we have used two different types of load fluctuations: one large increase (0.1 to
0.6) and monotonically increasing. There can of course be several other patterns of load
variations, such as random fluctuations or following specific probability distributions (e.g.,
Poisson) but these are not considered in this work. In this context, we identify that the
impact of a load change is that the agents have to re-learn the new environmental condition
so that calls can be placed effectively. The most severe case in this situation is that of
increase in load because a higher load demands more efficient allocation of (limited) re-
sources. Thus, having shown that PTC outperforms the benchmarks under this condition,
we envisage that similar broad trends would be observed for other patterns.

Now we aim to summarise the effects of dynamically changing load on the network
call success rate given an information-sharing strategy. In so doing, we first designate
the number of load levels in a simulation run as the “degree of dynamism”. For example,
Figure 9(a) has a degree of dynamism of 2 and Figure 9(b) has 5 degrees of dynamism. Then,
for a given degree of dynamism, we compute the percentage difference of the call success

rates of QR or TPOT-RL using PTC-M as the baseline as:
rt
QR−rt

PTCM

rt
PTCM

, and
rt
TPOTRL

−rt
PTCM

rt
PTCM

,

where rt is the time-varying call success rate. Note that this difference measure is also
time-dependent. To summarise the improvement of call success rate using PTC-M, we
find the minimum, the mean, and the maximum of this difference over every time interval
during which the load-level remains constant. These statistics present the call success
rate improvement range within the time interval when the load remains at a certain level.
Subsequently, the means and the standard deviations of each of the minimum, the mean,
and the maximum differences over all such intervals are computed. This step generates
the summary of the different improvement ranges across all such intervals. For example,
in Figure 9(a), the minimum, mean, and maximum percentage differences are computed in
the interval where load = 0.1 and in the interval where load = 0.6. Subsequently, the mean

21. We have experimented with all the other topologies under conditions of dynamically changing load. The
broad patterns observed in the results are identical across all of them. Hence, we choose one sample
topology to report our results in this paper.
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Figure 9: Time variation of call success rates of QR, PTC-M, and TPOT-RL with network
load fluctuations — topology of Figure 4
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and standard deviations of these two sets of difference statistics are computed. Figure 10
shows the above-mentioned measures for all degrees of dynamism used in our experiments
when QR is compared to PTC-M. Since TPOT-RL is always observed to achieve a lower
call success rate rate than both PTC-M and QR, we exclude the summary comparison of
TPOT-RL with PTC-M in this paper. Along the horizontal axis of Figure 10 is the degree
of dynamism while the summary statistics of the percentage success rate difference are along
the vertical axis. In this figure, a degree of dynamism 2 indicates the load level is changed
from 0.1 to 0.2; 3 indicates a change of 0.1, 0.2, 0.4; 4 indicates 0.1, 0.2, 0.4, 0.6; and
5 indicates 0.1, 0.2, 0.4, 0.6, 0.8. The negative values of the call success rate differences
indicate rt

QR is lower than that of rt
PTCM . The figure shows that the gap between the

minimum and the maximum differences reduces with the number of degrees of dynamism.
For instance, this gap is approximately 8% with degree of dynamism 2, and it is about 4.5%
when the degree of dynamism is 5. This is because, with a higher number of load changes
within a given simulation run, there is less time for any strategy to re-learn the changes
in the environment. Hence, the call success rates do not attain their steady state values
(as in Table 2). Nevertheless, the average statistics of the call success rate differences show
that PTC-M achieves a significantly higher call success rate across all degrees of dynamism.
For example, this is about 10.2% with 2 degrees of dynamism and 9.5% with 5 degrees of
dynamism.

These observations reinforce our hypotheses that, under the given simulation environ-
ment, the post-task-completion information sharing model with minimum-capacity reward
achieves the best call success rate among all strategies under different network loads under
conditions of both static and dynamically fluctuating loads. For example, with constant
load, the deviation of the success rate from the IZDS is up to 12.37% lower in PTC-M than
QR, and up to 65% lower in PTC-M than TPOT-RL. Further, with dynamically changing
load, PTC-M achieves an average 10% improvement in call success rate over QR with five
different load-level changes in a simulation run.

7.2.2 Performance — Success Rate for Calls of Different Lengths

The call success rate values reported in section 7.2.1 indicate better performance of PTC-M
over QR and TPOT-RL. In addition, to measure the effectiveness of an information-sharing
heuristic in connecting a call to a destination that is at a given distance from the source,
the measure xd (see section 7.1.2 for its definition) is measured for increasing values of d.
Results from the constant load experiments are reported in this section. With dynamically
changing load, the summary statistics (as described in section 7.2.1) of call success rates
indicated better performance of PTC than the benchmarks for all values of d. Since we have
already shown better success rate of PTC with dynamic load condition in section 7.2.1, we
have excluded the call success rates at different distances under the same conditions in this
section.

In more detail, tables 5, 6, and 7 show the values of xd for different values of d (the “min
hop count”22) under different network loads for the topologies of figures 4, 5(a), and 5(b),
respectively. These tables indicate the following trends. For very short distances (where the
value of d is less than 3), QR achieves a slightly better success rate than PTC-M. However,

22. The maximum value of the minimum hop count is the property of the corresponding network.
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Table 5: Call success rates at various distances — topology of Figure 4

Load Strategy
Min hop count

1 2 3 4 5 6 7 8 9 10

0.1

QR 0.87 0.76 0.63 0.51 0.42 0.37 0.355 0.343 0.344 0.34
PTC-A 0.863 0.748 0.632 0.516 0.426 0.374 0.355 0.345 0.348 0.354
PTC-M 0.857 0.753 0.643 0.534 0.438 0.381 0.362 0.356 0.353 0.365

TPOT-RL 0.633 0.532 0.356 0.218 0.164 0.148 0.126 0.094 0.071 0.059

0.2

QR 0.785 0.592 0.44 0.31 0.222 0.178 0.158 0.147 0.147 0.139
PTC-A 0.773 0.583 0.44 0.315 0.231 0.181 0.164 0.155 0.151 0.151
PTC-M 0.768 0.583 0.444 0.326 0.237 0.187 0.168 0.155 0.151 0.152

TPOT-RL 0.584 0.462 0.266 0.139 0.101 0.098 0.086 0.066 0.056 0.048

0.4

QR 0.693 0.421 0.266 0.161 0.103 0.074 0.064 0.0563 0.053 0.05
PTC-A 0.675 0.417 0.272 0.17 0.111 0.081 0.068 0.06 0.055 0.058
PTC-M 0.667 0.416 0.274 0.177 0.113 0.081 0.068 0.061 0.057 0.057

TPOT-RL 0.496 0.375 0.198 0.086 0.059 0.063 0.054 0.04 0.037 0.029

0.6

QR 0.632 0.326 0.185 0.103 0.062 0.045 0.037 0.03 0.029 0.027
PTC-A 0.61 0.323 0.19 0.111 0.068 0.047 0.04 0.035 0.032 0.03
PTC-M 0.596 0.322 0.194 0.113 0.069 0.049 0.039 0.035 0.032 0.03

TPOT-RL 0.418 0.301 0.148 0.065 0.043 0.046 0.037 0.023 0.015 0.013

Table 6: Call success rates at various distances — topology of Figure 5(a)

Load Strategy
Min hop count

1 2 3 4 5 6 7

0.1

QR 0.886 0.761 0.6 0.504 0.428 0.379 0.353
PTC-A 0.876 0.746 0.586 0.495 0.426 0.381 0.365
PTC-M 0.873 0.753 0.601 0.511 0.443 0.398 0.369

TPOT-RL 0.187 0.129 0.11 0.102 0.104 0.139 0.203

0.2

QR 0.774 0.57 0.371 0.268 0.197 0.161 0.141
PTC-A 0.77 0.561 0.369 0.265 0.2 0.163 0.145
PTC-M 0.766 0.564 0.375 0.272 0.207 0.173 0.159

TPOT-RL 0.214 0.127 0.085 0.065 0.055 0.06 0.061

0.4

QR 0.653 0.383 0.203 0.12 0.782 0.58 0.492
PTC-A 0.648 0.385 0.208 0.126 0.828 0.631 0.53
PTC-M 0.64 0.384 0.212 0.13 0.87 0.662 0.545

TPOT-RL 0.202 0.109 0.054 0.025 0.021 0.024 0.048

0.6

QR 0.58 0.286 0.133 0.712 0.428 0.305 0.249
PTC-A 0.566 0.289 0.14 0.781 0.481 0.347 0.287
PTC-M 0.557 0.287 0.143 0.802 0.504 0.371 0.305

TPOT-RL 0.177 0.095 0.046 0.017 0.011 0.0070 0.0050
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Table 7: Call success rates at various distances — topology of Figure 5(b)

Load Strategy
Min hop count

1 2 3 4 5 6 7 8 9 10 11 12

0.1

QR 0.894 0.755 0.616 0.452 0.324 0.247 0.208 0.175 0.149 0.12 0.087 0.082
PTC-A 0.89 0.749 0.589 0.432 0.317 0.247 0.22 0.197 0.169 0.141 0.111 0.1
PTC-M 0.88 0.728 0.598 0.443 0.336 0.267 0.238 0.223 0.191 0.164 0.124 0.122

TPOT-RL 0.22 0.172 0.14 0.104 0.079 0.057 0.051 0.045 0.037 0.029 0.028 0.029

0.2

QR 0.847 0.647 0.47 0.296 0.189 0.123 0.098 0.079 0.061 0.047 0.036 0.029
PTC-A 0.837 0.628 0.45 0.287 0.178 0.124 0.1 0.087 0.071 0.056 0.046 0.039
PTC-M 0.823 0.622 0.448 0.292 0.192 0.136 0.109 0.096 0.086 0.066 0.053 0.046

TPOT-RL 0.202 0.158 0.11 0.072 0.047 0.032 0.029 0.025 0.016 0.012 0.008 0.006

0.4

QR 0.77 0.502 0.315 0.17 0.094 0.057 0.041 0.031 0.022 0.017 0.011 0.012
PTC-A 0.766 0.484 0.298 0.161 0.09 0.057 0.042 0.034 0.026 0.021 0.0145 0.015
PTC-M 0.746 0.476 0.303 0.172 0.098 0.061 0.046 0.039 0.031 0.024 0.017 0.018

TPOT-RL 0.189 0.141 0.09 0.056 0.034 0.02 0.0167 0.011 0.006 0.003 0.002 1.0E-4

0.6

QR 0.71 0.4 0.225 0.112 0.06 0.03 0.024 0.018 0.012 0.009 0.006 0.005
PTC-A 0.706 0.393 0.216 0.109 0.057 0.031 0.025 0.0197 0.014 0.0117 0.008 0.0075
PTC-M 0.688 0.386 0.221 0.113 0.061 0.036 0.028 0.023 0.017 0.013 0.009 0.008

TPOT-RL 0.171 0.127 0.079 0.047 0.027 0.015 0.01 0.006 0.003 1.0E-4 1.0E-4 1.0E-4

the success rate achieved at longer distances with either PTC-based strategies far outper-
form that of QR. Additionally, PTC performs better than TPOT-RL for all distances. To
obtain a clearer picture of the relative advantage of the PTC-based strategies over QR
and TPOT-RL in this context, we plot the relative improvement of xd that is achieved

by using the PTC strategies over QR and TPOT-RL,
xPTC−Y

d
−x

QR
d

x
QR
d

and
xPTC−Y

d
−xTPOTRL

d

xTPOT−RL
d

,

respectively (where, Y can be A for the average capacity heuristic, or M for the mini-
mum capacity heuristic). Figure 11 shows the percentage change of xd achieved by using
PTC-M over QR (Figure 11(a)), PTC-A over QR (Figure 11(b)), PTC-M over TPOT-RL
(Figure 11(c)), and PTC-A over TPOT-RL (Figure 11(d)) at increasing values of the min-
imum hop count between call source and destination nodes in the irregular grid topology
of Figure 4. Each plot in each of these figures is for a different value of the call origination
probability. The graphs of Figure 12 and 13 show identical measures using the topologies
of Figure 5(a) and 5(b), respectively.

Focusing on figures 11(a) and 11(b), it is observed that, for a given call origination
probability, when the call destinations are very close to the call sources (i.e., when the
“minimum hop count” axis has values of 1 and 2), QR performs slightly better than either
PTC-M or PTC-A, indicated by the small negative deviation. For example, at load 0.6,
QR achieves about a 5% improvement over PTC-M in connecting calls at nodes 1 hop away
(see Figure 11(a)). However, with increasing distances between the call source and desti-
nation nodes (i.e., where the “minimum hop count” is 3 and above), the rate of successful
connections is much higher for the PTC-based strategies than QR (the deviation values are
positive). For example, in Figure 11(a), for a load value of 0.6, PTC-M achieves more than
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15% improvement over QR in the connection rate of calls that have their destinations at
least 8 hops away from the sources. Also, this relative improvement is observed to generally
increase with increasing distance. Thus, the PTC information sharing strategies are more
effective in connecting calls for which the source and destination nodes are farther apart. In
figures 11(c) and 11(d), PTC-M and PTC-A perform better than TPOT-RL at all distances
and under all load values.
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(d) PTC-A against TPOT-RL

Figure 11: Call success rates at various distances — topology of Figure 4

To explain this advantage of PTC, note that although the call connection process is
executed in steps by multiple agents who use their individual estimates to forward a call,
the forwarding decisions of the agents who are closer to the call origin are more critical in
determining whether it will be successfully routed to the destination. This is because if these
agents start forwarding a call in a direction where there is a high bandwidth occupancy on
the nodes, then that will be a sub-optimal decision at the beginning of a task execution
process. In this case, it is more likely that the call will be forwarded where there is no
bandwidth left and, therefore, the forwarding process would terminate (the call would be
dropped). With more up-to-date estimates achieved by PTC (as observed in the analysis of
section 5), an agent is capable of taking better routing decisions in terms of forwarding in the
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appropriate direction than using QR. This is why we observe higher call success rates in the
PTC-based strategies than QR when calls have to be routed at longer distances. Moreover,
with increasing distance, successful routing becomes more difficult since the farther the
destination the less up-to-date are the estimates. Given this, the increasing (more positive)
deviation of the xd values with increasing distance, as observed in Figure 11, indicates that
PTC is more capable (less affected) than either QR or TPOT-RL to route calls at long
distances. PTC-M is more effective in placing long-distance calls than PTC-A although
both are better than QR and TPOT-RL. This is evident by the slightly higher positive
deviation of PTC-M over QR (Figure 11(a)) than that of PTC-A over QR (Figure 11(b))
or by the higher positive deviation of PTC-M over TPOT-RL (Figure 11(c)) than that of
PTC-A over TPOT-RL (Figure 11(d)) for the same call origination probability.
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(d) PTC-A against TPOT-RL

Figure 12: Call success rates at various distances — topology of Figure 5(a)

The above observations from Figure 11 also hold in figures 12 and 13. Additionally, in all
of these figures, it is observed that, for a given distance d, the deviation of the xd values are
generally higher for a higher call origination probability. To justify this observation, note
that the success rate of any given strategy decreases with increasing load (see section 7.2.1
for this result) because with more calls originating, the number of dropped calls increases

454



Sharing Information for Distributed Learning in MAS

-10

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12

% 
im

pro
ve

me
nt 

in 
suc

ces
s r

ate
s

Minimum hop count

load 0.1
load 0.2
load 0.4
load 0.6

(a) PTC-M against QR

-10

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10 11 12

% 
im

pro
ve

me
nt 

in 
suc

ces
s r

ate
s

Minimum hop count

load 0.1
load 0.2
load 0.4
load 0.6

(b) PTC-A against QR

0

200

400

600

800

1000

1 2 3 4 5 6 7 8 9 10 11 12

% 
im

pro
ve

me
nt 

in 
suc

ces
s r

ate
s

Minimum hop count

load 0.1
load 0.2
load 0.4
load 0.6

(c) PTC-M against TPOT-RL

0

200

400

600

800

1000

1 2 3 4 5 6 7 8 9 10 11 12

% 
im

pro
ve

me
nt 

in 
suc

ces
s r

ate
s

Minimum hop count

load 0.1
load 0.2
load 0.4
load 0.6

(d) PTC-A against TPOT-RL

Figure 13: Call success rates at various distances — topology of Figure 5(b)
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since the nodes have only a limited amount of call channel bandwidth. Nevertheless, the
communication strategy that generates better estimates would enable the agents to cope
with the increasing load better by maintaining a higher call success rate. This is indicated
by the observation that increased load impacts QR and TPOT-RL more than the PTC-
based strategies, i.e., the decrease in the success rate is more in QR or TPOT-RL than in
PTC-M or PTC-A with increasing load. Hence, the deviations of the xd values between
PTC and the benchmarks increase with load. For example, in Figure 11(a), at a hop length
of 8, the deviation of xd is about 2.5% with load 0.1, and more than 15% with load 0.6.

The observations in this section can be summarised as, post-task-completion strategies
are more capable of connecting calls at longer distances than the benchmark strategies and
exhibit increased effectiveness in achieving this against high network loads. A relative im-
provement of more than 50% is observed in the rate of successful call connections of PTC-M
over QR at distances of 12 hops in a 100-node random graph with a high network load (see
the graph for a load of 0.6 in Figure 13(a)). For the same parameter values, PTC-M achieves
a large improvement over TPOT-RL of more than 1000% (see Figure 13(c)).

7.2.3 Performance — Information Message Rate

The total number of messages (see section 7.1.3 for its definition) transmitted in the entire
network is measured every T time steps of a simulation. The average number of such
messages per unit time is computed over the steady state. These measurements are repeated
for each of the three topologies. Results from constant-load experiments are reported first
followed by those from a dynamically changing load.

Constant Load. Table 8 shows the message rate obtained in each of the strategies under
steady state conditions in the topology of Figure 4. Tables 9 and 10 show the same for the
topologies of Figure 5(a) and Figure 5(b), respectively. In all of these results, it is observed
that for any given call probability, the message rate (under column “Avg”) is significantly
lower in the PTC strategies than both QR and TPOT-RL. For example, in Table 8, it is
0.25 for PTC-M, 0.26 in PTC-A, 0.39 for QR, and 0.523 for TPOT-RL with a load level of
0.1.

An additional observation is that the relative reduction of the message rate (column
named “% Saving” shows these values) achieved by using PTC becomes more pronounced

with increasing load. These values are computed as |mPTC−Y −mQR|
mQR , |mPTC−Y −mTPOT−RL|

mTPOT−RL ,
where m represents the average steady state message rate of a given communication strategy
for a given load (and Y can be either A or M). For example, in Table 8, at load 0.1,
PTC-M has about 35.6% (=| 0.251−0.39

0.39 |) less rate of messages than QR and about 52%
(=| 0.251−0.523

0.523 |) less than TPOT-RL. However, this saving in the message rate increases to
about 80.3% (=| 0.285−1.45

1.45 |) relative to QR and to about 72.8% (=| 0.285−1.05
1.05 |) relative to

TPOT-RL when the call probability is 0.6. This is because with increasing network load,
the increase in the number of messages in both QR and TPOT-RL is much higher than the
increase in the PTC-based strategies (e.g., in Table 8, the message rate increases from 0.39
to 1.45 in QR — a 272% increase, from 0.523 to 1.05 in TPOT-RL — a 101% increase, and
from 0.251 to 0.285 in PTC-M — only a 13.5% increase — as the load increases from 0.1
to 0.6).
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Table 8: Information message rates for all strategies — topology of Figure 4

Load

Strategies % Saving

QR PTC-A PTC-M TPOT-RL PTC-A /

QR

PTC-M /

QR

PTC-A /

TPOT-RL

PTC-M /

TPOT-RLAvg Stdev Avg Stdev Avg Stdev Avg Stdev

0.1 0.39 0.0048 0.26 0.0019 0.251 0.0019 0.523 0.0023 33.33 35.64 50.28 52.00
0.2 0.66 0.0079 0.281 0.002 0.275 0.0022 0.683 0.0029 57.42 58.33 58.85 59.73
0.4 1.1 0.01 0.289 0.0018 0.284 0.0016 0.891 0.0036 73.73 74.18 67.56 68.12
0.6 1.45 0.0125 0.2894 0.0017 0.285 0.0015 1.05 0.0077 80.04 80.34 72.43 72.85

Table 9: Information message rates for all strategies — topology of Figure 5(a)

Load

Strategies % Saving

QR PTC-A PTC-M TPOT-RL PTC-A /

QR

PTC-M /

QR

PTC-A /

TPOT-RL

PTC-M /

TPOT-RLAvg Stdev Avg Stdev Avg Stdev Avg Stdev

0.1 0.33 0.0023 0.23 0.0012 0.23 0.0014 0.759 0.0054 30.30 30.30 69.69 69.69
0.2 0.55 0.0048 0.26 0.0013 0.25 0.0012 1.42 0.0074 52.73 54.55 81.69 82.39
0.4 0.9 0.0049 0.27 0.001 0.26 0.0009 2.163 0.0091 70.0 71.11 87.51 87.97
0.6 1.2 0.0054 0.272 0.0007 0.267 0.0012 2.70 0.0106 77.33 77.75 89.92 90.11

Note that in QR, a path agent transmits a new information message to the forwarding
(upstream) agent at each step of the call forwarding process. Thus, with increased load,
this strategy incurs a large increase in the number of messages because there are many
more calls to be routed. In TPOT-RL, a node forwards its state information while routing
a call. So, although reward distribution occurs in TPOT-RL every update-interval time
steps, the state information messages propagated during call routing contribute towards
the message overhead incurred in the system. So, when larger numbers of calls need to
be routed at high load values, the number of such messages increases. The PTC-based
strategies, on the other hand, attain a significant saving in the message rate by delaying the

Table 10: Information message rates for all strategies — topology of Figure 5(b)

Load

Strategies % Saving

QR PTC-A PTC-M TPOT-RL PTC-A /

QR

PTC-M /

QR

PTC-A /

TPOT-RL

PTC-M /

TPOT-RLAvg Stdev Avg Stdev Avg Stdev Avg Stdev

0.1 0.58 0.0117 0.214 0.0009 0.21 0.0014 1.42 0.018 63.10 63.79 84.92 85.21
0.2 0.83 0.0112 0.235 0.001 0.229 0.001 2.19 0.0091 71.69 72.41 89.27 89.54
0.4 1.26 0.0098 0.249 0.001 0.241 0.0008 2.98 0.0061 80.24 80.87 91.64 91.91
0.6 1.63 0.0095 0.253 0.0007 0.245 0.0008 3.37 0.0079 84.48 84.97 92.49 92.72
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information transmission until a call connects and then transmitting a single message from
the destination to the source node (with only updating the reward information at each step
of the message propagation). This prevents any information exchange from occurring for
calls that fail to connect. Both QR and TPOT-RL, on the other hand, would still incur the
messaging cost even if a call finally fails to connect. In addition, the PTC-based strategies
save some messages from being exchanged that QR and TPOT-RL incur on the loops of a
call route. Because the agents using PTC transmit messages only after a call is connected,
and the loops on call routes are dropped (as a call is forwarded), messages are prevented
from being transmitted on loop portions.

Dynamically Changing Load. Similar to the call success rate measurements of sec-
tion 7.2.1, the time-variation of the information message rates are recorded for all strategies
when the network load fluctuates dynamically in a simulation run.
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Figure 14: Time variation of message rates of QR, PTC-M, and TPOT-RL with network
load fluctuations — topology of Figure 4

Figure 14(a) shows the message rate variations of PTC-M, QR, and TPOT-RL when
the load level changes from 0.1 to 0.6 in a simulation run using the topology of Figure 4.
Figure 14(b) shows the same when the load is varied as 0.1, 0.2, 0.4, 0.6, and 0.8 after equal
intervals of time in the course of a simulation run. Both of these figures show that PTC-M
has a significantly lower message rate than both QR and TPOT-RL under fluctuating load
conditions. Further, as the network load increases dynamically both QR and TPOT-RL
incur a large increase in the message rates while the increase in PTC is insignificant. In both
QR and TPOT-RL, information is transmitted during call setup (although reward updates
occur in TPOT-RL after every update-interval time steps). Hence, as more calls originate
with increasing network load, the number of such information propagations increase in these
strategies. It is also observed that with increasing load, TPOT-RL has a lower message rate
than QR. We identify that this relative advantage of TPOT-RL against QR is due to its
poorer call success rate than QR (reported in section 7.2.1). Since TPOT-RL is less efficient
than QR in connecting calls (this implies that in TPOT-RL a large number of call attempts
are unsuccessful), and since both propagate information while call forwarding, TPOT-RL
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Figure 15: Summary statistics of message rate differences between QR, TPOT-RL, and
PTC-M with network load fluctuations — topology of Figure 4

does not incur as much of an increase in the number of messages as incurred by QR with
increasing load.

In a way similar to the success rate results with fluctuating load, the summary of the
differences in message rates between QR and PTC-M and between TPOT-RL and PTC-
M are presented in figures 15(a) and 15(b), respectively. In both of these figures, the
degree of dynamism is plotted along the horizontal axis while the percentage increase of
message rate using QR or TPOT-RL against PTC-M is plotted along the vertical axis. As
observed in the success rate results of Figure 10, in both Figure 15(a) and 15(b), the gap
between the minimum and the maximum differences of message rates reduce with increasing
degrees of freedom. For instance, in Figure 15(a), this gap is about 140% with 2 degrees
of freedom, while it is 60% with 5 degrees of freedom. Nevertheless, the mean difference
between the message rates of PTC-M and QR or that between PTC-M and TPOT-RL
increases with increasing degrees of dynamism. For example, the mean difference increases
from 151% to 321% in Figure 15(a), while it increases from 200% to 284% in Figure 15(b).
This indicates the advantage of PTC in terms of maintaining a limited number of message
overhead compared to both QR and TPOT-RL.

From these observations, it can be concluded that the post-task-completion strategies not
only achieve a higher call success rate (section 7.2.1) and higher effectiveness in connecting
calls at longer distances under high loads (section 7.2.2) than the benchmark strategies, but
also achieve these at the expense of a significantly lower rate of messages under both static
and dynamically changing load conditions. For example, PTC-M achieves an 80% saving
in message rate compared to QR, and a 72% saving compared to TPOT-RL in the grid
topology under high network load. Further, in a dynamic load setting, with five changes
in the network load, PTC-M saves about 320% in message rate than QR and about 284%
than TPOT-RL. Thus, PTC is shown to be a more efficient strategy towards developing a
cooperative MAS for the distributed resource allocation problem.
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8. Conclusions and Future Work

This paper focuses on the critical issue of allowing agents with partial observability to
effectively cooperate on complex tasks that require the participation of multiple agents for
successful completion. To achieve this goal, it is required that the agents take their actions
based on estimates of the states of other agents so that a task is solved in a consistent
manner. Nevertheless, without being able to directly observe the system states, it is difficult
for the agents to develop such estimates. A further difficulty in achieving the objective is
that most systems are dynamic, therefore, the system states are subjected to continuous
changes. Hence, in such scenarios, the agents should have a way of adapting their estimates
with such changes.

Given this, we show that cooperative information sharing is a practical and effective
mechanism to allow the agents to estimate the unobserved states. Coupled with this mech-
anism, we use Q-learning to produce robust and flexible estimations of these states. In
particular, the specific contribution of this paper has been the introduction of a novel in-
formation distribution principle — post-task-completion information sharing — to improve
the learning of the state estimates. In comparison to the protocol of learning from nearest
neighbours’ information, we have established, using formal analysis, that our strategy is
capable of maintaining more up-to-date estimates by ensuring a more timely distribution
of information. Further, we have implemented a set of communication heuristics based on
the PTC-sharing principle to be used in a practical multi-agent resource-allocation prob-
lem (call routing in a telephone network). We have conducted extensive empirical studies
by comparing our strategy against a set of benchmark algorithms across a wide range of
environmental settings by selecting different network topologies, network loads, and dy-
namically changing load patterns. Results from these studies have shown that, compared
to the benchmarks, our protocol achieves a higher call success rate (up to 60%) and a su-
perior performance (of more than 1000%) in the ability to successfully route calls to long
distances. It has been also demonstrated that our strategy attains these improvements at
a significantly lower message overhead (up to 300%) than the benchmarks.

We emphasise that the PTC-sharing is a generic mechanism to improve the learning of
state estimates by distributed agents. This is observed in the analysis of section 5, where
no domain-specific assumptions were made. However, specific communication heuristics,
such as PTC-M and PTC-A in this paper, can be designed around this mechanism for a
given problem. Thus, we envisage that our strategy is applicable to a wide range of task
domains as discussed in section 4. To verify our hypothesis, we are employing a PTC-based
heuristic to perform distributed fault detection in a network and are obtaining promising
initial results.

An additional benefit of our information-sharing strategy is that it is practically appli-
cable since it is developed around such realistic assumptions as local observability, actions
restricted within the local state space, dynamic environment, finite time delay for a task
to be completed by multiple agents in sequence, and latency involved in the propagation
of information between agents. Moreover, our communication strategy is a contribution to
machine learning research in general since it is a practical and effective means of improv-
ing learning in real-world MAS. In this context, we note that a key challenge in machine
learning research is to develop algorithms for sequential decision making in uncertain do-
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mains (Russel & Norvig, 2002). A popular way of solving this problem is to formulate a
decentralised Markov Decision Process (DEC-MDP) (Becker, Zilberstein, Lesser, & Gold-
man, 2003; Bernstein, Givan, Immerman, & Zilberstein, 2002) to provide the necessary
control to the agents to take actions against the dynamics of the domain. In this context,
we believe that our communication strategy can contribute significantly by generating high-
fidelity solutions to a DEC-MDP that models a practical dynamic MAS. Building on this
idea, we plan to investigate ways of integrating our communication strategy into such a
model and study the impact on the quality of solutions generated.
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