
- 1 -

Cooperative Information Systems: A Manifesto*

Giorgio De Michelis1, Eric Dubois2, Matthias Jarke3,
Florian Matthes4, John Mylopoulos5, Mike Papazoglou6,
Klaus Pohl7, Joachim Schmidt8, Carson Woo9, Eric Yu10

Abstract
Information systems technology, computer-supported cooperative work practice, and organizational
modeling and planning theories have evolved with only accidental contact to each other. Cooperative
information systems is a relatively young research area which tries to systematically investigate the
synergies between these research fields, driven by the observation that change management is the central
issue facing all three areas today and that all three fields have indeed developed rather similar strategies
to cope with change.

In this paper, we therefore propose a framework which views cooperative information systems as
composed from three interrelated facets, viz. the system facet, the group collaboration facet, and the
organizational facet. We present an overview of these facets, emphasizing strategies they have developed
over the past few years to accommodate change. We also discuss the propagation of change across the
facets, and sketch a basic software architecture intended to support the rapid construction and evolution of
cooperative information systems on top of existing organizational and technical legacy.

1. Introduction

Cooperative Information Systems is a relatively young research area whose birth in the early 1990’s has
been marked by the launching of an international journal, an on-going conference, an international
foundation, dedicated special issues in international journals, numerous meetings and workshops held over
the past five years. Given all this activity, we believe that it is time to take a closer look at the area, its
premises, primary research challenges and prospects. Also, to better delimit its boundaries, separating
topics it covers from ones it does not, thereby offering an identity relative to other more established areas
in Computer Science.

Taking past calls-for-papers for the CoopIS conference (e.g., [CoopIS94]) as starting point in identifying
Cooperative Information Systems, we find them being described primarily as “next generation information
systems” :

* Appeared in: Cooperative Information Systems: Trends & Directions, Mike P. Papazoglou and Gunter Schlageter (eds),
Aacdemic-Press, 1997.
1 Address: Dipartimento di Scienze dell ' Informazione, Universita degli Studi di Milano, Via Comelico 39, 20135 Milano,Italy;
email: gdemich.hermes@hermes.mc.dsi.unimi.it
2 Address: Institut d' Informatique, Facultes Universitaires de Namur, 21, rue Grandgagnage, B-5000 Namur, Belgium; e-mail:
du@info.fundp.ac.be
3 Address: RWTH Aachen, Informatik V, Ahornstrasse 55, 52072 Aachen, Germany; email: jarke@informatik.rwth-aachen.de
4 Address: Fachbereich Informatik, Universitaet Hamburg, Vogt-Koelln Strasse 30, D-22527 Hamburg 54, Germany; e-mail:
matthes@dbis1.informatik.uni-hamburg.de
5 Address: Department of Computer Science, University of Toronto, 6 King’s College Road, Toronto, Canada M5S 3H5; e-mail:
jm@cs.toronto.edu
6 Address: Tilburg University, INFOLAB, Warandelaan 2, 5037 AB Tilburg, The Netherlands; email: M.P.Papazoglou@kub.nl
7 Address: RWTH Aachen, Informatik V, Ahornstrasse 55, 52072 Aachen, Germany; email: pohl@informatik.rwth-aachen.de
8 Address: Fachbereich Informatik, Universitaet Hamburg, Vogt-Koelln Strasse 30, D-22527 Hamburg 54, Germany; e-mail:
J_Schmidt@dbis1.informatik.uni-hamburg.de
9 Address: Faculty of Commerce and Business Administration, University of Briti sh Columbia, Vancouver, Canada V6T 1Z2;
e-mail: carson.woo@ubc.ca
10 Address: Faculty of Information Studies, University of Toronto, Toronto, Canada M5S 1A5; e-mail: eric@fis.utoronto.ca

- 2 -

“ ...The paradigm for the next generation of information systems will i nvolve large numbers of
information systems distributed over large, complex computer/communication networks. This
paradigm ranges from the vast and visionary Electronic Superhighway, to the large and complex
billi ng system of a telephone company, an even to the small patient information system in a one-
doctor off ice. Such information systems will manage or have access to large amounts of
information and computing services. They will support individual or collaborative human work.
Computation will be conducted concurrently over the network by software systems that range from
conventional to advanced application systems including expert systems, and multiagent planning
systems. Information and services will be available in many forms through legacy and new
information repositories that support a host of information services. Communication among
component systems will be done in a centralized or distributed fashion, using communication
protocols that range from conventional ones to those based on distributed AI. We call such next
generation information systems cooperative information systems....” [CoopIS94]

Described in such terms, Cooperative Information Systems poses a series of technological challenges
which arise primarily because of technological advances (in telecommunications, hardware, software etc.).
In contrast, the CSCW area focuses on the opportunities offered by such technological advances to broaden
team collaboration across boundaries of place and time, and on the question how this will change human
inter-actions [Roseman96]. Yet others argue that research should be driven primarily from a shift in
(business) organizational structures away from traditional functional forms towards goal- and customer-
oriented processes [Scott-Morton91, Keen91, Hammer93, Hamel94]. However, across all these
perspectives, it seems that continuous change is the one constant theme in all of them. Information
technology -- used by collaborating groups or formal business organizations -- is faced with the task of
either learning to cope with change or risk early retirement.

Each of the mentioned areas has addressed only a limited facet of what is needed to understand and realize
cooperative information systems. This paper articulates a vision produced by researchers participating in a
collaborative effort between European and Canadian universities, to create an integrated framework for
research on cooperative information systems which addresses the mutual impact of continuous change in
the system-oriented, group collaboration, and organizational facets of cooperative information systems.

Section 2 of the paper links the notion of cooperation to that of organizational change. In Section 3, we
offer a framework to view and understand cooperation and change in cooperative information systems
from three different facets. Sections 4 to 6 describe research challenges arise from each of the facets and
survey promising research directions and on-going projects working towards meeting these challenges.
Section 7 ties all three facets together and outlines the impact of change from one facet to the others. The
section also discusses research challenges facing the management of change and some possible solutions
for them. Given the materials we presented in Sections 3 to 7, we propose a generic architecture for
cooperative information systems in Section 8. The final section summarizes our vision of cooperative
information systems.

2. Cooperation and Change

In distributed systems and cooperative computing, the word “cooperation” has a neutral meaning.
Cooperation presupposes agents that have goals and can act upon them. Moreover, cooperation among
agents entails that these agents have some common goals and act towards their fulfill ment. More generally,
an agent is cooperative if she/he/it tends to share goals with other agents in its environment and acts
towards the fulfill ment of these common goals.

What does “cooperation” have to do with information systems? Information systems can be thought of as
collections of human or computerized agents which can carry out actions such as printing a report or

- 3 -

requesting information. Moreover, the functional and non-functional requirements of an information
system, intended to describe the “purpose” of the system, can be treated as its “goals” .

When is then an information system cooperative? Consistent with our earlier definition, an information
system is cooperative if it shares goals with other agents in its environment, such as other information
systems, human agents and the organization itself, and contributes positively towards the fulfill ment of
these common goals. Cooperation with other information systems presupposes the abilit y to exchange
information and to make a system's own functionality available to other systems. These features are often
referred to as interoperabilit y in the literature and should be treated as prerequisites to cooperation.

However, cooperation in organizational systems and business processes is more complex than sharing and
interoperabilit y. Management and Organizational studies, as well as the studies carried on in the Computer
Supported Cooperative Work (CSCW) field, focus on cooperation as the basic means through which
groups and organizations, while performing for their clients, continuously redesign themselves and their
business processes, modify their boundaries, tune their objectives, and open themselves to new possibiliti es
[Argyris78, Argyris96, Nonaka95]. In this framework, cooperation is not a neutral characteristics of human
and automated agents. Rather, it focuses on the basic inter-actions between the human members of a
group and/or an organization. In this sense, cooperation offers a linguistic category for characterizing the
process through which they perform together, and together change the organizational structure to which
they belong.

The growing complexity of contemporary societies does not allow us to reduce this process to a matter of
sharing information, rules, and goals. This is because information, rules, and goals are created and
modified in the same process. Different methods have been proposed in the managerial lit erature to deal
with this complexity (e.g., business process reengineering, organizational learning, empowerment,
knowledge workers and professionals, and network organizations). Despite their relevant differences, all
of these methods agree on the necessity of enhancing performance effectiveness, learning capabilit y, and
communication competence of individuals and groups.

Supporting cooperation, therefore, requires the system to be capable of reflecting both the changes that are
decided for its performances and the continuously ongoing changes of the practices of its members. The
problem then is not how to build information systems which share goals with their organizational
environment, human users, and other existing systems at some time point. Rather, the problem is how to
build information systems which continue to share goals with their organizational environment, human
users, and other existing systems as they all evolve. In short, it is continuous organizational and
technological change that makes cooperative information systems a challenge.

3. A Framework for Research in Cooperative Information Systems

This concept of on-going cooperation and evolution leads to a new vision for information systems. In
particular, the paradigm entails that the significance of a cooperative information system lies not in its
tangible ingredients such as its hardware or software legacy systems. Rather, it li es in the system’s abilit y
to contribute to some goals in a larger social, organizational, and technical context. An information system,
under the new paradigm, is defined more by its connections and relationships with the outside world than
by its internal technological make-up, or even its stand-alone functionaliti es and capabiliti es. The identity
of an information system can persist over time even as its underlying hardware and software components
are continually reconfigured or replaced to adapt to the needs of a changing external environment. A
cooperative information system is not a collection of databases, applications, and interfaces. Rather, it is an
architectural framework which maintains consistency among a variety of computer-based systems, user
groups, and organizational objectives as they all evolve over time.

We, therefore, envision that research problems and issues in cooperative information systems arise from
three areas of concern -- systems, group collaboration, and organization -- and the interactions among them

- 4 -

(Figure 1). We call these the three facets of cooperative information systems. There has been considerable
research focusing on addressing issues in each of these facets. However, in order to provide viable
cooperative information system solutions, all three facets must be taken into account and dealt with in a
coherent way.

Figure 1: The Three Facets of Cooperative Information Systems

The systems facet includes various types of existing information, workflow and other computer-based
systems, developed in terms of conventional technologies such as programming languages, DBMS and
workflow systems which are executing on conventional, distributed hardware and software. Typically,
these systems were developed in a bottom-up fashion by individuals, groups or even the organization itself
and were intended to serve local and often less-than-permanent needs. For cooperation to function within
the systems facet, one needs to deal with issues of the heterogeneity of, and thus the incompatibilit y among
systems. Much work has been done under the rubric of system integration, addressing interoperation
concerns like data transfer, semantic and control integration. This is to ensure that all systems within an
organization (and sometimes across different organizations) can share data and use each others’
functionality, independently of the platform on which they were developed or the one on which they are
executing, also independently of their original purpose or origin. The problem that this facet poses to the
group collaboration facet is that once built , systems tend to become inflexible, and are not easily adapted to
rapidly changing work situations. The systems facet also poses problems to the organizational facet in that
traditional system development efforts are costly, involve long lead times, and are hard to manage.

The group collaboration facet is concerned with how people working on a common business process or
other project -- such as co-authoring a report -- can coordinate their activities, can deal with contingencies,
and can change their practices through discussions and learning, as though they were working physically
together. The nature and style of work may vary and are often not predictable beforehand. Much progress
has been made to address problems in this facet in terms of groupware, organizational computing, and
other tools. The problem posed to the systems facet is that group collaboration requires a high degree of
flexibilit y and malleabilit y in the systems that support the work. The open-ended, fluid nature of group
collaboration is also in constant tension with the more stable, formal, and pre-planned nature of
organizational structuring.

The organizational facet is concerned with managing work from a formal organizational perspective,
regardless of by whom (the group collaboration facet) or with what technology (the systems facet). It
addresses global organizational concerns, including organizational objectives and business goals, policies,
regulations, and resulting workflow or project plans. This facet has been addressed using models of
organizational processes and entities (as in traditional systems analysis), and more recently, models of
business rules and policies, and goals and interdependencies among organizational agents. The
organizational facet is where system requirements and specifications typically originate. However,
subsequent refinements usually take into account group collaboration issues and the constraints and
capabiliti es of the supporting technologies.

Group
Collaboration
Facet

Organizational
Facet

Systems
Facet

- 5 -

This framework is useful for identifying the origins and impacts of change, and thus provides a way to
characterize research problems and issues in cooperative information systems. Change can originate in any
of the three facets. From the systems facet, a change entails the introduction of new systems that need to be
integrated into an existing cooperative information system architecture. Such changes need to be
propagated within the systems facet (how can the given system interoperate with other systems within the
cooperative information system architecture?); with the group collaboration facet (how can it contribute to
human collaborative processes?); and with the organizational facet (how can the new system enhance the
achievement of organizational objectives?). Likewise, changes may originate from the group collaboration
facet (new business processes, changes in team membership) or from the organizational facet (new
objectives, different prioritization of existing objectives). For each of these, the framework suggests a set
of questions that need to be answered, such as “How should a change of type X be propagated from one
facet to another?” Just as importantly, each facet has its own laws of inertia: for the systems facet, it is
legacy systems and the lack of interoperabilit y; for the people facet, it is people wanting to continue doing
things the way they were before; for the organizational facet, it is unwilli ngness to risk change. To deal
effectively with change, one has to establish the change vision in a given technical, social, and
organizational context [Jarke93], or, as [Ehn88] put it, to achieve transcendence while recognizing
tradition. We shall return to this question after looking at each individual facet.

4. The Systems Facet

While other facets are concerned primarily with the "why", "what" and "who" questions behind
cooperative work, the main activities of the systems facet is to specify how information is to be processed
making best use of existing systems. As will become clear in the sequel, constant organizational change at
other facets leads to a strong demand for system solutions where the answers to the "where" and "when" of
information processing are delayed as long as possible (leading to persistence and mobilit y requirements).

The typical answer to the "how" question provided by traditional Information Systems and Databases
research has been to provide generic systems (DBMS, fourth-generation languages, repositories, etc.) and
expressive data models (relational, deductive, object-oriented, etc.) to improve the productivity of the
information system construction process [Atkinson90, Stonebraker90]. Information system construction is
often perceived as a software development process centered around a growing, centralized corporate
database to meet the requirements of a specific business task (such as billi ng, inventory control, or
accounting).

The vision of cooperative information systems expands this traditional notion of an information system
along two important dimensions: Firstly, it emphasizes the role such an information system takes within a
broader context (intra- or cross-organization cooperation) by focusing on its system interfaces to other
remote information systems in heterogeneous, distributed networks (coordination and interoperation).
Secondly, it emphasizes the role such an information system plays in the entire li fecycle of an organization
by focusing on the need for continuous change to accommodate changing organizational demands but also
drastic changes in the underlying system technologies (change management from a systems perspective).

As a consequence of this broader view, which is driven by recent technological advances such as
ubiquitous computing and communication, the system solutions that emerge are based on the decentralized
paradigm. Technologies for building repositories of network-linked objects, and mechanisms for
partitioning applications and architectures are emerging to provide network interfaces upon which to
construct large-scale distributed applications out of pre-existing, heterogeneous and autonomous
components. These consist typically of advanced application building blocks and widely accessible
information services, available to applications developers and users. Such architectures exhibit an
increased autonomy of change and lead to subsystems with multiple lateral interfaces supporting peer-to-
peer cooperation which extend beyond simple (database-centric) client/server configurations.

This shift in system architectures does not imply that the classical database system requirements and
modeling requirements can simply be abandoned. Consequently, system support for longevity of data, bulk

- 6 -

data management and data consistency and integrity continue to be of high relevance for cooperative
information systems. However, system cooperation now imposes a series of new requirements concerning
the modeling and representation of higher level functions which include partitioning, placement, and
migration of applications into distributed components of communications, computation, and storage and
the allocation of system resources to their execution. Moreover, better mechanisms are needed for the
support of long-term business processes that rely on coordination of semi-autonomous legacy systems and
applications, system evolution and change management. Some of these issues will be highlighted in the
following. In particular, we concentrate on two highly inter-related system dimensions: high-level
interoperation and coordination.

4.1 Improved Interoperation
In this section, we identify some of the main technical opportunities, relating to cooperative information
systems, which can lead to improved system interoperation and graceful system evolution.

4.1.1 Abstraction From the Underlying System Platforms
This abstraction can be achieved by utili zing problem-oriented, high-level languages and models available
uniformly on multiple platforms. Software in standardized, high-level languages (like SQL or ODBC) has
the potential to absorb changes in the computing environment (hardware, operating system, system
libraries) and to narrow the semantic gap between organizational models and implementation models.
Recently, one can also perceive an increased interest in run-time portabilit y which goes beyond standard
compile-time application portabilit y by enabling active applications (including their bindings to data
objects and external resources like windows) to migrate between multiple computers (e.g., connected via
the
Internet). Interpreted high-level script languages like Tcl, Java, Obliq, Tycoon or Telescript are particularly
well -suited to implement such migratory applications [Cardelli 94], mobile code [Java95], migrating and
persistent threads [Matthes94] or network agents [Wayner94, White94].

4.1.2 Exploitation of Generic Servers
As they are identified, common services -- such as persistent data storage, graphical interaction with
human users, authentication, network communication, transaction monitoring and workflow management -
- are usually factored out from individual applications, to be realized using generic off- the-shelf tools such
as relational databases, GUI toolkits, RPC services, transaction monitors or workflow engines. Such
middleware components [Bernstein93] not only simpli fy and speed up changes of existing applications but
also li ft the level of abstraction available for the interoperation between independently developed systems.
For example, relational schemata, RPC service descriptions and high-level GUI event specifications often
provide a valuable starting point for the interoperation between information systems.

However, when these generic server abstractions are developed over time, the architectural challenge
arises: how to make the different abstractions fit together. For example, while Visual Basic nicely
integrates programming language and user interface concerns, the interaction with databases via ODBC
involves a major paradigm shift which makes information systems implementation in this setting diff icult.
Integrated database programming languages [Schmidt77] or, more recently, object-oriented databases,
solve some of these mismatches, but at the expense of openness and sharing with other kinds of systems.
Recent advances in higher-order programming, exempli fied in the research arena by Tycoon and in
commercial database programming by novel APIs, as well as light-weight interface standards, such as
HTML, seem to offer some promise in finally resolving these decade-old issues [Berners-Lee96].

4.1.3 Compartmentalized Applications
Contrary to the architectural rationale of centralized information systems -- for example, economies of
scale, high level of system consistency, full data integration, division of labour between users, and IT
department -- the rationale of cooperative information systems is to favor small , light-weight, modular
components and applications that are linked directly to individual organizational needs, goals, and
structures. As a consequence of this approach, the cost and time required for the initial construction and the
long-term maintenance of these applications and of the gateways between these applications can be

- 7 -

attributed much more directly to specific business objectives and business processes with positive
consequences for project management and business process re-engineering.

It is interesting to note that this accountabilit y argument is partially in conflict with the vision of grand
unifying system frameworks (switchboard architectures). For instance, distributed object systems such as
DSOM of IBM [Lau94], DOM of GTE [Manola92], CORBA of OMG [OMG91] and OSF DCE/DME
[OSF93] on one hand provide ideal component-ware frameworks, however, they also require a heavy
investment to set up and to maintain a common, corporate-wide system infrastructure.

4.2 Liberated Coordination
A severe limitation of traditional information systems is their rigid control model. Essentially, users of an
information system are limited to a fixed set of hard-wired transactions or transaction sequences and there
is littl e, if any, support for human intervention or "intelli gent'' exception handling. To overcome these
limitations, the following themes are particularly relevant for Cooperative Information Systems.

4.2.1 Factoring Out Control From Individual Information Systems
Obviously, atomic transactions executed in isolation against a centralized database are not an appropriate
mechanism for the coordination of long-term, cooperative human work. As a consequence, there has been
significant database research to define and implement richer synchronization and recovery models (nested
transactions, sagas, etc.). There is also a growing interest from database researchers in coordination
models developed in the area of CSCW [Alonso96] and in organizational modeling (business process
modeling). Similar to the idea of TP monitors that factor out details of multi -database transaction
processing from individual information systems, workflow management systems and active database
systems promise to factor out application control logic from individual applications into high-level
workflow definitions or declarative rule specifications [Hsu93, Georgakopoulos95].

This general theme of eliminating control from applications can also be found in recent developments on
the desktop application market. For example, typical standalone Microsoft products (Word, Excel, Access)
are currently being enriched with scripting capabiliti es with the long-term vision of having a common
scripting language (VisualBasic) to coordinate and control integrated application systems that are
composed of several of these products [Microsoft94]. In light of these developments, it should be
mentioned that the shipping of scripts (code mobilit y) or autonomous agents (thread mobilit y) may lead to
interesting new modes of cooperation and coordination in future distributed information systems
[Mathiske95].

4.2.2 Integration of Human and System Communication
Advanced e-mail software and novel WWW applications, as well as commercial applications based on
groupware platforms like Lotus Notes and Novell Groupwise demonstrate the synergy that can be obtained
from the integration of desktop and communication tools (like e-mail readers, group calendar managers,
telephone and fax systems, bulletin boards, video conferencing, hypertext browsers) with database
functionality (information retrieval and boolean query functionality, replication, scripting support). More
generally, cooperative information systems will have to learn from past research and development in
CSCW to make best use of both, human and system resources ("agents'') to achieve a given business goal.
Ideally, such integrated systems support a smooth transition between ad-hoc cooperative work of humans
(e.g., for problem solving and exception handling) and standardized, automated interaction between
autonomous information systems (e.g., via EDI messages or workflow management software).

4.3 Maintenance of Links Between Implementation and Model
Database systems provide explicit information about the database schema itself via metadata -- schema
representations at several levels of abstraction, statistics, access rights, stored procedures, query plans, etc.
Such information is of particular interest for change management and interoperation tools that have
maintain links to other information system components and to higher-level data models (schema
translators, re-engineering tools, gateway generators, IDL stub generators, etc.).

- 8 -

Similarly, cooperative information systems have to maintain explicit li nks between individual information
system components (applications, agents, transactions, schemata, workflows, etc.) and related model
components (business objects, business objectives, design decisions etc.) of the organizational facet
[Jarke88] (see Section 6). These links are not only crucial to propagate organizational changes rapidly to
the supporting information systems but also to provide a feedback on the organization's performance in
terms of the business objectives. For example, it becomes possible to monitor the time and (human)
resources consumed by standard business processes that span multiple information systems or to track the
probabilit y of exceptions (for instance, because of human interventions) that occur during a certain process
step.

Ultimately, cooperative information systems should be able to inspect and modify their own behaviour in
the course of their long-term operation in an organization. Such reflective systems can be built either by
using behavioural reflection or linguistic reflection. With behavioural reflection, a system can alter its own
behaviour by manipulating its evaluator. One way to achieve this is for an interpreted language to allow
access to the internal structures of the interpreter itself at run-time. This form of reflection can be found in
variants of Lisp, Prolog or special-purpose research prototypes. In linguistic reflective systems, systems
can change themselves directly, rather than the mechanisms of changing a system's run-time behaviour
supported by behavioural reflection. A reflective system may, for example, alter the data structure that
represents the system itself, alter the compiled code that is being executed or generate new data structures
to be interpreted or new code to be executed. These options offer different tradeoffs between flexibilit y,
execution eff iciency, and assurance of system consistency which have been studied, for example, in the
context of database programming languages [Stemple91].

4.4 Information Agents
To achieve cooperative information processing, we must overcome the barriers to building and deploying
mission-critical information systems from reusable software components. This can be achieved by
assembling information services on demand from a montage of networked legacy applications and
information sources. However, it requires locating, re-using, combining, processing and organizing
already existing chunks of information and application software in such a way that does not impact
detrimentally on an organization's operation. In the previous we have briefly outlined some of the
requirements, tools and technical opportunities regarding this issue. A promising approach to this problem
is to provide access to a large number of information sources by organizing them into a collection of
information agents [Papazoglou92, Knoblock94]. The goal of each agent is to provide information and
expertise on a specific topic by drawing on information from already existing information sources and
other such information agents. Information agent capabiliti es typically include interprocess
communication mechanisms and services, such as naming, translation, information discovery,
syntactic/semantic-reconcili ation, partial integration, distributed query processing and transaction
management and a variety of other services that can be shared between diverse incompatible information
systems.

In the following we will briefly discuss the key components of such information agents.

4.4.1 Agent Organization
Each information agent is another information source, however, it draws on already existing information
repositories and applications based on organizational and business model components and provides an
abstraction of these in the form of a wrapper. A wrapper is the appropriate interface code (including
translation faciliti es) which allows an existing information source to be transformed into an information
agent while allowing it to conform to the conventions of an organization. These wrapper characteristics are
largely influenced by the requirements engineering phase of the organizational facet. The wrapper specifies
services that can be invoked on data objects(originating from various sources) by completely hiding
implementation details. Thus it provides the basis for building new network-based applications by mapping
services into a collection of host information systems and applications. The advantage of this approach is
that it promotes conceptual simplicity and language transparency. This technological advancement can be
achieved, for example, by harnessing the emerging distributed object management technology and by
appropriately compartmentalizing existing software and applications.

- 9 -

4.4.2 Information Brokering
One of the most important functions of an information agent is to find the appropriate information sources
and support services (i.e., wrapper enabled services) in order to fulfill an organizational requirement or a
user's needs. To achieve this purpose an agent must have a model of its own domain of expertise the agent
domain model and a model of the other agents that can provide relevant information the agent awareness
model. These two models constitute the knowledge model of an agent and are used to determine how to
process an information request.

Currently there is widespread interest in using ontologies as a basis for modeling an agent's domain model
[Wiederhold94, Milli ner95, Kashyap97]. An ontology can be defined as a linguistic representation of a
conceptualization of some domain of knowledge. This ontology consists of abstract descriptions of classes
of objects in the domain, relationships between these classes, terminology descriptions and other domain
specific information and establishes a common vocabulary for interacting with an information agent and its
underlying information sources. The information sources in the network describe both their contents and
their relationship in accordance with an ontology [Milli ner95]. Hence an ontology can be viewed as some
form of a knowledge representation scheme.

The domain model does not need to contain a complete description of the other agents capabiliti es, but
rather only those portions which may directly relevant when handling a request that can not be serviced
locally. Each agent is specialized to single area of expertise and provides access to the available
information sources in that domain. The objects and relationships in an ontology do not correspond to the
objects described in a particular information source, but rather provides a semantic description of that
domain for interaction. Each information source may relate to many information agents. This results in
the formations of clusters (or groups) of information sources around domains of expertise handled by their
respective information agents. This approach provides conceptual simplicity, enhances scalabilit y and
makes interactions in a large collection of information sources become tractable.

Both domain and awareness models may be expressed in some concept representation language such as
Loom [MacGregor90], or KL-ONE [Brachman85] and be formalized by using concept lattices [Will e92] (a
formal method based on a set-theoretical model for concepts and conceptual hierarchies). An example of
the use of concept oriented languages for building ontologies can be found in [Kashyap97].

4.4.3 Agent Communication Languages and Protocols
In order to perform their tasks effectively, information agents depend heavily on expressive
communication with other agents, not only to perform requests, but also to propagate their information
capabiliti es. Moreover, since an information agent is an autonomous entity, it must negotiatiate with other
agents to gain access to other sources and capabiliti es. The process of negotiation can be stateful and may
consist of a “conversation sequence”, where multiple messages are exchanged according to some
prescribed protocol.

To enable the expressive communication and negotiation required, a number of research efforts have
concentrated on knowledge sharing techniques [Patil92]. To organize communications between agents a
language that contains brokering performatives can be particularly useful. For example, the Knowledge
Query and Manipulation Language (KQML) [Finin95] can be used to to allow information agents to assert
interests in information services, advertise their own services, and explicitly delegate tasks or requests for
assistance from other agents. KQML's brokering performatives provide the basic message types that can
be combined to implement a variety of agent communication protocols. This type of language can be used
for both communication and negotiation purposes and provides the basis for developing a variety of inter-
agent communications protocols that enable information agents to collectively cooperate in sharing
information.

4.4.4 Self-Representation Abilities
One of the most challenging problems to be addressed by cooperative information systems is the
development of a methodology that opens up the general process of constructing and managing objects

- 10 -

based on dispersed and pre-existing networked information sources. Activities such as object integration,
message forking to multiple object subcomponents, scheduling, locking and transaction management are
until now totally hidden and performed in an ad hoc manner depending on the application demands. What
is needed is the abilit y to work with abstractions that express naturally and directly system aspects and then
combine these into a final meaningful implementation.

Such ideas can benefit tremendously from techniques found in reflection and metaobject protocols. The
concepts behind metaobject protocols may be usefully transferred to cooperating systems. Core
cooperative tasks, carried out in an ad-hoc manner up to now, can be performed using metalevel faciliti es.
These can be used to separate implementation from domain representation concerns and to reveal the
former in a modifiable and natural way [Edmond97]. Therefore, information agents may provide a general
coordination and policy framework for application construction and management, one that allows
particular policies to be developed and applied in a controlled manner. This results in self-describing,
dynamic and reconfigurable agents that facilit ate the composition (specification and implementation) of
large-scale distributed applications, by drawing upon (and possibly specializing) the functionality of
already existing information sources.

4.4.5 Application Development
The goal of information agents is to create a collaborative client/server business object environment. The
basis for application interoperabilit y can be realized across applications by means of cooperating business
and other data objects. Business objects provide a natural way for describing application-independent
business concepts such as customers, orders, billi ng, invoices, payment and so on. Rather than relying on a
monolithic application cooperative information systems applications will be consist of suite of cooperating
business objects [Brodie97]. These should be able to communicate with each other at a semantic level and
encapsulate the storage, metadata, concurrency and business rules associated with the specific business
entity they describe. Such business rules and objectives are related to the manner that organizational
objectives are modeled and are covered in the organizational facet. These objects can then be linked
together via scripts written in a variety of scripting languages which are needed to describe and execute
arbitrary tasks. This makes it possible to design new kind of collaborative applications that can be
controlled through scripts and semantic events. Semantic events provide a form of messaging that
component objects can use to dynamically request services and information from each other.

Scripting is a critical element for allowing developers to automate the interaction of several business object
applications to contribute to the accomplishment of a particular common task. This can be perceived as a
form of automated workflow, a core aspect of the next generation of business applications. Scripting
technology is essential for agents, workflows, and cooperative (long-lived) transactions. Scripting
languages provide added flexibilit y as they use late binding mechanisms and can, thus, attach scripts
dynamically to component (business) objects. Accordingly, they provide the means for creating ad-hoc
(dynamic) collaborations between components which is the very essense of cooperative systems.

5. The Group Collaboration Facet

In order to effectively support group collaboration, we must take the following two main tasks into
consideration. Firstly, analysis of work practice [DeMichelis95, DeMichelis96] shows that we must ensure
that a group of people, working together on a common business process or on another project can
communicate with each other through the medium they want, coordinate their activities, get the timely
information they need wherever it is, and deal with any contingencies that may occur, independent of time
and space distances. Secondly, we must be able to locate the same group of people in the (organizational)
context of the process to which they participate, so that the information characterizing it is transparent
and/or visible to them whenever they need it, and their work space is shaped by it, disregarding any other
information about any other process which is not relevant at that moment.

In order to explain the above more clearly, the group collaboration facet describes cooperative information
systems within a spatial metaphor. In traditional cooperation, people are either together or not together in

- 11 -

space and time. Cooperative information systems, on the other hand, shape the (virtual) space where
people cooperate on a work process, in a much more flexible way. Several spatial metaphors, including
document replication (Lotus Notes), electronic circulation folders [Karbe91, Prinz96], team rooms
[Roseman96], or work spaces [Appelt96] have been used in this context.

Since the environment where users do their work and cooperate with each other can be considered as the
virtual space inhabited by the users, a cooperative information system can, in fact, be considered as an
electronic extension of the physical space inhabited by the users. The physical space of a group is, in
general, a distributed space. Inhabitants moving in it can either be in the same place or in different places.
If they are in different places, they can communicate either synchronously or asynchronously.

Within the group collaboration context, users can be in the same or different virtual spaces. If they are in
the same space, they are sharing the work space. If they are doing things outside the collaboration
environment or in a different part of it, then they are in a no sharing work space situation. However,
organizational workers might go through different modes of cooperation when performing an
organizational task. Cooperative information systems should, therefore, also support the movements
between shared work spaces and distinct (i.e., not shared) work spaces, as well as between synchronous
and asynchronous communication.

Research surveyed in this section originates in Computer Supported Cooperative Work (CSCW), an
interdisciplinary research area based on the idea that complex work processes are generally cooperative
processes, where people distributed in time and space interact through electronic media. CSCW systems
(called groupware and workgroup computing systems in existing products) are systems supporting
cooperation between human beings.

5.1 The Main Features of the Group Collaboration Facet
The group collaboration facet of a Cooperative Information System is a means to extend the physical space
in which a group of people cooperate, to transform it into a share work space. The most interesting and
challenging situation for the use of a cooperative information system is the one where the group is not co-
located in a physical place.

There are two types of share work spaces -- synchronous and asynchronous. A synchronous work space
provides the necessary mechanisms for agents at a distance to interact as if they were face-to-face. Thus, at
any point in time, all agents sharing the work space can view and update the same work space
concurrently. For example, a video conferencing system creates a synchronous work space for its users
where they can see each other and they can point to the same object on the screen. An asynchronous work
space, on the other hand, is a work space such that at any point in time, only one agent has access to the
work space and only this agent can view and modify what it contains. For example, the channel through
which a file folder flows from one person to another is an asynchronous work space.

It is important to consider how the two different share work spaces support their users, in different ways,
the awareness of their working context.

5.1.1 Synchronous Sharing
The facilit ation of synchronous sharing has raised a number of research challenges, of which we will only
discuss two.

Firstly, there are interesting cognitive and behavioral considerations when designing a system for a group
of distributed users [Mantei91]. It is impossible to provide an identical face-to-face environment for them
because there are too many happenings in a meeting. For example, in the face-to-face meeting everyone
may notice that while Joe hands a piece of paper to Chris, Ken's feet are shaking. From this happening
everyone may infer that Ken is nervous. Which of these happenings are absolutely necessary for the
purpose of the meeting? For example, is it necessary in a distributed environment to let everyone in the
meeting know that Joe is sending a note to Chris? If showing body movements (including shaking) is
important, then how are we going to support it?

- 12 -

Secondly, there are many technical and behavioral issues related to the development of user interface for
real-time sharing [Greenberg94, Munson94]. For example, how can two persons avoid modifying the same
sentence of a document they are co-editing at the same time? Or, how are results to be merged, if users
concurrently modified different parts of a document.

In both cases, it is evident that synchronous sharing offers a very effective means to support the mutual
awareness of the actors of what they are doing, while different strategies for handling information sharing
are embedded in the different solutions offered to address the first research challenge mentioned above.

5.1.2 Asynchronous Sharing
Asynchronous sharing means that people are in different locations and their interactions are not in real-
time. This type of interaction has been with us for a long time. For example, a government off icer writes a
letter to a taxpayer, notifying her that she did not pay enough income tax. The taxpayer writes back with
additional evidence on why she does not need to pay more taxes. The government off icer then sends her an
additional form to be fill ed. The taxpayer fill s the form and sends it back. Since these two persons are
using regular postal mail (i.e., an asynchronous communication medium), each subsequent letter sent by
the taxpayer needs to identify the subject matter and the government off icer needs to keep a file of the case
in order for him to follow up with it.

It should be clear from the above example that knowing the correct context (e.g., missing income tax
payment) in asynchronous interactions is very important. If we use computers to support this type of
interaction, contextual information will form a major component of the share work space, and we need a
representation for it. Similar to any other knowledge representation problem, such representation needs to
be simple but still captures the essence of each context. A common approach in providing semantics for
interactions is the language/action perspective [Winograd86, Flores88], which is based on the speech act
theory originally developed in Linguistics. The fundamental idea behind this theory is that for each
possible action, there exists a verb to describe it, and these verbs belong to a small number of speech act
categories each of which defines a different pragmatical relation between the conversing persons – using
the technical terms in Linguistics, each of these speech act categories has a clear and distinct ill ocutionary
point. Most computer-based systems using this approach require users to identify a speech act category for
each message they are composing. Many authors demonstrate that it is impossible to be sure that different
persons can agree the specification and interpretation of the speech acts they communicate. Suchman, in
particular, attributed these diff iculties to the unnaturalness of constraining human interactions
[Suchman94].

A different approach has been used in the Conversation Handler of the Milano system [DeMichelis94]. It
allows users to bring forth activity templates on which they agree, without forcing them to reduce their
utterances to well defined speech acts. We believe that the language/action approach is promising but
needs to accommodate additional contextual information to be usable. In the Milano System [Agostini95],
for example, each message is linked both to the previous messages of the conversation to which it belongs
and to the results of the activities negotiated within it. Moreover, it includes all the relevant documents to
identify its context. An alternative solution proposed by Janson and Woo [Janson96] is to use a double
loop learning to aid the specification and interpretation (e.g., if things are unclear, use a sequence of speech
acts exchanged previously to specify or to interpret the correct meaning).

5.1.3 Managing the Switches
In an environment where organizational goals change frequently and the environments to which persons
can interact are open-ended, it is possible that an originally isolated actor now needs to collaborate with
some other persons – to share with them a work space. It is also possible that two persons communicating
asynchronously now need to meet face-to-face (i.e., communicating synchronously). In other words, the
mode of communication can change. Reder and Schwab [Reder90] show that these switches between
communication media are very frequent.

- 13 -

Electronic work spaces can assist these switches if there is a common standard for creating and using them,
or if they share with all the other work spaces the appropriate contextual information. These issues have
been studied at a coarse grain of cooperation in information systems for cooperative design (e.g.,
[Jarke92]), but the current challenge is to provide light-weight awareness solutions for continuous
cooperation [Gutwin96, Palfreyman96].

The common standard is like a protocol that separates exchanging information from its processing. It can
also be viewed as a translator between two incompatible software agents. For example, if agent X needs to
share something with agent Y, then the following translation happens:

 agent X's representation
�

 work space representation
�

 agent Y's representation

This will facilit ate previously developed applications (e.g., legacy systems) or agents not conforming to the
standard (e.g., e-mail systems) to be able to share. What will be a suff icient standard for the work space is
still a research question. In OASIS [Martens97], for example, the work space consists of a set of forms
where a form can either provide information or state an unaccomplished goal.

When the persons involved in a cooperative process continuously switch from one type of share work
space to another, it is necessary that, in all of these work spaces, they can access the information
characterizing the past history of the cooperative process. This is the contextual information mentioned
above. In Milano [Agostini97], for example, this information is recorded in a partial order list linking
together the e-mail conversation, their associated documents, and the activites performed within a common
work process. Similar solutions have also been developed for traceabilit y of cooperative software
processes involving multiple heterogeneous tools [Pohl96].

In the following, we list four different types of switchings and their corresponding problems to solve or
supports needed by the computer:
• from distinct work space to share work space (both synchronous and asynchronous): need to

determine what information to make available within the work space for sharing and then translate, if
necessary, from the individual representations to the work space representation.

• from share work space (both synchronous and asynchronous) to distinct work space: need to
determine who gets what information.

• from asynchronous sharing to synchronous sharing: the task-at-hand here is very similar to that of
setting up a meeting.

• from synchronous sharing to asynchronous sharing: the task here is akin to the continuation of work
after a meeting.

It is important to note that the switching effort between different types of work spaces, from the user’s
point of view, should be as effective as the continuous modification of the same work space.

5.2 Linkages Between Group Collaboration and Organizational Model
[Suchman84] points out that people tend to act in a situated manner and employ organizations and plans
just as tools which they may or may not use. Thus, there is a continuous interplay between the work
practice of the group collaboration facet and the organizational facet. The continuously changing work
space where a group cooperates, is populated by the objects supporting the various communication media
as well as the objects making accessible the context of the ongoing collaboration. Both types of objects are
instances of corresponding objects in the organizational model, where they are stored with their specific
access rights. Cooperation is performed, therefore, instantiating some objects from the organizational
model. Conversely, to address problems, group collaborators may modify the objects in the organizational
model, either at the level of the data stored in them, or at the level of the objects themselves, whenever an
activity results into a modification of a role definition, of a procedure definition, etc. (Figure 2).

- 14 -

Execution ModelOrganizational
Model

defines what is possible

modifies

Group
Col l aboration
S upport

Figure 2: Linkages between group collaboration support and organizational model.

Using the spatial metaphor, cooperative information systems emerge as complex systems where legacy
systems are artifacts in the virtual work space of their users, while the cooperation support templates are
objects stored in the distributed architecture. While the user work space is characterized by the history of
cooperation within which users are active at any given moment, the legacy systems are characterized by
the information they have accumulated and the communication protocols they support. Cooperative
Information Systems have the potential -- and the ambition -- to build systems which neither reduce human
work spaces to information systems nor information systems to human work spaces.

The group collaboration facet is subject to radical changes with the emergence and the diffusion of the
Internet as the basis for the creation of computer support for cooperative work. The first experiences of
Intranet applications as well as the first research projects in this field (such as the European CoopWWW
project offering a basic cooperation support infrastructure on the Web [Appelt96]) offer some hints on the
type of evolution we may foresee.

6. The Organizational Facet

While the group collaboration facet can be best understood from a spatial point of view, the organizational
facet can be understood from a linguistic perspective -- its objects characterize the lexicon (or, ontology)
through which the members of an organization conceive and speak of their work (goals, roles, structures,
tools, resources, procedures, ...).

The notion of cooperation in the delivery of information services within an organization cannot be fully
addressed unless the goals and desires of organizational agents and those of the organization itself are
taken into account. Agents cooperate when they share goals and work together to fulfill t hose goals.
Computer systems are cooperative to the extent that they contribute to the goals of human and
organizational agents.

In traditional systems development, the identification of organizational objectives and the determination of
system features and characteristics to meet those goals is usually carried out under the title of
"requirements analysis". It is well recognized that defining what software system is to be built before
designing and implementing it, is critical to the success of the software system. Another area that has
addressed the problem of capturing and accommodating organizational objectives and goals is that of
Enterprise Integration, where research has focused on the integration of production and administrative
processes, often in the context of a manufacturing organization.

As we move towards a vision of cooperative information systems, the task of requirements engineering
remains crucial, although a number of important adjustments and extensions will be needed. Firstly, both
forward and reverse engineering will be required. In traditional software systems development, as well as

- 15 -

in Enterprise Integration, an entire system/enterprise is typically designed from scratch. Under the
cooperative information systems paradigm, cooperative information system development does not
necessarily proceed uniformly from requirements to design to implementation. There will already be
implemented system components which are integrated to some degree (within the Systems Facet) for some
purpose (Organizational Facet). It is, therefore, important to support both forward and reverse
requirements engineering, i.e., from an existing situation to the set of objectives which account for it, and
from a new set of objectives to a new cooperative information system.

Secondly, requirements models for a cooperative information system under the new paradigm will
potentially cover a much broader scope, since a cooperative information system typically brings together
many systems (which may be existing or to be developed). Explicit models that describe what a system is
supposed to do and the organizational rationales behind them become even more important since they are
important knowledge assets in their own right for the organization, regardless of how they are implemented
technologically. As the system evolves (whether to take advantage of technological advances, or to
address changing organizational needs), this facet provides, on an ongoing basis, the linkages needed to
ensure that the technical systems are meeting organizational goals.

Thirdly, requirements models will have an active role to play throughout the li fe of a system. Under the
traditional paradigm of information system development, requirements definition is usually seen as a phase
or step through which one has to go through in order to arrive at the final product -- the operational system.
Requirements typically appear in a static, printed form, often serving as a contractual document among
different stakeholders (users, customers, developers, etc.). Once a system is operational, the requirements
do not have an active role to play. Under the emerging paradigm, due to ongoing evolution, organizational
objectives and systems requirements must be "kept alive" and remain a part of the running system (e.g., in
the form of a knowledge base or repository). Otherwise, one cannot ensure that the system(s) are
cooperative on an continuing basis. System specifications and requirements are also needed to provide
context for interpreting system behaviour.

Within this section we briefly review three areas which can potentially contribute to the Organizational
facet: Enterprise Integration, Early Requirements, and Systems Requirements.

6.1 Enterprise Integration
Enterprise integration is a research area in its own right, focusing on methods, tools and concepts for
introducing technology within an organization to improve the dissemination of information, the
coordination of decisions and the management of actions; for a recent and thorough account of the field,
see [Vernadat96]. Generally speaking, enterprise integration is accomplished through a conceptual model
of an enterprise which accounts at varying levels of detail and from a variety of perspectives the inner
working of the enterprise. In addition, different modeling frameworks come with a variety of tools for
creating, editting, and analyzing an enterprise model.

Enterprise modeling is generally tackled by offering notations for modeling a variety of organizational
information, including organizational structure, business processes and activities, people, resources, tools
and expertise, (existing) information system structure and functionality, information sources, their format
and their contents. An enterprise reference model provides a data dictionary (ontology) of concepts that
are common across different organizations, such as products, materials, personnel, orders, departments and
the like.

Many reference models have been proposed in the literature and there is on-going work to create industry-
wide standards in Europe, North America, and the Far East [Bernus96]. Some of the references models
mentioned most frequently are:

• CAM-I -- US-based non-profit group of industrial organizations, striving to establish manufacturing
software and modeling standards [Berliner88];

• CIM-OSA -- reference model developed within the AMICE ESPRIT project, used widely in Europe
[Vernadat84];

- 16 -

• ARIS -- developed by August-Wilhelm Scheer at the University of Saarland, can be seen as the
conceptual counterpart to the highly successful SAP standard software architecture [Scheer94];

• PERA -- The Purdue Reference Model -- developed at the University of Purdue by Theodore
Willi ams, focuses on manufacturing [Willi ams92].

The CIM-OSA reference model and methodology (CIM-OSA stands for Computer-Integrated
Manufacturing -- Open System Architecture) provides a three-level architecture to describe a
manufacturing enterprise in terms of requirements, design, and implementation. In addition, CIM-OSA
offers a reference architecture, from which particular architectures may be derived for a specific
manufacturing process. This architecture was designed so as to support and encourage modularity,
abstraction and open endedness. Currently, these efforts are being followed up by the GERAM attempt to
unify the various existing enterprise models, whereas many details are being worked out in numerous
domain-specific modeling effort (e.g., STEP in the production industry, PI-STEP in the process industries,
and many others). In some ways, these architectures are similar to the one proposed here, but seem to have
a top-down, monolithic flavour which is contrary to the spirit of this manifesto’s view of cooperative
information systems.

6.2 Modelling Organizational Objectives
In order to relate system functions and behaviours to organizational objectives (and thus to understand the
“whys” behind system requirements), a cooperative information system must have suitable representations
or models of organizations, and mechanisms for supporting reasoning about them [Bubenko80,
Wieringa96].

6.2.1 Representing and Using Knowledge about Organizational Objectives
Traditionally, organizational objectives are treated only during the earliest stages of system development
(e.g., during “systems planning”). Although these objectives are used to determine system requirements,
there are seldom systematic links from the requirements (or other system models) back to organizational or
business objectives. Under the cooperative information systems paradigm, these links (both forward and
reverse) will be crucial for ensuring that technical systems continue to meet organizational objectives as
they all evolve.

One important obstacle to bringing business objectives into an overall i nformation system architecture is
the lack of formal representations for this kind of knowledge. The diff iculty in drawing conclusions from
such informal bodies of recorded knowledge substantially weakens the cost-benefits of maintaining the
knowledge. To understand cooperative systems environments, we need to manage and draw conclusions
from large amounts of knowledge covering the business rationales that cut across many systems and
business domains.

Recent research in requirements engineering has developed techniques that can potentially contribute to
addressing these issues. The explicit representation of goals and their use in deriving requirements (e.g.,
[Feather87, Dardenne93, Chung93]) is an important technique that can be applied at the level of business
objectives. Business reasoning, however, frequently require more flexible forms of reasoning beyond those
supported by traditional techniques (e.g., classical problem-solving techniques in AI). Variations of goal-
based reasoning (e.g., [Lee92]), with additional support such as qualitative reasoning and the concept of
satisficing have been developed (e.g., [Mylopoulos92, Chung93]).

6.2.2 Dealing With the Organizational Dimension of Cooperative Information Systems
Adopting a cooperative information systems perspective places special demands on the knowledge
representation framework for modelli ng business objectives and rationales for information systems.
Cooperative systems are not merely distributed systems --- they are also organizational. They consist of
"agents" who relate to each other as a social organization. They share responsibiliti es, have commitments
to each other, and may have common or different values and beliefs. While they may cooperate at one
level, they can also have competing or conflicting interests at another.

- 17 -

Research on organizational issues of computing (e.g., [Kling82, Gasser91]) has contributed significantly to
the understanding of the embedding of computer information systems in organizations. Frameworks that
emphasize organization modelli ng have started to emerge. For example, the Action Workflow model of
[Medina-Mora92] highlights relationships among customers and performers. The framework of
[Bubenko93] uses a multi -model approach to link enterprise objectives to system requirements. The i*
framework [Yu95] introduces the concept of intentional dependency for modelli ng strategic relationships
among organizational actors (the Strategic Dependency model). Means-ends reasoning is used to help
capture rationales and support reasoning about business objectives and alternative solutions (the Strategic
Rationale model).

6.3 Modelling Systems Requirements
Systems requirements describe the observable external behaviour of a system (the “what”) rather than
internal details about its implementation (the “how”). In the context of cooperative systems where there are
multiple heterogeneous agents (software/hardware, humans, devices, etc), it should make clear the
responsibiliti es associated with each individual agent in relation with the “whats” (i.e., what each of them
will guarantee).

6.3.1 Representing Systems Requirements for Cooperative Information Systems
At the systems requirements level, we need to determine the system features that will make the
achievement of the organizational goals possible. Typically, at that level, these system features will be
characterized in terms of the “environment” of the system (i.e., the portion of the real-world whose current
behaviour is unsatisfactory in some way). Systems requirements will be expressed by describing how the
system is connected to the environment in such a way that the behaviour of the environment will be
satisfactory. For example, requirements inherent to a Library system will be expressed in terms of data and
information (e.g., borrowed books, books on shelves, and reservations) manipulated by different actors
(e.g., the librarian and the users) belonging to the environment.

Systems requirements should not be confused with the specification of the system itself. The specification
of the system belongs to the system facet (i.e., it describes the system by adopting an internal perspective).
At this level, a conceptual representation of the system is usually produced in terms of various object
classes: active controllers, domain entities (mirroring the problem domain objects), and interface objects.
This conceptual representation can be expressed by using semi-formal methods (e.g., OMT, Coad-
Yourdon, Fusion, Objectory) or by using more formal methods (e.g., RML [Greenspan86], GIST
[Feather87], Oblog [Sernadas91], and LCM [Wieringa94]).

Requirements languages that can be used at the systems requirements level, on the other hand, should offer
the following two faciliti es:

• The language should offer mechanisms (action/state perception, action/state information) to
distinguish the boundary between the system and its environment, as well as the responsibiliti es
associated with each of them. This possibilit y of making clear the distinction is advocated by several
authors. For example, Zave and Jackson recommend to make a distinction between “ indicative
requirements” (statements about the environment) and “optative” requirements (statements about the
system) [Jackson95]. An adequate language should, therefore, provide (i) an ontology including an
appropriate concept of agent, (ii) mechanisms for expressing different actions and responsibiliti es
associated with their control, and (iii) communication mechanisms for describing time-varying
information and perception.

• The language should support a declarative style of specification which supports a natural mapping

(i.e., without having to introduce any overspecification) of stakeholders’ informal statements in terms
of their formal counterpart. This is due to the possibilit y offered by the language to model
requirements adopting a God’s eye view perspective, i.e., to express requirements by considering the
whole admissible li fe (the sequence of states of the system) rather than adopting the usual constructive
(operational) style where the value of a state at a given moment is computed from the subsequence of
past states. For example, we want to express easily a statement like “the borrowing of a book should

- 18 -

be followed by its return within the three next weeks” . This naturalness property is essential for the
purpose of traceabilit y, i.e., to keep a close relationship between the informal requirements and their
formal reformulation.

In terms of semi-formal notations, we can say that many existing OORA (Object-Oriented Requirements
Analysis) methods are trying to incorporate these aspects in their suggested methodology. Describing the
role of the system from the external users’ perspectives is typically the goal of the use case originally
introduced in Objectory [Jacobson92] and also incorporated in the new Unified Modelli ng Language
UML. A similar attempt exists in the ROOM [Selic94] where scenarios are used for capturing the
environment behaviour in presence of the system.

In terms of formal notations, recent proposals are the agent-oriented extension of GIST [Feather87] and the
ALBERT language [DuBois97]. Besides the existence of precise rules of interpretation, it is expected that
the mathematical/logical foundations underlying these languages will permit the development of a new
generation of tools supporting:

• the verification of requirements produced by the analyst such as the detection of inconsistencies (e.g.,
leading to deadlocks) and incompletenesses (e.g., failure to preclude undesirable system behaviours),
as well as the possibilit y of proving global desired goals at the system requirements level;

• the validation of the requirements against customer expectations by, for example, reformulating the
formal requirements for easier interpretation (through natural language generation, or translation to
some existing, less formal, notations), or by producing animations (or simulations) to allow customers
to explore different possible behaviours of the system, and to check against use cases and scenarios.

6.3.2 An Expanded Systems Requirements Process
The cooperative information systems paradigm implies the need to expand the systems requirements
process, since systems requirements must now be linked extensively to organizational objectives on one
side (e.g., [Yu95b]), and to system designs and implementations on the other (e.g., [Chung95]).
Requirements activities may proceed in forward and reverse engineering directions, and may have different
scopes at different facets (business unit boundaries need not coincide with system boundaries, and vice
versa). These activities may include:

• identifying the “why” , i.e., business objectives and rationales for the new information system (e.g., the
improvement of the management of the borrowings in the library in order to make it more attractive);

• identifying the agents in the environment (e.g., the librarian and the users), together with some
assumptions and domain knowledge related to their behavior [Jackson95] (e.g., users are issuing
books requests to the librarian and, when available, the librarian removes these books from the
shelves);

• mapping business goals to system goals, i.e., goals related to the desired global behavior of the system
[Dubois89, Dardenne93] (e.g., to prevent the user from keeping more than three books at once);

• “operationalizing” these system goals by reducing them into constraints that agents can be responsible
for through their actions [Feather87, vanLamsweerde95] (e.g., the system will raise an alarm when the
maximum number of loans allowed is exceeded and the librarian will not give the requested book to
the user);

• deciding if the identified agents and their associated responsibiliti es will correspond to:
• well -described tasks (or procedures). This will be usually the case for the software part of the

system. The description of these tasks is the objective of the system specification activity (which
is part of the Systems facet)

• loosely defined tasks. The objective here is to provide high-level guidance and leave the decision
of execution details at run-time. This is often the case when human agents are involved in the
task performance (which is part of the Group Collaboration facet).

- 19 -

7. Change Management

The distinguishing feature of a cooperative information system is that it must ensure continued cooperation
between the system, the group collaboration, and the organization facet. This implies that we must identify
where changes come from in each facet, how they propagate, and what problems are involved in this.

Based on this analysis, faciliti es for change management can be discussed which are used to ensure that
changes introduced at any facet of a cooperative information system are propagated to all other facets. The
importance of change management has been recognized by architectures such as DAIDA [Jarke92a], CIM-
OSA [AMICE89] or ARIS [Scheer94] through the inter-linking of requirements, design, and
implementation levels. It is perhaps characteristic of the diff iculties of cooperative information systems
evolution that commercial environments have not really defined the links in depth, even though some
research prototypes, such as the DAIDA and ITHACA [Constantopoulos95] environments, have
experimented with a richer set of dependency types.

When developing a framework for change management, we follow the famous paper by [Ackoff67] to
distinguish between active change management (planned change), reactive change management
(unplanned change), and pro-active change management (making a system fit for easy reactive change).

A basic framework for continuous change management is shown in figure 3. The approach shown therein
for active change management (planned changes) is borrowed from the so-called Carroll cycle, a method
which has proven useful in the design of user interfaces [Carroll91]. In each such cycle, the current reality
is reverse-engineered into models to uncover its underlying rationale. Then, a change is defined on the
models, and implemented into a new reality, integrating the legacy of the existing context.

previous
model

of reality

current
model

of reality

next
model

of reality

previous
system and

environment

next
system and

environment

change
implementation

current
system and

environment

reverse
analysischange

implementation

reverse
analysis change

implementation

reverse
analysis

change
integration

change
integration

change
definition

change
definition

Figure 3: The change process for cooperative information systems

Besides these planned changes, there can also be unplanned changes where reality is changed directly,
without resorting to any models. Change management then becomes reactive, to reverse-analyse such
changes into models, thus analyzing their consequences and identifying possible follow-up changes. But
purely reactive change management will not work. [Ackoff67] has pointed out that information systems
should be designed to cope with such unplanned changes, i.e., measures should be taken to make them pro-
active, not just reactive. This has, in fact, been the goal in each facet discussed in sections 4 through 6, but
additional measures for pro-activeness must be taken at the level of change management across facets.

In section 7.1, we discuss active, reactive, and pro-active changes in more detail . The continuous tension
between the envisioned change and the perseverance and autonomous activity of existing context has been
identified as the main driver for requirements engineering which was therefore defined as “ the process of
establishing a change vision in the technical, cognitive, and social context” [Jarke93]. Reverse engineering
as well as re-implementation are significantly facilit ated if they can reuse experiences gained in previous
cycles. This is why repository technology as a means of not only linking heterogeneous environments, but

- 20 -

also as a computerized organizational memory, is playing a central role in change management (section
7.2). However, a cooperative information system will also need active components to manage the
mediation between group collaboration, system change, and organizational change. Section 7.3 offers a
sketch of such a “coach” for change.

7.1 Perspectives on Change

Let us briefly retrace each facet, in order to identify typical sources and patterns of change in cooperative
information systems.

The group collaboration facet focuses on practice -- people, their culture, work practices, and interactions.
This facet appears to be the most frequent initiator of change. Sources of change may include cultural
changes (e.g., a local software development team is augmented by some people in India), different levels
of knowledge (e.g., a system like Lotus Notes is no longer used in a closed organization, it is on the
internet), or user interests. Within this facet, change is enabled by the spatial metaphor and the CSCW
attempts to make collaboration spaces more flexible.

The organizational facet focuses on language – models of organizational structure, goals and policies,
processes and workflows, even of information technology. Typically, changes in this facet are initiated by
managers (from the group collaboration facet, but with defined organizational roles) or external
consultants (with less relationships to the group collaboration facet). They involve policy changes, changes
in environmental conditions (e.g., laws), implementation of meta-strategies such as business process re-
engineering or total quality management, or the execution of organizational mergers. In this facet, the
understanding of change is facilit ated by extending the suite of formalisms available to support the full
path from organizational goals and dependencies to implementation models.

The systems facet focuses on technology – components and coordination tools, mobilit y, persistence, and
computational resources. Reasons for change from this facet include technical innovation (e.g., email and
WWW) or degradation (our old mainframe finally seems to die!), but they may also include various kinds
of maintenance all the way to re-integration and re-architecturing of the whole system. Componentization,
liberated coordination, and reflection are identified as main facilit ators of change in this facet.

We now turn to change propagation patterns across the facets. It is obvious that changes in one facet might
affect all other facets. In this light, it may be surprising that most existing research has focused on only two
facets, as indicated in figure 4.

• Formal organization <-> system integration ensuring correct implementation of business model
changes: This is the classical approach in organizational information systems. A typical example for
this kind of change management is the SAP approach which maps organizational reference models to
technical reference models, albeit only in the limited sense of parameter variation. The need for
supporting this type of change was also recognized by database vendors (Oracle CASE). This kind of
change support typically neglects the humans in the organization, i.e., does not (or to an insuff icient
degree) consider the group collaboration facets.

• group collaboration <-> system integration: This is the interface between CSCW and Computer Science
research. Typical examples are OLE, Tcl, visual programming languages; These approaches try to
empower the users to adapt their computerized environment according to their individual needs without
taking the organization models into account. Thus, changes can be made which are in conflict with, for
example, workflow models.

- 21 -

formal
organization

formal
organization

system integration
models

system component
models

system integration
models

system component
models

group
collaboration changes of organisational models

e.g., policy integration in existing
business process models

operationalisation of organisational changes
through system adaptations,
e.g., workflow adaptation based on business
process changes, redesign of systems

changes of working practice by
the people performing a task,
e.g., adaptation of working environment
(visual programming languages)

Figure 4: Three isolated change perspectives

• group collaboration <-> organization facet: This has been studied for many years by researchers in
organizational behavior. The fact that all the relevant people in an organization must be considered
when changing the organization models is recently more and more recognized, e.g., the involvement of
all kinds of stakeholders during the requirements engineering task has gained more attention and is seen
as very important. Traceabilit y is seen as an important prerequisite to enable such change support.

To identify more comprehensive change scenarios, we focus on the two extreme cases of active and
reactive change management. Both start from the group collaboration facet, but one from people with
manager roles, the other from “normal” group members.

7.1.1 Active Change Management

Active changes can have three main goals:

• better system supporting the same “workflow or business process”
• adaptation of system according to particular people performing the process
• change of current working practice.

Figure 5 depicts a typical active change cycle. Usually, managers supported by consultants initiate the
change in the organization models, often by changing some kind of business goal or policy. This change
results in the adaptation of existing or the definition of new business process models as sketched in section
6. Subsequently, the changes in the business process models are propagated to the systems facet, e.g., via
workflow models. Such changes can

• lead to the embedding of new or the change of existing system components
• lead to the change in the system integration models

• use of different components for performing the tasks (does not effect the overall working
procedure too much)

• define alternative components which can be chosen by the people performing a task (enables
freedoms for the individual to choose a component for a certain tasks which fits best)

• application of new collaboration approaches within the workflow (try to achieve the business
goal without changing the workflow)

• new workflow definitions -> ordering of tasks, new task steps, additional collaborations, other
work distributions, etc.

- 22 -

M anager

Workers

organization,
business

workflows
models

organization,
business

workflows
models

inst. workflow

C1 C1 C1
C1 C1

tool models

(1) change of
models

(2) leads to system
changes

(3) system changes
 cause working changes

group
col laboration

formal
organization

system integration
models

system component
models

cooperation
models

Figure 5: Active change

Indirectly, the changes of the cooperative information systems affect the people performing the tasks, i.e.,
changes of the cooperative information systems leads to new working practice. Of course, there are also
active changes which do not change the system at all but are intended to influence directly the work
practice.

When looking for formal models or computerized support for such active changes, relevant research can be
found in design engineering research, project planning and scheduling, software engineering, and more
recently workflow management. For example, [Madhavji92] categorized software process changes
according to the scope they affect, and co-edited a special issue of IEEE Transactions on Software
Engineering on process change [Madhavji93]; very similar studies have also been conducted for dynamic
change management in workflow systems by [Agostini94, Elli s95]. In the area of design as well as
software engineering, the use of reason maintenance systems for effective re-planning has been extensively
studied [Dhar88, Petrie93, Chung95].

7.1.2 Reactive Change Management

Reactive changes are typically initiated by the people performing the tasks in the organization. They can
again result in changes of components or changes of coordination in the systems facet:

• use of other components for performing a predefined task or process step, i.e., such changes do not
effect the organizational facet

• introduction of new components by the user. This change should at least be considered at the
systems facet and may also lead to changes in the organizational facet, e.g., a change of the
workflow model

• 1: many replacements: a component is replaced by a set of components by which the task defined in
the business process or workflow model can be better achieved

• many : 1 replacements: a set of predefined components is replaced by a more powerful component
which has the same functionality

• changes of collaboration models; adapting collaboration models to user specific needs or using a
different collaboration technique as the one predefined

• changes of instantiated workflow models: performing predefined tasks in a different order or
performing additional tasks, or other tasks -> may lead to unexpected results which may not
conform with the goals defined in the organizational facet

There are also changes of work practice which do not impact the systems facet. A possibly unfortunate
consequence of this is that they cannot be recognized as long as they lead to the expected results of the
business process or workflow (i.e., no support is needed).

- 23 -

A typical change process initiated by reactive changes is depicted in Figure 6. In contrast to current
practice, reactive changes should be considered in the organizational facet, i.e., whenever an reactive
change effects an organizational model, this change should be recognized by the people responsible for
maintaining the organizational models. The reflection of reactive changes, in the sense of Total Quality
Management [Feigenbaum91], have been recognized as an invaluable source for process improvements
(e.g., in the Experience Factory approach studied in Software Engineering [Oivo92]).

Change support is needed for steps (2) and (3) of Figure 6. In particular, the need for short-term
notification and long-term traceabilit y has been recognized especially in design-oriented applications.
Notification and more general awareness features are offered by configuration management systems (e.g.,
[Jarke92]) and are one of the main foci of CSCW research at the moment (cf. section 5). The importance of
traceabilit y is emphasized by empirical studies [Gotel94, Ramesh93] as well as mandated by several
engineering standards, such as DOD-2167a in software engineering.

Manager

Workers

organization,
business process,

workflows
models

organization,
business process,

workflows
models

inst. workflow

C1
C1 C1

C1 C1

tool models

(2) change requires update of
 organizational models

(1) initiate change of
 system components
 or system integration

(3) influences
 management practice

formal
organization

system integration
models

system component
models

group
collaboration

cooperation
models

Figure 6: Reactive change

7.1.3 Pro-active Change Management

To avoid getting overloaded with reactive changes, we must place more emphasis on pro-active
containment strategies [Ackoff67]. Several of these strategies -- componentization and control li beration in
system integration, generalized work space metaphors in CSCW, and more abstract organizational models
avoiding unnecessary over-commitment -- introduce user freedoms, without sacrificing the possibilit y to
record aberrations from expected behavior for process improvement.

Another group of pro-active change management strategies is related to the reuse of experiences in earlier
change processes. Together with the richer models of early phases in requirements engineering and
enterprise modeling, reason maintenance techniques which have been intensively studied in design and
software engineering since the late 1970’s [Stallman77, Doyle79, Dhar88, Petrie93], have emerged as a
central technology for dealing with this problem. Repositories, to be discussed in the next subsection, are
the main framework for this kind of pro-active change management.

A final group of pro-active change management strategies which have received less attention so far, are
pro-active workflow modeling or project planning techniques.

One important aspect is the choice of process models; for example, there is some evidence that artifact-
centered process models (e.g., based on the electronic circulation folder metaphor [Prinz96]) or
compositional, situation-oriented process models (e.g., [Rolland94]) are more amenable to unforeseen
exceptions and process changes than those enforcing an elaborate, strict control structure, such as the
initially proposed Petri Nets (e.g., Domino [Kreifelts86], FUNSOFT [Gruhn91], SPADE [Bandinelli 93]),
or CSCW Process Grammars (e.g., [Glance96]).

- 24 -

A second aspect is the organization of work within a given process model. For example, [Srikanth89]
present a decomposition theory for work assignment in project plans that is optimized for containing
unplanned changes within as small a subgroup of the project team as possible. Such strategies -- about
which, in general, relatively littl e is known so far -- enable a rather stable decomposition of responsibiliti es
as well as defined change escalation strategies in case changes with larger impact do occur.

7.2 Cooperative information systems support for change

Support for change must obviously involve all facets of a cooperative information system: there must be a
group collaboration on an intended change, the change must be supported and recorded by organizational
change models, and last not least, there must be technological support for change. In this subsection, we
focus on the latter.

Technical support for change management has already been partially discussed, in particular, section 4
presented ways to make system integration more flexible and thus amenable to change. In addition, certain
kinds of software agents are being experimented with, which specifically support change in a group
setting:

• Awareness agents notify managers of relevant adhoc changes and support the adaptation of the
organization models; notify workers of organizational changes, explain the changes, guide them in
adapting their working practice to the changes.

• Change integration agents provide functionaliti es such as impact analysis, traceabilit y, notification of
effected people, and cost analysis.

• Simulation agents test changes and their impact before implementing. Since changes are modeled and
the system facet is enable to adapt the cooperative information systems behavior according to these
models, such tests are easier than with conventional approaches [Oberweis94, Peters96].

The conceptual platform of models and tools, on which such agents provide their service, is typically
defined in meta models and managed in centralized or distributed repositories.

Change management demands a global (though specialized) view of all facets and components of a
cooperative information system. This change view has to be patched together from several partial models,
put together in terms of different notations, at different times and by different people. A standard way of
accomplishing this patching together is through metamodeling. Already mentioned by Abrial as early as
1974 [Abrial74], metamodeling has been researched as the prime approach for dealing with the problem of
tailoring and linking models since the mid-1980’s [Kotteman84]. In the early ’90s, a series of workshops
and conferences on method engineering has emerged which focus on this problem.

Metamodeling is the activity of creating descriptions of modeling formalisms and possible links between
modeling perspectives. The creation of metamodels requires a language in which they are specified, which
can in turn be seen as a metametamodel.

Many metamodeling techniques are quite informal and just rely on extensible graphical notations; the
aforementioned ARIS system or the RDD-100 traceabilit y environment [Alford90] are good examples.
While both of these rely on extended entity-relationship formalisms, object-oriented approaches augment
structural descriptions of objects with behavioral ones.

Metamodeling has progressed to the stage where we are beginning to see the first reports on commercial
experiences for metamodeling environments where modeling tools are automatically created or linked via
logic-based metalevel specifications. For example, the MetaEdit environment of the University of
Jyväskylä [Smolander91, Kelly96] allows the automatic generation of browser/editor interfaces for formal
conceptual models from graphical specifications, using a metametamodel called GOPRR which offers
Graph, Object, Property, Relationship, and Role as basic meta-linguistic concepts and a pre-defined set of
constraints.

- 25 -

Based on ideas from semantic networks in knowledge representation, the Telos language [Mylopoulos90]
allows method engineers to tailor such metametamodels to specific problem domains. Languages like
Telos can be used to rapidly create integrated problem-specific analysis and design environments for CIS.
This has been demonstrated in a number of applications of the ConceptBase system developed at RWTH
Aachen [Jarke95]. These meta meta models address, for example, the computer-assisted analysis of the
relationships between multiple company departments [Peters95], business analysis perspectives
[Nissen96], software process modeling, and traceabilit y approaches [Ramesh92, Jarke94, Pohl96]. They
also facilit ate forward and reverse engineering between system specification and implementation
[Jeusfeld95], and can be linked to metamodels of dynamic simulation models which analyse and predict
the behavior of cooperative information system [Peters96].

Using the principles of metamodeling, repositories or data warehouses have been proposed as databases
which describe other information sources, in order to help either in their usage or in their evolution. A
good overview of the questions involved in implementing repositories is given in [Bernstein94]. Not
surprisingly, technical and ontological extensibilit y, multiple perspectives and granularities, and a rich set
of referential relationships are among the most important features mentioned.

In the NATURE project, a process-oriented repository-centered architecture for change management has
been proposed [Jarke94b, Pohl96]. Its main feature is that it views the trace of an ongoing work process
under multiple plans and traceabilit y models, thus enabling the evaluation and control of processes from
multiple organizational perspectives as well as the active support by change tools such as planners,
decision support systems, and invocation of existing automated components. In the next section, we sketch
the vision of a change coach that could operate on such process repositories in order to facilit ate the
mediation of change between the three facets.

7.3 Coach: An Envisioned Multi-Facet Cooperation Support Agent
In this section, we provide an example of a multi -facet cooperation support agent call “coach” . As
explained in Section 5.2, the organizational model defines what is possible in group collaboration, while
part of the activities in group collaboration can be to modify the organizational model. The coach is,
therefore, in charge of facilit ating the information exchange between group collaboration support and
organizational model as well as managing the propagation of changes between the two, possibly including
the systems facet if the changes require, for example, re-integration or re-architecturing of the underlying
system. It is an active, autonomous intelli gent agent in that it can self-trigger when needed and its
behaviour is guided by its own knowledge.

In the following, we present an example scenario to help us explain our vision of the coach. First, we
present some background information about the example. Employees of an organization used to follow a
particular procedure in order to obtain travel reimbursements. This procedure is specified, with other
relevant definitions, in the organizational model. Its main steps are: before leaving — prepare an estimate,
submit it for approval both to the project leader and to the head of the department, and if responses are
positive, send the signed form to the administration off ice; after coming back from the trip — calculate the
actual expenses (enclosing proof for all of them), submit the documentation for approval both to the
project leader and to the department head, and, if responses are positive, send all documents to the
administration off ice for the reimbursement. In other words, the procedure need a double signature from
the person in charge of the project funds (i.e., the project leader) and the person responsible for the
administration of the department (i.e., the department head) both before and after the trip.

The department head, upon receiving several complains from her employees, initiates an investigation of
the eff iciency of the procedure. Instead of just getting some historical records or a statistical report, the
coach is able to have a meaningful valuation of the relationships between the planned and the actual
behaviour. This is because the coach is capable of associating the model (i.e., the procedure definition as
specified in the organizational model) with the enacted workflow (i.e., all i nstances of the procedure
executed as part of the group collaboration). This example demonstrates situations where the coach is not
representing any particular facet, but gathering, analyzing, and integrating multi -facet information.

- 26 -

Although not surprising, the outcome of the analysis does show that the activities to obtain the signatures,
both before and after the trip, are the bottleneck of the procedure in that they consume the most amount of
time. The coach also points out that if the actual trip expenses is lower than estimated, the project leader's
decision of not approving never happens. Finally, the department head knows that she is not interested in
the details, since she does not have direct responsibilit y on the project funds, but just wants to have an
overall control. Therefore, she decides to modify the procedure definition, canceling the signature of the
project leader after the trip in case of expenses below the estimate, and leaving the approval of just the
department head at the end of the procedure.

Automatically, the new procedure substitutes the old one in the organizational model. Once again, it is the
duty of the coach to maintain the coherence between the model and the enacted workflow. In this case, it
is to propagate the changes from the organizational model to the appropriate facet(s). In doing so, it
changes the remaining activities of all switchable instances currently in execution without having to restart
them from the beginning.

The abilit y to dynamically change all running instances of a procedure needs further explanation. The
change mainly involves three steps: (1) collect all running instances, (2) assess which of them are
switchable, and (3) change those that are switchable to the new workflow definition without causing errors
(e.g., without skipping activities to be performed or performing an activity twice). Due to the lack of
certain domain knowledge, it is not always possible to automatically determine which running instances
can be switched (e.g., adding new activities to a procedure) [Agostini94, Elli s95]. Under those
circumstances, the coach helps the department head to define switchabilit y policy.

One can argue that the aforementioned three steps can be carried out by the workflow management system
itself and, therefore, having a coach is unnecessary. However, procedures are part of the organizational
model and, therefore, if we do not want to create a hierarchical li nk between the different facets, we need
an autonomous agent to perform them. The idea of the coach, and the multi -facet cooperation support
agents in general, is a way to manage change without complicating the underlying systems in performing
their regular activities (i.e., the workflow management system manages the execution of workflows, while
the coach manages changes).

Note that most of coach's features are not new. The novelty is rather in recognizing the need, in a
distributed and complex environment, for someone to be in charge of tasks that cover several
units/applications/sites.

8. Towards a Generic Architecture for Cooperative Information Systems

In the preceding sections, we have outlined a framework for identifying and characterizing research
problems and issues in cooperative information systems. This clearer picture also enables us to envision
possible solutions. In this section, we propose a generic architecture which puts forth a vision of how
cooperation and on-going change can be supported, while addressing all three facets and their interactions.

The purpose of this generic architecture (or architectural model) is to help focus and coordinate our
research efforts towards solutions that are implementable within the expected time frame, while allowing
for considerable freedom within each subarea of research. The architecture identifies the major
architectural layers and component types, what kinds of functions they perform, what information they
maintain, and what kinds of interdependencies they manage in order to deal with various classes of
changes and modes of cooperation. The generic architecture leaves open many issues to be addressed
during specific architectural design (e.g., the interface mechanisms among particular architectural
components).

We start with the premise that existing practices with computer-based technologies, such as compilers,
DBMSs, and workflow products will continue to exist, get used and evolve on their own for some time to

- 27 -

come, partly because of existing investments in legacy systems and human training that can't be simply
written off , partly because of general laws of inertia. The task at hand for us working in this area is not to
replace this practice, but rather to augment it. Accordingly, our conception of cooperative information
systems is one of providing a value-added layer on top of legacy and other existing systems, thereby
ensuring that they continue to fulfill users' information needs and remain consistent with organizational
objectives.

The generic architecture thus consists of two layers (Figure 7):

• the base layer -- includes information systems which directly provide information services to users, and
• the cooperation support layer -- a value-added layer which provides faciliti es for dealing with all three

facets, their interactions, and for supporting cooperation and change.

Figure 7: A Generic Architecture for Cooperative Information Systems

As shown in the figure, the cooperation support layer consists of several types of cooperation support
agents (or components). The systems, group, and organizational agents provide interfaces to their
respective facet and interact with each other. The fourth type of agents, the multi -facet cooperation
support agent, does not represent any single facet. They play a control and/or coordination role among the
aforementioned three types of agents (Section 7.3).

Repositories in the cooperation support layer are used to maintain the various types of models and meta-
models, their interdependencies, and their relative changes over time (as discussed in Section 7.2).

Finally, the architecture also maintains a set proximity relations. A proximity relation is defined by the
interdependencies among the three facets, involving objectives, people, and systems. These may include
data and/or control dependencies, visibilit y relationships (import/export properties), and change
interdependencies (what kinds of changes should be propagated in what ways). For example, there is a
proximity relation between the “increase profitabilit y” goal (in the organizational facet), the structure of a
new team of workers (in the group collaboration facet), and a new system which helps them do their work
the “new way” (in the systems facet). This dependence is important to record and keep track of because if
anything changes, it will t ell us what else is potentially affected. Proximity relations are modelled in the
repository and can be used by the four types of cooperation support agents when performing their duties.

Group
Collaboration
Facet

Organizational
Facet

Systems Facet
Base Layer

Cooperation
Support Layer

base layer system
systems coop. support agent
organizational coop. support agent
group coop. support agent
multi -facet coop. support agent
repository

- 28 -

This approach of providing a value-added layer for cooperation support is complementary to approaches
which attempt to build cooperation and flexibilit y for change into base layer components (e.g., recent
componentized system approaches that use standardized middleware for interoperabilit y and reusabilit y).
Our belief is that even with such approaches, there will still be need for value-added components which
deal specifically with cooperation and change.

In addition to dealing with cooperation and change, we believe that this architecture is also useful in
providing a framework for delivering information services within an organization, in support of business
processes, and in aligning them with organizational objectives. Such delivery is based on the execution of
legacy information systems and workflows which disseminate, retrieve and distribute information. The
systems cooperation support agents compose systems transactions into scripts (or, long transactions). Each
of these scripts is executing in a distributed fashion and uses the services of several legacy systems. The
systems cooperation support agents also deal with issues related to integration and interoperation when
executing these scripts. Such scripts are, in turn, executing in support of human collaborative work
defined in terms of business processes through the group cooperation support agents. Finally, such work
contributes to objectives at the organizational facet.

The generic architecture entails a research agenda that is being pursued by the research teams represented
by the authors. We are working towards cooperative information systems solutions that can be deployed in
the time frame of f ive to ten years from now. A number of pieces of the technology already exist as
research prototypes and are being further developed in relation to the generic architecture. The
architecture assumes that computing environments in the targeted time frame will be highly
interconnected, involving heterogeneous systems and networks. High-capacity multimedia network-based
computing will be commonplace, making use of local and global networks, which may be wired, mobile,
or fibre-based. There will be standardization efforts in many areas, but uniformity of standards will
unlikely be achieved in most areas. There will be high expectations for performance, reliabilit y, and
information quality. Socio-economic issues will remain crucial to the success of new technologies,
systems, and services.

9. Conclusions

We have argued that the basic issue that needs to be addressed by Cooperative Information Systems as a
research area is organizational and technological change. We have then reviewed some of the issues
which Cooperative Information Systems bring forth and some of the approaches being tried to address
these issues. We have also proposed a generic, coarse-grain architecture for systems which is capable of
relating legacy systems to human collaborative activity and organizational goals, for purposes of driving
information services and guiding change.

The proposed architecture is only a starting point for the research in Cooperative Information Systems and
we consider it as a basis for a multidisciplinary discussion on the subject. It is our opinion that Cooperative
Information Systems is a field opening new relevant research challenges to various computer science sub-
disciplines and calli ng far breaking the existing boundaries between them. Some explanations for the
above claim are given below.

1. Cooperative Information Systems, unlike Information Systems and Databases, need to address not
only technological issues, such as “How do I build a system that does X?”, but also human and social
ones (“How does a group of people accomplish task Y?”) as well as organizational ones (“How can
we meet objective Z?”). Within this framework, it seems to us that neither the research in information
systems can conquer the CSCW field as if CSCW systems were mere innovative interfaces for
distributed Information Systems, nor can CSCW scholars and practitioners avoid to address the typical
issues of information systems research as if the latter were mere information sources which users can
access during their work. On the contrary, Cooperative Information Systems emerge as newly
conceived systems coupling the human process orientation of CSCW systems with the distributed
systems orientation of information systems. Cooperative information systems are based on an

- 29 -

architecture where the process oriented domain of human activity and the distributed systems of
information processing are two autonomous cooperating modules of one and the same system.
Building such systems will require technological as well as social and organizational know-how.

2. The new and growing complexity of the architecture we have proposed for Cooperative Information
Systems is based on active and passive components. There is, therefore, the need for a growing
number of active components (of intelli gent agents) managing the relations between and among the
different facets and, in particular, between the group collaboration support module and the
organizational model. It is our conviction that the creation of these intelli gent agents provides new
research issues such as knowledge contextualization for the Distributed Artificial Intelli gence field.

3. Cooperative Information Systems are a new type of systems, oriented to support not only information
processing but also change. The design and engineering of Cooperative Information Systems does not
appear well supported by the typical techniques and methods emerging from Software Engineering: it
requires on the contrary new methods and tools supporting user participation, continuous changes, and
on line performance evaluation.

Acknowledgments

The authors gratefully acknowledge financial support for this collaborative project from the European
Commission and Ontario’s Information Technology Research Centre. A particular thank is due to
Alessandra Agostini who contributed to the development of the Coach concept. The following people read
an earlier version of this paper and provided numerous constructive suggestions on improving the paper
during a three-day workshop held in Vancouver, Canada on August 5-7, 1996. The authors wish to thank
Mike Bauer, Alex Borgida, Phili ppe Du Bois, Tamer Ozsu, Remo Pareschi, Peter Peters, Bala Ramesh,
Jacob Slonim, and Francois Vernadat.

References

[Abrial74] Abrial, J.-R., “Data Semantics” , in J.W.Klimbie, K.L. Koffeman (eds.): Data Management
Systems, North-Holland, 1974.

[Ackoff67] Ackoff , R.L. “Management misinformation systems” , Management Science 14, 4 (1967), 147-
156.

[Agostini94] Agostini, A., De Michelis, G., and Petruni, K., “Keeping Workflow Models as Simple as
Possible”, Proceedings of the Workshop on Computer-Supported Cooperative Work, Petri-Nets and related
formalisms, within the 15th International Conference on Application and Theory of Petri Nets (ATPN '94),
1994, 11-23. (Available on request from CTL, University of Milano, email: gdemich@dsi.unimi.it).

[Agostini95] Agostini, A., De Michelis, G., Grasso, M., “The Milano System”, in “A Computational
Model of Organizational Context” . COMIC Deliverable 1.3, 1995, 163-192 (Available on request from
the Computing Department, University of Lancaster, Lancaster LA1 4YR, UK, e-mail:
tom@comp.lancs.ac.uk).

[Agostini97] Agostini, A., De Michelis, G., Grasso, M., Prinz, W. and A. Syri, “Contexts, Work Processes,
Work Spaces” , Computer Supported Cooperative Work: An International Journal, Kluwer Academic
Publishers, The Netherlands, 1997, to appear.

[Alford90] Alford, M.W., “Software Requirements Engineering Methodology (SREM) at the Age of
Eleven -- Requirements-Driven Design” . In P.A.Ng, R.T.Yeh (eds.): Modern Software Engineering, Van
Nostrand Reinold, 1990.

- 30 -

[Alonso96] Alonso, G. “The role of database technology in workflow management systems” , Proceedings
of CoopIS’96 (Brussels, Belgium, 1996), IEEE Computer Society Press, 176-179.

[AMICE89] ESPRIT Project AMICE, Open Systems Architecture for CIM, Springer 1989.

[Appelt96] Appelt, W., “CoopWWW - interoperable tools for cooperation support using the World-Wide
Web” . Proc. 5th ERCIM/W4G Workshop ‘CSCW and the Web’ , Arbeitspapiere der GMD 984, GMD,
Sankt Augustin, Germany, 1996, 95-99.

[Argyris78] Argyris, M. and Schon, D., Organizational Learning, Addison Wesley, Reading, 1978.

[Argyris96] Argyris, M. and Schon, D., Organizational Learning II , Addison Wesley, Reading, 1996.

[Atkinson90] Atkinson, M., Bancilhon, F., De Witt, D., Dittrich, K., Maier, D., and Zdonik. S., “The
Object-Oriented Database System Manifesto” , In Deductive and Object-oriented Databases. Elsevier
Science Publishers, Amsterdam, Netherlands, 1990.

[Bandinelli 93] Bandinelli , S.C., Fuggetta, A., and Ghezzi, C. “Software process model evolution in the
SPADE environment” , IEEE Trans. Software Eng. 19, 12 (1993), 1128-1144.

[Berliner88] Berliner, C. and Brimson, J., Cost Management for Today’s Advanced Manufacturing: The
CAM-I Conceptual Design, Free Press, 1988.

[Berners-Lee96] Berners-Lee, T. “WWW: past, present, and future”, IEEE Computer 29, 10 (1996), 69-77.

[Bernstein93] Bernstein, P., “Middleware: An Architecture for Distributed System Services” , CRL 93/6,
Digital Equipment Corporation, Cambridge Research Lab, March 1993.

[Bernstein94] Bernstein, P.A. and Dayal, U., “An Overview of Repository Technology” . Proceedings 20th
Intl. Conf. Very Large Data Bases (Santiago de Chile, 1994), 705-713.

[Bernus96] Bernus, P. and Nemes, L. (eds.) Modelli ng and Methodologis for Enterprise Integration,
Chapman and Hill ,1996.

[Brachman85] Brachman, R.J. and Schmolze, J.G., "An Overview of the KL-ONE Knowledge
Representation System", Cognitive Science 9, 2 (1985), 171-216.

[Brodie97] Brodie, M., "The Emperor's Clothes are Object-Oriented and Distributed", in this book.

[Bubenko80] Bubenko, J. A. “ Information Modeling in the Context of System Development,”
Proceedings of Information Processing ’80, S.H. Lavington (ed), North-Holland, 1980, 395-411.

[Bubenko93] Bubenko, J., “Extending the Scope of Information Modeling” , Proceedings of the Fourth
International Workshop on the Deductive Approach to Information Systems and Databases, (Lloret-Costa
Brava, Catalonia, Sept. 20-22, 1993), 73-98.

[Cardelli 94] L. Cardelli . “Obliq: A Language with Distributed Scope”, Technical report, Digital
Equipment Corporation, Systems Research Center, Palo Alto, Cali fornia, June 1994.

[Carroll91] Carroll , J.M., Kellogg, W.A., Rosson, M.B., “The Task-Artifact Cycle”, in J.M. Carroll (ed.):
Designing Interaction. Psychology at the Human-Computer Interface. Cambridge, 1991.

[Chung93] Chung, K. L., Representing and Using Non-Functional Requirements for Information System
Development: A Process-Oriented Approach, Ph.D. thesis, University of Toronto, 1993.

- 31 -

[Chung95] Chung, L., Nixon, B. and Yu, E., “Using Non-Functional Requirements to Systematically
Support Change,” IEEE International Symposium on Requirements Engineering (RE'95), IEEE Computer
Society Press, 1995, 132-139.

[Constantopoulos95] Constantopoulos, P., Jarke, M., Mylopoulos, J., and Vassili ou, Y., “The Software
Information Base: A Server for Reuse”, VLDB-Journal 4, 1 (1995), 1-43.

[CoopIS94] Second International Conference on Cooperative Information Systems (CoopIS-94), Toronto,
Canada, May 17-20, 1994.

[Dardenne93] Dardenne, A., Lamsweerde, A.V., Fickas, S., “Goal-directed requirements acquisition” .
Science of Computer Programming 20, 1 (1993), 3-50.

[DeMichelis94] De Michelis, G. and Grasso, M., “Situating Conversations within the Language/Action
Perspective: The Milano Conversation Model” , Proceedings of the Conference on CSCW (Chapel Hill ,
North Carolina, October 22-26, 1994), ACM Press, 89-100.

[DeMichelis95] De Michelis, G., “Work Processes, Organizational Structures and Cooperation Supports:
Managing Complexity” , Proceedings of the Fifth IFAC Symposium on Automated Systems Based on
Human Skill s - Joint Design of Technology and Organization, Pergamon Elsevier International, New York,
1995.

[DeMichelis96] De Michelis, G., “Computer-based systems between people and social complexity” ,
Proceedings of the Toshiba Chair Symposium on Human Oriented Information Technology and Complex
Systems, Keio University, Tokio, 1996.

[Dhar88] Dhar, V. and Jarke, M. “Dependency-directed reasoning and learning in systems maintenance
support” , IEEE Trans. Software Eng. 14, 2 (1988), 211-227.

[Doyle79] Doyle, J. “A truth maintenance system”, Artificial Intelli gence 12, 3 (1979), 231-272.

[Dubois89] Dubois, E., “A Logic of Action for Supporting Goal-Oriented Elaborations of Requirements,”
Proceedings of the Fifth International Workshop on Software Specification and Design (IWSSD'89), CS
Press, 1989, 160-168.

[DuBois97] Du Bois, P., Dubois, E. and Zeippen, J-M. “On the Use of a Formal RE Language: the
Generalized Rail road Crossing Problem”, IEEE Intl Symposium on Requirements Engineering (Annapolis,
USA, January 1997).

[Edmond97] Emond, D. and Papazoglou, M.P., "Reflection is the Essense of Cooperation", in this book.

[Ehn88] Ehn, P., Work-oriented Design of Computer Artifacts. 2nd ed. Stockholm. Arbetslivscentrum,
1988.

[Elli s95] Elli s, C. A., Keddara, K., and Rozenberg, G., “Dynamic Change within Workflow Systems” ,
Proceedings of the Conference on Organizational Computing Systems (Milpitas, CA, August 13-16, 1995),
ACM Press, 10-21.

[Feather87] Feather, M., “Language Support for the Specification and Development of Composite
Systems,” ACM Transactions on Programming Languages and Systems 9, 2 (April 1987), 198-234.

[Feigenbaum91] Feigenbaum, A. Total Quality Control, McGraw-Hill , 1991,

- 32 -

[Finin95] Finin, T., Lambrou, Y., and Mayfeld, J., "KQML as an Agent Communication Lamguage", in
Software Agents, J. Bradshaw (ed), AAA I/MIT Press, Menlo-Park, Ca., 1995.

[Flores88] Flores, F., Graves, M., Hartfield, B. and Winograd, T., “Computer Systemns and the Design of
Organizational Interaction” , ACM Transactions on Office Information Systems 6, 2 (April 1988), ACM
Press, New York, 153-172.

[Gasser91] Gasser, L., “Social Conceptions of Knowledge and Action: DAI Foundations and Open
Systems Semantics” , Artificial Intelli gence 47 (January 1991), 107-138.

[Georgakopoulos95] D. Georgakopoulos, M. Hornick, and Sheth, A. “An Overview of Workflow
Management: From Process Modeling to Infrastructure for Automation” . Journal on Distributed and
Parallel Database Systems, 3, 2 (April 1995), 119-153.

[Glance96] Glance, N.S., Pagani, D.S., and Pareschi, R. “Generalized process structure grammars (GPSG)
for flexible representations of work” . Proceedings of CSCW’96 (Cambridge, Mass., 1996), ACM Press,
180-189.

[Gotel94] Gotel, O., and Finkelstein, A., “An Analysis of the Requirements Traceabilit y Problem,”
Proceedings IEEE International Conference on Requirements Engineering, Computer Science Press, April
1994.

[Greenberg94] Greenberg S. and Marwood, D., “Real Time Groupware as a Distributed System:
Concurrency Control and its Effect on the Interface”, Proceedings of the Conference on CSCW (Chapel
Hill , North Carolina, October 22-26, 1994), ACM Press, New York, 207-217.

[Greenspan86] Greenspan, S., Borgida A., and Mylopoulos, J., “A Requirements Modeling Language and
its Logic”, Information Systems 11, 1 (1986), 9-23.

[Gruhn91] Gruhn, V. Validation and Verification of Software Process Models, Ph.D. Thesis, Univ.
Dortmund, Germany, 1991.

[Gutwin96] Gutwin, C., Roseman, M., Greenberg, S. “A usabilit y study of awareness widgets in a shared
workspace groupware system”. Proceedings of CSCW’96 (Cambridge, Mass., November 16-20, 1996).

[Hamel94] Hamel, G. and Prahalad, C., Competing for the Future, Harvard Business School Press, Boston,
Mass., 1994.

[Hammer93] Hammer, M. and Champy, J., Reengineering the Corporation: A Manifesto for Business
Revolution, HarperBusiness, 1993.

[Hsu93] Hsu M., “Special Issue on Workflow and Extended Transaction Systems” , Bulletin of the
Technical Committee on Data Engineering 16, 2 (June 1993), IEEE Computer Society.

[Jacobson92] Jacobson, I., et al. Object-Oriented Software Engineering: A Use Case Driven Approach,
Prentice-Hall , 1992.

[Jackson95] Jackson M. and Zave, P., “Deriving Specifications from Requirements,” Proceedings of the
Seventeenth International Conference on Software Engineering, ACM Press, 1995, 15-24.

[Janson96] Janson, M. and Woo, C.C., “A Speech Act Lexicon: An Alternative Use of Speech Act Theory
In Information Systems” , Information Systems Journal 6, 3 (July 1996), United Kingdom: Blackwell
Science.

- 33 -

[Jarke88] Jarke, M., Rose, T., "Managing Knowledge About Information System Evolution", Proceedings
ACM-SIGMOD Conf., Chicago, 1988

[Jarke92] Jarke, M., Maltzahn, C.G.v., and Rose, T., “Sharing processes: team support in design
repositories” , Intl. J. Intelli gent and Cooperative Information Systems 1, 1 (1992), 145-167.

[Jarke92a] Jarke, M., Mylopoulos, J., Schmidt, J.W., and Vassili ou, Y., “DAIDA: An Environment for
Evolving Information Systems” , ACM Transactions on Information Systems 10, 1 (January 1992), 1-50.

[Jarke93] Jarke, M. and Pohl, M., “Establishing Visions in Context: Towards a Model of Requirements
Processes” , Proc. 14th Intl. Conf. Information Systems (Orlando, Fl, December 5-8, 1993), 23-34.

[Jarke94] Jarke, M., Pohl, K., Rolland, C., and Schmitt, J.R., “Experience-Based Method Evaluation and
Improvement: A Process Modeling Approach” , Proc. IFIP WG 8.1 Conf. CRIS, Maastricht, North Holland,
1994

[Jarke94b] Jarke, M., Pohl, K., Dömges, R., Jacobs, S., and Nissen, H.W., “Requirements Information
Management: The NATURE Approach” , Engineering of Information Systems 2, 6, 1994.

[Jarke95] Jarke, M., Gallersdörfer, R., Jeusfeld, M.A., Staudt, M., and Eherer, S., “ConceptBase - A
Deductve Object Base for Meta Data Management” , Journal of Intelli gent Informations Systems 4, 2
(1995), 167-192

[Java95] Java: The Inside Story., http://www.sun.com/sunworldonline/swol-07-1995/swol-07-java.html,
1995.

[Jeusfeld95] Jeusfeld, M.A. and Johnen, U. “An Executable Meta Model for Re-Engineering of Database
Schemas” , International Journal of Cooperative Information Systems 4, 2&3 (June & September 1995) --
Special Issue on ER’94, Singapore: World Scientific, 237-258.

[Karbe91] Karbe, B., Ramsberger, N., “Concepts and implementation of migrating off ice processes” . In
Brauer/Hernandez (eds.): Verteilte Kuenstliche Intelli genz und Kooperatives Arbeiten, Springer, 1991.

[Kashyap97] Kashyap, V. and Sheth, A., "Semantic Heterogeneity in Global Information Systems: The
Role of Metadata, Context and Ontologies", in this book.

[Keen91] Keen, P., Shaping the Future: Business Design Through Information Technology, Harvard
Business School Press, Boston, Mass., 1991.

[Kelly96] Kelly, S., Lyytinen, K., and Rossi, M. “MetaEdit+: a fully configurable multi -user and multi -tool
CASE and CAME environment” , Proceedings of CAiSE’96 (Heraklion, Greece, 1996), 1-21.

[Kling82] Kling, R. and Scacchi, M., “The Web of Computing: Computer Technology as Social
Organization” , Advances in Computing 21 (1982), 1-90.

[Knoblock94] Knoblock, C.A., Arens, Y., Hsu, C.N., "Cooperating Agents for Information retrieval",
Proceedings on the Second International Conference on Cooperative Information Systems (Toronto,
Canada, May 17-20, 1994), 122-133.

[Kotteman84] Kotteman, J. and Konsynski, B., “Dynamic Metasystems for Information Systems
Development” , Proc. 5th Intl. Conf. Information Systems, Tucson, Az, 1984

[Kreifelts86] Kreifelts, T., Woetzel, G., “Distribution and error handling in an off ice procedure system”.
Proceedings of IFIP WG8.4 Working Conference on Methods and Tools for Office Systems (Pisa, Italy,
October 22-24, 1986), 197-208.

- 34 -

[vanLamsweerde95] van Lamsweerde, A., Darimont R. and Massonet, P., “Goal-Directed Elaboration of
Requirements for a Meeting Scheduler,” Proceedings of IEEE International Symposium on Requirements
Engineering (RE’95), IEEE Computer Society Press, 1995, 194-203.

[Lau94] C. Lau. Object-Oriented Programming using SOM and DSOM. Van Nostrand Reinhold, Thomson
Publishing Company, New York, 1994.

[Lee92] Lee, J., A Decision Rationale Management System: Capturing, Reusing, and Managing the
Reasons for Decisions, Ph.D. thesis, MIT, 1992.

[MacGregor90] McGregor, R., "The Evolving Technology of Classification-Based knowledge
Representation Systems", in Principles of Semantic Networks, J. Sowa (ed), Morgan-Kaufmann, 1990.

[Madhavji92] Madhavji , N. “Environment evolution: the Prism model of change”, IEEE Transactions on
Softwar Engineering 18, 5 (1992), 380-392.

[Madhavji93] Madhavji , N. and Penedo, M.H. (eds.). Special Section on the Evolution of Software
Processes. IEEE Trans. Software Eng. 19, 12, 1993.

[Manola92] Manola, Heiler, F., Georgakopoulos, D., Hornick, M. and Brodie, M., “Distributed Object
Management” , International Journal of Intelli gent and Cooperative Information Systems 1, 1 (March
1992), Singapore: World Scientific, 5-42.

[Mantei91] Mantei, M., Baecker, R., Sellen, A., Buxton, W., Milli gan, T. and Wellman, B., “Experiences
in the Use of a Media Space”, Proceedings of CHI (New Orleans, April 28 - May 2, 1991), ACM Press,
New York, 127-138.

[Martens97] Martens, C. and Woo, C.C. “OASIS: An Integrative Toolkit for Developing Autonomous
Applications in Decentralized Environments,” Journal of Organizational Computing and Electronic
Commerce 7, 3 (1997), New Jersey: Ablex Publishing Co.

[Mathiske95] Mathiske, B., Matthes, F. and Schmidt, J.W. “Scaling Database Languages to Higher-Order
Distributed Programming” . Proceedings of the Fifth International Workshop on Database Programming
Languages (Gubbio, Italy, September 1995), Springer-Verlag.

[Matthes94] Matthes F. and Schmidt, J.W. “Persistent Threads” , Proceedings of the Twentieth
International Conference on Very Large Data Bases (Santiago, Chile, September 1994), 403-414.

[Medina-Mora92] Medina-Mora, R., Winograd, T., Flores, R. and Flores, F., “The Action Workflow
Approach to Workflow Management Technology” , Proceedings of Conference on Computer Supported
Cooperative Work (Toronto, Canada, October 31 - November 4, 1992), ACM Press, 281-288.

[Microsoft94] Microsoft Corporation. Microsoft Office Developer's Kit, 1994.

[Milli ner95] Milli ner, S., Bouguettaya, A., and Papazoglou, M.P., "A Scalable Architecture for
Autonomous Heterogeneous Database Interactions", 21st VLDB Conference (Zurich, Sept. 1995).

[Munson94] J.P. Munson and Dewan, P., “A Flexible Object Merging Framework” . Proceedings of the
Conference on CSCW (Chapel Hill , North Carolina, October 22-26, 1994), ACM Press, New York, 231-
242.

[Mylopoulos90] Mylopoulos, J., Borgida, A., Jarke, M., and Koubarakis, M. “Telos: Representing
Knowledge about Information Systems” , ACM Transactions on Information Systems 8, 4 (October 1990),
325-362

- 35 -

[Mylopoulos92] Mylopoulos, J., Chung, L. and Nixon, B., “Representing and Using Non-Functional
Requirements: A Process-Oriented Approach” , IEEE Transactions on Software Engineering 18, 6 (June
1992).

[Nissen96] Nissen, H.W., Jeusfeld, M.A., Jarke, M., Zemanek, G.V., and Huber, H. “Managing multiple
requirements perspectives with meta models", IEEE Software, Special Issue on Requirements Engineering,
March 1996.

[Nonaka95] Nonaka, I. and Takeuchi, H. The Knowledge-Creating Company. Cambridge University Press,
1995.

[Oberweis94] Oberweis, A., Scherrer, G., and Stucky, W. “ Income/Star: methodology and tools for the
development of distributed information systems” , Information Systems 19, 8 (1994), 643-660.

[Oivo92] Oivo, M. and Basili , V.R. “Represneting software enginering models: the TAME goal-oriented
approach” , IEEE Trans. Software Eng. 18, 10 (1992), 886-898.

[OMG91] Object Management Group. The Common Object Request Broker: Architecture and
Specification. Document 91.12.1, Rev. 1.1, OMG, December 1991.

[OSF93] Open Software Foundation. OSF DCE Application Development Guide. Prentice Hall ,
Englewood Cli ffs, New Jersey, 1993.

[Palfreyman96] Palfreyman, K., Rodden, T., “A protocol for user awareness on the World Wide Web” .
Proceedings of CSCW’96 (Cambridge, Mass., November 16-20, 1996).

[Papazoglou92] Papazoglou, M.P., Laufmann, S., and Selli s, T., "An Organizational Framework for
Cooperating Intelli gent Information Systems", International Journal of Intelli gent and Cooperative
Information Systems 1, 1 (1992), 169-202.

[Patil92] Patil , R., Fikes, R., Patel-Schneider, P., MacKay, D., Finnin, T., Gruber, T., and Neches, R., "The
DARPA KNowledge Sharing Effort", Proceedings 3rd International Conference on Principles of
knowledge Representation and Reasoning, Morgan-Kaufman, 1992.

[Peters95] Peters, P. Szczuko, P., Jeusfeld, M., and Jarke, M., “Business Process Oriented Information
Management: Conceptual Model at Work” , Proceedings of Conference on Organizational Computing
Systems (Milpitas, Calf., August 13-16, 1995), ACM Press, 216-224.

[Peters96] Peters, P. and Jarke, M. “Simulating the impact of information flows on networked
organizations” , Proc. 17th Intl. Conf. Information Systems (Cleveland, Ohio, December 15-18, 1996).

[Petrie93] Petrie, C. “The Redux server” , Proc. First Intl. Conf. on Intelli gent and Cooperative
Information Systems (Rotterdam, Netherlands, May 12-14, 1993), IEEE Computer Society Press, 134-143.

[Pohl96] Pohl, K. Process Centered Requirements Engineering, John Wiley Research Science Press, 1996.

[Prinz96] Prinz, W. “Support for workflows in a ministerial environment” , Proceedings of CSCW’96
(Cambridge, Mass., November 16-20, 1996), ACM Press, 199-208.

[Ramesh92] Ramesh, B. and Dhar, V. “Supporting systems development by capturing deliberations during
requirements engineering” . IEEE Trans. Software Eng. 18, 6 (1992), 498-510.

[Ramesh93] Ramesh, B., Edwards, M., “ Issues in the development of a requirements traceabilit y model,”
Proc. Intl. Symp. Requirements Engineering (San Diego, Ca, 1993).

- 36 -

[Reder90] Reder, S. and Schwab, R.G. “The Temporal Structure of Cooperative Activity” . Proceedings of
the Conference on Computer-Supported Cooperative Work (Los Angeles, CA, October 7-10, 1990), ACM
Press, 303-316.

[Rolland95] Rolland, C., Souveyet, C., and Moreno, M. “An approach for defining ways-of-working” ,
Information Systems 20, 3 (1995).

[Roseman96] Roseman, M. and Greenberg, S. “TeamRooms: network places for collaboration” ,
Proceedings of CSCW’96 (Cambridge, Mass., November 16-20, 1996), ACM Press, 325-333.

[Scheer94] Scheer, A-W., Enterprise-Wide Data Modeling, Springer-Verlag, 1994 (4th edition).

[Schmidt77] Schmidt, J.W., “Some high-level language constructs for data of type relation.” ACM
Transactions on Database Systems 2, 3 (September 1977), ACM Press, 247-261.

[Scott-Morton90] Scott Morton, M., ed., The Corporation of the 1990s: Information Technology and
Organizational Transformation, Oxford University Press, 1991.

[Selic94] Selic B., et al., Real-Time Object-Oriented Modeling, Wiley, 1994.

[Sernadas91] A. Sernadas, C. Sernadas, P. Gouveia, P. Resende and Gouveia, J., “OBLOG - Object-
Oriented Logic: An Informal Introduction” , Technical Report, INESC, Lisbon, 1991.

[Smolander91] Smolander, K., Lyytinen, K., Tahvanainen, V.-P., and Martiin, P., “MetaEdit -- a Flexible
Graphical Environment for Methodology Modeling” , Proceedings of CAiSE’91 (Trondheim, Norway,
1991).

[Srikanth89] Srikanth, R. and Jarke, M. “The design of knowledge-based systems for managing ill -
structured software projects” , Decision Support Systems 5, 4 (1989), 425-448.

[Stallman77] Stallman, R.M. and Sussman, G.J. “Forward reasoning and dependency-directed
backtracking in a system for computer-aided circuit analysis” , Artificial Intelli gence 9, 2 (1977), 135-196.

[Stemple91] Stemple, D., Morrison, R. and Atkinson M. “Type-Safe Linguistic Reflection” , Database
Programming Languages: Bulk Types and Persistent Data, Morgan Kaufmann Publishers, 1991, 357-362.

[Stonebraker90] Stonebraker, M., Rowe, L., Lindsay, B., Gray, J., Carey, M., Brodie, M., and Bernstein,
P., “Third-Generation Data Base System Manifesto” , ACM SIGMOD Record 19, 3 (September 1990),
ACM Press, 31-44.

[Suchman84] Suchman, L. Plans and Situated Actiond, Cambridge University Press, 1984.

[Suchman94] Suchman, L., “Do Categories Have Politi cs? The Language/Action Perspective
Reconsidered” , Computer Supported Cooperative Work: An Intenational Journal 2, 3 (April 1994), The
Netherlands: Kluwer Academic Publishers, 177-190.

[Vernadat84] Vernadat, F., “Computer-Integrated Manufacturing: On the Database Aspect” , Proceedings
of CAD/CAM and Robotics Conference, Toronto, 1984.

[Vernadat96] Vernadat, F., Enterprise Modeling and Integration, Chapman and Hall , 1996.

[Wayner94] Wayner, P. “Agents Away” , BYTE (May 1994), 113-118.

- 37 -

[White94] White, J.E.,Telescript Technology: The Foundation for the Electronic Marketplace. White
paper, General Magic Inc., Mountain View, Cali fornia, USA, 1994.

[Wiederhold94] Wiederhold, G., "Interoperation, Mediation and Ontologies", Proceedings of International
Workshop on Heterogeneous Cooperativer Knowledge-Bases (Tokyo, Dec. 1994).

[Wieringa94] Wieringa, R., “LCM and MCN: Specification of a Control System Using Dynamic Logic
and Process Algebra,” in Case Study Production Cell - A Comparative Study of Formal Software
Development, C. Lewerentz and T. Lindner (eds), LNCS, 1994.

[Wieringa96] Wieringa, R., Requirements Engineering: Frameworks for Understanding, Wiley, 1996.

[Will e92] Will e, R., "Concept Lattices and Conceptual Knowledge Systems" in Semantic Networks in
Artificial Inteligence, F. Lehmann (ed), 1992, Pergamon Press, 493-515.

[Willi ams92] Willi ams, T., “The Purdue Enterprise Reference Architecture”, Purdue Laboratory for
Applied Industrial Control, Purdue University, 1992.

[Winograd86] Winograd, T. and Flores, F. Understanding Computers and Cognition; A New Foundation
for Design, Ablex 1986.

[Yu95] Yu, E., Modelli ng Strategic Relationships for Process Reengineering, Ph.D. thesis, University of
Toronto, 1995.

[Yu95b] Yu, E., Du Bois, Ph., Dubois E. and Mylopoulos, J., “From Organization Models to System
Requirements - A `Cooperating Agents' Approach” , Proceedings of the Third International Conference on
Cooperative Information Systems (Vienna, May 9-12, 1995), University of Toronto Press, 194-204.

