

The research described in this report was sponsored by the De-
fense Advanced Research Projects Agency under RAND's Nation-

al Defense Research Institute, a Federally Funded Research and
Development Center supported by the Office of the Secretary of

Defense, Contract No. MDA903-85-C-0030.

Library of Congress Cataloging in Publication Data

Cooperative intelligence for remotely piloted vehicle
fleet control.

"Prepared for the Defense Advanced Research
Projects Agency."

"October 1986."
Bibliography: p.
"R-3408-ARPA."
1. Artificial intelligence-Military applications.

2. Military surveillance-Mathematical models.
3. Vehicles, Remotely piloted-Mathematical models.

I. Steeb, Randall, 1946- . II. Rand Corporation.
III. United States. Defense Advanced Research
Projects Agency.
UG479.C66 1986 623.74 86-17767
ISBN 0-8330-0749-1

The RAND Publication Series: The Report is the principal
publication documenting and transmitting RAND's major
research findings and final research results. The RAND Note
reports other outputs of sponsored research for general
distribution. Publications of The RAND Corporation do not
necessarily reflect the opinions or policies of the sponsors of

RAND research.

Published by The RAND Corporation

1700 Main Street, P.O. Box 2138, Santa Monica, CA 90406-2138

(mm

R-3408-ARPA

Cooperative Intelligence
for Remotely Piloted
Vehicle Fleet Control

Analysis and Simulation

Randall Steeb, Stephanie Cammarata,

Sanjai Narain, Jeff Rothenberg,
William Giarla

October 1986

Prepared for the
Defense Advanced Research
Projects Agency

RAND
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

'

SUMMARY

Groups of agents (human or machine) can solve shared tasks effec-

tively by applying what is known as cooperative intelligence. Coopera-

tive behavior is necessary for solving problems that, because of time or

other physical constraints, cannot be solved by one agent acting alone.

Complex, spatially distributed military systems, such as C31 (command,

control, communications, and intelligence) networks, tactical air opera-

tions, and Naval task force control frequently rely on cooperative prob-

lem solving. In this report, we develop aspects of cooperative intelli-

gence in the context of a specific application, coordination of groups of

remotely piloted vehicles (RPVs) in a surveillance mission. This appli-

cation is particularly suited to the use of distributed artificial intelli-

gence (DAI) techniques, since it is characterized by limited communi-

cations, frequent coordinated behavior, and repeated dynamic replan-

ning. We use the RPV task simulation to develop DAI techniques for

solving key problems in task distribution, communication networking,

situation assessment, and cooperative planning. We also examine sup-

port environments needed for the development of cooperative intelli-

gent systems for graphics interfacing, activity scheduling, and multi-
processor interaction.

Our work with RPV fleet control simulations has led to the follow-

ing initial conclusions:

* A combination of object-oriented simulation and logic program-

ming appears to provide an effective framework for exploring

and implementing distributed problem solving systems.

" Choice of task negotiation procedure, message passing protocol,

planning algorithm, and uncertainty representation technique

depends strongly on situational conditions such as time stress,

communication costs, and number of planning options.

Preliminary recommendations for these issues are presented in the

context of RPV missions.

V

CONTENTS

PREFACE .. 1ii

SUMMARY v

Section

I. INTRODUCTION1

II. DISTRIBUTED ARTIFICIAL INTELLIGENCE:

RESEARCH ISSUES 4

Distribution of Tasks Among Processors 5
Communication Networking 6
Situation Assessment and Data Representation 8

Cooperative Planning and Control 9
U ser Interface 11

III. SIMULATION METHODOLOGY 13
An Object-Oriented Approach 13
Language Considerations 22
Graphics Interface 24
Implementation Configuration 28

IV. CONCLUSIONS AND FUTURE WORK 30

Appendix

A. Background: Operational RPV Applications 39

B. Hoses: A Mechanism for Intermodule Communication
in a Multilanguage, Multimachine Environment 48

C. Prolog: Description and Comparison with LISP 51

REFERENCES 59

vii

I. INTRODUCTION

Cooperative intelligent systems are coordinated groups of agents

involved in distributed problem solving activities. Distributed problem
solving has generated great interest recently with the advent of small,

powerful microprocessors and reliable communication networks and the

increasing awareness that many military problems are highly distrib
uted in nature.

Many of the problems addressed by cooperative intelligent systems
are not amenable to conventional techniques for "distributed process-

ing," in which tasks are decomposed into independent computations

and offloaded to multiple processors to run in parallel. This method-

ology is seldom applicable to complex military problems with spatially
distributed tasks involving agents with inconsistent views and dynami-

cally changing interdependencies. In these situations, interprocessor

interactions can be as important as the independent calculations.

Distributed problem solving is substantially more complex than

single-agent problem solving, although it uses many of the same tools.

Multiple agents may have differing skills or expertise to contribute to
the overall task. Thus they may have to decompose the overall prob-

lem into subtasks and negotiate them. The individual agents typically

have limited knowledge, and each may maintain its own incomplete
and possibly inconsistent database. Multiple agents must also coordi-

nate task execution. For example, before an attack can be mounted to

destroy an airfield, the surveillance and defense-suppression roles must

be successfully completed.
Aspects of distributed problem solving have been studied in many

diverse areas, including robotics (Davis, 1981; Konolige, 1981; Lozano-

Perez, 1983), ground-based intelligence gathering (Lesser, 1981), tacti-
cal planning (Steeb and Gillogly, 1983), command/control simulation
(Klahr et al., 1984), satellite communications systems (Kahn et al.,
1978), and concurrent language design (Jefferson and Sowizral, 1982).

Many of these applications exhibit limited communications, multiple

inconsistent databases, requirements for coordinated behavior, and fre-
quent dynamic assessment and replanning. The most difficult prob-

lems primarily concern task assignment, communication management,
data fusion, and cooperative planning.

Over the past several years, we have abstracted the characteristics of

several military and civilian air fleet control problems, postulated and

examined many possible architectures for cooperation (Steeb et al.,

2 COOPERATIVE INTELLIGENCE FOR RPV FLEET CONTROL

1981), and implemented a series of increasingly complex demonstration
systems (Steeb et al., 1984). The initial work dealt with simulated air
traffic control (ATC) tasks and resulted in the specification of some

heterarchical and hierarchical architectures for intervehicle coordina-
tion. This early work also included the development of an experimen-
tal framework for implementing and comparing alternative structures

(McArthur et al., 1982). Using this framework, we experimentally
examined means for negotiating task responsibilities among agents and
scheduling activities within individual agents (Cammarata et al., 1983).

We eventually shifted our emphasis to the more complex and
demanding problem of military remotely piloted vehicle (RPV) fleet

control. Here the aircraft must perform a common mission, operate in
a highly uncertain and hostile environment, and function under

extreme communication constraints. All of these conditions make dis-
tributed problem solving both more difficult and more essential than it
is in civilian ATC.

There are several additional, pragmatic reasons for concentrating on
RPV coordination, most of them having to do with the potential gains

distributed artificial intelligence (DAI) may provide over current con-
trol techniques. First, conventional radio control of RPVs from a com-
mand center may be ineffective under battlefield conditions because of
heavy channel demands, frequent time delays, and high operator skill
requirements. Local onboard control by intelligent processors lessens
reliance on the electronic umbilical. Second, the tasks performed by
RPV groups tend to be naturally distributed, both spatially and func-
tionally. Surveillance, for example, requires aircraft to cover different

regions, and different aircraft may perform entirely different
functions-e.g., sensing, jamming, or relaying. The RPV fleet control
task is also suited to DAI because of the existence of a body of codable
expert knowledge, much of which is in the form of heuristics (closed-
form analytic models have been defined for only a few aspects of RPV

coordination). Finally, RPV fleet control is of current military impor-
tance. Several airborne military platforms already have sufficient pay-
load capacity and electronic sophistication to support automated plan-

ning and control. Breakthroughs would have immediate effects on the
development of new weapons systems, communication networks, sensor
systems, and operational tactics. In Appendix A, we describe four key

RPV missions-surveillance, defense suppression, communications
relaying, and electronic warfare-and show how distributed problem

solving techniques can improve system performance in each of these

missions.
Our research does not focus on specifying more efficient and capable

RPV fleets, however. We are primarily interested in developing new

INTRODUCTION 3

distributed problem solving techniques. Our first objective was to
develop a general testbed for implementing distributed, cooperative sys-

tems. ROSS, the Rand object-oriented simulation system (described in

Sec. III), provides an effective core for such a testbed. Second, we
wanted to produce a series of RPV demonstration systems, providing

an environment for developing new DAI techniques and illustrating

and communicating our findings. Our demonstration system simulates

RPV surveillance operations. Third, we wished to specify new DAI
techniques covering such functions as task assignment, communication

networking, situation assessment, cooperative planning, and the human

interface. These techniques are applicable to a wide range of areas

beyond RPV coordination. Section II provides a general description of
the DAI techniques, and Sec. III examines their implementation in the
surveillance RPV simulation. Finally, the techniques are applied to the

creation of preliminary RPV operational guidelines, described in Sec.

IV. Appendix A describes the RPV task domain and analyzes the

potential usefulness of distributed problem solving techniques to key
missions. Appendixes B and C describe ancillary implementation
issues concerning multiprocessor communications and logic program-

ming techniques.

J

II. DISTRIBUTED ARTIFICIAL INTELLIGENCE:

RESEARCH ISSUES

Over the past few years, we have developed a series of increasingly

complex civilian ATC and military RPV simulations that allow us to
examine how individual agents can interact to accomplish common

goals.
Our early ATC work was concerned primarily with methods of

scheduling the various processes in each agent-communication, situa-

tion assessment, planning, and control-and comparing protocols for
task negotiation among agents. We found that knowledge-based forms
of scheduling, in which processes compete for attention and can inter-
rupt each other, are often essential in a distributed task (McArthur et
al., 1982). We also found that effective task allocation among agents

depends on such disparate factors as agent knowledge, action flexibil-
ity, and communication load (Steeb et al., 1984).

There are many ways of decomposing a task and assigning the sub-
tasks to processors. Each agent may control a different geographic
region (as in current ground-based ATC), a different function (such as

phases of flight-launch, enroute, targeting, and recovery-in military
RPVs), a different possible path in a plan, or a different physical air-

craft (Steeb et al., 1981). We have thus far concentrated on the last
architecture, which we term object-centered. Here, each aircraft has
onboard capabilities for all planning and control activities, providing
the most general distribution form and the most immediate application

possibilities.
In the ATC applications and later in our RPV work, we assumed

that each aircraft was able to sense in a limited area, with some over-

lap between adjacent members of a group. We assumed that communi-

cations between group members were range-limited and frequently
costly in some form (e.g., available bandwidth, resulting delays, enemy

detection and jamming). Because of the limited communications and
sensing, each aircraft developed its own uncertain and somewhat

inconsistent model of the environment and of the plans of the other

aircraft. This independent mode of agent operation is very different
from the shared-memory approach frequently assumed in distributed

processing systems. Shared-memory multiprocessor systems ensure
database consistency either by directly accessing the same memory
(using a common blackboard for making changes) or by having high-
bandwidth communications so that all changes can be broadcast to the

4

RESEARCH ISSUES 5

local databases. Most physically distributed military systems do not

have these luxuries, however. In some fashion, they must balance

database consistency with communication load.
We have implemented a series of surveillance RPV task simulations,

beginning with a very rudimentary three-RPV task with no defenses or

communication degradation, and evolving through versions with five

RPVs, jamming, aircraft attrition, special roles, and group reorganiza-

tion. These demonstration systems are discussed in detail in Sec. III.

We used the sequence of simulation systems to develop and explore

distributed problem solving techniques for:

1. Distribution of tasks among processors.

2. Communication networking.

3. Situation assessment and data representation.
4. Cooperative planning and control.

5. User interface.

Each of these areas is discussed below.

DISTRIBUTION OF TASKS AMONG PROCESSORS

Assignment of tasks to processors is a very pervasive problem in dis-
tributed problem solving. The group must determine how to partition

the overall task into relatively independent subproblems, negotiate

(with a minimum of messages) the association of tasks and processors,

and combine the resulting partial solutions into a coherent whole.

Aspects of this divide-and-conquer process can be found in such

disparate activities as automatic programming, operating systems
scheduling, communications networking, corporate decisionmaking, and

team sports. Over the years, several formal paradigms have emerged

for distributed processing systems. The Contract Net and ESP

approaches, for example, assigned processors to tasks on the basis of

bids by the competing processors (Davis and Smith, 1981; Singh and

Genesereth, 1984). This typically required a central decisionmaker to

receive and compare the bids.
In our early simulation systems, the task negotiation process

involved only selection of the RPV group leader. Each group member

sent its estimates of its own suitability to be leader (termed the role

factor) to the current leader. The current leader then compared the
role factors and announced the new leader. This protocol worked ade-

quately because there was no attrition (the current leader was never

damaged or destroyed), and messages were not jammed or otherwise

degraded. We found that the advantage of such a centralized orga-

6 COOPERATIVE INTELLIGENCE FOR RPV FLEET CONTROL

nization over more anarchic forms increased as the number of aircraft
increased (Steeb et al., 1984).

The picture changed when we went to more complex and realistic
situations. The introduction of specialized roles, communication degra-

dation (due to jamming or noise), and group losses and reorganization
all forced modifications in the task negotiation protocols. For example,
the negotiation for leadership might use very different criteria from
those for data fusion, communication relaying, or other roles. Leader-
ship requires a central position in the group, open communication
links, and knowledge of defenses and group plans, whereas data fusion
might require an outside position and specific defense knowledge. If
jamming is present or losses occur, the communication protocols for
negotiation must be modified. The aircraft require more robust
approaches than centralized comparison, e.g., a preestablished line of
succession or direct exchange and negotiation of individual role factors.

A change in the form and protocols for distribution of tasks may
dramatically change the behavior and effectiveness of the group. In
our early implementations, all situation assessment and planning func-
tions were performed by the leader. The followers sensed data, sent it

to the leader, responded to commands, and, when necessary, negotiated
new leadership. If some of the leader's functions were subsumed by the
followers, a speedup would occur through parallelism, although it would
be offset to some degree by communication delays. Greater distribu-
tion of functions should allow some preprocessing and filtering of
information prior to planning, and the group should be less vulnerable
to loss of the leader.

COMMUNICATION NETWORKING

Communications between aircraft are often limited in RPV missions
because of bandwidth problems, jamming, noise, delays, and the possi-
bility of enemy interception. The RPVs must decide what messages to
send, how to format them, and when to send them; they must also
decide how to service incoming messages. In some instances, the RPVs
must base these communication decisions on a model of the recipient's
needs, balancing the costs of communication with the value of the data.
Also, a multihop transmission path may be used, with the aircraft
relaying messages, sending back acknowledgments, and indicating when
a link is open, jammed, or dangerous.

Communications management problems become paramount when
several RPVs must interact, and when jamming and noise are present.
Here the RPVs frequently do not have a direct transmission path to

RESEARCH ISSUES 7

the other aircraft. They must route messages through intermediate
links, finding the most direct, most secure, and least loaded path, much

like a packet radio system (Kahn et al., 1978). We considered three
methods of routing messages between RPVs: communication tables,
route setup packets, and spreading activation. Communication tables

are lists maintained by each RPV that indicate which links are open,
out-of-range, noisy, jammed, dangerous, or simply unknown. The lists
may be updated when messages are received, acknowledgments are not

returned, jamming is sensed, or other inferences can be made about the
links. The second method uses route setup packets, special short-

length messages sent along candidate routes prior to a normal com-
munication. When acknowledged, they provide a means for comparing
the immediate performance of each possible path, but they tend to bur-
den the channel. The third method, spreading activation, involves
sending copies of a multihop message along all possible pathways.

This increases redundancy, virtually assures receipt, and requires no
table management overhead, but it can severely tax channel capacity.
We chose the communication table method in our early work, because
of the high costs of communication in surveillance RPV operations.

The routing problem is basically a constraint-satisfaction task, so it
seemed an appropriate task for which to compare LISP and Prolog
implementations. The algorithms for each of these implementations

attempt to find the lowest-cost (shortest, least dangerous, least noisy)
route for each message. Prolog algorithms show advantages in simpli-
city of code and ease of memory management. Appendix A provides a

more detailed comparison of the two languages, along with some exam-
ples of code.

Noise and errors in received messages lead to special problems. We
assume that a receiving RPV can identify errorful messages through a
parity check or other diagnostic procedure. The RPV can then request
a retransmission. Also, RPVs can request retransmission of "lost"
messages by noting omissions in message numbering sequences. For
the most part, noise and errors produce only a variable delay in the

transmissions.

Communications traffic can become particularly unreliable in highly
stressed situations, such as movement through dense defenses with
rapid attrition of aircraft. To alleviate this problem, we are examining

more distributed and robust forms of transmission, such as stepwise
relay, where each RPV determines the best link along which to send
the next transmission. The sender thus designates only the recipient
and the first hop. If the message is blocked, the process backtracks a

step, and the previous sender updates its communication table and
sends the message to a new RPV. This technique takes time but

COOPERATIVE INTELLIGENCE FOR RPV FLEET CONTROL

should result in more robust message transmission in degraded situa-
tions.

We have also considered several alternative protocols for the actual
exchange of information. For example, the sender may infer a need by
the recipient and transmit the data, or the receiver may directly
request data from another RPV. These are termed volunteer and
demand forms of communication (Lesser and Corkhill, 1983). In the
volunteer form, a Prolog or LISP program may be used to infer what
the other aircraft know, augmented by rules for deciding if the
knowledge justifies the cost of transmission. The demand form can use
a similar protocol to determine the best sources of information, or may
simply involve interrogating all other aircraft when data are needed.
The volunteer form is more efficient when information needs are
known (Steeb et al., 1984). Examples of some inference rules are given
in Sec. III.

SITUATION ASSESSMENT AND DATA

REPRESENTATION

The RPVs must maintain estimates of defense locations and types
and of the other RPVs' plans, status, and positions. Uncertainties in
these estimates may arise due to sensing fallibility, communication
noise, a priori data inaccuracy, or inappropriate rule application.
Assertions about the defenses and the other RPVs can be represented
probabilistically using LISP attributes, or Prolog Horn clauses. Which
representation to use depends on how the data will be manipulated.

Much of the information about the defenses must be estimated using
heuristics. Consequently, we used LISP attributes in our implementa-
tions for representation, and a MYCIN-like model of uncertainty for
representing beliefs (Steeb et al., 1984). Each sensing contact by the
RPVs adds to the measure of belief (MB) about a particular defense at
a particular location. If the location is subsequently overflown with no
contact, the RPV will add a measure of disbelief (MD). The confi-
dence factor (CF) for a particular defense is then MB - MD; it runs
from -1 to +1, although negative CFs are suppressed in all behaviors
(i.e., no actions are triggered from negative information). When data
are communicated, the confidence measures are modified according to
the characteristics of the channel. The RPVs use similar CFs to keep
track of their likelihood of having been detected by specific defenses.

Much of the information about the status of other RPVs, on the
other hand, can be obtained through inferential reasoning and can
therefore be represented and manipulated by Prolog statements. The

RESEARCH ISSUES

status, communication links, and knowledge of another aircraft can be
represented by Horn clauses, and Prolog routines will then determine if
a piece of information will be useful to that aircraft. The Prolog rou-
tines will also infer many items of information, so that data requests
should be reduced.

The defenses, meanwhile, perform the same functions of situation
assessment and planning that the RPVs do. The ground control inter-
cept (GCI) and surface-to-air missile (SAM) sites detect RPVs, send
data to the command centers (CCs), and respond to commands to jam
communications or intercept RPVs. For simplicity, we have not imple-
mented a cooperative planning capability equivalent to that of the
RPVs in these objects. Instead, we used a simple set of production
rules to guide their behavior.

The MYCIN approach to uncertainty propagation works adequately
for a few RPVs and a few objects, but it results in problems when
many contacts are made or many expectations are violated. More
rigorous approaches, such as the Dempster-Shafer calculus (Garvey et
al., 1981; Gordon and Shortliffe, 1985), will be necessary for subsequent
investigations.

COOPERATIVE PLANNING AND CONTROL

Planning, in the context of RPV fleet control, is the generation,
evaluation, and selection of group maneuver options. The maneuvers
may be necessary to avoid defenses or to collect surveillance informa-
tion. This planning function is closely tied to some of the communica-
tion management and situation assessment actions, such as deciding
whether to send or withhold information, or whether to infer or request
data about the defenses. In fact, the planning options may even
include waiting to receive more information through sensing, communi-
cation, or inference.

In our early demonstration systems, planning was of a straightfor-
ward condition-action form. The RPV leader created a model of the
defenses and the possibility of enemy detection and used this model to
match triggering conditions to maneuver actions. (Some illustrative
rules are described in Sec. III.) In this paradigm, the RPVs do not
project the group's trajectories, ascertain performance and danger, or
select the best plan. They simply match the situational conditions
(defensive positions, probability of detection, time since last contact) to
one or more communication or maneuvering responses.

Our early demonstration systems also had a somewhat restricted
action set. The RPVs could change coverage pattern (racetrack or

10 COOPERATIVE INTELLIGENCE FOR RPV FLEET CONTROL

figure-8), formation type (wave, vee, or stream), spacing (wide or close),
and leadership in response to threats or opportunities. But as we con-
sidered more options and made the situational conditions more com-
plex, we were led to develop a multistep planning process with pruning

of options and simulation-based evaluation. Such an approach deem-

phasizes detailed situational specification and gives added importance

to accurate simulation and evaluation (Hayes-Roth, 1985). A possible

sequence of steps is the following:

1. Problem recognition. The leader projects the current flight
plan of the group and notes a problem: high danger or low

probability of additional surveillance information.
2. Time-constraint check. The leader determines the time until

an action must be taken. This planning interval must be
greater than the estimated time to generate alternatives, pro-

ject them, evaluate choices, select one, command others to
take actions, and execute the plan. If insufficient time is

available, the leader terminates the planning process and

selects the best immediate situation match.
3. Option generation. If the planning interval is sufficient, the

leader finds all the maneuver options applicable to the situa-
tion. It then culls these to a viable set by checking con-

straints, such as distance from boundaries, formation require-
ments, and previously used actions.

4. Option projection. The leader projects each remaining candi-

date option and records expected outcomes: detections, jam-

ming, losses, and coverage. The depth of projection may
depend on the time available and the database confidence.

The leader may distribute the projection task by requesting

each follower to project its own trajectory and communicate

the result.
5. Option evaluation. The leader weighs the projected losses and

coverage and chooses the best option.
6. Option execution. The leader commands the followers, giving

maneuver commands and constraints to monitor. The leader
also responds to messages from the followers when constraints

are violated, modifying the plan accordingly.

This sequence is an elaboration of a planning process used in our

earlier ATC work (Cammarata et al., 1983). The leader first deter-
mines that the problem is important enough to go through deep plan-

ning, and that there is sufficient time to complete the planning process.
Then, he and the other RPVs generate possible options, pruning them

RESEARCH ISSUES 11

by checking available constraints. The RPVs then project the options

forward to evaluate their effectiveness. The leader compares the

options and selects one for execution. Of course, these activities do not

all have to be performed by the leader; they may be distributed across

the group.

USER INTERFACE

A particularly pervasive problem throughout our research has been

the user interface-the "window" on the workings of the many separate

agents. At a minimum, the user must be apprised of the activities
being performed by each agent, the current situation assessments, the

comnmunications being passed, and the planned trajectories and actions.

He must also be able to focus his attention on specific areas, control-

ling such functions as pan, zoom, time-stepping, and level of detail.

Our initial implementations used a C-based graphics system which
was designed primarily for information display rather than user input.

The simulator, at the end of an update, would transmit data needed to

produce the next display frame to the graphics program. The graphics

program would display the frame and allow such operations as zoom

and pan, but would not allow the user to point at objects or request

information. Some queries could be made though an auxiliary textual

screen, but these required direct input to the simulation.
Ideally, a simulation should display its simulated world with

appropriate detail and continuity to allow visual comprehension of the

behavior of the underlying model. It should allow interactive control

over what is animated and should permit stepping through animated

events. It should allow a user to interact graphically with the displayed

image to pan and zoom, change the positions of objects (for example, to

define an initial configuration or scenario), etc. Ultimately it should
allow direct graphical interaction to affect the simulation itself (e.g.,

drawing trajectories with a "mouse").

It is useful to allow the creation of "graphic artifact" objects which

do not correspond to real-world objects but which enhance comprehen-

sibility. Such objects often depend on (simulated) real-world objects or

on other graphic artifact objects. For example, a communication

between two simulated entities is shown by a line between them, the

endpoints of which must be determined by the positions of the com-

municating objects at the time the communication is displayed. Simi-
larly, the radar-sensing envelope of a group of sensing objects is

displayed as a curve which merges the individual envelopes of those

objects at their positions at the time of display. In such displays,

4 -

12 COOPERATIVE INTELLIGENCE FOR RPV FLEET CONTROL

positions must be represented symbolically so that they can be
evaluated at the time of display. This kind of graphic dependence

should be handled by the system without requiring the programmer to
worry about the order in which things are evaluated.

To allow this kind of graphic interface to be built, we provided a
flexible graphics-in-LISP (GIL) facility that would use the graphics
kernel standard (GKS) or Core graphics standards packages available

on Sun workstations. This was done to provide an appropriate

medium-level graphics capability in LISP with a minimum of effort. A
lower-level, device-oriented graphics facility was rejected because it

would require inordinate effort to provide sufficient power for our

application, and its nonportability would limit future evolution. A
higher-level, simulation-oriented facility was rejected on the basis that

we could not know in advance how it might evolve and therefore could

not define it appropriately. We chose a medium-level facility, because
it would allow the use of LISP to explore future approaches to graphic

simulation, and the GKS and Core standards would provide a reason-

able medium-level model that has t.r.en subjected to wide critical
review. Although GKS and Core are not identical, they provide simi-

lar functionality (the GIL facility is designed to use either one to pro-
vide equivalent functionality). Both standards provide device-

independence, resulting in a high degree of portability. The implemen-

tation itself is described in greater detail in Sec. III.

-4'

III. SIMULATION METHODOLOGY

We explored many of the issues raised earlier by implementing a

series of simulation systems. It readily became apparent that produc-

ing a testbed for simulation of multiple autonomous agents is a major

research effort in itself. Our implementations evolved through single-

and multiple-processor systems and through many different languages.
In this section, we first describe our object-oriented approach and then
discu-, some of our experiences and recommendations.

AN OBJECT-ORIENTED APPROACH

The simulation routines, the planning and problem solving pro-

cedures, and many of the graphics facilities for our RPV simulations
were written in ROSS, an object-oriented simulation language

developed at Rand (McArthur, 1984). Programs written in object-

oriented languages consist of a set of objects that interact with each
other via the transmission of messages. Each object (e.g., RPV, radar,

SAM site) has a set of attributes describing itself, and a set of message

templates and associated behaviors. A behavior is invoked when a
message is received that matches a template; the typical behavior

would be message transmissions to other actors. The object-oriented
style aids the understanding of distributed problem solving systems,

because objects control their own activities through individual
behaviors and maintain their own models via their local databases. For

example, data about sensed defenses are represented in the vehicle's
database, and reactions to the defenses result from behaviors triggered

by the receipt of messages. Our implementations employ this object-

oriented structure in three distinct areas of processing: behaviors for

simulating the scenario, behaviors for cooperative planning and control

by the RPVs, and graphics behaviors for user display and interaction.

The simulation behaviors define aspects of the scenario and capabil-
ities of the objects. These behaviors include defining RPV trajectories,

specifying time increments, calling randomization programs, sensing

other objects, communicating messages, and calculating outcomes. We
defined special objects for some of these functions, such as communica-

tion, scheduling, and performance monitoring, since these processes

were considered operational requirements rather than problem solving

activities.

13

14 COOPERATIVE INTELLIGENCE FOR RPV FLEET CONTROL

The second type of processing consists of behaviors for cooperative

planning and control by the RPVs. These behaviors include rules for

reasoning about role assignments, making decisions about generating

and routing messages, synthesizing maneuvers, and monitoring execu-
tion of the plans. ROSS is well-suited to expressing such behaviors,

because most of them are already in the form of responses to messages.

For example, the English and ROSS versions of a behavior for avoiding

defenses are shown below:

English:

If the group is in a stream formation, and the leader estimates
the probability of detection is greater than .6, then change to

another coverage pattern.

ROSS:

(If (and

(eq (-your formation) 'stream)
(-you are leader)

(greaterp (-your probability-of-detection) .6))

then

(-you change coverage-pattern))

The third type of processing concerns the graphics environment. In

our early systems, this environment was programmed in a combination

ROSS- and C-based subsystem. Communication with the simulation

objects was performed in ROSS, while device-dependent operations
were implemented in C. The system was able to display task condi-

tions, individual aircraft behaviors, and rule firings. As described ear-
lier, we programmed some of the graphics routines in LISP, so that the

operator could make queries and changes directly.
The three types of processing combine to produce a relatively gen-

eral distributed problem solving testbed. We were able to implement a

series of simulations with different message passing protocols, data

representation forms, scheduling and control structures, and analysis

routines. These are described in some detail in Sec. IV.
The typical form of the task simulation is shown in Fig. 1. Five

RPVs gather intelligence about ground defenses in a hostile area. The

RPVs then change their coverage pattern (the large circular and

figure-8 patterns in the figure), their formation geometry, and several

other aspects of flight in response to enemy threats or surveillance
opportunities. The defenses themselves can interact to detect, jam,

and fire on the RPVs; GCI radars, for example, can detect an RPV and

send a message to a nearby command center, which can then call for
jamming by the GCI site or launch a SAM. In Fig. 1, GCI radars are

SIMULATION METHODOLOGY 15

shown as small radar dishes surrounded by their sensing radii; SAM
sites have smaller sensing radii; and CCs and airfields have none. Fig-
ure 1 shows an explosion as the lead RPV is hit by a SAM, and Figs. 2,
3, and 4 show the reorganization of the group as its members interact

to avoid the defenses, negotiate leadership, and assign data fusion
responsibilities.

In our research, the simulation task passed through several phases,
each exercising a different aspect of cooperative situation assessment
and planning. Throughout the remainder of this report, we refer fre-
quently to these phases, using them as contexts for discussing distrib-
uted problem solving methods. We began by implementing a three-
aircraft demonstration of patterned flight over a benign environment.
This initial phase was useful for defining communication protocols and
leader negotiation procedures. These investigations are described in
our previous report (Steeb et al., 1984).

The second phase introduced active ground defenses and sensing.

The RPVs could, within a certain range, sense GCI sites, SAM sites,
CCs, and airfields. Certain defenses could likewise detect the RPVs.
This phase was useful for establishing protocols for passing informa-
tion about the defenses and for orchestrating avoidance maneuvers.
We did not use the normal ROSS method of message passing in the
simulation; instead we created a new ROSS object for each message.
The channel object could then manipulate the message in a variety of
ways-relaying it, corrupting it, etc. The leader would respond to data
messages and defense sensings by matching conditions to avoidance
maneuvers, which would be carried out by sending commands to the
followers.

In the third phase, we expanded the group to five RPVs and added
uncertainty to the processes of sensing by the RPVs and detection by
the GCI and SAM sites. The larger number of RPVs made the
interactions more complex and the likelihood of relaying messages
greater. The addition of uncertainty led to implementation of a
MYCIN-like system for maintaining and updating hypotheses in the
database. Measures of belief, disbelief, and confidence were main-
tained for assertions about defense location and type, and about
whether the RPVs had been detected by the defenses. The subsequent
addition of jamming by the GCI and SAM sites led to the introduction
of communication tables, with each aircraft sending messages among

the group by relaying them over several aircraft.
The current implementation (the fourth phase) adds special roles

and inference capabilities to the RPVs, coordinated attack functions by
the defenses, and reorganization of the RPVs with losses. Most of
these functions are implemented in the form of ROSS rules. For

. . ~ ~~~~ ~~.

20 (OO'ERATIVE INTIE.LI(;FN(E FOR RPV FIEF'T CONTROL

example, when triggering conditions are present, the RPVs negotiate
responsibilities for leadership and for data fusion about specific types
of defenses. The defenses, in turn, are given specific behaviors. The
GCI sites send contact information to the command center, which then
commands the nearest SAM sites to fire on the RPVs sighted. If
losses are sustained, the RPVs use negotiation and line-of-succession
rules to reorganize. We also augmented the graphics interface to show
more of the RPV interactions.

Over time, the sophistication of our simulation knowledge and the
scenario configuration both increased. As discussed above, the scenario
was expanded from three to five vehicles, the defenses in the system

became active firing agents instead of passive sensing objects, and addi-
tional forms of communication networking were added, among other
enhancements. We had developed a complex system of interacting
agents, and within each agent, a complex repertoire of problem solving
skills. As a result, we found it difficult to analyze the effectiveness of
adding a new RPV capability. On an absolute scale, we could analyze
the overall performance of the simulation to determine whether out-
comes were being improved or deterred by a new capability. However,
most of the new knowledge being added was accompanied by a variety

of parameters and threshold values. We found it increasingly difficult
to isolate the effects of a new capability for selecting parameters and
fine-tuning our choice of threshold values. Furthermore, in many
cases, it was advantageous to exercise a new strategy in isolation from
other capabilities.

For example, we recently added the capability for an RPV object to

perform an individual maneuver. Previously, all actions by RPVs were
instructed by the leader or by a set of "group negotiated" plans. The
new knowledge for independent RPV maneuvers would enable an RPV
to decide to temporarily diverge from the fleet. Incorporating this
knowledge led to questions about when to perform independent
maneuvers, what the maneuvers should look like, who should be noti-
fied of the independent actions, and when the RPV should rejoin the
fleet. We designed and implemented behaviors to effect individual
RPV maneuvers, which included many variable parameters, such as
time of divergence and trajectory of the maneuver. Our initial experi-
mentation resulted in some unexpected behavior. Isolated scenarios
that we presumed would perform badly were actually offset by other
knowledge such as fleet avoidance, defense responsibilities, and fleet
reconfiguration. We observed that other knowledge embodied by an
RPV sometimes compensated for unintelligent decisions about individ-
ual maneuvers. Through similar repeated experiences, we realized that

4

SIMULATION METHODOLOGY 21

we needed better methods for isolating and identifying effects of new

knowledge.

We developed a reduced RPV scenario which provided only the very

basic navigational, sensing, and communication skills. This reduced

configuration provided an environment which could be viewed as a ker-

nel debugging tool for experimenting and testing object behaviors and

capabilities. We first reduced the number of RPVs from five to two to

limit the complexity and combinatorics of RPV negotiation. Whereas

the original scenario contained three SAM sites, six GCI sites, and a

CC, the defenses in the reduced scenario were limited to two SAM

sites. This reduction helped to minimize reactive behavior by the

RPVs. In the complete surveillance scenario, RPVs are rarely in a

quiescent state; they are constantly reacting to defense proximities in a

prioritized fashion. By enabling periods without defense interference,
we could better observe inter-RPV exchanges, which had previously

been masked by high-priority RPV/defense exchanges. A third modifi-

cation involved trajectory simplification. In the large-scale scenario,
RPVs navigated on either a figure-8 or a circular track plan. In the

small-scale scenario, the trajectory was reduced to a simple linear track
extending diagonally across the surveillance airspace. Normally,

figure-8 and circular trajectories are advantageous because of the itera-
tive coverage they offer. However, we found that repeated sightings of

defenses resulting from track plan iterations increased an RPV's prob-

ability of detection. This increased detection in turn resulted in higher

RPV attrition, which is undesirable in a testing environment. The
fourth simplification we implemented minimized the communication

traffic by allowing only point-to-point transmission. This restriction,

coupled with a reduction in the number of RPVs, substantially eased

the message traffic and allowed RPVs to respond in a timely fashion to

messages. Without these limitations, an RPV's input message queue
was rarely flushed. Furthermore, the input messages were prioritized

on the basis of urgency, which resulted in some of them being outdated

by the time they were received.

With our reduced simulation system, we were able to test new RPV

capabilities much more effectively. We noticed that the kernel system

streamlined our development, debugging, and testing process in general,

and promoted good software engineering practices. We found that it
was much easier to expand the reduced scenario to add more sophisti-

cation than it was to iteratively reduce the full-scale simulation system.

We were aware, however, of the dangers of using this methodology.
First, we did not want to reduce the scenario so drastically that the

problems we were addressing would become trivial and unrealistic. We

were also concerned that we might ignore the effects of integrated

I4

22 COOPERATIVE INTELLIGENCE FOR RPV FLEET CONTROL

behaviors and skills by focusing strictly on single capabilities. Finally,
we wanted to ensure that a scaled-up version would be valid. Our solu-
tion was to retain and incrementally upgrade the large-scale scenario
with the full complement of RPV facilities. In this way, we utilized the
limited system to focus and pinpoint results for local debugging and
sensitivity analysis, but relied on the full-scale sophisticated system for

testing overall performance and outcomes.
In all these simulations, we made a number of simplifying assump-

tions and abstractions. Our primary goal was to produce a useful
testbed for developing and exploring DAI techniques, not to reproduce
a hypothetical, high-fidelity RPV mission. For example, we repre-
sented time and space continuously in some calculations, but most

behaviors involved stepping time forward in discrete (but variable)
steps. We simulated behaviors such as sensing, jamming, and com-
munication probabilistically, using a randomization program in the
scheduler object. Finally, we constrained some of the complexity of the
problem by making the airspace two-dimensional. Altitude was not
represented explicitly, and we ignored the problem of inter-RPV colli-
sion during maneuvers (we assumed that each RPV was at a different
assigned altitude). We felt that the resulting simulation was both rich
enough and sufficiently constrained to allow us to examine techniques
for distributed problem solving.

LANGUAGE CONSIDERATIONS

Our original ATC simulations were programmed in ROSIE' and
then in LISP. As we moved to the more complex domain of military
RPV control, we found that we needed a more powerful and efficient
simulation language. We chose ROSS because its message-passing for-
malism is well-suited to modeling interactions among several objects.
ROSS also has advantages over other simulation languages, such as
Simscript (Kiviat et al., 1968) and Simula (Dahl and Nygaard, 1966),
because of its object-oriented nature, its inheritance features, its
pattern-matching flexibility, and its English-like form for representing
rules. ROSS also enabled us to use a substantial amount of code that
had previously been developed for air-penetration and ground-warfare
scenarios (Klahr et al., 1982; Klahr et al., 1984).

The demands on the simulation language increased dramatically as
the research program evolved. Initially, our emphasis was on role
negotiation and activity prioritization, functions that entailed relatively

'ROSIE is the trademark and service mark of The Rand Corporation for its Rule-
Oriented System for Implementing Expertise.

4f

SIMULATION METHODOLOGY 23

simple messaging, situation assessment, and planning operations. We

later expanded these functions to include complex data fusion, com-

munication relaying, reorganization, and planning activities. As a
result, the number and size of rules increased rapidly, with a conse-

quent slowing of code generation and simulation speed.

Our development process in the ROSS programming environment

was slowed by poor execution speed, lack of flexibility during object

and behavior specification, and the need for manual record keeping.

The execution-speed problem was due to the multilayered nature of

ROSS. ROSS is written in LISP, and therefore ROSS code can be

executed in either an interpreted or compiled mode. Also, it is easy

(and encouraged for some tasks) to integrate LISP procedures and

functions with ROSS behaviors. The existence of the two languages,

although compatile, in the interpreted mode, contributed to some

semantic problems when running compiled code. We eliminated this

incompatibility by rewriting portions of ROSS and aspects of the com-

piling environment. The second obstacle resulted from a stringent con-
vention in ROSS requiring objects and behaviors to be unnaturally dis-

tributed across files. This convention restricted the modularity of the

code, making debugging and testing difficult. We alleviated this prob-

lem by adding some file-management routines to ROSS. The third

deficiency concerned bookkeeping and file-management operations
which had to be performed manually. By automating these operations,

which was fairly easy, since they are quite mechanical, we increased

the speed of compiling and executing ROSS code.
We also added some capabilities to ROSS by coding some functions

in Prolog (written in Franzlisp), a logic programming language that is

better suited than LISP for certain constraint-satisfaction tasks, such

as routing of messages during jamming, information-value calculations,

RPV slot reassignments, and special inferences. For these functions,
Prolog provided advantages over LISP in efficiency of expression and

memory management. Appendix A presents some empirical compari-

sons between the two languages.

We may eventually have to further augment the current message-
oriented structure of ROSS to include special database demons, plan

scripts, and other procedures. Database demons would be used to test

for complex combinations of conditions. This may be more efficient

than the current ROSS procedure of spreading separate message tem-
plates across many objects. Similarly, plan scripts (time-tagged

sequences of conditional actions organized much like frames) may pro-
vide a better means of representing timing and sequencing than the
"send an action reminder to yourself" procedure of ROSS (Carbonell,

1978; Steeb and Gillogly, 1983).

-- v- v - r

24 COOPERATIVE INTFI1..(EN(FJOR RPV FLEET CONTROL.

GRAPHICS INTERFACE

Our original graphics interface used the ROSS graphics package

(RGP), which had been modified repeatedly to adapt to changes in host

hardware, display hardware, and UNIX operating system versions.

The graphics hardware interface for the RGP was written in C and

called from LISP (ROSS); this allowed ROSS objects to display them-

selves by calling functions that accepted their graphic attributes as

parameters. This approach was necessitated by the lack of graphics

support in Franzlisp; it had the fortuitous advantage of hiding the

details of the display hardware from the simulation, while allowing the

C code to take advantage of the hardware and provide a device-

independent interface to the simulation. The attendant disadvantage

was that the simulation had only limited and indirect control over the

display. In addition, changes in display hardware often required dras-

tic changes to the C code.

Since LISP provides only minimal support for calling "foreign" pro-

grams (such as the graphics object-code routines), we decided to build a

fairly general interface facility to allow importing such foreign code

into LISP. This facility should eventually also provide transparent
multiprocessor communication across a net to allow experimenting

with distributed architectures and offloading graphics processing onto

dedicated machines. Toward these goals, we have implemented the

first phase of what we call "hoses" (which resemble UNIX "pipes" but

are more flexible). The GIL facility uses hoses to access the SunCore

package from Franzlisp. Hoses are described in detail in Appendix B.

GIL is oriented around the concept of an image composed of a
number of graphic "segments" (analogous to those implemented by the

GKS and Core standards). A segment can contain an arbitrarily com-

plex picture composed of many individual items; it encapsulates this

picture, allowing it to be displayed, hidden, transformed (i.e., scaled,
rotated, moved), etc. An application can therefore change some aspects

of the displayed image simply by changing attributes of segments (and

the transformations applied to them) rather than by redisplaying the

entire image. The application can also change an overall transforma-

tion that applies to the entire image (e.g., for panning or zooming). In

short, GIL maintains the state of the display and allows efficient incre-
mental changes to be made to it. Although it is possible for an applica-

tion to redisplay the entire image whenever it changes anything (as

occurred with the RGP), this undermines the efficiency of the graphics

standards (and also prevents them from utilizing the power of newer

graphics machines that employ dedicated graphics processors to per-

form segment transformations in hardware).

SIMULATION METHODOLOGY 25

GIL also interfaces with input devices such as the ubiquitous mouse.
When the user selects an object on the screen, GIL tells the application
which segment (and which item within the segment) was selected. The
application maintains a mapping between segments and objects to

determine which object the user selected.

Display-Update Alternatives and the Graphics Delta Approach

The basic purpose of simulation graphics is to display the behavior-

of a model. (The term "model" is used here to refer to the underlying
simulation independent of any graphic display.) We have identified
three approaches to keeping a display up to date with respect to the
model. The first is to let the model run without performing any expli-
cit graphics, and to use a "graphics engine" to update the display by
continually redisplaying the entire state of the model; this is analogous
to maintaining a bit-mapped (or character-mapped) display with a
"display processor" (essentially the approach implemented by the
RGP). The second alternative is an "incremental graphics" approach,
in which the model updates the display explicitly whenever anything
changes. The third alternative is a compromise between these
extremes in which the model performs no explicit graphics, but the
graphics engine figures out what must be changed for each new graph-
ics frame and generates incremental updates as needed. We call this
the "graphics delta" approach.

The advantage of the display processor approach is that the model

need not be concerned with producing graphics output; it simply runs
and keeps its state current. The display processor keeps the simulated
situation displayed by essentially redisplaying its entire state with each
frame. The display processor must access graphic attributes of the
model only when they are in a consistent state, and it must generate a
new graphics frame whenever a "graphically significant" event occurs
in the model, which requires synchronization with the model. In addi-
tion, every new frame requires redisplaying the entire model state.

In the incremental graphics approach, the model generates graphics
output as it runs, thereby relying on a maintained graphics state which
it updates as needed. This results in greater efficiency, which in turn
may improve the appearance of the display, since if a given graphic
attribute is not affected between frames it will not cause the display to
be updated (this reduces redundant updating, which in turn reduces
both graphics processing and potential visual distraction). It may also
result in better dynamics: When an event in the model produces
graphics output, the model can use special graphics techniques (e.g.,
animation) to highlight the meaning of the event for the user (this is

26 (OOPERArIVE INTELLI ENCE FOR RPV FI.FET CONTROL

more difficult with the display processor approach, since the meaning

of the event may be lost by the time the display processor produces its
next graphic update). The disadvantage of this approach is that the

model must perform all graphics output explicitly; it must be concerned
with graphics throughout its code. The conceptual cleanliness of sim-

ply asking each displayable object to display itself with each frame is

lost.

The graphics delta approach combines the advantages of the other
two approaches. The model performs no explicit graphics output, but

simply updates attributes, as in the display processor approach. How-
ever, all "graphic attributes" (those that affect the display) keep a his-

tory of their last-displayed value. A new frame is generated whenever

certain "graphic triggering" events occur, such as the changing of
selected graphic attributes, clock ticks, and explicit display commands

necessitated by the model. These graphic triggering events invoke the

graphics engine implicitly (it does not run independently as it does in
the display processor approach). The graphics engine, rather than

redisplaying the entire simulated situation, uses the history of the

model's graphic attributes to form a "graphics delta" between the
current graphic state of the model and the last displayed frame. This

graphics delta is used to generate incremental updates to a maintained

graphics state, thereby retaining the efficiency of the incremental
approach. In many ways, the resulting protocol is similar to that

necessary for efficient communication between two problem solving

agents. The sending agent transmits only the information that is
essential to the recipient.

The graphics delta approach retains the conceptual simplicity of the

display processor approach, since the graphics engine can simply ask

each displayable object to redisplay itself; however, this redisplay has

the efficiency of the incremental approach as a result of the mainte-

nance of graphic-attribute history. Synchronization is provided by the

implicit invoking of the graphics engine by the occurrence of graphic-

triggering events in the model; these events are also responsible for
forcing the model into a consistent state before each graphic update.

The only potential deficiency of this approach is that (unlike the incre-

mental approach) it may not always allow taking full advantage of the
meaning of a graphics event within the model; such meaning must be

captured by the model at the time of the event by means of setting

additional attributes.

4

SIMULATION METHODOLOt' 27

Autonomous Attributes and Update on Demand

Attributes that change over time (such as position) present special

problems in a simulation, since the simulator must always ensure that
they are up to date before using them (e.g., displaying a new frame).
We term such attributes "autonomous" because they conceptually vary

by themselves (as time advances). Autonomous attributes are normally

updated as a function of time. To maintain consistency for such attri-
butes, we have implemented an "update on demand" strategy which

forces an autonomous attribute to be updated whenever its value is
consumed within the simulation. This mechanism allows graphics

updates to be performed without additional synchronization (beyond

the triggering discussed above). In fact, this approach ensures con-

sistency of autonomous attributes throughout the simulation (not just

during graphic updates), thereby eliminating considerable ad hoc code
from the model, which would otherwise have to perform explicit

updates wherever there is any chance that they may be necessary.

Intermediate Mapping Layer

The approach outlined above assumes that when an object is asked
to display itself, it can generate the delta between its current graphics

state and its previously displayed state in such a way that the display

can be updated efficiently. This requires that the graphics engine
maintain a state that can be incrementally changed. In order to main-

tain the necessary correspondence between the states of objects and

their displayed representations, an intermediate layer is interposed

between the application and GIL. This layer maintains what is in

effect a symbolic display list for GIL. It also handles those cases where
an incremental change in an object's graphics state can be effected only
by redisplaying the object (i.e., when changing display attributes that

can be changed only by deleting and recreating segments). The inter-

mediate layer also provides mapping between the graphics engine's

representation (e.g., Core/GKS segments) and the application's objects.

Graphic Dependence and Graphic Artifact Objects

To handle the display of communication links between objects,

radar-sensing envelopes, and similar phenomena, we have introduced

the notion of a "graphic artifact object" whose image depends on other

objects. Graphic artifac* objects provide a way of representing "presen-

tation artifacts" that have no direct analogues in the real world. The
images of graphic artifact objects must always be computed late,

28 COPER.ATIVE INTELLI;ENCE FOR RPV FLEET CONTROL

because they mty depend on position information about other objects;

this prevents "ghost" images, for example, showing a communication

link between previous positions of moving objects.

IMPLEMENTATION CONFIGURATION

Cooperative interactions among multiple intelligent agents can be
simulated with a single processor or with a multiprocessor network.

For much of our initial work, we chose the simpler single-processor

route. The surveillance RPV task was programmed in ROSS and Pro-

log on a VAX 11/750 (later a Sun 2/120), with C-based color graphics
running through an AED 512 (later in LISP/GKS on a Sun 2/160).

All simulation objects (RPVs, GCI and SAM sites, CCs, communica-

tion channels, etc.) were treated as separate entities with their own

databases. The entities shared processing resources, and time was

stepped forward in such a manner that asynchronous behaviors were
accurately reproduced. In fact, we felt that true asynchronous mul-

tiprocessing would not contribute significantly to the fidelity of the

simulation, since all communication delays, timing problems, etc., could
be programmed into the single-processor simulation. A multiprocessor

system would, however, provide advantages in enhanced graphics inter-
faces and speedup through parallelism.

We also explored the possibility of transferring this single-processor

implementation to a multiprocessor environment with two Sun work-
stations on an ethernet. Here we would dedicate one Sun as a simula-

tion processor and one as a graphics processor. The initial architecture
would consist of a one-way communication channel, from the simulator

to the graphics, to be upgraded later to two-way communication for

user input from the graphics side. The system would achieve speedup
by having the simulation one or more time steps ahead of the graphics.

The simulation Sun will be processing for time t while the display is

being generated for time (t - n). This type of scheduling assumes
there will be little or no intervention (beyond screen parameter inputs)

from the user. As the need and demand for user interaction increase,

it will be necessary to synchronize the simulation and graphics, either

by backing up the simulation one or more steps or advancing the
graphic display one or more frames. The choice will depend on the size

of the time step, the granularity of the simulation, and the type of user

interaction. This form of distribution should be totally transparent to

the user. The user should be able to initiate, view, back up, interrupt,

or restart the simulation from the graphics processor, unaware of the

tandem configuration.

SIMULATION METHODOLOGY 29

An alternative distribution would be to couple each RPV to an indi-
vidual processor. Each processor would have its own graphic display,

based on the contents of the database of the resident RPV. This con-

figuration would be very useful for isolating and observing the behavior

of a particular RPV under different conditions and with different roles.

The viewer could interrupt the simulation, modify some parameters or

behaviors, and watch the effect of the changes. A distribution of this

sort would require some major extensions to the ROSS language for

distributing objects and passing messages across machines.
With any of these multiprocessor configurations, the connections

between machines become important, particularly since each machine

may be running multiple processes in different languages. The hose

facility (mentioned above) allows the processors to interact efficiently.

____..-. - . .4

IV. CONCLUSIONS AND FUTURE WORK

We noted at the beginning of this report that we have four long-

term program objectives-development of a general testbed for imple-
menting distributed systems, implementation of a series of RPV
demonstration systems, specification of new DAI techniques, and appli-
cation of the techniques in the form of operational guidelines. We
have made progress, although not always in the anticipated direction,
on all of these objectives.

Our testbed has moved from a simulation of three RPVs flying over
a benign environment to one with five RPVs experiencing jamming,
uncertainty, losses, and reorganization. The testbed itself is composed
of a combination of ROSS simulation functions, Prolog inference rou-
tines, and C- and LISP-based graphics. In this development, we found
that ROSS is very well suited for distributed problem solving research.
Its inheritance feature, message-triggered action, and English-like rules
make it effective for transparently modeling interactions among a
group of agents. At the same time, we found that Prolog is more effec-
tive for certain problem solving tasks (several examples are given in
Appendix C).

A particularly challenging aspect of the testbed was the graphics
interface. As the task simulation became more complex, far more
information had to be displayed to the user: object locations and types,
communication links, situation assessments, processor activities, group
organization, etc. To follow the cooperative behaviors, the user must
control the characteristics of the displays by setting the level of detail,
time steps, and viewpoints, and making specific queries of the problem
solving agents. These needs led us to develop the GIL and hose
methodologies.

The difficulty of producing a coherent, understandable, and interac-
tive testbed for simulation of multiple problem solving agents ulti-
mately led us to initiate a new study of knowledge-based simulation
methodology. This new study will augment the object-oriented ROSS
simulation methodology with reasoning, explanation, and interactive
graphics capabilities. We will attempt to develop representations that
allow the user to view the model at different levels of abstraction, run
separate portions of the overall simulation, and view graphic explana-
tions of system behavior.

Our second product, the RPV fleet control demonstration system,

provided a specific environment for developing and testing new DAI

30

CONCL'SIONS AND) F1Tt RE %ORK 31

techniques. As we progressed, the RPV simulation became more com-
plex and realistic, since the RPV agents had to contend with uncer-
tainty, jamming, and losses. The RPVs had to cooperate to build up a
picture of the defenses while minimizing their losses and maintaining
their organization. The task combined aspects of situation assessment
and cooperative planning that are common to virtually all complex mil-
itary systems. It also displayed the many forms of communication
degradation-noise, delays, jamming, and range problems-that make
distributed problem solving essential. The new forms of organization
and behavior we have explored should have significant impacts on RPV
design, tactics, and doctrine.

The third product, new DAI techniques, was our main concern. We
examined techniques for distribution of tasks among processors, situa-
tion assessment, communications networking, cooperative planning,
and implementing the human interface. We have discussed each of
these separately above, but in fact they are strongly intertwined. We
also examined different paradigms for knowledge representation and
activity scheduling.

Our work in task negotiation showed the importance of defining
effective "role factors" to use in comparing each agent's suitability for
tasks. The work also showed the need for specifying efficient commu-
nication protocols for exchanging role factors. The factors we noted as
important to leadership an ! data fusion included aircraft location, com-
munication link status, and knowledge of defenses and plans. Role
negotiation should occur only when major disruptions occur-e.g., the
group suffers losses or the leader is isolated-and communications are
sufficiently open for the rest of the group to interchange factors. If the
group negotiates too often, the communications and processing loads
could be overwhelming. We also found that if the leader is still opera-
tional, the most efficient protocol is to have the leader request factors
from the others, compare them, and announce the roles. When the
leader is not able to do this or more robustness is necessary, each of
the remaining agents can broadcast its role factors, with the first one
receiving a full set announcing the new roles. In emergency situations,
when links are degraded or time is critical, the RPVs may simply use a
preset line of succession to designate their successors. An alternative
for future exploration is a form of chain letter, in which the group cir-
culates one or more role-factor messages, each aircraft adding its own
factor and passing it on until the list is complete. Another possibility
is a more free-form negotiation, in which the participants exchange
messages describing tradeoffs and constraints.

Situation assessment encompasses the problems of data representa-
tion and probability aggregation. We found that the rudimentary

32 COOPERATIVE INTELLIGENCE FOR RPV FLEET CONTROL.

MYCIN formulation for representing and propagating belief and disbe-
lief in an assertion was sufficient for work with a few objects and a few

data points. As the number of objects, sensings, and data correlations

increased, however, the MYCIN formulation began to have problems,
because of its disregard of independence assumptions. Subsequent

research should utilize a more rigorous approach, such as the

Dempster-Shafer or Bayesian paradigms, to produce more accurate
estimates of belief, disbelief, and ignorance in each proposition.

A sideline aspect of situation assessment is information-value calcu-

lation. When an RPV makes a sensing, changes its plan, or receives

new information, it may calculate the information's value to another
RPV before sending it to that RPV. Such a balancing of information

value and communication cost is often necessary in noisy or dangerous

situations or when there is much overlap of knowledge. We explored
the use of Prolog programs for making such evaluations, by inferring
what the other RPVs know and need to know. This representation

form was found to be more compact and efficient for this task than

LISP.
The third DAI issue we examined was communication networking.

In this task, messages frequently have to be relayed across the group,

e.g., when interaircraft links are out of range, noisy, or jammed. We
found that an effective means of routing messages was to maintain a

communication table in Prolog and use logic programming algorithms

to "prove" that a viable path exists. We recommend extending this
type of procedure in highly uncertain situations by having the sending

aircraft decide which is the best aircraft to send to in the relay
sequence, and letting that aircraft decide on the next step. This may

occasionally require some backtracking.

The communications themselves involve data transmissions, role-

factor exchanges, task announcements, action commands, and ac-
knowledgments. Several of these can be performed in either a demand

or volunteer form. For example, an RPV responsible for intelligence
on GCI sites could either periodically interrogate the other aircraft or
wait for them to send updates when they sense such sites. The

demand form is more efficient during periods of communication

danger, but it results in data fusion delays. It appears that algorithms

are needed for selecting the communication protocols according to the

danger and time stress present.
Most of the initial actions in our work in cooperative planning were

group maneuvers chosen by the leader in response to situational condi-

tions. We later expanded this planning activity to include projection
and evaluation of several candidate plans over multiple updates. This

required ancillary development of heuristics for determining whether

CONCLUSIONS AND FUTURE WORK 33

sufficient time exists for the planning, evaluation, command, and exe-

cution cycle. This process is much more efficient in distributed form,
with all the aircraft participating in the projection and evaluation. The

planning may be done by assigning different candidate options to each
aircraft for projection, or by having each aircraft project and evaluate
its own flight path in a given option. We also added individual actions

to the repertoire of RPV responses to danger, such as splitting off from

the group and rejoining, which considerably reduced response time to
threats, at the expense of occasionally decoupling the group.

The final DAI problem we addressed was the development of an
effective user interface. The RPVs in our scenario were designed to
perform all operations (communications, planning, etc.) autonomously,
without human input. However, the user did act in a supervisory mode
during development and needed to follow the reasoning used by the
system. The user also needed to be able to change properties and

behaviors when problems occurred. We found that a two-way graphics
interface was essential for this, with the user able to point at an icon

and alter it, query its state, or change its knowledge. The framework
for this capability was developed with the GIL and hose constructs.

We also found that animation of each aircraft's plan, showing projected
problems and progress toward a solution, is essential. In future work,
we hope to expand the interface functions to include graphic explana-

tion capabilities and adjustable levels of abstraction.

Scheduling the many behaviors involved in situation assessment,
planning, and control requires a few rules of its own. In our previous
ATC work, we developed a special knowledge-based scheduling routine

in which activities (input-communication, planning, output-

communication, control) would vie for attention, and when invoked
would still be subject to interruption by more important activities.

Thus an aircraft could be in the midst of planning but would suspend

the planning process to service an input message describing another
aircraft's plan. Using coroutines, the system would then either con-
tinue or restart the planning process with the new information. Our

early RPV work did not require interruption of activities that had been
initiated. Instead, we used a situation-specific set of activity priorities
to decide on the next activity to process, and each activity was then

run to completion. In our later work, which involved occasional deep
planning and many dynamic assumptions, we found more need for
activity suspension and resumption.

A second type of scheduling we employed involved the simulation of

multiple objects on the same processor. In our single-processor system,
we simulated all the objects on the same machine, emulating asynchro-
nous processing of multiple independent objects through the use of a

34 COOPERATIVE INTELLIGENCE FOR RPV FLEET CONTROL

special scheduler object, which switches processing attention and

moves time ahead in such a way as to emulate asynchrony. In future

work, we plan to assign individual RPVs to separate processors. The

behaviors and interactions will be the same as in the current simula-
tion, but multiple graphics views will be provided, along with some

additional speedup through parallelism.

A major problem in our work has been that of planning and unplan-
ning. It is difficult in an event-based simulation to simulate continuity

without seriously compromising code efficiency. Event-based simula-

tions often require explicit unplanning of events when assumptions

change, since events are planned in the future based on the current
state. As time elapses, some events become invalid, and the program-

mer must specify necessary changes resulting from object interactions.

This compromises code modularity and puts a large burden on the pro-
grammer. We are currently exploring methods for automating the

unplanning process.
In most of our work, we kept the architecture constant (leader-based

with demand communications, heterarchic with volunteer, etc.) and
varied the situational conditions, such as defenses, jamming, and

losses. This approach revealed some things about the applicability of

the different architectures to different situations, but only touched on

how to transition dynamically between architectures during a mission.

Such transitions require rules for selecting protocols as conditions

change, sending bursts of information necessary to support the new
member responsibilities, and monitoring performance under the new

conditions. An RPV mission might involve an enroute phase with a
leader-based organization and open communications, an intelligence

gathering phase with anarchic organization and volunteer communica-

tions, and an attack phase with leader-based structure and demand
communications.

It is still too early to coalesce more than a few application guidelines

from our studies. In our primary application area, RPV fleet control,

the appropriateness of DAI techniques depends on the degree of auto-

mation onboard the aircraft. At one extreme, the current methoo of

RPV control involves almost continuous control by a human operator

over a wideband communication link. Here, very little of our work is

applicable. At the other extreme, the RPVs might pursue their mission

without any human intervention. If they do so in a totally prepro-

grammed fashion, much like current-generation cruise missiles, only

techniques such as communication relay of sensed data may be

appropriate. Our work is primarily applicable in the case of RPVs that
are both autonomous and intelligent, responding to situational condi-

tions as they arise, or of RPVs that are controlled in a supervisory

CONCLUSIONS AND FUTURE WORK 35

fashion by human operators but still able to assess situations and
respond to them locally. Some preliminary application guidelines for
these situations are given below. Specifics of some of the RPV mis-
sions discussed are given in Appendix A.

The first set of recommendations concerns role negotiation and reor-
ganization with losses. Here, tasks are matched to RPVs on the basis
of such factors as RPV location, knowledge, communication links,
damage, fuel, and payload. The tasks may include group leadership,
data fusion responsibilities, or special operations such as decoy, relay,
or damage assessment. Prior to a mission, a command center can
specify roles for each RPV, along with lines of succession in the event
of damage or loss. (Such lines of succession have long been used in
fighter and bomber squadrons to regroup following losses.) Unfortu-
nately, preestablished successions do not take into account changes in
member conditions accruing during the mission. For example, the
PRV that is next in line for command may become damaged, jammed,
or removed from the group. Reorganizing according to dynamic condi-
tions requires some form of interaction, such as comparison and
assignment by a designated aircraft or by inter-RPV negotiation. The
choice of method depends on the channel characteristics, time stress,
and amount of group dislocation. Some exemplary rules are:

1. If there is high time stress or minimal changes in status
among surviving RPVs, or highly degraded communications
(noise, delay, danger of detection), use succession.

2. If communications are only moderately degraded and the
leader (or leader-designate) is operational, use assignment (the
RPVs send any status changes to the designated aircraft,
which then reassigns roles).

3. If there is free communication, low time stress, and only local
dislocation (between only two or three RPVs), use negotiation

(the RPVs use a back-and-forth protocol of comparing

appropriateness for roles).

Communication, used in reorganization and many other processes, is
itself a very complex function, encompassing the problems of what,
when, and how to send messages. The RPVs may send wide- or
narrow-beam transmissions directly to each other, they may use satel-
lite relay, or they may rely on high-altitude radio relay. The messages
themselves include data, commands, acknowledgments, and requests.

The techniques we examined include whether to demand or volunteer
information, and how to route messages among RPVs. The demand
form of communication seems best suited for collecting role factors and

'4j

36 COOPERATIVE INTELLIGENCE FOR RPV FLEET CONTROL

requesting expectation checks, since these are triggered at one node

(often without awareness by the others) and require directed input.
The volunteer form appears best for sending sensed data to those
responsible for processing those data and for sending action commands

to other aircraft. Both forms can benefit from information-value
checks (to determine that the value of the message is greater than the
projected communication costs).

Message routing, the second aspect of communication, depends on

time stress, channel reliability, and link status knowledge:

1. If communication channels are heavily jammed or unreliable,
correct routing is unknown, communication costs are low, and

time stress is high, use spreading activation (the sender

transmits the message to all those in range, and all receiving

the message attempt to pass it on, until the intended recipient
receives it).

2. If correct routing cannot be established (due to insufficient
channel status knowledge) and time stress is low or communi-

cation costs are high, use chain letter (the sender chooses the
best first hop and sends the message, the next RPV choses the

next hop, and so on, with backtracking if a blockage occurs).

3. If correct routing can be established, use a routing table to
specify all intermediate relays on the way to the intended re-

cipient.

The choice of communication-routing protocol thus depends strongly

on the mission phase. During high-altitude surveillance operations, the
RPVs will frequently exchange intelligence data. Decision time stress
will normally be low, and aircraft status will be fairly constant, but

there will be some likelihood of detection and jamming. Communica-

tion tables should thus be maintained, allowing fully specified
pathways. Low-altitude operations in dangerous areas, on the other

hand, will usually involve high time stress, frequent blanking of chan-
nels due to terrain and jamming, and rapidly changing status. Here

the spreading-activation and chain-letter approaches would be more

appropriate.

Planning in the RPV domain includes determining the best
avoidance maneuver to take, changing course to cover new areas, wait-

ing to gain more information, and changing formation to obtain sup-
porting data on new contacts. The aircraft may plan for themselves
individually or they may plan for others. Planning may be very
rigorous, using logic programming or analytic techniques to "prove"
that a solution exists, or very heuristic, using a set of incomplete or

4f

CONCLUSIONS AND FUTURE WORK 37

even inconsistent rules to arrive at a solution. Some guidelines are:

1. If time stress is high, situation knowledge is limited, or deci-

sion importance is low, use pattern matching methods to
decide on the next action. Examples include jinking (rapid
avoidance) maneuvers when a missile is sighted, changing for-
mation after an absence of contacts, or making small course
adjustments to maintain position in the group. The rules may
be organized into sets associated with each situation type.
Situation knowledge must be represented in a form that can

be easily matched by rule antecedents.

2. If time stress is low, few options are present, substantial situa-
tion knowledge is available, and deep planning is necessary,
use simulation-based planning. Here the aircraft simulate
their own and enemy actions over the next several updates,
checking constraint violations and goal accomplishments.
This technique might be used for invoking pattern and forma-
tion changes to avoid known danger regions and to assure sur-
veillance coverage of enemy areas. The plans would normally

be preloaded as detailed sequences of action.

3. If there is substantial situation knowledge and many options,
and the planning primarily involves constraint satisfaction,
use logic programming. This technique might be appropriate

for generating trajectories through the defenses, for controlling
sensors, and for managing communications. It allows plans to
be generated step-by-step from primitive actions.

Finally, we noted some considerations about group organization. In
most situations, the leader-based structure is the most efficient. The

leader gets the overall picture and is able to optimize group actions,
and fewer messages are transmitted than with a distributed system. In
fact, most command and control systems during peacetime operations
are organized in this type of centralized, hierarchical structure. As the

situation degrades, though, less efficient but more robust distributed
organizations become favored. Data fusion tasks soon become
clustered and localized as the RPVs become more separated. Emer-
gency reactions to threats are initiated by the individual aircraft, and

communication relays are channeled through any pathway available.
The planning process is parceled out, first by having each aircraft
simulate its own path forward, checking for constraint violations, and
then by having each aircraft search out group options. The thresholds
for moving through these progressive stages of distribution are not yet

established and will be one of the key goals of future work.

38 COOPERATIVE INTEI.LIGENCE FOR RPV FI.EiT CONTROL

Our explorations of cooperative intelligent systems will be continued
in several very different research directions. We plan to expand our
applications work to include all four of the RPV missions described in
Appendix A-surveillance, electronic warfare, communications relaying,
and defense suppression-along with implementations of ground
robotic systems. We are also in the process of expanding our testbed
through our knowledge-based simulation study, adding capabilities for
hybrid representation forms, graphics explanation, and multiple levels
of abstraction. Finally, we are beginning to examine concurrent-
processing issues, such as load balancing, task scheduling, context
switching, and synchronization.

r- •

Appendix A

BACKGROUND: OPERATIONAL RPV

APPLICATIONS

RPVs controlled by a direct radio link or following some prepro-

grammed trajectory have proven to be useful in a variety of support
roles. In this appendix, we will examine the RPV coordination prob-

lem and argue that expansions of RPV missions to include cooperative,
autonomous action by intelligent RPVs will greatly increase their effec-

tiveness. We begin with an overview of U.S., NATO, and Israeli RPV
operations, followed by a discussion of the full range of possible RPV
missions. We then focus on four missions that appear to have particu-
larly high potential for cooperative interaction: surveillance, defense
suppression, communications relaying, and electronic warfare (EW).

These missions should benefit from intervehicle interactions that
achieve optimum search and surveillance patterns, nonoverlapping tar-
get assignment, effective network positioning for communication, and

multiaircraft jamming and deception capabilities. Finally, we describe
how these four missions provide the organizational basis for a testbed
for development and demonstration of DAI techniques.

RPV CAPABILITIES

RPVs have been used by U.S., NATO, Israeli, and Soviet forces for
several decades. We use the term RPV somewhat loosely, to include
both radio-controlled vehicles and autonomous unmanned vehicle sys-

tems (UVSs). RPVs run the gamut from small 50-kt sensor platforms
to Mach 2 target drones. Some of the more important RPVs for our
discussion are:

* U.S. Army Aquila: A small (140-1b) RPV with 3-hr endurance
and 118-kt maximum speed. Planned missions include surveil-
lance, target acquisition, artillery adjustment, and laser designa-

tion for precision guided weapons. Special configurations pro-
vide spread spectrum communications, automatic link loss

reaquisition, and adjustable linking (high-G avoidance ma-

neuvers) (Gossett and Velligan, 1982).

39

40 COOPERATIVE INTELLIGENCE FOR RPV' FLEET CONTROL.

" USAF Pave Tiger: A canister-based, low-cost RPV with 100-kt

cruise and up to 8-hr loiter capability. Sensor, electronic coun-

termeasure (ECM), and warhead payloads are planned. Control

is by preprogrammed autopilot or by radio link (Jane's,

1983-84).

* USAF BQM-34 multimission drone: A high-cost, high-

performance (700-kt) radio command drone. Reconnaissance,

EW, and warhead versions have been used. Weight is between

2500 and 5000 lb, and range is up to 700 n mi (Jane's, 1983-84).

* Israeli Mastiff: A small RPV used for battlefield and battle

group surveillance. It weighs 250 lb and has a flight endurance

of 6 hr (Hyman, 1981).

* Israeli Scout: A larger propeller-driven RPV with a takeoff
weight of over 300 lb and a maximum cruising speed of 95 kt

(Hyman, 1981). It has been used for surveillance with a stabil-

ized TV camera and for decoy operations by electronically emu-

lating larger aircraft.

" British Army Phoenix: A small RPV fitted with thermal imag-
ing (infrared (IR) zoom) for both day and night surveillance
(Klass, 1984).

In general, these RPVs have low radar cross-section, long loiter

times, and moderate onboard processing capabilities. Payload is lim-

ited, though, so that normally they can perform only one type of mis-
sion at a time. The main advantages of these RPVs compared to

manned aircraft are their mobility, acquisition cost, payload efficiency,

endurance, modularity, life cycle cost, and expendability (Lupo, 1984).

RPV APPLICATIONS

RPVs have been proposed for use in a wide range of difficult and

dangerous missions, including intelligence collection, data relay, recon-
naissance, search and rescue, atmospheric sampling, electronic warfare,

dispensing or dispersal of chaff, air-to-air defense, interception, surveil-

lance, and airlift (Sanders, 1981). Some additional proposed missions

include antisubmarine warfare (ASW), defense of a surface fleet, and

support of tactical airstrikes against tanks. We will first examine the

full range of missions and then focus in on four missions that have

great potential for cooperative intelligent behavior.
Probably the most frequently mentioned RPV mission is battlefield

surveillance. Here RPVs take the place of Army Aerial Observers

(AOs) in light aircraft and helicopters, and of Air Force Forward Air

OPERATIONAL RPV APPLICATIONS 41

Controllers (FACs) in aircraft (Ellis, 1978). The minimum configura-

tion is some form of imaging sensor and data link, tying the RPV, say,
to an Army Air-Ground Operations System. Sensor types used include
TV, photo, IR, signal intelligence (SIGINT), electronic intelligence

(ELINT), and moving-target indication (MTI). The surveillance infor-
mation can provide assessments of strength, composition, and axes of

advance of the enemy. The Israelis have used RPVs, for example, for

artillery spotting, forward area control, and battlefield management
(Klass, 1984). RPV surveillance could also extend the range of existing
systems, such as AWACS and E-2C, by flying at the limits of the sens-

ing area and relaying data.

A second important mission, defense suppression, can involve either
an explosive payload or use of large RPVs with onboard missiles.
Direct attacks have been made by RPVs against enemy radars (using
home-on-jam or home-on-emission). The RPVs loiter some distance
behind the FLOT (Forward Line of Own Troops) and wait for radars
or communications jammers to come on. Alternatively, active radar or
passive IR sensors on the RPVs may be used to locate and home in on
large GCI dishes and associated power sources (Ellis, 1978). Some of

the larger RPVs, such as the Teledyne BGM-34B, have been used to
launch Hobos guided bombs, Shrike antiradar missiles, and Maverick
TV-guided missiles (Hyman, 1981). Even the small, recoverable Aquila

has been fitted with 2.75-in. Viper recoilless antitank rockets (Gossett

and Velligan, 1982).

A mission between surveillance and attack is weapon guidance.
Acquiring and designating targets for the laser-guided Copperhead pro-

jectile, the Hellfire, the Maverick, and the multiple-launch rocket sys-
tem (MLRS) is one of the key functions planned for the Aquila. RPVs
may also be used for fire adjustment for conventional artillery.

Communications relaying is a straightforward RPV mission. Highly

secure, broadband, jam-resistant communications packages using the

JTIDS, ICNS, and other formats have been proposed for RPV use.
The Aquila, for example, has a sophisticated Harris Corporation data
link with two steerable EHF antennas. Also, multiple-access spread-

spectrum systems have been developed using lightweight modems and

surface acoustic wave devices. These have the advantages of low out-

put Fignals and good interference rejection. The RPVs may position
themselves for optimum line-of-sight transmission to the command

centers, forming a robust network. This may require some inter-RPV

coordination, including tracking of each RPV's position. The RPVs
may also tie in with geostationary communications relaying platforms,

although these platforms may be vulnerable to jamming. In either the

RPV-only or the RPV-satellite configuration, long periods of

4

42 COOPERATIVE INTELLIGENCE FOR RPV FLEET CONTROL,

autonomous RPV operation may be necessary because of both uninten-

tional radio frequency interference and deliberate electronic counter-

measures.

The other side of communications is EW, where denial and decep-

tive jamming are primary missions. A threat library of electronic

discriminating characteristics can be preprogrammed into the sensor

processor. Once a target is detected, determined to be a target of

interest, and located by frequency/bearing, it can be jammed by one or

more RPVs. An RPV can also accurately deliver expendable jammers

to the other side of the FLOT. For deception, the electronic signature

of an RPV can be electronically enhanced to provide a decoy mimick-

ing high-priority helicopters or fixed-wing aircraft.

Coordinated behavior appears to be essential to many of the above

missions. RPVs may need to be in proper relative position for relaying

messages, for efficient surveillance coverage, and for multistatic sensing

(in which one RPV might be transmitting and another receiving radar

energy). Coordination is also necessary to assure nonoverlapping

assignment to targets, and for efficient damage assessment and retar-

geting. Unfortunately, only a few multi-RPV control systems have

been tested, and none of these has involved local coordination by the

RPVs themselves. Long, vulnerable links to a centralized airborne or

ground control center have always been present. For example, the Air

Force outfitted a C-130 with drone control avionics capable of handling

up to eight BGM-34C drones simultaneously. During tests, the con-

trollers encountered problems with time-sharing of tracking, telemetry,

and command functions (Klass, 1975). No formation flight was

attempted. A ground-based, multi-RPV system was later created by

IBM at White Sands Missile Range. This system involved formation

flight of full-size F-102 drones and BGM-34 subscale drones, and coor-

dinated movement of M-47 tank targets (Gray et al., 1982). Using spe-

cial distance-measuring tracking and downlink telemetry, a central

control facility was able to maintain formation, perform avoidance

maneuvers, and follow complex trajectories. All decisionmaking was

performed by the ground control center.

FOUR EXEMPLARY MISSIONS FOR SIMULATION

AND TESTING

Four RPV missions appear to be good candidates for development

and application of DAI techniques: surveillance, EW, communications

relaying, and defense suppression. We shall describe some possible

scenarios, tactics, and measures of effectiveness for these applications.

OPERATIONAl. RP\ APPI.CATIONs 43

For simplicity, we concentrate on the use of mini-RPVs (under 300 lb

and usually propeller-driven) in a NATO/Warsaw Pact conflict. These

smaller RPVs have long endurance and, because of their low cost and
projected use in large numbers, many opportunities for cooperative

behavior.

Surveillance

Battlefield surveillance is used to obtain real-time assessments of

enemy strength, composition, axes of advance, logistics, and tactics. As

a poss" 'e scenario, assume a rapid Soviet armored attack along multi-
ple a. , with deep thrusts into West Germany and continued pressure

by commitment of second-echelon forces. Defense against such an

attack requires timely and accurate surveillance of enemy operations,
particularly of mobile Soviet air defense units (radar-controlled guns,
radar-guided missiles, and IR-homing missiles).

A coordinated group of RPVs would require a ground or airborne
supervisory station located close to the FLOT (to minimize range), and

sufficient numbers of RPVs with imaging sensors to assure identifica-

tion and classification of air defense units in a swath up to about 70 mi
inside the FLOT. The sensor suite on a single RPV could be either a
passive ELINT module and IR detector, or an active radar system.

The RPVs would also need processing capabilities for data fusion, com-

munications management, avoidance-maneuver initiation, and reorga-

nization (following losses). The RPV fleet might also have to alter its
course to concentrate on certain areas after achieving initial contacts.

RPVs operating cooperatively in a multistatic mode (one or more

RPVs transmitting and one or more RPVs receiving the reflected sig-
nals) should be particularly effective in a jamming environment. The

location of the silent receiver RPV would be unknown to the threat

jammer, and narrow RPV scanning beams would allow the receiving

RPV to detect those targets not screened by jammers in one or more of

the possible multistatic radiation scattering directions (Henderson,

1982). Also, wide separation between RPVs would permit accurate

direction finding and passive ranging on the jammers.
The deep penetration provided by RPV fleets should result in many

tactical advantages. Strikes on rear logistics units should provide great

leverage. With more accurate data on enemy positions, manned strike

aircraft should be able to employ less vulnerable flight profiles and
delivery tactics than would otherwise be required to acquire, identify,

and attack battlefield targets. When comparing cooperative RPV per-
formance and that of conventional tactics in this type of mission, the
primary figure of merit should be the accuracy and timeliness of the

situation assessment achieved.

44 'ERATI\E INTELIIEIN(E FOR R'V FLEET CONTOI.

Electronic Warfare

Electronic countermeasures in the European theater will involve

both denial (jamming enemy communications and radar sensing) and

deception (presenting false targets). The closely related attack func-

tions of home-on-jam and home-on-emission will not be considered

part of this mission, because we include these later in the discussion of

defense suppression.

We can assume that the Soviet armored attack will have a network

of rolling SAM defenses, providing a dense multimode, all-altitude

defensive umbrella over the battlefield. The radars will be blinking (to
avoid detection), and communications traffic will be heavy.

Conventional EW techniques include active radar and communica-

tions jamming by aircraft such as the EA-6B and the EF-111, laying of

chaff along key air corridors, and standoff jamming by aircraft and

ground units. Cooperative blinking of the airborne jamming radars is
often necessary for survival, as is maintenance of special aircraft for-

mations (Henderson, 1982).

RPVs may be used in this environment in a variety of ways. The

Aquila and Scout have both been designed with onboard and expend-

able jammer packages (Hoisington, 1984). The RPVs' small signature

allows them to penetrate and place jamming sources near the threat

rather than utilizing standoff systems which are degraded by distance,

weather, and terrain. Onboard jamming of enemy search and track

radars also benefits from short ranges. Low power over the target is

more effective than standoff jamming and does not deny portions of

the spectrum to friendly forces. For communications jamming, RPVs

can use the delay-and-retransmit (DART) technique. An elevated

DART RPV in proximity to an enemy line-of-sight transmitter could

intercept transmissions and retransmit them after a short delay. This

retransmission effectively jams the link while relaying transmissions in

a clear, unjammed form to intercept operators on the friendly side of

the FLOT. In all these functions, frequent inter-RPV coordination

will be necessary. The RPVs may need to negotiate over targets, so

that several do not jam the same one. Or several may have to jam the

same target from different directions. The jamming RPVs may have to

blink synchronously to avoid antijamming missiles. Downed RPVs

assigned to high-value targets may have to be replaced by others hav-

ing lower-valued targets.

The primary measures of effectiveness in the EW mission would be

the volume of message traffic jammed and enemy sensing opportunities

missed. Indirect measures should include reduced accuracy and timeli-

ness of enemy situation assessments, relative losses, and FLOT move-

ment.

OPERATIONAL RPV APPLICATIONS 45

Communications Relay

Communications relaying is probably the simplest of the four RPV

missions considered. It involves maintenance of a flexible network of

RPVs able to maintain line-of-sight transmissions between command
centers, aircraft, and ground units. The main problems are jamming,

own radio-frequency interference (RFI) noise, bandwidth limitations,
security, and losses.

Small communications repeater stations are now available for use on
RPVs. One lightweight (10-lb) unit is able to receive and relay mes-
sages on separate frequencies of various signal structures, including
voice, encrypted voice, and slow television scan within a 200-mi radius

(Ingebretsen, 1982). Some more sophisticated techniques (e.g., com-
munication beam steering, onboard signal processing and data

compression, spread-spectrum techniques, and data-link protection) are
now in development, although power, reliability, and cost are still

major problems.

For our purposes, it would be useful to evaluate the performance of a

group of RPVs with VHF communications stationed between non-
line-of-sight units, such as surveillance aircraft, command centers, and
artillery. The RPVs would have to coordinate positioning among

themselves and reorganize due to attrition. They would also have to

maneuver to avoid threats and minimize jamming effects. The primary
performance measures would be communication throughput, transmis-
sion quality, and delays.

Defense Suppression

RPVs have been proposed for attack operations against radars, com-
mand centers, ground vehicles, helicopters, shipping, and even aircraft.

The RPVs may carry an integral warhead, or they may launch missiles

or bombs. The attacks may be performed independently or in concert.

Antiradar operations appear to be particularly important. Conven-
tional use of passive-homing missiles such as Shrike or Martel can shut

down the enemy radars only for the duration of the attack, but large
numbers of low-cost harassment drones might be able to impose a vir-

tual radar blackout (Hyman, 1981, Correll, 1984). The RPVs would

circle over the battlefield, diving to engage any radars that began

transmitting. Should an RPV be detected and the radar switched off,

the RPV would climb back into its parking orbit. Both passive sensing

of radar emissions and active sensing of the large GCI dish are possible
with RPVs, but some tradeoff of sensing equipment and explosive pay-

load must be made. Coordination among RPVs may be needed to

46 COOPERATIVE INTELI.IGENCFE FOR RPV FLEETC ONTROL

assign attackers to targets, to perform assessment and retargeting, and
to reorganize following losses.

Antiaircraft operation is a special case. It is unlikely that an RPV

can down an aircraft in the air, but it should be able to identify and

attack an aircraft taking off from a runway. Like the antiradar func-

tion described above, this capability should help pin down the air

defense during an attack. For simplicity, we should probably concen-

trate on suppression of ground-based air defenses. The primary perfor-

mance measures include the number of enemy assets damaged and de-

stroyed and the number of own aircraft lost.

RESEARCH DIRECTIONS

These four missions provide an excellent application area for

development and demonstration of DAI techniques. Taken together,

the missions involve many of the key cooperative behaviors we are
interested in: task distribution, communication management, situation

assessment, cooperative planning, and human interface.

We are currently using the first mission, surveillance, in our ROSS-
based multiple-RPV simulation (described in detail in Sec. III). The

primary behaviors here are role negotiation, communication manage-

ment, and data fusion. Our work with this simulation has shown the
importance of the role-negotiation process in cooperative organizations

and has demonstrated the efficacy of the ROSS language for simula-

tion of such distributed military systems. We have also found that dis-

tributed situation assessment and planning are advantageous in certain

surveillance situations.
The EW mission should be particularly good for studying opponent

modeling and synchronization of actions. The RPV group may need to

model the decision processes of the defenses to decide when and how to

jam. This can be especially important during deception. Synchroniza-
tion of actions occurs during coordinated blinking of jammers to avoid

detection and loss, and during cooperative jamming of the same target.
We have examined some aspects of action synchronization during our

studies of formation flight and communication management, but the

more complex behaviors needed in EW operations should be much

more demanding and illuminating.
The third mission, communications relaying, is one in which net-

work position is paramount (for maximizing bandwidth and minimizing

noise, security problems, and vulnerability). This can be considered a
more complex form of patterned flight, exercising the functions of
coordinated execution and monitoring. In our simulations, we have

OPERATIONAL RPV APPLICATIONS 47

demonstrated how an RPV group flying in formation can respond to

contacts and threats by changing formation type, spacing, and leader

position. The task of maintaining special geometries for relaying

(much like optimizing a satellite network configuration) is a more diffi-

cult and general problem than is formation flight.

The final mission, defense suppression, is one in which the RPVs

have many options; consequently, it involves deep planning. The

options include gathering information, loitering, decoying, attacking

defenses or targets, and assessing damage. Analysis of these options

requires modeling of the opponent and stringing together many sequen-

tial actions. RPVs will have to evaluate each resulting plan over many

moves and negotiate over plans and roles. Even with abstract

scenarios, our studies have demonstrated the importance of deep,

simulation-based planning rather than simple condition matching of

actions.

Our research has concentrated on the surveillance mission, but

aspects of all four key missions are included in our demonstration sys-

tems. Future work should expand the demonstration system to include
operations sequencing through all four missions, exercising behaviors

for the individual missions themselves as well as for mission transi-

tions.

....

Appendix B

HOSES: A MECHANISM FOR INTERMODULE

COMMUNICATION IN A MULTILANGUAGE,

MULTIMACHINE ENVIRONMENT

We have explored the development of a multiprocessor system for
implementing the surveillance RPV simulation. Ideally, the system
should use different processors to run the simulation, the graphics, and

certain database functions. This will be a multiple-language environ-

ment, with programs running as different processes on different
machines connected by a network. In this appendix, we describe a
methud we developed for making these connections. We begin by not-
ing several important software architecture issues.

First, the architecture itself must be highly flexible. For example,

the logical boundary between the simulation per se and its graphic out-

put processing may be implemented either within a processor or across
a network. Once a logical piece of the processing has been split off to
run as a separate process, it should be transparent to the rest of the

code, whether it is on the same machine or another one.
It is also important to facilitate writing different pieces of code in

different languages, both to take advantage of specific features of a
language and to allow use of existing code. For example, some of the
graphic processing, which was originally written in C, was rewritten in

LISP; with the switch to GKS graphics, C may again be needed to pro-
vide interface code.

Finally, when the simulation itself is split into multiple processes
(whether for enhanced performance through parallelism or for model-
ing realism), the ROSS message-passing mechanism will have to be

extended to allow objects to be separated by process (or machine)
boundaries. If modeling realism is the goal, it may be desirable to
maintain an explicit distinction between passing messages among
objects in the same process and passing messages across process boun-
daries; on the other hand, if enhanced performance is the goal, then
the distinction should be minimized. In either case, some new forms of

interprocess communication are needed.
The common thread in all of these activities is the need for a trans-

parent and efficient method of encapsulating intermodule interfaces

48

HOSES: A MECHANISM FOR INTERMODULE COMMUNICATION 49

without requiring the programmer to decide in advance which of sev-
eral alternative implementations will be used. We have designed a pro-
totype mechanism for such encapsulation, which we call a "hose"
(because it is similar to a UNIX "pipe" but more flexible). This is an
attempt to build a fairly general intermodule call facility which can be
used by a number of languages (initially C and LISP) for interprocess
(or intraprocess) communication on the same machine or across a net-

work.
We initially programmed a ROSS simulation of a hose facility as a

high-level specification. This simulation contains objects correspond-
ing to modules, processes, and machines. Each machine has a special
net-server process which communicates with its counterparts on other
machines. There is also a special hose-interface object for each
machine, which represents the protocol that specifies interfaces
between languages, processes, and machines. Each process belongs to
some machine, and each module belongs to some process. When
module P needs to communicate with module Q, it calls (sends a mes-
sage to) the hose interface on its machine. The hose interface decides
whether module Q is in the same process as module P, and if not, if it
is on the same machine; in making this decision, the hose interface
behaves as an active ROSS object (although its activity represents the
functioning of a static piece of interface code). Intraprocess calls are
passed directly from module P to module Q as ROSS messages. Inter-
process calls cause an instance of a hose object to be created. If P and
Q reside on the same machine, the hose performs the interprocess com-
munication directly. Otherwise it sends a message to the local net-
server, which communicates with its counterpart on the appropriate
machine; the counterpart net-server creates a hose to deliver the mes-
sage from P to Q. Acknowledgments are produced whenever hose
objects are created. In the simulation, instances of hoses exist only long
enough to perform a single interprocess call; they disappear when they
receive acknowledgment of delivery.

An intermodule call using a hose would have the form of a procedure
call with parameters specifying the procedure to be called and the
values (and possibly the types) of the parameters to be passed to it.
The exact form of a hose call in a given language is determined by a
hose interface written for that language. For example, in Pascal, such
a call might look like:

HOSE(ModuleA, ProcedureQ, Paraml, PTypel, Param2, PType2 ...)

where ModuleA names a module that may reside on any machine, Pro-
cedureQ names the procedure to be called in ModuleA, and each pair

50 COOPERATIVE INTELLIGENCE FOR RPV FLEET CONTROL

Parami, PTypei is the value and type of a parameter to be passed to
ProcedureQ. In order to be useful, the hose must allow typed parame-

ter values rather than simple streams (whether ASCII characters or

raw bits). The hose must support a range of "hose-defined" types

including the common types in most programming languages. Each

PTypei in the above example is therefore the hose-defined type of the

corresponding Pascal value Parami. In a language where the type of
an expression can be determined at run time, the user would not need

to specify hose-defined types explicitly in the "hosecall" (the calling of

a function via the hose), since the hose interface could supply the types

itself.
An initial hose facility has been implemented (in C and LISP) and

has been used to implement GIL. This hose facility allows a LISP pro-
gram to call a C function that has been loaded into the LISP process
space. The two LISP dialects supported so far are Franzlisp and PSL
(including RLISP85, which translates directly into PSL). The Franz-

lisp version of hoses works on both the Sun workstation and the VAX
(running UNIX 4.2 BSD).

The hose facility currently allows LISP programs to call C functions

of up to 20 words of argument (e.g., 20 integers or 10 double floats),
including pointers to arbitrarily large strings and arrays. (This 20-
word limit is not an absolute upper bound; it can be extended if

required.) A called C function can return single- or double-word results

and can modify "out" parameters passed as pointers (in typical C

style). It is also possible for a called C function to return a pointer to

a structure that it has allocated, although this must be done carefully
to ensure that LISP never tries to garbage-collect the C program's

structure.

The primary intent of the hose facility is to allow LISP programs to

use existing C function libraries without having to modify the C source

code. This goal has essentially been met: Called C functions are com-

pletely unaware that they are being called by LISP. In cases requiring
special manipulation of data, a "C-wrapper" function can be written
which is hosecalled by LISP and which calls the target C function after

performing any necessary transformations; in practice, this is rarely

necessary.

The types currently supported include integers, strings, floating

point numbers, pointers, and arrays of any of the above. In addition, C
functions of a variable number of arguments (up to a declared max-

imum) can be called. The GIL facility uses hoses to call the existing

GKS or Core library packages (compiled from C) in a clean and flexi-

ble way; the LISP (ROSS) programmer is shielded from the details of
the C calling discipline and is able to treat the hosecalled graphics

functions as extended primitives in LISP.

Appendix C

PROLOG: DESCRIPTION AND COMPARISON

WITH LISP

For certain problems in our project, we found Prolog a more

appropriate programming structure than LISP or ROSS. We imple-

mented Prolog in LISP so that programs in it could interface with the
rest of the LISP and ROSS code. In this appendix, we describe Prolog,

show how it was used in our project, and compare it with LISP. We

assume that the reader has basic familiarity with LISP.

PROLOG

Prolog is a language that can be used for logic programming, i.e.,

programming in which computation can be regarded as deduction. A

logic program consists of a set of statements or clauses of the form:

A - B1, Bk k 2_ 0

where each of A, Bi is a condition. The clause is read, "A holds if each

of Bi hold." A condition is of the form R(tl, . . . , tn), n 2! 0, where R
is an n-ary relation symbol, and each ti is a term. A term is either a

variable, a constant, or a function application of the form f(xl,

xm), m zt 0, where f is an m-ary function symbol, and each xi is a
term. All variables in this clause are universally quantified upon.

The set of clauses of the form R(tl, t2, . . . , tn) - B can be thought

of as a definition of relation R. As shown below, this definition can be

used to compute which n-tuples of terms are in relation R. Note that

all clauses are first-order, i.e., functional and relation symbols are not

quantified upon.
Given a logic program S, a query upon S is a conjunction Q of con-

ditions:

B1, B2, , Bk.

Each variable in Q is existentially quantified. If xl, xn are the

variables in Q, then the problem is to show, or prove, that there exist

51

52 (I(OPEHAIIVE [N'I'6IACI(;ENF FOR RIp% FLEET CONTROL

xl, xn such that B is a logical consequence of S. If the proof is
found, then, indirectly, values of xl, ... xn are computed.

The inference procedure used to find the above proof, if it exists, is

called SLD-resolution (Kowalski, 1974; van Emden, 1977). This pro-

cedure works in a top-down manner. To prove a conjunction of condi-

tions Q1,. . .,Qi - 1, Qi, Qi + 1, ... ,Qn from a set of clauses S, it
selects a condition Qi and a clause A +- B1, . . . , Bk in S such that A

and Qi match with some most general substitution a. It then
attempts to prove a new query, which is the result of instantiating

Q1 ... ,Qi - 1, B1 Bk, Qi + 1, ... ,Qn

with a. The procedure halts when the query is empty, i.e., when there

is nothing more to prove.

In the above procedure, a special form of matching, called unifica-

tion, is used. Two terms A and B unify if there is some substitution s

such that A and B when instantiated with s yield the same term. For

example, the terms f(X, X, 2) and f(3, 3, Y) unify with substitution

{<X,3>, <Y,2> }, but the terms f(X, X) and f(2, 3) do not unify.

SLD-resolution satisfies the soundness and completeness properties.

Soundness means that any conclusion drawn by the procedure is

correct; completeness means that if a query is a logical consequence of

some logic program, it will be proved to be so in finite time. Roughly,

completeness guarantees that if an answer exists, it will be found in

finite time.

Prolog is an implementation of SLD-resolution, augmented with

common programming utilities.' Current Prologs are as fast as LISP

(Warren et al., 1977), and they surpass LISP for performing tasks

requiring inference. Whereas these tasks can be programmed directly

in Prolog, with LISP we would first have to program an inference pro-

cedure and then program the task.
Since its appearance about a decade ago (Warren et al., 1977), Pro-

log has been applied with tremendous success to rnany areas of com-

puter science and artificial intelligence, including programming

languages, databases, natural language analysis, rule-based reasoning,

meta-level reasoning, constraint satisfaction, pattern matching, sym-

bolic algebra, distributed processing, and search. More important, the

logical interpretation of Prolog has provided very useful formalizations

of ideas in these areas (Clark and Tarnlund, 1982; van Caneghem and

Warren, 1986).

'This is not entirely correct. To make SLD-resolution practical on a conventional
computer, some compromises have been made in the design of Prolog. However, over a
wide range of applications, Prolog remains almost identical to SLD-resolution.

PROLOG DESCRIPTION AND COMPARISON WITH LISP 53

We considered Prolog to be more appropriate than LISP for two

problems in the RPV project: communication relaying and data infer-
ence. The first problem was to find the shortest communication path

between two RPVs in a communication network that consists of

point-to-point links between each pair of RPVs. Since links may
sometimes be electronically jammed, a message may have to be relayed
by other RPVs before it reaches its destination. The problem is to find

the shortest relay path.

There is a well-known algorithm for solving this problem. However,
the Prolog version, though less efficient, is simpler and much more

flexible. An open path between two RPVs is a sequence of RPVs con-

nected to each other by open links. We can express this in Prolog as:

open-path(X,X,[X]) -

open-path(X,Y,[X I R]) - open-link(X,Z),open-path(Z,Y,R).

The first clause states that the path from X to itself is a sequence
containing just X. The second clause states that a path from X to Y is
the sequence [X IR] such that there is an open link between X and an

interim RPV Z, and R is the path between Z and Y. At any given time
in the simulation, the state of the network is modeled by a set of
clauses of the form open-link(A,B) or jammed-link(A,B) where A and
B represent RPVs. For example, we can have:

open-link(RPV1, RPV2)

open-link(RPV2, RPV3)

open-link(RPV3, RPV4)

open-link(RPV2, RPV4)

jammed-link(RPV1, RPV4)

The definition of open-path can now be used by Prolog in several

different ways.
1. Given two RPVs and an alleged open path between them, Prolog

can determine whether the path satisfies the above definition. For

example, it can show that

open-path(RPV1, RPV4, [RPV1, RPV2, RPV4I)

is true.

54 (OOPERATIVE. INT EI.IGEN(' FOR RP'V FI.EET (ONTROI.

2. Given two RPVs, Prolog can find, without further programming,

all the open paths between them. The query

setof(P,open-path(RPV1,RPV4,P),S)

will bind S to

[[RPV1, RPV2, RPV4], [RPV1, RPV2, RPV3, RPV4]].

The shortest path can now easily be found.
3. Given a path P and the first RPV, say R1, Prolog can determine

what the second RPV, R2, must be such that P is an open path
between R1 and R2. Of course, R1 can be determined similarly when

R2 and P are known. Thus, while the query

open-path(RPV1, R, [RPV1, RPV3, RPV4])

will fail, the query

open-path(RPV1, R, [RPV1, RPV2, RPV3, RPV4I)

will succeed with R bound to RPV4.

4. Given a path P, Prolog can determine the pair of RPVs such that
P is an open path between them. Thus, the query

open-path(R1, R2, [RPV2, RPV3, RPV4])

will bind R1 to RPV2 and R2 to RPV4.

We emphasize that the above possibilities are quite natural when we
consider the logical interpretation of Prolog. In all cases we have a
query of the form open-path(X1, X2, X3) in which some Xi may be
variables. The problem is to find a value of these variables such that
the query, when instantiated with these values, is a logical consequence
of the open-path program. Logic is neutral as to which of the Xi are
variables. That is, it does not maintain any distinction between input

and output variables. Any of the Xi can be input or output. In con-
trast, the usual shortest-path algorithm can be used in only one way,
and that is to find the shortest path.

The second problem for which we found Prolog particularly
appropriate concerns decisionmaking in a dangerous environment.
Often an RPV requires some information that another RPV possesses.

'RO)LOG E()EM'RI'IVI N NI (tI tIRl)N \ I 11 I.i' 55

The first RPV could explicitly request the information, but this could

be dangerous, especially when enemy ground sensors may be listening.

Alternatively, the RPV could attempt to infer the information, based
upon its current view of the world. Inference can, however, be time-

consul.iing. Moreover, if the RPV's view of the world is incorrect, its

conclusions could also be incorrect.

Our RPVs follow the simple strategy of first attempting to infer the

information; if suLfficient data are not available, they then explicitly

request information from whichever RPV has it. Rules for inferring

information are, of course, readily expressed in Prolog. For example,

one rule is that if a SAM fires on an RPV, the SAM-to-RPV distance

is greater than 5 units, and no other known defenses are in the area,

assume the radar is in the area. This rule in Prolog is:

radar-in-area(RI) - known defenses(R1, [1),

fires(SAM, R2,T),

within(5.0 RI SAM).

For an RPV, R, known defense(R, I) is true when L is the list of

defenses R knows about. L can of course also be the empty list [1.

Whenever a SAM S fires on an RPV R at time T, a clause fires(S, R,

T) is added to the history of the simul.!tion. Condition within(D, R, S)

is true when RPV R is within distance D of SAM S.
An RPV can use this rule to determine whether it should assume

that it is near a radar. However, the user can use the same rule to
determine which RPVs could assume this hypothesis. In a similar

manner, five other rules involving various complex combinations of

conditions were coded in Prolog.

COMPARING PROLOG WITH LISP

LISP supports the functional style of programming (Abelson and

Sussman, 1984). A LISP program can be regarded as a set of defini-

tions of functions from symbolic expressions to symbolic expressions.
Given as input the arguments of that function, LISP will deliver as

output the result of applying that function to those arguments. That
is, LISP computes functions, whereas Prolog computes relations. Since

a relation is a more general concept than a function, Prolog can be

thought of as being more general than LISP.

This generality is exemplified by the directness with which Prolog

can be used for programming problems in many areas of artificial intel-

56 (OOPERATIVE INTEI.IAGEN(E F)R R PV FLEET CONTROL

ligence, e.g., databases, natural-language analysis, rule-based reasoning.

Many ideas in artificial intelligence are captured more naturally in

terms of relations (and connections between them), than in terms of

functions.

In particular, a LISP program cannot be used in the flexible ways

(described above) that an equivalent Prolog program can. We would

have to write a separate LISP program for each of these uses. LISP's

basis in functional programming forces it to maintain a well-defined

distinction between input and output. Moreover, LISP could not be

used to directly program rules of inference in a dangerous environment,

simply because LISP does not support the notion of a rule.

The presence of unification pattern matching in Prolog considerably

increases program clarity and conciseness. For example, the Prolog

and LISP programs for appending two lists are, respectively,

append([1, X, X).

append([UJV1, W, [UIZ]):-append(V, W, Z).

(defun append (x y)

(if (null x) then y else (cons (car x) (append (cdr x) y))))

Note the absence of selector functions in the Prolog version. A list can

be specified either as [I or as [U IV], where [I is the empty list and

[U IV] is a nonempty list whose head is U and whose tail is V.
However, there is an important respect in which LISP is more

powerful than Prolog: It supports higher-order functions, i.e., func-

tions that either take functions as input or return functions as output.

Higher-order functions can be used to implement sophisticated data
and control structures, e.g., object-oriented programming or demand-

driven computation.

For example, iteration can be very conveniently expressed using the

higher-order function map

(define (map f 1) (cond ((null 1) nil)

(t (cons (f (car 1)) (map f (cdr))))))

That is, (map f 1) takes a function f and a list 1 as arguments, applies f

to every element of 1, and returns the list of the results. For example,

(map addi '(1 2 3 4)) will evaluate to (2 3 4 5). In the same way, (map

(lambda (x) (times x x)) (1 2 3 4)) will evaluate to (1 4 9 16). Thus,

map works for any function and list.

. _ -_ .

PROLOG: DESCRIPTION AND COMPARISON WITH LISP 57

Another example of the use of higher order functions is in demand-

driven processing, where an expression is evaluated only when there is

demand for its value. The mechanism for suspending evaluation is
easily implemented using a higher-order function.

For example, we define the function intfrom to take a natural

number N and return the list of all natural numbers starting at N.

With the obvious definition,

(define (intfrom N) (cons N (intfrom (+ N 1))))

the expression (intfrom 2) will cause a nonterminating computation.

However, with an alternative definition,

(define (intfrom N) (lambda (S) (cond ((eq S 'head) N)

(t (intfrom (+ N 1))))))

the expression (intfrom 2) will yield a function F representing the
suspended computation of the list of natural numbers starting at 2.

We can demand that computation proceed by simply calling F. To find

the first element of F, we do (F 'head); to find the second element, we

do ((F 'tail) 'head); and so on.
Because Prolog is a first-order language, we cannot use it directly for

higher-order programming. That is, we cannot treat relations as
"first-class" objects. In particular, we cannot define a single equivalent

of map that would work for all relations. We also cannot do demand-

driven processing in exactly the way described above. 2

CONCLUSIONS

In spite of the above differences, Prolog and LISP are in a class

quite apart from other procedural languages, such as Fortran, Pascal,

or C. Their similarity derives from their common basis in logic.
Logic is an old subject. It consists of posing and settling fundamen-

tal questions in fields such as mathematics, language, philosophy, or
computing. Over its long history, it has developed a large collection of
interesting and powerful concepts. Because of their fundamental

nature, these concepts can, and often do, provide useful interpretations

of knowledge in many other fields. Exploring such interpretations,

2
However, there is another way to do demand-driven processing in Prolog which is

equally general, natural, and efficient (Narain, 1985).

.... , .

58 ('(X'ERATIV\E IN'TLI;ENCE FOR 10'V FET I'lONTROI.

particularly in unformalized domains such as of military strategies and

tactics, is a very fruitful line of research.

The greatest importance of Prolog and LISP is that they make com-
putationally practical some important concepts in logic, in particular,

in the lambda calculus and the predicate calculus. (The former is a
formalized language of functions while the latter is a formalized

language of relations.)

Prolog and LISP can thus be used for representing knowledge in

unformalized fields and for providing a formal interpretation for such

knowledge. They can also be employed for making computationally
practical other useful, but more complex concepts in logic. Thus a pro-

gramming environment in which both LISP and Prolog are res-

ident holds considerable promise for Al research.

4mm mm m (m m - - - - -

REFERENCES

Abelson, H., and G. Sussman, Structure and Interpretation of Computer
Programs, MIT Press and McGraw-Hill, New York. 1984.

Appelt, D. E., Planning Natural-Language Utterances to Satisfy Multi-

pie Goals, Technical Note 259, SRI International, 1982.
Caldwell, H., and F. Kennedy, Jr., "Stepchild of Unmanned Vehicles,"

National Defense, Vol. LXVII(380), September 1982, pp. 16-20,
31-32.

Cammarata, S., D. McArthur, and R. Steeb, Strategies of Cooperation
in Distributed Problem Solving, The Rand Corporation,

N-2031-ARPA, October 1983.
Carbonell, J., "POLITICS: Automated Ideological Reasoning," Cogni-

tive Science, Vol. 2, 1978, pp. 27-51.
Clark, K., and S. Tarnlund, Logic Programming, Academic Press, New

York, 1982.
Correll, J., "Where TAC AIR Is Heading," Air Force Magazine, Vol. 67,

No. 6, June 1984, pp. 50-58.
Dahl, O-J., and K. Nygaard, "Simula-An Algol-Based Simulation

Language," Communications ACM, Vol. 9, 1966, pp. 671-678.
Dalkey, N. C., Group Decision Making, Report UCLA-ENG-7749,

School of Applied Science, University of California, Los Angeles,
July 1977.

Davis, R., A Model for Planning in a Multi-Agent Environment: Steps

Toward Principles for Teamwork, Working Paper. MIT Artificial
Intelligence Laboratory, 1981.

Davis, R., and R. G. Smith, Negotiation as a Metaphor for Distributed
Problem Solving, Memo 624, MIT Artificial Intelligence Labora-
tory, 1981.

Duda, R. 0., J. G. Gaschnig, and P. E. Hart, "Model Design in the
PROSPECTOR Consultant System for Mineral Exploration," in
D. Michie (ed.), Expert Systems in the Micro-Electronic Age,
Edinburgh University Press, Edinburgh, 1979, pp. 153-167.

Ellis, J. W., Jr., A Role for Remotely Manned Sensors over the Battle-
field, the Rand Corporation, P-6255, December 1978.

Erman, L. D., P. E. London, and S. F. Fikas, "The Design and an
Example Use of HEARSAY-III," IJCAI, Vol. 7, 1981,
pp. 409-415.

Fahlman, S., "A Planning System for Robot Construction Tasks,"
Artificial Intelligence, Vol. 5, No. 1, 1974, pp. 1-49.

59

60 ('OOPERATAfITEIAGE.(N('E FOR kPV FLEET CONTROL.

Fikes, R. E., and N. J. Nilsson, "Strips: A New Approach to the Appli-

cation of Theorem Proving to Problem Solving," Artificial Intelli-

gence, Vol. 2, No. 2, 1971, pp. 189-208.

Forgy, C. L., The OPS5 Users Manual, Technical Report CMU-CS-79-

132, Computer Science Department, Carnegie-Mellon University,
Pittsburg, 1981.

Garvey, T., J. Lowrance, and M. Fischler, "An Inference Technique for

Integrating Knowledge from Disparate Sources," IJCAI, Vol. 7,

1981, pp. 319-325.
Goldberg, A., and A. Kay, Smalltalk-72 Instruction Manual, Report

SSL 76-6, Xerox PARC, Palo Alto, 1976.
Gordon, J., and E. Shortliffe, "A Method for Managing Evidential Rea-

soning in a Hierarchical Hypothesis Space," Artificial Intelligence,

Vol. 26, 1985, 323-357.
Gossett, T., and F. Velligan, "The Aquila: A Versatile, Cost-Effective

Military Tool Shows Its Potential," Military

Electronics/Countermeasures, Vol. 8, No. 12, December 1982,

pp. 74-78.

Gray, C., K. Rehm, and D. Woods, "Drone Formation Control System,"

Military Science, 1982, pp. 11-26.
Hayes-Roth, B., "A Blackboard Architecture for Control," Artificial

Intelligence, Vol. 26, 1985, pp. 251-321.

Henderson, C., "Sea-Based Remotely Piloted Vehicles," Military

Electronics/Countermeasures, Vol. 8, No. 5, May 1982, pp. 45-47.

Hoisington, D., "Short Course on Electronic Warfare," presented at
The Rand Corporation, July 1984.

Hyman, A., "Where Are the RPVs?" Aerospace International, Vol. 17,

No. 3, July/August 1981, pp. 40-43.
Ingebretsen, D., E-Systems Corporation, RPV Brochure, Melpar Divi-

sion, 1982.
Jane's All the World's Aircraft, Section on RPVs and Targets, 1983-84.

Jefferson, D., and H. Sowizral, Fast Concurrent Simulation Using the

Time Warp Mechanism, Part I: Local Control, The Rand Cor-

poration, N-1906-AF, December 1982.

Kahn, R., S. Gronemeyer, J. Burchfiel, and R. Kunzelman, "Advances

in Packet Radio Technology," Proceedings of the IEEE, Vol. 66,

No. 11, November 1978, pp. 1468-1496.

Kiviat, P., R. Villanueva, and H. Markowitz, The Simscript II Pro-
gramming Language, Prentice-Hall, Englewood Cliffs, New Jersey,

1968.

Klahr, P, D. McArthur, S. Narain, and E. Best, SWIRL: Simulating
Warfare in the ROSS Language, The Rand Corporation,

N-1885-AF, September 1982.

RPFRENCES 61

Klahr, P., J. W. Ellis, Jr., W. Giarla, S. Narain, E. Cesar, and S.
Turner, TWIRL: Tactical Warfare in the ROSS Language, The
Rand Corporation, R-3158-AF, October 1984.

Klass, P., "Multi-Drone Control Unit in Development," Aviation Week

and Space Technology, February 10, 1975, pp. 57-59.
Klass, P., "Lebanon Lessons Raise Interest in RPVs," Aviation Week

and Space Technology, Vol. 121, No. 8, August 20, 1984,

pp. 44-46.
Konolige, K., "A First Order Formalization of Knowledge and Action

for a Multi-Agent Planning System," Machine Intelligence, Vol.

10, 1981.

Konolige, K., and N. Nilsson, Multiple Agent Planning Systems, Artifi-
cial Intelligence Center Report, SRI International, April 30, 1980.

Kowalski, R., "Predicate Logic as a Programming Language," Proceed-

ings of the IFIP Congress, 1974.
Kowalski, R., Logic for Problem Solving, North Holland, 1979.

Kunz, J. C., R. J. Fallat, D. H. McClung, J. J. Osborne, R. A. Votteri,

H. P. Nii, J. S. Aikins, L. M. Fagan, and E. A. Feigenbaum, A

Physiological Rule-Based System for Interpreting Pulmonary Func-

tion Test Results, Report HPP-78-19, Heuristic Programming
Project, Computer Science Department, Stanford University,

Stanford, Calif., 1978.
Lesser, V., A High-Level Simulation Testbed for Cooperative Problem

Solving, COINS Technical Report 81-16, University of Mas-
sachusetts, Amherst, 1981.

Lesser, V., and D. Corkhill, "The Distributed Vehicle Monitoring
Testbed: A Tool for Investigating Distributed Problem Solving

Networks," The AI Magazine, Vol. 4, No. 3, Fall 1983, pp. 15-33.

Lesser, V., S. Reed, and J. Pavlin, "Quantifying and Simulating the

Behavior of Knowledge-Based Interpretation Systems," Proceed-

ings of the First Annual National Conference on Artificial Intelli-
gence, Stanford University, Stanford, Calif., 1980.

Lozano-Perez, T., "Robot Programming", Proceedings of the IEEE, Vol.

71, No. 7, July 1983, pp. 821-841.
Lupo, J., "Tactical Autonomous Weapon Systems," Unmanned Sys-

tems, Vol. 2, No. 4, Spring 1984, pp. 7-9.
McArthur, D., and P. Klahr, The ROSS Language Manual, The Rand

Corporation, N-1854-1-AF, September 1985.

McArthur, D., P. Klahr, and S. Narain, ROSS: An Object-Oriented
Language for Constructing Simulations, The Rand Corporation,

R-3160-AF, December 1984.
McArthur, D., R. Steeb, and S. Cammarata, "A Framework for Distrib-

uted Problem Solving," Proceedings of the National Conference on

Artificial Intelligence, Pittsburg, 1982, pp. 181-184.

62 COOPERATIVE INTELLIGENCE FOR RPV FLEET CONTROL

Narain, S., "A Technique for Doing Lazy Evaluation in Logic,"

Proceedings of the Second IEEE International Symposium on

Logic Programming, Boston, July 1985.

Newell, A., and H. Simon, "GPS-A Program That Simulates Human

Thought," in E. Feigenbaum and J. Feldman (eds.), Computers

and Thought, McGraw-Hill, New York, 1963.

Newell, A., and H. Simon, Human Problem Solving, Prentice-Hall, New

York, 1972.

Nil, H. P. and N. Aiello, "AGE (Attempt to Generalize): A

Knowledge-Based Program for Building Knowledge-Based Pro-

grams," IJCAI, Vol. 6, 1979, pp. 645-655.

Quinlin, R., Inferno: A Cautious Approach to Uncertain Inference, The

Rand Corporation, N-1898-RC, September 1982.

Sacerdoti, E., "Planning in a Hierarchy of Abstraction Spaces," Artifi-

cial Intelligence, Vol. 5, No. 2, 1974, pp. 115-135.

Sacerdoti, E., A Structure for Plans and Behavior, Elsevier North-

Holland, New York, 1977.

Sanders, J., "World Without Man," Defense and Foreign Affairs, Paris

Air Show Edition, 1981, pp. 29-32.

Shafer, G., and A. Tversky, "Languages and Designs for Probability

Judgement," Cognitive Science, Vol. 9, 1985, pp. 309-339.

Shortliffe, E.H., Computer-Based Medical Consultation: MYCIN,
American Elsevier, New York, 1976.

Singh, V., and M Genesereth, A Variable Supply Model for Distributing
Deductions, Report HPP-84-14, Heuristic Programming Project,

Computer Sciences Department, Stanford University, Stanford,
Calif., May 1984

Smith, B. A., "Israeli Use Bolsters Interest in Mini-RPVs," Aviation

Week and Space Technology, July 18, 1983, pp. 67-71.

Smith, R. G., A Framework for Problem Solving in a Distributed Pro-

cessing Environment, STAN-CS-78-700, Stanford University,

Stanford, Calif., 1978.

Steeb, R., and J. Gillogly, Design for an Advanced Red Agent for the

Rand Strategy Assessment Center, The Rand Corporation,
R-2977-DNA, May 1983.

Steeb, R., S. Cammarata, S. Narain, and W. Giarla, Distributed Prob-
lem Solving for Air Fleet Controk Framework and Implementa-

tions, The Rand Corporation, N-2139-ARPA, April 1984.

Steeb, R., S. Cammarata, F. A. Hayes-Roth, P. W. Thorndyke, and

R. B. Wesson, Distributed Intelligence for Air Fleet Control, The

Rand Corporation, R-2728-ARPA, 1981.

Stefik, M., "Planning with Constraints (MOLGEN: part 2)," Artificial

Intelligence, Vol. 16, 1981, pp. 141-169.

PR RENCES 63

Sussman, G., A Computational Model of Skill Acquisition, American

Elsevier, New York, 1975.

van Carneghem, M., and D. Warren, Logic Programming and its Appli-

cations, Ablex Publishing, 1986.

Van Emden, M., Programming in Resolution Logic, Machine Intelli-
gence, Vol. 8, 1977.

Van Melle, W., "A Domain-Independent Production-Rule System for

Consultation Programs," IJCAI, Vol. 6, 1979, pp. 923-925.
Warren, D., L. Periera, and F. Periera, Prolog-The Language and its

Implementation Compared to LISP, SIGPLAN Notices, Vol. 12,

No. 8, and SIGART Newsletter 64, August 1977.

7.

