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Abstract

We analyse the resonant mode structure and local density of states in high-Q hybrid plasmonic-photonic resonators

composed of dielectric microdisks hybridized with pairs of plasmon antennas that are systematically swept in

position through the cavity mode. On the one hand, this system is a classical realization of the cooperative resonant

dipole–dipole interaction through a cavity mode, as is evident through predicted and measured resonance

linewidths and shifts. At the same time, our work introduces the notion of ‘phased array’ antenna physics into

plasmonic-photonic resonators. We predict that one may construct large local density of states (LDOS)

enhancements exceeding those given by a single antenna, which are ‘chiral’ in the sense of correlating with the

unidirectional injection of fluorescence into the cavity. We report an experiment probing the resonances of silicon

nitride microdisks decorated with aluminium antenna dimers. Measurements directly confirm the predicted

cooperative effects of the coupled dipole antennas as a function of the antenna spacing on the hybrid mode quality

factors and resonance conditions.

Introduction

Tailoring optical resonators to have any desired quality

factor Q and mode volume V is a major endeavour in

nano- and micro-optics as the basic stepping stone to

controlling the light-matter interaction in diverse sce-

narios that range from cavity QED, to nonlinear optics, to

vibrational spectroscopy, to building lasers and solid-

state lighting devices1,2. Notably, it is desirable to inde-

pendently control the field strength per photon (gauged

by V), the resonator linewidth Q3, and the channel to

which the resonator favourably couples with far-field

radiation. For instance, when controlling the rate of

spontaneous emission experienced by a quantum emitter

placed in a resonator, it is desirable to control the Purcell

factor F ¼ ð3λ3=4π2ÞQ=V while at the same time tuning

the cavity to the emitter frequency, making sure that the

cavity linewidth is matched to the emitter spectrum4,5

and ensuring that light extraction occurs through one

highly efficient channel. Similar arguments hold for

strong coupling between light and matter3,6,7, SERS and

cavity/molecular optomechanics8 and, generally, pro-

cesses that at the same time need high field enhancement

yet also matching of the linewidths to other experimental

constraints. In the last decade, great progress has been

made in realizing extremely confined resonators of V �
λ3=104 and low Q ~ 20 on the one hand through plas-

monics5,7,9–11 and high-Q microcavity resonators with

V > ðλ=2Þ3 on the other hand12. Reaching very large F at

intermediate 5<Q< 104 factors, however, has remained

elusive, despite the large possible relevance for matching

the linewidths of room-temperature emitters.

Recently, several groups have explored whether so-

called hybrid plasmonic-photonic resonators could

access the regime of deep subwavelength confinement,

owing to their plasmonic constituents4,13–16, while at

the same time inheriting larger quality factors from a

dielectric microcavity character. Efforts in this direction

include hybridizing single plasmonic nano-antennas
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with photonic resonances such as the whispering gal-

lery mode (WGM) supported by Mie spheres, micro-

toroids, or microdisks or the localized modes in

photonic crystal cavities15,17–20. Recent computational

predictions indicate that hybrid modes offer Purcell

factors exceeding those of the individual constituents,

with Q-factors on the same order as those of the

microcavity mode, and therefore with V profiting from

the hybridization4,14,16,21.

In this work, we consider the hybridization of

microcavities with not one but multiple metal nano-

particles. This problem is interesting from three dif-

ferent perspectives. First, it is an implementation of

cooperative scattering engineered by dipole–dipole

coupling in a resonator, mirroring the physics of sub-

radiant and super-radiant collective states in which

many dipoles coupled to one cavity hybridize, thereby

providing a classical precursor to the important quan-

tum optics problem of cooperative emission22,23. Sec-

ond, from an antenna point of view, it introduces the

notion of phased array antennas into hybrid systems,

with the associated control not only over Purcell

enhancement but also over the distribution of light into

far-field radiation channels5,24. The seminal example in

free space is the so-called Yagi-Uda antenna, in which a

single quantum emitter drives a single antenna element

surrounded by a set of “director” scatterers to ensure

unidirectional emission25–27. In this work, we present a

minimal phased array on a WGM platform (Fig. 1) and

show that this can similarly result in unidirectional

emission. A third perspective instead focuses on the

physics of the cavity modes in hybrids rather than the

antenna physics. Indeed, our work is the first step of a

plasmonic implementation of a proposition by Wier-

sig28, who proposed that dielectric scatterers on WGM

cavities support chiral eigenmodes associated with

exceptional point physics29. This work combines all

three perspectives and explores the capabilities of

plasmonic dimers to both enhance the hybrid emission

and allow for directivity, here related to the circulation

of light emitted into the cavity. Our theoretical analysis

examines the distinct fingerprints in the mode lineshift

and linewidths that may occur depending on the posi-

tioning of antennas in the WGM profile. At the same

time, in vein of the proposition of Wiersig28 that

eigenmodes can become chiral, we assess whether

selective unidirectional emission in the case where a

single antenna out of a pair is driven by an emitter is

possible and with what directionality contrast and

Purcell factor. This proposition can be seen as realizing

a two-element directive phased array antenna design.

We complement theory based on dipole-dipole inter-

actions mediated by degenerate quasinormal modes

(QNMs) with experiments, studying silicon nitride

microdisk resonators coupled to dimers of aluminium

nanorod antennas. We quantified the dependence of the

perturbed mode frequencies and quality factors on

antenna separation, finding direct evidence for coop-

erative antenna effects on the linewidth and lineshift

that extend over large antenna separations.

This paper is structured as follows. First, we sketch an

analytical model for describing M antennas coupled to a

set of cavity modes. Next, we focus on the particular case

of a WGM disk coupled to a plasmon dimer, examining

the local density of states as well as the distribution of

emission over clockwise and anticlockwise circulation in

the cavity and in the far field. We then explain the spectral

structure and the apparent unidirectional power dis-

tribution of emission by finding the QNMs (complex-

frequency modes) of the coupled QNM equations. In the

second half of this work, we report experiments, focusing

on narrowband mode spectroscopy of WGM-antenna

dimer hybrids.

Δθ

b

a

500 nm

5 μm

c

d

Fig. 1 Hybrid plasmonic-photonic structure of an antenna-dimer

on a microdisk. a Scanning electron micrograph (SEM, angled view)

showing the geometry, consisting of two radially oriented aluminium

nanorods on the perimeter of a silicon nitride microdisk. Inset:

zoomed-out SEM of a full microdisk cavity. The dark angular pattern

marks the contact with the silicon support pedestal. b Sketch of the

geometry, where the antennas are separated by a subtended angle

Δθ. One antenna is driven by a spontaneous emitter (red dot). c, d

Sketch of the symmetric and antisymmetric hybrid modes (mirror

plane indicated as black line).
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Results

Model

The starting point of our work is to consider M antennas

as M polarizable objects with dipole moments pi
(i ¼ 1¼M) and to model their mutual interaction through

the master microdisk cavity with a quasinormal-mode

formalism. Previous related works include, on one hand,

coupled-mode theory and Green’s function theory for

polarizable objects coupled to resonators4,30 and, on the

other hand, works using QNMs for a semi-analytical model

of the optical properties of a plasmonic resonator interacting

with a single quantum object31, as well as with ensembles of

classical dipolar oscillators23,32. The present model features

two extensions. First, it addresses the important case of

degeneracy of the underlying bare resonator modes, and

second, it considers changes in the resonator properties

induced by the polarizable objects. This aspect relates to the

perturbation theory of resonators20,33,34. Both features are

essential for the properties reported hereafter.

In brief, the dipole moments induced in a set of

antennas23,35, each of polarizability α(ω) and positioned at

ri on a microdisk cavity, are approximately given by

pi ¼ ϵ0αðωÞ ´ Edr;i þ
X

k¼s;as

ak~Ek rið Þ þ μ0ω
2
X

M

j¼1

G0ðri; rj;ωÞpj

" #

ð1Þ

where Edr;iðri;ωÞ represents the externally applied driving

field at antenna i, while the other two terms quantify the

dipole-dipole interactions between antennas. These are

separated into interactions via the cavity QNMs (~Ek rið Þ,
second term) and interactions via all other modes of the

system, lumped into the background Green function G0.

The formalism by which cavity QNMs are singled out to

describe a resonator from a full-system Green function is

presented in depth in the “Methods” section and builds on

refs. 36–38. In this work, we focus on a pair of degenerate

QNMs typical of WGM cavities, i.e., a pair of standing

modes ~Es and ~Eas, which vary as cos(mθ) resp. sin(mθ) in

the azimuthal direction. These modes can be equivalently

regrouped by linear combination as clockwise and antic-

lockwise running modes. In this work, we focus on the

physics of a single emitter placed in this system at location

rdr and modelled as a drive dipole pdr. As proven in the

Methods section, the excitation coefficients of the two

QNMs are self-consistently determined by the multiple

scattering interactions between antennas through the

cavity modes that are directly fed by the emitter as

as;as ¼
�~ω

ω� ~ω
~Es;asðrdrÞ � pdr þ

X

M

i¼1

~Es;asðriÞ � pi

" #

ð2Þ

We evaluate the Purcell factor that the drive dipole

experiences and the directionality of emission into the

cavity, determined from the (anti)clockwise mode ampli-

tudes acw=ccwðωÞ ¼ 1
ffiffi

2
p ðasðωÞ � iaasðωÞÞ as parameter

σ ¼ jacwj2 � jaccwj2
jacwj2 þ jaccwj2

¼ jas � iaasj2 � jas þ iaasj2
jas � iaasj2 þ jas þ iaasj2

. This directivity

equals (−)1 if all light in the cavity is circulating in the

(anti)clockwise cavity mode or 0 if light is distributed

equally over both circulation directions.

LDOS and directionality

While our model does not require that, e.g., antennas

are identical or symmetrically placed, we focus on plas-

mon dimers (M= 2) of antennas that are identical, both

radially oriented and placed at the same distance from the

rim of a microdisk cavity (Fig. 1b) with Q= 104 and

deliver a Purcell enhancement of 75 above the microdisk

and in the plane of the antennas. We parametrize the

distance between antennas with their angular separation

Δθ. For the cavity, we take as azimuthal mode number m

= 22 and ωc= 360 THz as the cavity resonance frequency,

implying operation near 800 nm, near the wavelength of

the experiments also reported in this work. These num-

bers are typical for silicon nitride microdisks in the near

infrared of ~4 μm in diameter and are consistent with

those of ref. 4. The radially oriented antennas couple to a

TE mode, with plasmon antenna parameters commen-

surate with those of Au plasmonic dipolar antennas,

retrieved from full-wave simulations for gold nano-

ellipsoids (see “Methods”). We place the source at a dis-

tance of 60 nm from the centre of one of the two antennas

and assume that the dipole is polarized along the disk axis

(see Fig. 1). In the absence of the microdisk, the Purcell

factor provided by the coupled nanorod is ≈200 at

antenna resonance. Figure 2 shows the local density of

states normalized to that in a vacuum as a function of the

frequency around the bare cavity resonance and as a

function of the angular separation between the antennas,

as calculated using the simple formalism that we pre-

sented. For reference, if only a single antenna is present,

the hybrid antenna-cavity construct presents a Fano

lineshape in the local density of optical states (LDOS),

with a peak LDOS enhancement of almost 700, as was

also verified independently of the approximations of the

model by full-wave simulations4. This value is almost an

order of magnitude larger than the one provided by the

bare cavity alone and more than three times higher than

the maximum LDOS enhancement of 200 provided by

only a bare antenna at its resonance. Figure 2a reveals that

in the dimer case, the LDOS enhancement reaches similar

large values but with two resonant features that present a

distinct oscillatory behaviour as a function of the angular

separation between the antennas. Additionally, in the

presence of two antennas, the hybrid modes can still be
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classified by symmetry, as there is mirror symmetry

through the line from the cavity centre to the midpoint

between the antennas (cf. Fig. 1). Thus, one of the QNMs

is symmetric and displays a node in the radial field

between the antennas while having both antennas polar-

ized in the same radial direction, while the other QNM is

antisymmetric, with a null between the antennas, and

both antennas are polarized in opposite directions. When

the antennas are shifted by a multiple of half a cavity-

mode-profile azimuthal period, one QNM is not per-

turbed by the antennas, while the other is perturbed by

both, giving a large broadening and frequency shift.

Midway between these conditions, both modes have

identical overlap with the antennas, meaning they are

shifted equally in real frequency and in Q, maintaining

degeneracy. In the first scenario, an emitter placed at one

of the antennas couples only to the symmetric mode,

which is maximally perturbed. In the second scenario,

both modes contribute to the LDOS, explaining why the

degeneracy point also corresponds to the highest LDOS.

This LDOS is approximately the same in value as in the

single-antenna hybrid: while two hybrid modes contribute

to the LDOS instead of one, each of them contributes only

half as much, owing to the fact that the antennas are more

weakly coupled to the pertinent cavity modes than in the

single antenna case by virtue of not being at the mode

maxima of either the S or AS mode.

The picture sketched above essentially repeats itself

with increasing antenna separation, with a repetition

period equal to Δθ= π/m, reflecting the fact that the

antenna interaction is dominated by the cos(mθ) resp. sin

(mθ) dependence of the cavity modes. At very short dis-

tances, however, the behaviour is qualitatively different,

with a very strong perturbation (frequency shift and

broadening) of the cavity modes. The physical picture is

that at close distances (below, say, λ/2π), the two antennas

hybridize to form a symmetric, bright, strongly polarizable

bonding combination that is blueshifted and an anti-

symmetric, dark, weakly polarizable anti-bonding mode

that is redshifted from the bare antenna resonance. This

behaviour is approximately captured in our model

through G0 in Eq. (1), i.e., through the Green function of

the system without cavity modes, taken to first approx-

imation as the free space Green function, which obviously

contains near-field 1/r3 and mid-field terms. As explained

in the Methods section, an exact quantitative treatment of

this regime would require accounting for terms cut out of

our QNM expansion by limiting it to just two cavity

modes. The hybridization physics with the cavity modes is

rich since when the two antennas hybridize, at a certain

distance, the redshifting dark dimer mode tunes through

resonance with the cavity, which had its bare resonance

chosen to the red of the single antenna resonance. At this

distance, the dark mode very strongly perturbs the cavity.

On the other hand, the coupling strength of the blue-

shifting bonding mode becomes weaker with reduced

particle separation, as blueshifting tunes it out of the

cavity resonance.
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Fig. 2 Predicted emission enhancement and directivity for

antenna-dimer microdisk hybrids. a Local density of states

enhancement for a source at antenna 1 as a function of the antenna

separation expressed in the cavity mode profile azimuthal period and

as a function of the frequency. The bare cavity resonance ωc is at

360 THz. b Directionality of the emission into the cavity. c, d LDOS

enhancement (black dashed) and directionality (orange solid) versus

frequency for two antenna separations, as indicated by vertical dashed

lines in (a, b), just off degeneracy (c) at unit directionality and exactly

on degeneracy (d) with no directionality. e, f Simulated intensity and

g, h phase of the radial component Er of the electric field on the top

interface of the microdisk cavity dressed by two aluminium antennas.

The antenna separation is 0.94 cavity period for (e, g) and 1 cavity

period for (f, h), and the simulation is driven by a radial dipole placed

10 nm radially outward from the top antenna. In (e and g), the

intensity is almost perfectly homogenous in the azimuthal direction,

with the phase indicating clockwise propagation. In contrast, (f and h)

exhibit a standing wave pattern, as antennas and dipoles couple only

the symmetric cavity mode.
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For the case of an emitter driving a single nano-antenna,

in the absence of a second antenna, symmetry dictates

that emission will be injected into only the symmetric

mode, i.e., with equal contributions of the clockwise and

anticlockwise directions. The presence of the second

antenna, however, implies that both the symmetric and

antisymmetric QNM can contribute to the LDOS. Hence,

it is interesting to resolve in which direction the light is

emitted into the cavity. We find that the second antenna

can make the emission largely unidirectional. Figure 2b

represents the splitting ratio σ. Essentially unidirectional

emission is achievable at combinations of the frequency

and geometry that are close to, but not at, the mode

degeneracy points Δθ ¼ ðnþ 1
2
Þπ=m and that bring

simultaneously large LDOS enhancement. Figure 2c, d

highlights the behaviour for two distinct antenna

separations, namely, Δθ= 0.81 cavity periods (i.e., just

beyond the degeneracy at 0.75) and, right at degeneracy,

Δθ= 1.25 cavity periods. Unidirectional emission σ= 1

can coincide with large LDOS enhancement, exceeding a

factor of 300. This situation occurs at angular separations

close to, but not at, a point of maximum LDOS. Con-

versely, near-equal power splitting at near maximum

LDOS enhancement (enhancement >600) occurs at points

of degeneracy. It should be noted that while we report the

total LDOS in this work (including also nonradiative

enhancement), ref. 4 for single antennas shows that up to

95% of the radiated power can be extractable through the

cavity loss channels. The implication is that for the geo-

metry in Fig. 2c, if the microdisk would be addressed by a

tapered waveguide as the main input/output channel, the

fluorescence could be efficiently captured into just one

waveguide direction. Conversely, by reciprocity, one

would expect the emitter to be addressable from just one

waveguide direction. The basic requirements for this

behaviour in emission and excitation are (1) the correct

separation between the antennas and (2) placement of the

emitter such that it dominantly couples to just one of the

antennas instead of coupling to both antennas equally

(emitter between the two antennas), dominantly coupling

to just the (spoiled) cavity (emitter on the disk perimeter

but more than 50 nm away from the surface of any

antenna), or dominantly coupling to free space (emitter

well away from the antennas and the WGM profile). This

means our predictions hold as long as the emitter is

placed within the near-field hot spot of the intended feed

antenna, i.e., within 20 nm or so off the distal end for a

nanorod antenna realization. On basis of ref. 39, we expect

the predictions to also hold if the feed antenna to which

the emitting dipole couples is replaced by a dimer gap

antenna of similar dipole polarizability, where placement

of the emitter in the gap could significantly enhance the

LDOS. Finally, we note that while M= 2 antennas are

already very successful in creating unidirectionality, our

model is easily extended to more than two antennas. For

creating unidirectional emission, we note that similar

performance is possible for M= 3 antennas, while gen-

erally, at larger M, there is no further improvement in

unidirectionality but a large penalty in the LDOS. This is a

consequence of the reduction in Q with the addition of

antennas.

To verify that the semi-analytical predictions from our

model are not an artefact of the approximations, we

performed full-wave simulations to verify the occurrence

of unidirectional emission (see ref. 4 for LDOS bench-

marking). We analysed a Si3N4 microdisk (thickness of

200 nm, diameter of 2.95 μm) decorated with two alumi-

nium nanorod antennas (100 nm long, 50 nm high, and

40 nm wide). We first evaluated the bare cavity mode

profile (m= 16 mode at 396.675 THz, Q= 4000) and its

frequency shift upon perturbation by a single antenna (at

396.3 THz, Q= 800). From these, we predicted the

operation points (frequency and antenna spacing) for

unidirectional and completely symmetric emission to

occur at antenna separations of 0.94 resp. 1 cavity period,

both at a frequency of 396.650 THz. Next, for these

operation conditions, we performed driven simulations

with a single drive dipole next to one antenna. Figure 2e–h

shows the cycle-averaged field intensity |E|2 and the phase

for both cases. In the first case, we find the signature of

constant field intensity and circulating phase corre-

sponding to the excitation of a travelling wave, while in the

second case, we find the constant-phase field intensity

nodes and antinodes characteristic of a standing wave. The

slight residual fringe contrast for the unidirectional case

indicates that over 96% of the energy travels in a single

direction. Thus, the simulation confirms the predicted

phased array action, as well as the operation points at

which the distinct scenarios occur.

Complex-frequency analysis

The spectral structure, i.e., the Fano lineshapes, and the

unidirectionality evident from Fig. 2 clearly involve the

interference of several modes. This structure can be fur-

ther understood from a complex-frequency eigenmode

analysis of the coupled antenna-cavity equations. One can

view Eq. (1) in the absence of the driving term (setting Edr,

i= 0) as a linear system Ax= 0 for the excitation coeffi-

cients x ¼ ½pi; ak � of antennas and cavity modes. This

equation defines complex-valued dressed eigen-

frequencies ~ω′ through the condition detAð~ω′Þ ¼ 0. These

represent the complex eigenfrequencies of the hybrid

system QNMs. Figure 3a, b represents the real and ima-

ginary parts of the eigenfrequencies. This analysis con-

firms the oscillatory behaviour of both the real and

imaginary parts of the frequency with the angular antenna

separation. Notably, at points where the antenna separa-

tion fits the distance between cavity mode antinodes, one
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of the two cavity modes is neither shifted in Q nor in

frequency from the bare mode. In this configuration, the

other mode is maximally shifted in both Q and frequency.

At points of degeneracy in the real part of the frequency,

the QNMs also have identical Q, with both experiencing

approximately half the shift that is seen at points of

maximum mode separation.

Considering the symmetry of our system and the fact

that we expect two perturbed solutions close to the

unperturbed cavity (complex) frequency ~ωc, the frequency

shift of the two QNMs with respect to ~ωc can be effec-

tively parametrized through28,33

~ωs;as′ � ~ωc

~ωc

¼ �ϵ0α ~ωcð Þ~E2
r ri; zið Þ 1 ± cos mΔθð Þ½ �

1 ± μ0~ω
2
cα ~ωcð Þg0 ~ωcð Þ ð3Þ

where i designates equivalently 1 or 2, ~Er is the radial

component of the WGM QNM and ±cos(mΔθ) accounts

for the coherent addition of the two perturbers, which

depends on their relative position in the mode profile of

the S and AS mode. The denominator accounts for near-

and mid-field hybridization correction effects on polariz-

ability that are mediated by the background Green

function g0ð~ωcÞ ¼ uri �G0ðri; rj; ~ωcÞurj ; i≠ j from antenna

to antenna. For sufficiently large antenna separation, the

denominator of Eq. (3) is essentially equal to one, and the

complex detuning Δ~ω ¼ ~ωas′ � ~ωs′ between the modes S

and AS traces

Δ~ω

~ωc

¼ ~ωas′ � ~ωs′

~ωc

¼ α

~V
cosðmΔθÞ ð4Þ

here, ~V ðri; ziÞ is the effective complex mode volume38 of

each WGM of the unperturbed cavity at the radial

position of the antenna [without the trivial cos(mθ)

dependence, therefore being identical for the S and AS

modes]. Aside from the expected inverse dependence of

shift on the mode volume, this result also highlights the

role of the phase of the polarizability. Since the complex

mode volume is almost real in our example, the phase of

the polarizability directly sets the balance between the real

and imaginary part of the frequency shift. If the antennas

are red (blue) detuned compared to the cavity, the

frequency splitting between the symmetric and antisym-

metric mode is (anti-)correlated with the difference in

linewidth. If the antennas are on resonance with the

cavity, there is no frequency splitting, but instead, the

amplitude difference in linewidth is maximal. In other

words, in that limit, the cavity is near degeneracy, but the

two modes have very different Q values. The example

considered in Figs. 2 and 3 corresponds to blue detuning

(mainly a frequency shift).

Unidirectionality and LDOS enhancement can now be

understood from the amplitude and phase with which the

two QNMs are driven by a point emitter, calculated from

the overlap (inner product) between the eigenvectors of A

and the driving from a single dipole source. Directionality

of emission occurs as a consequence of interference of the

symmetric and asymmetric modes, with strict uni-

directionality requiring destructive interference in one

direction. Thus, essentially, the first requirement for

perfect unidirectional emission to occur is that the loca-

lized excitation at one of the antennas must have the same

projection on the hybrid basis. The second condition is

that the relative phase is appropriate for destructive

interference in the clockwise (anticlockwise) direction

(with simultaneous constructive interference in the other

channel guaranteed by symmetry). Figure 3c–h reports

the amplitude and phase of excitation of the two modes

for three distinct antenna separations for the example
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Fig. 3 Complex eigenfrequencies for the antenna-dimer

microdisk hybrid system. Real (a) and imaginary (b) eigenfrequency

of the symmetric (blue) and antisymmetric (red) hybrid QNMs versus

the angular separation between antennas. The amplitude (c, d, e) and

phase (f, g, h) show the physics underlying directional emission at

three salient antenna separations (dashed vertical lines in a, b). Since

the amplitude of the symmetric mode is null in c, its phase is not

defined and therefore not plotted in (f). The dashed line in (e, h) is a

guide for the eye. Where one mode is maximally perturbed and the

other is not (c, f), the source excites only one of the two hybrid WGMs

(symmetric, blue curves). Where the symmetric and antisymmetric

modes are perturbed equally (d, g), both modes are excited equally

and in phase, leading to no directionality. Just away from degeneracy

(e, h), one can achieve equal amplitude and a π/2 phase difference,

leading to unidirectionality.
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system considered in Fig. 2. In the first case (for an

antenna distance Δθ= 0.5), the antenna separation fits the

distance between mode antinodes, meaning that the dis-

tance is half-integer in units of the cavity period. The

dipole emitter couples only to the strongly perturbed

symmetric normal mode of the system, so there is no

directionality. Next, we consider an antenna separation

chosen right at degeneracy (example chosen is Δθ= 0.75).

Again, the emission is equally distributed over both

directions. The mechanism is, however, different from

that at work at half-integer antenna distances. Indeed,

now both modes of the system are excited instead of just a

single one, but as the excitation has equal phase for both,

there is no constructive/destructive interference. For a

separation just away from degeneracy (example chosen is

an antenna distance Δθ= 0.81 cavity periods), the emitter

can still couple to both modes of the system but with a

phase difference. Indeed, by appropriately choosing the

frequency, one can obtain a π/2 phase difference at equal

excitation amplitude for the two modes, leading to perfect

unidirectionality. The sign of unidirectionality is con-

trolled by choosing Δθ on opposing sides of the

degeneracy point.

We finally note that this mechanism for unidirectional

emission is distinct from the interesting exceptional point

studies reported by Peng et al. in ref. 29, obtained by

perturbing a WGM cavity with two near-field probes as

scatterers. In a true exceptional point scenario, uni-

directionality is intrinsic to the eigenmodes and not due

to phase relations in the linear superposition of modes, as

upon coalescence of the eigenfrequencies, the remaining

eigenmode is chiral. In contrast, here, we exploit the

asymmetric location of the emitter at just one antenna for

unidirectionality, while our eigenmode set still retains

even and odd parities. The mechanism relies on tuning

the operation point near, but not on, mode degeneracy.

An exceptional point instead requires the geometry to

break parity symmetry by either using different radial

positions, considering two geometrically different anten-

nas, or adding a third antenna40. While outside the scope

of this work, our QNM-based model for M antennas at

arbitrary cavity locations (“Methods” section) does pro-

vide a comprehensive framework for analysing and

designing these exceptional point optical cavity systems.

The model quantitatively accounts for multiple scattering

and antenna-antenna interactions, and the exceptional

point physics is revealed from an optical mode analysis

instead of requiring postulation by a non-Hermitian

Hamiltonian parametrization, as is common in the

literature29.

Spectroscopy of hybrid microdisk devices

We report experiments that interrogate the cavity mode

perturbation physics, i.e., the predicted shift in frequency

and change in linewidth of the modes in Eq. (4),

depending on the complex polarizability, the mode

volume, and the azimuthal mode number. To this end, we

apply tapered-fibre-mode spectroscopy to samples based

on Si3N4 disks, hybridized with aluminium antennas (see

“Methods” section). The experiments are performed on

microdisks that are 15 μm in diameter and 200 nm in

thickness with two ≈130 nm long, ≈50 nm wide and

≈40 nm thick radially oriented Al antennas, placed

300 nm from the disk edge (Fig. 1a). The disks stand on a

ridge that is 150 μm in width and height, such that they

are accessible for optical fibre taper coupling. A tapered

optical fibre setup (Fig. 4, Methods section) provides

excitation by an external-cavity diode laser that is widely

tuneable yet narrowband (New Focus Velocity) at

approximately 780 nm. The observables that we can

simultaneously collect are fibre taper transmission, fibre

taper reflection and out-of-plane scattering, collected with

a microscopy setup. The microscope allows real space and

Fourier space imaging of the scattering. We interrogated

70 cavities corresponding to a duplicated set of 35 dif-

ferent hybrid configurations where the separation angle

between antenna varies, by design, from 0.8 to 13.5° (0.1

to 1.8 μm), i.e., ≈0.2 to 3.45 cavity azimuthal periods of the

mode profile for our QNMs of interest (azimuthal mode

numbers of 80 <m < 86 fall within our scan range).

Figure 5 shows a typical raw data set measured on a

single device (antenna separation Δθ= 11.2° (1.46 μm) for

m= 80, second radial order). The transmission spectrum

through the tapered fibre clearly shows power transfer to

the cavity, with the lineshapes of two Lorentzian minima

commensurate with a broad and narrow QNM. Depend-

ing on the geometry, these are not always clearly separable,

particularly since the coupling strength to tapered-fibre

channels depends strongly on the mode linewidth or when

modes are very close to degeneracy. The reflection signal

generally shows significant reflection features coincident

with the transmission signature, however with asymmetric

lineshapes that suggest interference with parasitic con-

tributions (e.g., parasitic reflections at fibre connections).

Finally, the scattering signal shows very clear Fano fea-

tures, indicative of the coherent addition of the radiation

Taper

Camera

Laser

765–781 nm

Photodiode

Hybrid

Fig. 4 Setup schematic, indicating tapered-fibre excitation of

microdisks with a narrowband tuneable diode laser with simultaneous

recording of the taper reflection, taper transmission and out-of-plane

scattering collected with an objective onto a camera or photodiode.

Cognée et al. Light: Science & Applications           (2019) 8:115 Page 7 of 14



patterns of the symmetric and antisymmetric QNM.

Qualitatively, these radiation patterns can be understood

both for the symmetric and for the antisymmetric QNMs

as the sum of interfering dipole contributions (sketch in

Fig. 5a (bright QNM only), predictions in Fig. 5b, c). These

predictions are formed as the coherent sum of the sym-

metric resp. antisymmetric dipole combinations (dipoles

located at the antenna centres, radially oriented). This

leads to interference fringes in the far-field radiation

pattern of both the S and AS modes. Notably, for small Δθ,

the dipoles are almost parallel, and the field radiated by the

antisymmetric AS mode exhibits a dark fringe centred

around kx= 0. For each dipole, one further needs to

account for the reflective air-silicon interface above which

it is located, as highlighted in the sketch (Fig. 5a). The

interface effect gives rise to an additional circular fringing

concentric with kx= ky= 0 (vertical emission). An exam-

ple measurement of a radiation pattern is shown in Fig. 5e

(inset), which excellently agrees with the prediction for the

asymmetric QNM. Scattering spectra at a select set of

wave vectors chosen at salient features in the radiation

pattern directly reveal the coherent superposition of

QNMs through Fano lineshapes, as shown by the repre-

sentative curves in Fig. 5e for the wave vectors marked in

the inset. The advantage of these scattering spectra is that

they are essentially background free, as the cavity excita-

tion is through the taper, not through free space.

We extract QNM frequencies and Q values from the

raw data by simultaneous Fano fits to transmission,

reflection and scattering (data plotted in Fig. 5d, fit

approach, see “Methods”). Figure 5f, g presents the

dependence of the frequency and quality factor that

results from fitting data on many hybrid devices with

varying antenna-antenna spacing, yet for the cavity mode

(TE, m= 86, and first radial order antenna, estimated

from finite element simulations for a 15 μm diameter

Si3N4 microdisk) and antenna size also considered in Fig.

5d, e. The oscillatory behaviour of the perturbed fre-

quencies of the symmetric and antisymmetric QNM with

antenna separation is especially clear in the linewidth,

where the symmetric and antisymmetric QNM show anti-

correlated behaviours. The real frequencies show much

smaller variations, which are further masked by frequency

variations between devices that arise from small fabrica-

tion inaccuracies. Indeed, spectroscopy on devices with-

out antennas shows that the bare cavity frequencies

themselves vary by ~100 GHz or, equivalently, by

approximately 0.2 nm in wavelength, equating to a spread

in disk diameters of approximately 3.5 nm.

While the absolute real frequencies of the two per-

turbed QNMs are not useful as information due to the

disk size disorder, their difference is, since the random

variations due to disk diameter disorder cancel out. Figure

6a, b reports the systematic mode separation (blue) and

the difference in linewidth (red) for the symmetric and

asymmetric QNM for the hybridization of antenna dimers

with two different cavity modes, namely, them= 86 mode

of the first radial order (case of Fig. 5) and a mode with

substantially different azimuthal quantum numbers m=

80 and mode volumes (second radial order). The period of

the oscillation in Δθ fitted from the experimental data is

commensurate with the antinode spacing of the QNMs

set by m, while the magnitude of the perturbation is
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Fig. 5 Scattering properties and eigenfrequencies of antenna-

dimer microdisk hybrids. a Sketch of image dipole analysis

explaining the far-field radiation pattern of the symmetric (S) QNM. b,

c Predicted approximate angular radiation patterns into the air side for

S and AS QNMs, plotting intensity per solid angle as a function of in-

plane momentum in units of ω/c. d Taper transmission (red) and

reflection (blue) diode signals for an antenna dimer (separation Δθ=

11.2° (1.46 μm)) on a microdisk versus frequency relative to ωref=

385.37 THz. e Inset: collected radiation pattern at frequency labelled e

in panel d. Purple and green curves mark the °,×-collected scattered

intensity at chosen (kx,ky) indicated in the inset versus the driving

frequency. f Resonance frequencies and g linewidths in GHz of the

symmetric (blue) and antisymmetric (red) modes as a function of the

antenna separation for antennas hybridized with the 1st radial mode

at azimuthal mode number m= 86 (TE 86–1). The largest variation is

in the linewidth (panel g). The resonance frequencies show a spread

due to disk fabrication variations. These cancel out when considering

differences in frequency.
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markedly smaller for QNMs of radial order 2, commen-

surate with the larger mode volume. We traced similar

results for all the WGM modes within the bandwidth of

our laser, which amounts to 4 combinations of azimuthal

and radial quantum numbers in total. Panel 6e sum-

marizes the match between the azimuthal quantum

number extracted from bare cavity spectroscopy (hor-

izontal axis) and the value extracted from fitting Eq. (4) to

the measured traces of linewidth versus antenna spacing.

Of the striking features predicted by our analysis, the

experiments in Figs. 5 and 6a, b directly confirm that (I)

the magnitude of the mode splittings varies inversely with

the cavity mode volume and (II) the periodicity of the

splitting with antenna separation varies with the azi-

muthal mode number as cos(mΔθ). As this experiment

was conducted with a fixed antenna size (varying the

separation d as well as m and V in Eq. (4) but not α), it did

not give access to two other salient predictions, namely,

that (III) the tradeoff between real and imaginary con-

tributions to the mode splitting depends on the phase of

the polarizability α and that (IV) at very small separations,

near-field hybridization should change the detuning

behaviour. Regarding the phase of the polarizability, for

Figs. 5 and 6a, b, the antenna size was such that the

antennas were close in resonance to the cavities. Since

within less than a linewidth from the plasmon resonance

antenna polarizability is almost fully imaginary, the cavity

perturbation should be almost entirely through the cavity

damping rate and not through a real frequency shift.

Indeed, Fig. 6a, b directly shows that for these structures,

the splitting in frequency (real part) is much smaller than

the maximum difference in linewidth. In a second

experiment (Fig. 6, panel c for the real and imaginary part

of the difference frequency between symmetric and

asymmetric QNMs and panel d showing mode line-

widths), we also studied a family of devices with deliber-

ately smaller, i.e., blue-detuned, antennas, further focusing

on a range of small antenna separations. The results of

these samples highlight the role of the phase of the

polarizability. For the chosen detuning Δac= ωc−ωa of

approximately half the antenna linewidth γa= γi+ γrad,

the polarizability had an approximately π/4 phase, as

opposed to the π/2 on resonance. Consistent with the

regime Re(α) ≈ Im(α), the mode splitting in the real and

imaginary parts of the frequency (representing the reso-

nance frequency and half damping rate, respectively) are

now approximately equal in size. Overall, the splittings are

smaller, however, owing to the fact that the polarizability

of the antennas is off-resonant at the cavity frequency. In

fact, we argue that one can use the ratio of the real and

imaginary mode splittings to estimate the ratio of Re(α) to

Im(α) through Eq. (4), while one can estimate the mag-

nitude of α by comparing the overall size of the complex-

frequency shift with the cavity mode volume. Figure 6f

illustrates this idea. For all data sets, we extracted the

complex prefactor α= ~V in Eq. (4). The magnitude is taken

from the amplitude of the cosine behaviour for the

absolute value of the complex-frequency shift, while the

phase of α= ~V is taken from the complex argument of

Δ~ω ¼ Δωþ i
Δγ
2
, where we have averaged over all data-

points with Δθ > 2.5° to avoid the regime of near-field

hybridization discussed below. The data sets with the

antennas resonant near the interrogation frequency, i.e.,

near 780 nm, result in α= ~V on the imaginary frequency

axis. This is commensurate with the notion that the QNM

mode volume ~V is essentially real for high-Q cavities,

while the on-resonance polarizability of a plasmon

antenna is imaginary. The data further clearly show the

effect of the mode volume (nr= 2 radial order mode
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Fig. 6 Mode splitting versus antenna spacing for dimer antennas

hybridized with microdisk modes of various azimuthal and radial

quantum number. a, b The difference in resonance frequency (blue,

weakly varying) and linewidth (red, strongly varying) between

symmetric and antisymmetric modes as a function of the antenna

separation for antennas hybridized with a the 1st radial mode at

azimuthal mode number m= 86 (TE 86–1) and b a mode of larger

mode volume and different azimuthal mode number (2nd-order radial

mode m= 80, TE 80–2). c, d show a similar study with strongly blue-

detuned antennas, where c shows the difference in resonance

frequency (blue) and linewidth (red) and d reports the individual

linewidths of symmetric (blue) and antisymmetric (red) modes. e

Azimuthal mode number m′ extracted from fitting the oscillation in

the perturbed frequency to Eq. (10) versus the simulated mode

number m for all WGM modes in the laser bandwidth. f Polar

representation of the measured complex-valued α
~V
obtained by fitting

the amplitude and phase of oscillation in frequency and linewidth to

Eq. (10) [Δ: TE 80–2, □: TE 81–2, +: TE 85–1, ×: TE 86–1 for the on-

resonant antenna and ◯ for the strongly blue-detuned antenna]. For

reference, the circular curve shows the expected frequency

dependence of α
~V
for a Lorentzian polarizability [choosing ~V ¼ 300λ3

and an on-resonance extinction cross section of 0.12 μm2]. With

frequency detuning Δac from antenna resonance (colour coding of

the curve, in units of antenna linewidth), the factor α
~V
goes from purely

imaginary to partly real (dashed and dotted lines: Δac set to ½ resp. 1/

8th the antenna linewidth).
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appears at significantly smaller α= ~V for the same antenna

size, i.e., fixed α). If one would be able to tune through the

resonance of an antenna, one would expect α= ~V to sweep

out a circle in the complex plane. The data sets with

smaller antennas (Fig. 6f, lower-left datapoints) are indeed

distinctly shifted in phase by approximately π/4, equiva-

lent to a detuning by approximately half the antenna

linewidth [antenna resonance near 630 nm].

Finally, our theoretical analysis projected that at very

small antenna separations, deviations from the simple

oscillatory dependence of mode splitting on the scatterer

separation would set in. While only a few devices in our

sample set access this regime, Fig. 6c, d indeed reveals that

for the smallest antenna separations, the cavity pertur-

bation does not follow the simple oscillatory dependence

of mode splitting with the antenna separation. Instead, at

the smallest separations, the system response is domi-

nated by a very strong broadening of the antisymmetric

cavity mode. This observation is a manifestation of the

near-field hybridization of the two antennas.

Discussion

We have reported a simple model for the emission

enhancement properties of multimode, multi-antenna

hybrid plasmon-photonic resonators, in particular focus-

ing on WGM cavities coupled to plasmon antenna

dimers. The model projects that these hybrids sustain

similarly high hybrid Purcell factors as hybrids with only a

single plasmon antenna but with the added benefit that

one can tailor where the emission goes, with the freedom

to arrange for branching ratios anywhere between sym-

metric and unidirectional circulation. As an example, if

one would make a side-coupled waveguide the dominant

loss channel for the cavity, then one could selectively

extract light from emitters located at one of the antennas

from just one waveguide port. Conversely, balancing the

phase and amplitude of the two-waveguide-input port

would enable the selective excitation of emitters placed at

just one of the antennas or the other. Our analysis shows

that the perturbative effects of the antennas are tailorable

through the phase relation set by antenna placement,

which in turn controls the interferences required for

unidirectionality and linewidth/lineshift control. The

essential physics of this hybridization is confirmed by

experiments in an experimental platform based on silicon

nitride microdisks and aluminium nano-antennas. While

most systematic cavity perturbation experiments to date

had to resort to scanning probe microscopy or scanning

to avoid having to compare different devices with their

inevitable spread in fabricated dimensions, our experi-

mental platform is sufficiently reproducible to system-

atically compare plasmon-antenna-induced perturbations

between devices, even for those narrowband cavities

having GHz linewidths. The observations confirm our

model for the hybridization physics, suggesting that high-

Q plasmonic hybrid modes indeed offer an advantageous

LDOS and a unidirectional light-matter coupling. The

next step will be to actually demonstrate this unidirec-

tional light-matter coupling. This would require a loca-

lized placement of emitters, such as quantum dots or

fluorophores, at one of the antennas. The directionality of

emission can already be demonstrated with ensembles of

emitters packed in volumes of approximately 100 × 50 ×

50 nm3 enclosing the antenna, as could be obtained by

electron beam lithography of polymer resist doped with

fluorophores. For the vision of hybrid nanophotonics for

quantum optics on a chip, the challenge would rather be

to locate a single quantum emitter. This highly challen-

ging placement may be possible by extending the multi-

step lithography approach to emitter placement reported

by Curto et al.27, provided that a functionalization recipe

to attach quantum dots to aluminium is available or

alternatively could be possible with scanning probe

microscopy using a fluorescent tip. A main challenge will

lie in the fact that the unidirectionality occurs over a

bandwidth equal to the linewidth of the hybrid modes

(<0.1 nm, up to 1 nm possible with antenna-disk hybrids),

while room-temperature emitters have a far larger line-

width (20 nm for typical quantum dots)39. We further-

more note that multimode antenna-cavity hybrids can

also be of interest for controlling ensembles of emitters

(distributed or localized), e.g., in the context of directional

lasing, as has been already discussed for WGM cavities in

the context of PT-symmetry and exceptional points in

ref. 41. To this end, it would be necessary to enrich the

system with a broken symmetry, for instance, by intro-

ducing a third antenna or considering unequal placement

in the radial mode profile29,40. Further degrees of freedom

for engineering unidirectionality would be offered by

using polarization degrees of freedom. While we have

considered only radially polarizable electric dipole

antennas in this work, in fact, high-index dielectric par-

ticles and metallic split-ring shapes can show electric,

magnetic, and coupled magneto-electric dipole polariz-

abilities, as reported in recent works on Janus, Kerker, and

Huygens scatterers42,43. The excitation of suitable linear

combinations of these moments is intrinsically associated

with directional scattering. The microdisk geometry has

near fields very similar to the non-transverse field of

waveguides that have recently been used to generate cir-

cular dipoles in scatterers, with concomitant path-to-

helicity conversion44,45. This provides a route to connect

antenna-disk systems to chirality/helicity-specific light-

matter interactions that also include emitters with mag-

netic dipole character46. Our QNM theoretical framework

could be extended to address tensorial and magneto-

electric response functions of scatterers or emitters.

Finally, we note that multimode antenna-cavity hybrids
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will also offer new opportunities for high-Q particle

sensing19, with all the benefits of plasmonic hotspots, as

well as for exploring novel regimes of interaction in

molecular optomechanic proposals8.

Materials and methods

QNM approach

For a set of i= 1… M antennas of polarizability αi, the

induced dipole moments are given by23,35

pi ¼ ϵ0αi½Edr;i þ Ebs;i þ Edp;i� ð5Þ

where αiðωÞ is the dipole polarizability tensor (normalized

by vacuum permittivity ε0), Edr;iðri;ωÞ represents an

externally applied driving field, Ebs;iðri;ωÞ is the field

radiated by the dipole i and scattered back onto i by the

environment, and the term Edp;iðri;ωÞ quantifies the field

exerted on dipole i due to fields scattered by all dipoles

labelled by j ≠ i. In the hypothesis where all polarizable

objects are immersed in the same isotropic medium of

refractive index n, one can decompose the system dyadic

Green’s function Gðr; r′;ωÞ such that G=G0+ΔG,

where G0ðr; r′;ωÞ represents the homogeneous Green’s

function of a medium of index n and ΔGðr; r′;ωÞ is

referred to as the Green’s function of the scattered field.

With these definitions, we can formally express

Edp;i ¼
X

j≠i

μ0ω
2Gðri; rj;ωÞpj

and

Ebs;i ¼ μ0ω
2ΔGðri; ri;ωÞpi

where μ0 is the vacuum permeability. We then use a

partial QNM expansion of Green’s function23,36

ΔG ¼ 1

μ0ω
2

X

N

k¼1

�~ωk

ω� ~ωk

~EkðrÞ � ~Ekðr′Þ þ δGN ð6Þ

where ~EkðrÞ is the normalized electric field of the QNM

indexed by k, ~ωk ¼ ωk þ i
γk
2 is its complex frequency (ωk

and γk being the resonance frequency and linewidth,

respectively), and δGN ðr; r′;ωÞ is the residue of the

decomposition, accounting for all other modes of the

system besides the ones explicit in the sum and non-

resonant terms. This starting point is similar to a previous

work33, where we examined perturbation theory for the

interaction between a single polarizable object and a

cavity mode, adapted to address multiple perturbers and

cavity modes. In this work, we further assume that two

initially degenerate cavity modes are dominant (N= 2), as

appropriate for a WGM cavity, and that all other QNMs

and non-resonant interactions grouped in δGN can simply

be neglected. These non-resonant interactions would be

tedious to calculate accurately in a real geometry;37

however, one would expect them to be dominated by an

electrostatic/near-field 1/r3 term interaction that is

captured in G0.

We focus on the specific case of antennas interacting

with a single degenerate pair of WGMs, as would be the

case in a microdisk, microtoroid or microsphere cavity (as

in Fig. 1). This implies the specific choice N= 2 and a pair

of symmetric (s) and antisymmetric (as) mode functions

of the form (in cylindrical coordinates (r, θ, z))

~Es � er ¼ cosðmθÞ~Erðr; zÞ ð7Þ
~Eas � er ¼ sinðmθÞ~Erðr; zÞ ð8Þ

Note that from these normalized QNMs, clockwise and

anticlockwise combinations can be formed through
~Ecw=ccw ¼ 1

ffiffi

2
p ð~Es ± i~EasÞ. The following considers antennas

that are polarizable only along their long axis by TE

WGMs (relevant for nanorods near resonance, aligned

along the radial direction of a microdisk) and that are

offset in the azimuthal direction (angle θ) but with a fixed

radial position r on the edge of the microring cavity (see

Fig. 1). Under these assumptions, the only relevant

functional dependence on the antenna position is through

θi (angle parametrizing the nanorod location) or, equiva-

lently, the antenna angular separation Δθ= θ2− θ1, while

the QNM strength at the antenna position (ri,zi) (resp.

distance of antenna to the origin, height of the antennas

relative to the disk plane) is set by ~Erðri; ziÞ, which is

directly related to the on-resonance local density of states

(LDOS) enhancement at the location of the antenna.

We now consider the emission enhancement of a dipole

emitter placed in the vicinity of one of the nano-antennas.

Therefore, we calculate the LDOS enhancement, which is

defined as the total work required to maintain a drive

dipole moment pdr located at rdr:

P ¼ ω

2
Imðp�dr � Etotðrdr;ωÞÞ ð9Þ

normalized to the power required to drive the same dipole

in free space given by Larmor’s formula P0 ¼ ω4kpdrk2
12πϵbϵ0c3

,

where ω is the driving frequency, Etot is the total field

radiated by the dipole evaluated in the presence of the

cavity, and εb is the permittivity of the homogeneous

isotropic, non-absorptive background medium. To obtain

the relevant quantities, we substitute as the drive field Edr,i

in Eq. (1) the field imposed by a drive dipole, that is,

Edr;i ¼ μ0ω
2Gðri; rdr;ωÞpdr
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solve for the induced (antenna) dipoles pi, and then

calculate the total field returning to the drive dipole as

Etot ¼ μ0ω
2 Gðrdr; rdr;ωÞpdr þ

X

M

i¼1

Gðrdr; ri;ωÞpi

" #

ð10Þ

Finally, we also reconstruct the directionality of emission

into the cavity, i.e., how emission into the cavity modes is

distributed over the clockwise and anticlockwise direc-

tions. To this end, we exploit the fact that the excitation of

the symmetric and asymmetric degenerate modes (
~ω1 ¼ ~ω2 	 ~ω) is given in the QNM formalism as38

as;as ¼
�~ω

ω� ~ω
~Es;asðrdrÞ � pdr þ

X

M

i¼1

~Es;asðriÞ � pi

" #

ð11Þ
Since the (anti)clockwise mode amplitudes are then

proportional to acw=ccwðωÞ ¼ 1
ffiffi

2
p ðasðωÞ � iaasðωÞÞ, we can

introduce the directivity parameter

σ ¼ jacwj2 � jaccwj2
jacwj2 þ jaccwj2

¼ jas � iaasj2 � jas þ iaasj2
jas � iaasj2 þ jas þ iaasj2

, which is (−)1 if all

light in the cavity is circulating in the (anti)clockwise

cavity mode or 0 if light is distributed equally over both

circulation directions.

The complex-frequency analysis follows by taking Eq.

(5) through Eq. (11) with no driving terms, which leads to

pi ¼ ϵ0αiðωÞ μ0ω
2
X

M

j¼1

G0ðri; rj;ωÞpj þ
X

k¼s;as

ak~EkðriÞ
" #

ð12Þ
keeping in mind that we neglect the residue δGN of the

QNM expansion.

Sample fabrication

We use a two-step lithography to realize Si3N4 disks,

hybridized with aluminium antennas. First, we fabricate

Si3N4 on pyramidal silicon pedestals by electron beam

lithography and reactive ion etching from silicon wafers

with a 200 nm LPCVD layer of Si3N4 (Lionix BV). After

base piranha cleaning, we perform e-beam lithography in

450 nm of CSAR 62 resist (All Resist GmbH) at 50 keV

(Raith Voyager), using a 0.4 nA current and 160 μC/cm2

dose. After development in pentyl-acetate followed by an

o-xylene dip, the samples are post-baked at 130 °C for

1 min to harden the resist to act as a plasma etch mask.

After plasma etching through the nitride (RIE-ICP, SF6/

CHF3 chemistry), we remove the resist using acetone and

a base piranha clean, immediately followed by a Si

underetch (KOH) to create free-standing disk edges. To

realize the antennas, we then spin-coat a MMA/PMMA

bilayer resist stack (120/60 nm, as measured at the edge of

the cavity) to perform a second e-beam step aligned to the

first. After e-beam writing (500 μC/cm2 dose) and devel-

opment in a 1:3 methyl isobutyl ketone and isopropanol

mixture, we perform aluminium evaporation (thermal

evaporator at a 0.05 nm/s evaporation rate, targeting a

40 nm thickness) and lift-off in acetone at 40 °C. Finally,

we ensure that the samples are accessible to optical fibre

taper coupling by using a diamond saw to remove a

150 μm thick layer from the entire sample, except for a

150 μm wide ridge on which the structures stand. During

this process, the sample is covered by a protective poly-

mer resist that is stripped after sawing (Microposit

S1800). This results in 15 μm diameter and 200 nm thick

Si3N4 microdisks with two ≈130 nm long, ≈50 nm wide

and ≈40 nm thick radially oriented Al antennas, placed

300 nm from the disk edge. Two samples are made with

slightly different electronic doses for the second litho-

graphic step. This results in a length difference between

the two samples sufficient to ensure that for one sample,

the antennas are almost on resonance with the cavity

(operation near a 780 nm wavelength), while for the other

sample, they were designed to be resonant at 630 nm.

Optical setup and analysis framework

We interrogate the structures using a tapered optical

fibre setup, sketched in Fig. 4b. The fibre is pulled to an

adiabatic taper from a Corning HI 780C fibre that is in

single mode at our operation wavelength of approximately

780 nm using an automated motorized hydrogen flame

setup. The fibre is precisely made to approach the cavities

using a piezo-stage setup, and excitation light is coupled

in from an external-cavity diode laser that is widely

tuneable yet narrowband (New Focus Velocity). The fre-

quency axis of our cavity transmission scans is calibrated

against a Fabry-Perot reference cavity (finesse >150, free

spectral range of 10 GHz). We simultaneously collect

reflected and transmitted signals on the photodiodes as

well as scattered light (Fig. 4b). The scattered light is

collected from the air side using a microscope objective

and directed to a Basler CMOS camera, where we have

access to both real space and k-space (angle-resolved)

images. We can interrogate only modes of the first and

second radial order because the fundamental mode is too

strongly perturbed and therefore broadened by the

antennas to be probed by tapered-fibre coupling and

narrowband laser frequency scanning. The radial order

mainly affects the cavity mode volume, as QNMs of

increasing radial order have lower field amplitudes at the

antenna locations.

To extract QNM frequencies and Q values from the raw

data, we simultaneously fit reflection, transmission (data

plotted in Fig. 5d), and scattering spectra taken from the

radiation pattern. To this end, we perform a simultaneous
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fit to the Fano-like reflection, transmission and scattering

data with a sum of 2 complex Lorentzians:

TðωÞ ¼ 1�
βT ;s

ω� ~ωs

�
βT ;as

ω� ~ωas

�

�

�

�

�

�

�

�

2

ð13Þ

RðωÞ ¼
βR;s

ω� ~ωs

þ
βR;as

ω� ~ωas

�

�

�

�

�

�

�

�

2

ð14Þ

Sðk;ωÞ ¼
βS;sðkÞ
ω� ~ωs

þ
βS;asðkÞ
ω� ~ωas

�

�

�

�

�

�

�

�

2

ð15Þ

where the complex frequencies ~ωs;as are common to all

three fit functions, while the coefficients β are observable

dependent. For scattering, we found that for a good fit, it

is not necessary to determine the full-wave-vector-

dependent yet frequency-independent amplitude func-

tions βS;s;asðkÞ for each QNM. Instead, for just obtaining

the complex frequencies, taking only two wave vectors in

the radiation pattern with a distinct Fano spectrum

suffices (data plotted in Fig. 5e).

Simulations

As input for our analytical model, we use an antenna

polarizability that is taken as a Lorentzian polarizability

with resonance frequency ω0=ð2πÞ ¼ 460 THz and an

Ohmic damping rate γ i=ð2πÞ ¼ 19:9 THz of gold,

equivalent to taking the polarizability of a sphere and

assuming a Drude model. We take a scatterer volume of

80 nm3 and incorporate radiation damping exactly as in

ref. 4. This is equivalent to an on-resonance extinction

cross section of 0.18 μm2 and scattering albedo of 85%, as

typically achieved by large plasmonic dipolar antennas,

and is close to the polarizability retrieved from full-wave

simulations (ref. 4). We perform numerical calculations

with a MATLAB® implementation of the theoretical

model. COMSOL 5.2 finite element simulations are used

to predict the mode structure of the fabricated microdisks

and antennas.
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