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Abstract

The implementation challenges of cooperative localization by dual foot-mounted inertial sensors and inter-agent
ranging are discussed, and work on the subject is reviewed. System architecture and sensor fusion are identified as
key challenges. A partially decentralized system architecture based on step-wise inertial navigation and step-wise
dead reckoning is presented. This architecture is argued to reduce the computational cost and required
communication bandwidth by around two orders of magnitude while only giving negligible information loss in
comparison with a naive centralized implementation. This makes a joint global state estimation feasible for up to a
platoon-sized group of agents. Furthermore, robust and low-cost sensor fusion for the considered setup, based on
state space transformation and marginalization, is presented. The transformation and marginalization are used to give
the necessary flexibility for presented sampling-based updates for the inter-agent ranging and ranging free fusion of
the two feet of an individual agent. Finally, the characteristics of the suggested implementation are demonstrated
with simulations and a real-time system implementation.
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1 Introduction
High accuracy, robust, and infrastructure-free pedestrian

localization is a highly desired ability for, among oth-

ers, military, security personnel, and first responders.

Localization and communication are key capabilities to

achieve situational awareness and to support, manage,

and automatize individual’s or agent group actions and

interactions. See [1-8] for reviews on the subject. The

fundamental information sources for the localization are

proprioception, exteroception, and motion models. With-

out infrastructure, the exteroception must be dependent

on prior or acquired knowledge about the environment

[9]. Unfortunately, in general, little or no prior knowledge

of the environment is available, and exploiting acquired

knowledge without revisiting locations is difficult. There-

fore, preferably the localization should primarily rely on

proprioception and motion models. Proprioception can

take place on the agent level, providing the possibil-

ity to perform dead reckoning, or on inter-agent level,
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providing the means to perform cooperative localiza-

tion. Pedestrian dead reckoning can be implemented in

a number of different ways [10]. However, foot-mounted

inertial navigation, with motion models providing zero-

velocity updates, constitute a unique, robust, and high-

accuracy pedestrian dead reckoning capability [11-14].

With open-source implementations [15-17] and several

products appearing on the market [18-21], dead reckon-

ing by foot-mounted inertial sensors is a readily avail-

able technology. In turn, the most straightforward and

well-studied inter-agent measurement, andmean of coop-

erative localization, is ranging [22-25]. Also here, there

are multiple (radio) ranging implementations available in

the research literature [26-30] and as products on the

market [31-33]. Finally, suitable infrastructure-free com-

munication equipment for inter-agent communication is

available off-the-shelf, e.g. [34-37], and processing plat-

forms are available in abundance. Together, this suggests

that the setup with foot-mounted inertial sensors and

inter-agent ranging as illustrated in Figure 1 is suitably

used as a base setup for any infrastructure-free pedestrian

localization system. However, despite the mature compo-

nents and the in principle straight-forward combination,

© 2013 Nilsson et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.



Nilsson et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:164 Page 2 of 17

http://asp.eurasipjournals.com/content/2013/1/164

Dual foot-mounted
inertial sensors

Inter-agent
ranging

Inter-agent
com.Com. and

proc. device

Ranging
device

Local
com.

Local
com.

Figure 1 Illustration of the considered localization setup. A group of agents are cooperatively localizing themselves without any infrastructure.
For this purpose, each agent is equipped with dual foot-mounted inertial sensors, a ranging device, and a communication (com.) and processing
(proc.) device.

cooperative localization with this sensor setup remains

challenging, and only a few similar systems can be found

in the literature [38-42], and no off-the-shelf products are

available.

The challenges with the localization setup lie in the sys-

tem architecture and the sensor fusion. The inter-agent

ranging and lack of anchor nodes mean that some global

state estimation is required with a potentially prohibitive

large computational cost. The global state estimation, the

distributed measurements, and the (required) high sam-

pling rates of the inertial sensors mean that a potentially

substantial communication is needed and that the system

may be sensitive to incomplete or varying connectiv-

ity. The feet are poor placements for inter-agent ranging

devices and preferably inertial sensors are used on both

feet, meaning that the sensors of an individual agent will

not be collocated. This gives a high system state dimen-

sionality and means that relating the sensory data from

different sensors to each other is difficult and that local

communication links on each agent are needed. Further,

inter-agent ranging errors as well as sensor separations,

often have far from white, stationary, and Gaussian char-

acteristics. Together, this makes fusing ranging and dead

reckoning in a high integrity and recursive Bayesian man-

ner at a reasonable computational cost difficult.

Unfortunately, the mentioned challenges are inherent to

the system setup. Therefore, they have to be addressed

for any practical implementation. However, to our knowl-

edge, the implementation issues have only been sparsely

covered in isolation in the literature, and no complete sat-

isfactory solution has been presented. Therefore, in this

article, we present solutions to key challenges to the sys-

tem setup and a complete localization system implemen-

tation. More specifically, the considered overall problem

is tracking, i.e., recursively estimating, the positions of a

group of agents with the equipment setup of Figure 1.

The available measurements for the tracking are iner-

tial measurements from the dual foot-mounted inertial

sensors and inter-agent range measurements. The posi-

tion tracking is illustrated in Figure 2. The measurements

will be treated as localized to the respective sensors, and

the necessary communication will be handled as an inte-

gral part of the overall problem. However, we will not

consider specific communication technologies but only

communication constraints that naturally arise in the cur-

rent scenario (low bandwidth and varying connectivity).

See [43-47] and references therein for treatment of related

networking and communication technologies. Also, for

brevity, the issues of initialization and time synchroniza-

tion will not be considered. See [48,49] for the solutions

used in the system implementation.
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Figure 2 Illustration of the localization estimation problem and

the desired output from the localization system. The problem is
to track (i.e., recursively estimate) the positions of multiple agents in
three dimensions by inter-agent range measurements and inertial
measurements from the foot-mounted inertial sensors.
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To arrive at the key challenges and the solutions,

initially, in Section 2, the implementation challenges

are discussed in more detail, and the related work is

reviewed. Following this, we address the key challenges

and present a cooperative localization system implemen-

tation based on dual foot-mounted inertial sensors and

inter-agent ranging. The implementation is based on a

partially decentralized system architecture and statisti-

cal marginalization, and sampling-based measurement

updates. In Section 3, the architecture is presented and

argued to reduce the computational cost and required

communication by around two orders of magnitude, and

to make the system robust to varying connectivity, while

only giving negligible information loss. Thereafter, in

Section 4, the sampling-based measurement updates with

required state space transformation and marginalization

are presented and shown to give a robust and low com-

putational cost sensor fusion. Subsequently, in Section 5,

the characteristic of the suggested implementation is

illustrated via simulations and a real-time system imple-

mentation. The cooperative localization is found to give

a bounded relative position mean square error (MSE)

and an absolute position MSE inversely proportional to

the number of agents, in the worst case scenario, and a

bounded position MSE in the best case scenario. Finally,

Section 6 concludes the article.

2 Implementation challenges
The lack of anchor nodes, the distributed nature of the

system, the error characteristics of the different sensors,

and the non-collocated sensors of individual agents poses

a number of implementation challenges for the coop-

erative localization. Broadly speaking, these challenges

can be divided into those related to designing an overall

system architecture to minimize the required communi-

cation and computational cost, while making it robust to

varying connectivity and retaining sufficient information

about the coupling of non-collocated parts of the sys-

tem, and fusing the information of different parts of the

system given the constraints imposed by the system archi-

tecture and a finite computational power, while retaining

performance and a high system integrity. In the following

two subsections, these two overall challenges are dis-

cussed in more detail, and the related previous work is

reviewed.

2.1 System architecture and state estimation

The system architecture has a strong connection to the

position/state estimation and the required communica-

tion. The range of potential system architectures and

estimation solutions goes from the completely decentral-

ized, in which each agent only estimates its own states, to

the completely centralized, in which all states of all agents

are estimated jointly.

A completely decentralized architecture is often used

in combination with some inherently decentralized belief

propagation estimation techniques [38,50,51]. The advan-

tage of this is that it makes the localization scalable and

robust to varying and incomplete connectivity between

the agents. Unfortunately, belief propagation discards

information about the coupling between agents, lead-

ing to reduced performance [51-54]. See [52] for an

explicit treatment of the subject. Unfortunately, as will

be shown in Section 5, in a system with dead reckon-

ing, inter-agent ranging, and no anchor nodes, the errors

in the position estimates of the different agents may

become almost perfectly correlated. Consequently, dis-

carding these couplings/correlations between agents can

significantly deteriorate the localization performance and

integrity.

In contrast, with a centralized architecture and esti-

mation, all correlations can be considered, but instead

the state dimensionality of all the agents will add up.

Unfortunately, due to the lack of collocation of the sen-

sors of the individual agents, the state dimensionality of

the individual agents will be high. Together, this means

computationally expensive filter updates. Further, the

distributed nature of the system means that informa-

tion needs to be gathered to perform the sensor fusion.

Therefore, communication links are needed, both locally

on each agent as well as on a group level. Inter-agent

communication links are naturally wireless. However,

the foot-mounting of the inertial sensors makes cabled

connections impractical, opting for battery powering and

local wireless links for the sensors as well [55,56]. Unfor-

tunately, the expensive filter updates, the wireless com-

munication links, and the battery powering combines

poorly with the required high sampling rates of the inertial

sensors. With increasing number of agents, the compu-

tational cost and the required communication bandwidth

will eventually become a problem. Moreover, an agent

which loses contact with the fusion center cannot, unless

state statistics are continually provided, easily carry on

the estimation of its own states by itself. Also, to recover

from an outage when the contact is restored, a significant

amount of data would have to be stored, transferred, and

processed.

Obviously, neither of the extreme cases, the completely

decentralized nor the completely centralized architec-

tures, are acceptable. The related problems suggest that

some degree of decentralization of the estimation is

required to cope with the state dimensionality and com-

munication problems. However, some global book keep-

ing is also required to handle the information coupling.

Multiple approximative and exact distributed implemen-

tations of global state estimation have been demonstrated,

see [54,57-59] and references therein. However, these

methods suffer from either a high computational cost
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or required guaranteed and high bandwidth communi-

cation, and are not adapted to the considered sensor

setup with high update rates, local communication links,

and lack of sensor collocation. Therefore, in Section 3,

we suggest and motivate a system architecture with par-

tially decentralized estimation based on a division of

the foot-mounted inertial navigation into a step-wise

inertial navigation and dead reckoning. This architec-

ture does not completely solve the computational cost

issue but makes it manageable for up to a platoon-

sized group of agents. For larger groups, some cellular

structure is needed [39,58]. However, the architecture

is largely independent of how the global state estima-

tion is implemented and a distributed implementation is

conceivable.

The idea of dividing the filtering is not completely

new. A similar division is presented in an application

specific context in [60] and used to fuse data from foot-

mounted inertial sensors with maps, or to build the

maps themselves, in [61-63]. However, the described divi-

sion is heuristically motivated, and the statistical relation

between the different parts is not clear. Also, no physical

processing decentralization is exploited to give reduced

communication requirements.

2.2 Robust and low computational cost sensor fusion

The sensor fusion firstly poses the problem of how to

model the relation between the tracked inertial sensors

and the range measurements. Secondly, it poses the prob-

lem of how to condition the state statistic estimates on

provided information while retaining reasonable compu-

tational costs.

The easiest solution to the non-collocated sensors

of individual agents is to make the assumption that

they are collocated (or have a fixed relation) [38,64-66].

While simple, this method can clearly introduce mod-

eling errors, resulting in suboptimal performance and

questionable integrity. Instead, explicitly modeling the

relative motion of the feet has been suggested in [67].

However, making an accurate and general model of the

human motion is difficult, to say the least. As an alter-

native, multiple publications suggest explicitly measur-

ing the relation between the sensors [14,68-70]. The

added information can improve the localization perfor-

mance but unfortunately introduces the need for addi-

tional hardware and measurement models. Also, it works

best for situations with line-of-sight between measure-

ment points, and therefore, it is probably only a viable

solution for foot-to-foot ranging on clear, not too rough,

and vegetation/obstacle-free ground [71]. Instead of mod-

eling or measuring the relation between navigation points

of an individual agent, the constraint that the spatial sep-

aration between them has an upper limit may be used.

This side information obviously has an almost perfect

integrity, and results in [72] indicate that the perfor-

mance loss in comparison to ranging is transitory. For

inertial navigation, it has been demonstrated that a range

constraint can be used to fuse the information from

two foot-mounted systems, while only propagating the

mean and the covariance [73,74]. Unfortunately, the sug-

gested methods depend on numerical solvers and only

apply the constraint on the mean, giving questionable

statistical properties. Therefore, in Section 4, based on

the work in [72], we suggest a simpler and numerically

more attractive solution to using range constraints to per-

form the sensor fusion, based on marginalization and

sampling.

The naive solution to the sensor fusion of the foot-

mounted inertial navigation and the inter-agent ranging

is simply using traditional Kalman filter measurement

updates for the ranging [38]. However, the radio rang-

ing errors are often far from Gaussian, often with heavy

tails and non-stationary and spatially correlated errors

[75-80]. This can cause unexpected behavior of many

localization algorithms, and therefore, statistically more

robust methods are desirable [79-81]. See [82] and ref-

erences therein for a general treatment of the statistical

robustness concept. The heavy tails and spatially corre-

lated errors could potentially be solved by a flat likelihood

function as suggested in [75,83]. However, while giving

a high integrity, this also ignores a substantial amount

of information and requires multi-hypothesis filtering

(a particle filter) with unacceptable high computational

cost. Using a more informative likelihood function is not

hard to imagine. Unfortunately, only a small set of like-

lihood functions can easily be used without resorting to

multi-hypothesis filtering methods. Some low-cost fusion

techniques for special classes of heavy-tailed distributions

and H∞ criteria have been suggested in the literature

[84-88]. However, ideally, we would like more flexibility to

handle measurement errors and non-collocated sensors.

Therefore, in Section 4, we propose a marginalization

and sample basedmeasurement update for the inter-agent

ranging, providing the necessary flexibility to handle an

arbitrary likelihood function. A suitable likelihood func-

tion is proposed, taking lack of collocation, statistical

robustness, and correlated errors into account, and shows

to provide a robust and low computational cost sensor

fusion.

3 Decentralized estimation architecture
To get around the problems of the centralized architec-

ture, the state estimation needs somehow to be partially

decentralized. However, as previously argued, some global

state estimation is necessary. Consequently, the challenge

is to do the decentralization in a way that does not lead to

unacceptable loss in information coupling, leading to poor

performance and integrity, while still solving the issues
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with computational cost, communication bandwidth, and

robustness to varying connectivity. In the following sub-

sections, it is shown how this can be achieved by dividing

the filtering associated with foot-mounted inertial sen-

sors into a step-wise inertial navigation and step-wise

dead reckoning. Pseudo-code for the related processing is

found in Algorithm 1.

3.1 Zero-velocity-update-aided inertial navigation

To track the position of an agent equipped with foot-

mounted inertial sensors, the sensors are used to imple-

ment an inertial navigation system aided by so called

zero-velocity updates (ZUPTs). The inertial navigation

essentially consists of the inertial sensors combined with

mechanization equations. In the simplest form, the mech-

anization equations are
⎡

⎢

⎢

⎣

pk

vk

qk

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

pk−1 + vk−1dt

vk−1 + (qk−1fkq
⋆
k−1 − g)dt

�(ωkdt)qk−1,

⎤

⎥

⎥

⎦

(1)

where k is a time index, dt is the time difference between

measurement instances, pk is the position, vk is the veloc-

ity, fk is the specific force, g = [0, 0, g] is the gravity, and

ωk is the angular rate (all in R
3). Further, qk is the quater-

nion describing the orientation of the system, the triple

product qk−1fkq
⋆
k−1 denotes the rotation of fk by qk , and

�(·) is the quaternion update matrix. For a detailed treat-

ment of the inertial navigation, see [89,90]. For analytical

convenience, we will interchangeably represent the orien-

tation qk with the equivalent Euler angles (roll, pitch, yaw)

θk = [φk , θk ,ψk]. Note that [ · , . . . ] is used to denote a

column vector.

The mechanization equations (1) together with mea-

surements of the specific force f̃k and the angular rates

ω̃k , provided by the inertial sensors, are used to propagate

position p̂k , velocity v̂k , and orientation q̂k state estimates.

Unfortunately, due to its integrative nature, small mea-

surement errors in f̃k and ω̃k accumulate, giving rapidly

growing estimation errors. Fortunately, these errors can

bemodeled and estimated with ZUPTs. A first-order error

model of (1) is given by
⎡

⎢

⎢

⎣

δpk

δvk

δθk

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

I Idt 0

0 I [qk−1fkq
⋆
k−1]× dt

0 0 I

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

δpk−1

δvk−1

δθk−1,

⎤

⎥

⎥

⎦

(2)

where δ(·)k are the error states, I, and 0 are 3 × 3 identity

and zero matrices, respectively, and [·]× is the cross-

product matrix. As argued in [91], one should be cautious

about estimating systematic sensor errors in the current

setup. Indeed, remarkable dead reckoning performance

has been demonstrated, exploiting dual foot-mounted

sensors without any sensor error state estimation [92].

Therefore, in contrast to many publications, no additional

sensor bias states are used.

Together with statistical models for the errors in f̃k and

ω̃k , (2) is used to propagate statistics of the error states.

To estimate the error states, stationary time instances are

detected based on the condition Z({f̃κ , ω̃κ }Wk
) < γZ ,

where Z(·) is some zero-velocity test statistic, {f̃κ , ω̃κ }Wk

is the inertial measurements over some time windowWk ,

and γZ is a zero-velocity detection threshold. See [93,94]

for further details. The implied zero-velocities are used as

pseudo-measurements

ỹk = v̂k ∀k : Z({f̃κ , ω̃κ }Wk
) < γZ, (3)

which are modeled in terms of the error states as

ỹk = H

⎡

⎢

⎢

⎣

δpk

δvk

δθk

⎤

⎥

⎥

⎦

+ nk , (4)

whereH = [0 I 0] is the measurement matrix, and nk is a

measurement noise, i.e., ỹk = δvk +nk . A similar detector

is also used to lock the systemwhen completely stationary.

See [95] for further details. Given the error model (2) and

the measurements model (4), the measurements (3) can

be used to estimate the error states with a Kalman type of

filter. See [11,94,96,97] for further details and variations.

See [98] for a general treatment of aided navigation. Since

there is no reason to propagate errors, as soon as there are

any non-zero estimates δp̂k , δv̂k , or δθ̂k , they are fed back

correcting the navigational states,
[

p̂k

v̂k

]

:=
[

p̂k

v̂k

]

+
[

δp̂k

δv̂k

]

and q̂k := �(δθ̂k)q̂k (5)

and consequently, the error state estimates are set to zero,

i.e., δp̂k := 03×1, δv̂k := 03×1, and δθ̂k := 03×1, where :=
indicates assignment.

Unfortunately, all (error) states are not observable based

on the ZUPTs. During periods of consecutive ZUPTs, the

system (2) becomes essentially linear and time invariant.

Zero-velocity for consecutive time instances means no

acceleration and ideally fk = q⋆
kgqk . This gives the system

and observability matrices

F =

⎡

⎢

⎢

⎣

I Idt 0

0 I [g]× dt

0 0 I

⎤

⎥

⎥

⎦

and

⎡

⎢

⎢

⎣

H

HF

HF2

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

0 I 0

0 I [g]× dt

0 I 2[g]× dt

⎤

⎥

⎥

⎦

.

Obviously, the position (error) is not observable, while the

velocity is. Since

[g]× =

⎡

⎢

⎢

⎣

0 g 0

−g 0 0

0 0 0,

⎤

⎥

⎥

⎦
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the roll and pitch are observable, while the heading (yaw)

of the system is not. Ignoring the process noise, this

implies that the covariances of the observable states decay

as one over the number of consecutive ZUPTs. Note that

there is no difference between the covariances of the error

states and the states themselves. Consequently, during

standstill, after a reasonable number of ZUPTs, the state

estimate covariance becomes

cov
(

(p̂k , v̂k , θ̂k)
)

≈

⎡

⎣

Ppk 03×5 Ppk ,ψk

05×3 05×5 05×1

P⊤
pk ,ψk

01×5 Pψk ,ψk
,

⎤

⎦ (6)

where Px,y=cov(x,y), Px=cov(x)=cov(x,x), (·)⊤ denotes

the transpose, and 0n×m denotes a zero matrix of size

n × m.

3.2 Step-wise dead reckoning

The covariance matrix (6) tells us that the errors of p̂k
and ψ̂k are uncorrelated with those of v̂k and [φ̂k , θ̂k].

Together with the Markovian assumption of the state

space models and the translational and in-plan rotation

invariance of (1) to (4), this means that future errors of

v̂k and [φ̂k , θ̂k] are uncorrelated with those of the current

p̂k and ψ̂k . Consequently, future ZUPTs cannot be used

to deduce information about the current position and

heading errors. In turn, this means that, considering only

the ZUPTs, it makes no difference if we reset the system

and add the new relative position and heading to those

before the reset. However, for other information sources,

we must keep track of the global (total) error covariance

of the position and heading estimates.

Resetting the system means setting position p̂k and

heading ψ̂k , and corresponding covariances to zero.

Denote the position and heading estimates at a reset ℓ

by dpℓ and dψℓ. These values can be used to drive the

step-wise dead reckoning

[

xℓ

χℓ

]

=
[

xℓ−1

χℓ−1

]

+
[

Rℓ−1dpℓ

dψℓ

]

+ wℓ, (7)

where xℓ and χℓ are the global position in three dimen-

sions and heading in the horizontal plan of the inertial

navigation system relative to the navigation frame,

Rℓ =

⎡

⎣

cos(χℓ) − sin(χℓ) 0

sin(χℓ) cos(χℓ) 0

0 0 1

⎤

⎦

is the rotation matrix from the local coordinate frame of

the last reset to the navigation frame, and wℓ is a (by

assumption) white noise with covariance,

cov(wℓ) = cov ( [Rℓ−1dpℓ, dψℓ] )

=
[

Rℓ−1Ppℓ
R⊤

ℓ−1 Rℓ−1Ppℓ,ψℓ

P⊤
pℓ,ψℓ

R⊤
ℓ−1 Pψℓ,ψℓ

]

. (8)

The noise wℓ in (7) represents the accumulated uncer-

tainty in position and heading since the last reset, i.e., the

essentially non-zero elements in (6) transformed to the

navigation frame. The dead reckoning (7) can trivially be

used to estimate xℓ and χℓ, and their error covariances

from dpℓ and dψℓ, and related covariances. The rela-

tion between the step-wise inertial navigation and dead

reckoning is illustrated in Figure 3.

To get [dpℓ, dψℓ] from the inertial navigation, reset

instances need to be determined, i.e., the decoupled sit-

uation (6) needs to be detected. However, detecting it is

not enough. If it holds for one time instance k, it is likely

to hold for the next time instance. Resetting at nearby

time instances is not desirable. Instead we want to reset

once at every step or at some regular intervals if the sys-

tem is stationary for a longer period of time. The latter

requirement is necessary to distinguish between extended

stationary periods and extended dynamic periods. Fur-

ther, to allow for real-time processing, the detection needs

to be done in a recursive manner. The longer the sta-

tionary period, the smaller the cross-coupling terms in

(6). This means that the system should be reset as late

as possible in a stationary period. However, if the sta-

tionary period is too short, we may not want to reset

at all, since then the cross-terms in (6) may not have

converged.

In summary, the necessary conditions for a reset are low

enough cross-coupling and minimum elapsed time since

the last reset. If this holds, there is a pending reset. In

principle, the cross-coupling terms in (6) should be used

to determine the first requirement. However, in practice,

all elements fall off together, and a threshold γp on, e.g.,

the first velocity component, can be used. To assess the

second requirement, a counter cp which is incremented

at each time instance is needed, giving the pending reset

condition

(Pvxk
< γp) ∧ (cp > cmin), (9)

Figure 3 Illustration of the step-wise inertial navigation and the

step-wise dead reckoning. The displacement and heading change
over a step given by the inertial navigation is used to perform the
step-wise dead reckoning.
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where cmin is the minimum number of samples between

resets. A pending reset is to be performed if the stationary

period comes to an end or a maximum time with a pend-

ing reset has elapsed. To assess the latter condition, a

counter cd is needed which is incremented if (9) holds.

Then, a reset is performed if

(

Z({f̃κ , ω̃κ }Wk
) ≥ γZ

)

∨ (cd > cmax), (10)

where cmax is the maximum number of samples of a pend-

ing reset. Together, (9) and (10) make up the sufficient

conditions for a reset. When the reset is performed, the

counters are reset, cp := 0 and cd := 0. This gives a

recursive step segmentation. Pseudo-code for the inertial

navigation with recursive step segmentation (i.e., step-

wise inertial navigation) and the step-wise dead reckoning

is found in Algorithm 1.

Algorithm 1 Pseudo-code of the combined step-wise

inertial navigation and step-wise dead reckoning. The

ZUPT-aided inertial navigation and the step-wise dead

reckoning refer to the effect of (1) to (5) and (7), respec-

tively, combined with Kalman type of filtering. For nota-

tional compactness, below Pk = P[pk ,vk ,qk ] and Pℓ =
P[xℓ,χℓ].

1: k := ℓ := cp := cd := 0

2: pk := vk := 03×1

3: qk := {Coarse self-initialization} (see, e.g., [98])
4: Pk := {Initial velocity, roll, and pitch uncertainty}
5: (xℓ,χℓ) := {Initial position and heading}
6: P(xℓ,χℓ) := {Initial position and heading uncertainty}
7: loop

8: k := k + 1

9: ZUPT-aided inertial navigation

([pk , vk ,qk] ,Pk) ← ([pk−1, vk−1,qk−1] ,Pk−1,f̃k ,ω̃k)

10: cp := cp + 1

11: if (Pvk < γp) ∧ (cp > cmin) then

12: cd := cd−1 + 1

13: if
(

Z({f̃κ , ω̃κ }Wk
) ≥ γZ

)

∨ (cd > cmax) then

14: ℓ := ℓ + 1

15: dpℓ := p̂k , dψℓ := φ̂k , Pwℓ
= . . . (see (8))

16: pk := vk := 03×1, ψk := 0

17: Pk := 09×9

18: cp := 0, cd := 0

19: Step-wise dead reckoning

([ xℓ,χℓ] ,Pℓ) ←
([ xℓ−1,χℓ−1] ,Pℓ−1,dpℓ,dψℓ,Pwℓ

)

20: end if

21: end if

22: end loop

Not to lose performance in comparison with a sen-

sor fusion approach based on centralized estimation, the

step-wise inertial navigation combined with the step-

wise dead reckoning needs to reproduce the same state

statistics (mean and covariance) as those of the indef-

inite (no resets) ZUPT-aided inertial navigation. If the

models (1), (2), and (7) had been linear with Gaussian

noise and the cross-coupling terms of (6) were perfectly

zero, then the divided filtering would reproduce the full

filter behavior perfectly. Unfortunately, they are not. How-

ever, as shown in the example trajectory in Figure 4,

in practice, the differences are marginal, and the mean

and covariance estimates of the position and heading can

be reproduced by only [dpℓ, dψℓ] and the correspond-

ing covariances. Due to linearization and modeling errors

of the ZUPTs, the step-wise dead reckoning can even

be expected to improve performance since it will elim-

inate these effects to single steps [91,99]. Indeed, reset-

ting appropriate covariance elements (which has similar

effects as of performing the step-wise dead reckoning) has

empirically been found to improve performance [100].

3.3 Physical decentralization of state estimation

The step-wise inertial navigation and dead reckoning as

described in Algorithm 1 can be used to implement a

Figure 4 Illustration of the decentralized system architecture.

Step-wise inertial navigation is done locally in the foot-mounted
units. Displacement and heading changes are transferred to a local
processing device, where step-wise dead reckoning is performed and
relayed together with ranging data to a central fusion center. The
fusion center may be carried by an agent, reside in a vehicle or
something similar, or be distributed among agents.
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decentralized architecture and state estimation. The rang-

ing, as well as most additional information, is only depen-

dent on position, not on the full state vector [pk , vk , θk].

Further, as argued in the previous subsection, the errors

of v̂k and [φ̂k , θ̂k] are weakly correlated with those of p̂k
and ψ̂k . Therefore, only the states [xℓ,χℓ] (for all feet)

have to be estimated jointly, and only line 19 needs to be

executed centrally. The step-wise inertial navigation, i.e.,

Algorithm 1 apart from line 19, can be implemented

locally in the foot-mounted units, and thereby, only

[dpℓ, dψℓ] and related covariances need to be transmit-

ted from the feet. This way, the required communication

will be significantly lower compared to that in the case

in which all inertial data would have to be transmitted.

Also, since the computational cost of propagating (7) is

marginal, this can be done both locally on the process-

ing device of each agent and in a global state estimation.

This way, if an agent loses contact with whomever who

performs the global state estimation, it can still perform

the dead reckoning and, thereby, keep an estimate of

where it is. Since the amount of data in the displacement

and heading changes is small, if contact is reestablished,

all data can easily be transferred, and its states in the

global state estimation updated. The other way around, if

corrections to the estimates of [ xℓ,χℓ] are made in the

central state estimation, these corrections can be trans-

ferred down to the agent. Since the recursion in (7) is pure

dead reckoning (no statistical conditioning), these correc-

tions can directly be used to correct the local estimates of

[ xℓ,χℓ]. This way, the local and the global estimates can

be kept consistent.

The straightforward way of implementing the global

state estimation is by one (or multiple) central fusion

center to which all dead reckoning data are transmitted

(potentially by broadcasting). The fusion center may be

carried by an agent or reside in a vehicle or something

similar. Range measurements relative to other agents only

have a meaning if the position estimate and its statis-

tics are known. Therefore, all ranging information is

transferred to the central fusion center. This process-

ing architecture with its three layers of estimation (foot,

processing device of agent, and common fusion cen-

ter) is illustrated in Figure 5. However, the division in

step-wise inertial navigation and dead reckoning is inde-

pendent of the structure with a fusion center, and some

decentralized global state estimation could potentially be

used.

3.4 Computational cost and required communication

The step-wise dead reckoning is primarily motivated

and justified by the reduction in computational cost and

required communication bandwidth. With a completely

centralized sensor fusion [f̃k , ω̃k], six measurement val-

ues in total, needs to be transferred to the central fusion

Figure 5 Comparison of step-wise dead reckoning and indefinite

ZUPT-aided inertial navigation. The plots show the trajectory (top),
the position error covariances (middle), and the covariance between
the position and heading errors (bottom) as estimated by an
extended Kalman filter-based indefinite ZUPT-aided inertial
navigation (solid lines) and a step-wise inertial navigation and dead
reckoning (crossed lines). The agreement between the systems is far
below the accuracy and integrity of the former system.

center at a sampling rate fIMU in the order of hundreds

of Hz, with each measurement value typically consisting

of some 12 to 16 bits. With the step-wise dead reckon-

ing, [dpℓ, dψℓ], Ppℓ
, Ppℓ,ψℓ

, and Pψℓ,ψℓ
, in total 14 values,

need to be transferred to the central fusion center at a

rate of fsw ≈ 1 Hz (normal gait frequency [101]). In prac-

tice, the 14 values can be reduced to 8 values since cross-

covariances may be ignored, and the numerical ranges

are such that they can reasonably be fitted in some 12

to 16 bits each. The other way around, some four cor-

rection values need to be transferred back to the agent.

Together, this gives the ratio of the required communica-

tion of (6 · fIMU)/(12 · fsw) ≈ 102, a two-order magnitude

reduction. In turn, the computational cost scales linearly

with the update rates fIMU and fsw. In addition, the com-

putational cost has a cubic scaling (for covariance-based

filters) with the state dimensionality. Therefore, the reduc-

tion in the computational cost at the central fusion center

is at the most fIMU/fsw · (9/4)3 ≈ 103. However, at higher

update rates, updates may be bundled together. Conse-

quently, a somewhat lower reduction may be expected in
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practice, giving a reduction of again around two orders of

magnitude.

4 Robust and low-cost sensor fusion
The step-wise dead reckoning provides a low-dimensional

and low-update rate interface to the foot-mounted iner-

tial navigation. With this interface, the global state of the

localization system (the system state as conceived by the

global state estimation) becomes

x = [ xα ,χα , xβ ,χβ , xζ ,χζ , . . . ],

where xj and χj are the positions and headings of the

agents’ feet with dropped time indices. Other auxiliary

states may also be put in the state vector. Our desire

is to fuse the provided dead reckoning with that of the

other foot and that of the other agents via inter-agent

ranging. This fusion is primarily challenging because of

(1) the high dimensionality of the global system, (2) the

non-collocated sensors of individual agents, and (3) the

potentially malign error characteristic of the ranging.

The high dimensionality is tackled by only propagating

the mean and covariance estimates and by marginal-

ization of the state space. The lack of collocation is

handled by imposing range constraints between sensors.

Finally, the error characteristic of the ranging is handled

by sampling-based updates. In the following subsections,

these approaches are described. The pseudo-code for the

sensor fusion is found in Algorithms 2 and 3 in the final

subsection.

4.1 Marginalization

New information (e.g., range measurements) introduced

in the systems is only dependent on a small subset of the

states. Assume that the state vector can be decomposed

as z =[ z1, z2], such that some introduced information π

is only dependent on z1. Then, with a Gaussian prior with

mean and covariance,

ẑ =
[

ẑ1

ẑ2

]

and Pz =
[

Pz1 Pz1z2

P⊤
z1z2

Pz2 ,

]

, (11)

the conditional (with respect to π ) mean of z2 and the

conditional covariance can be expressed as [72]

ẑ2|π = V + U ẑ1|π

Pz1|π = Cz1|π − ẑ1|π ẑ
⊤
1|π

Pz2|π = Pz2−UPz1z2+VV⊤+Z+UCz1|πU
⊤−ẑ2|π ẑ

⊤
2|π

Pz1z2|π = ẑ1|πV
⊤ + Cz1|πU

⊤ − ẑ1|π ẑ
⊤
2|π ,

(12)

where U = P⊤
z1z2

P−1
z1

, V = ẑ2 − Uẑ1, Z = U ẑ1|πV⊤ +
V ẑ⊤

1|πU
⊤, and Cz1|π is the conditional second order

moment of z1. Note that this will hold for any information

π only dependent on z1, not just range constraints as stud-

ied in [72]. Consequently, the relations (12) give a desired

marginalization. To impose the information π on (11),

only the first and second conditional moments, ẑ1|π and

Cz1|π , need to be calculated. If π is linearly dependent on

z1 and with Gaussian errors, this will be equivalent with

a Kalman filter measurement update. This may trivially

be used to introduce information about individual agents.

However, as we will show in the following subsections, this

can also be used to couple multiple navigation points of

individual agents without any furthermeasurement and to

introduce non-Gaussian ranging between agents.

4.2 Fusing dead reckoning from dual foot-mounted units

The position of the feet xa and xb of an agent (in general

two navigation points of an agent) has a bounded spatial

separation. This can be used to fuse the related dead reck-

oning without any further measurements. In practice, the

constraint will often have different extents in the vertical

and the horizontal directions. This can be expressed as a

range constraint

‖Dγ (xa − xb)‖ ≤ γxy, (13)

whereDγ is a diagonal scalingmatrix with γ = [1,1,γxy/γz]

on the diagonal, and γxy and γz are the constraints in

the horizontal and vertical direction. Unfortunately, there

is no standard way of imposing such a constraint in a

Kalman-like framework [102]. Also, the position states

being in arbitrary locations in the global state vector, i.e.,

x= [ . . . , xa, . . . , xb, . . . ], means that the state vector is not

on the form of z. Further, since the constraint (13) has

unbounded support, the conditional means
[

x̂a|γ , x̂b|γ
]

and covariances cov
(

[ xa|γ , xb|γ ]
)

cannot easily be eval-

uated. Moreover, since the states are updated asyn-

chronously (steps occurring at different time instances),

the state estimates x̂a and x̂b may not refer to the same

time instance. The latter problem can be handled by

adjusting the constraint γxy by the time difference of the

states. In principle, this means that an upper limit on the

speed by which an agent moves is imposed. The former

problems can be solved with the state transformation

z = Tγ x where Tγ =
([

Dγ −Dγ

Dγ Dγ

]

⊕ Im−6

)

�, (14)

where Im−6 is the identity matrix of size m − 6, m is the

dimension of x, ⊕ denotes the direct sum of matrices, �

is a permutation matrix fulfilling

�[ . . . , xa, . . . , xb, . . . ]= [ xa, xb, . . . ]
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and z1 = Dγ (xa−xb). With the state transformation Tγ ,

the mean and covariance of z become ẑ = Tγ x̂ and Pz =
TγPxT

⊤
γ . Inversely, since Tγ is invertible, the conditional

mean and covariance of x become x̂|γ =T−1
γ ẑ|γ and Px|γ =

T−1
γ Pz|γT−⊤

γ . Therefore, if ẑ1|γ andCz1|γ are evaluated, (12)

gives ẑ|γ and Pz|γ and thereby also x̂|γ and Px|γ . For-
tunately, with z1 = Dγ (xa − xb), the constraint (13)

becomes

‖z1‖ ≤ γxy.

In contrast to (13), this constraint has a bounded sup-

port. Therefore, as suggested in [72], the conditional

means can be approximated by sampling and projecting

sigma points.

ẑ1|γ ≈
∑

i

wiz
(i)
1 and Cz1|γ ≈

∑

i

wiz
(i)
1 (z

(i)
1 )⊤,

where ≈ denotes approximate equality and

z
(i)
1 =

{

s(i), ‖s(i)‖ ≤ γxy
γxy

‖s(i)‖s
(i), 1

. (15)

Here s(i) and w(i) are sigma points and weights

{s(i),w(i)} =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

{ẑ1, 1−3/η}, i = 0

{ẑ1 + η1/2li, 1/2η}, i ∈[ 1, . . . , 3]
{ẑ1 − η1/2li−3, 1/2η}, i ∈[ 4, . . . , 6]

,

where li is the ith column of the Cholesky decomposi-

tion Pz1 = LL⊤ and the scalar η reflects the portion of

the prior to which the constraint is applied. See [72] for

further details. The application of the constraint for the

two-dimensional case is illustrated in Figure 6.

4.3 Inter-agent rangemeasurement updates

Similar to the range constraint between the feet of an indi-

vidual agent, the geometry of the inter-agent ranging gives

the constraints

r − (γa + γb) ≤ ‖xa − xb‖ ≤ r + (γa + γb), (16)

where r is the (true) range between agents’ ranging

devices, and γa and γb are the maximum spatial separa-

tion of respective ranging device and xa and xb, where

in this case, xa and xb are the positions of a foot of each

agent. The range only being dependent on ‖xa − xb‖
means that the state transformation z = T1x, where

1 = [1, 1, 1] and z1 = xa − xb, and the correspond-

ing mean and covariance transformations as explained in

the previous subsection can be used to let us exploit the

marginalization (12).

Figure 6 Illustration of the separation constraint update for two

feet in the horizontal plane. The plots show (upper left) the prior
position and covariance estimates, (upper right) the transformed
system with the sigma points (blue crosses) and the constraint
(dashed circle), (lower left) the projected sigma points and the
conditional mean and covariance, and finally (lower-right) the
conditioned result in the original domain with the prior covariances
indicated with thinner lines.

The inter-agent ranging gives measurements r̃ of the

range r. As reviewed in Section 2.2, the malign attributes

of r̃ which we have to deal with are potentially heavy-

tailed error distributions and non-stationary spatially cor-

related errors due to diffraction, multi-path, or similar.

This can be done by using the model r̃ = r + v + v′,
where v is a heavy-tailed error component, and v′ is a

uniformly distributed component intended to cover the

assumed bounded correlated errors in a manner sim-

ilar to that of [75]. Combining the model with (16)

and the state transformation T1 gives the measurement

model

r̃ − v − γr ≤ ‖z1‖ ≤ r̃ − v + γr , (17)

where γr is chosen to cover the bounds in (16), the asyn-

chrony between x̂a and x̂b, and the correlated errors v′. In
practice γr will be a system parameter trading integrity for

information.

To update the global state estimate with the the range

measurement r̃, the state ẑ1 and covariance estimates Pz1

must be conditioned on r̃ via (17). Due to the stochastic

term v, we cannot use hard constraints as with the feet of

a single agent. However, by assigning a uniform prior to

the constraint in (17), the likelihood function of r̃ given ẑ1
becomes

f (r̃|z1) = U(−γr , γr) ∗ V(‖ẑ1‖ − r̃, σ), (18)
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where U(−γr , γr) is a uniform distribution over the inter-

val [−γr , γr], V(‖ẑ1‖ − r̃, σr) is the distribution of v with

mean ‖ẑ1‖ − r̃ and some scale σr , and ∗ denotes con-

volution. Then, with the assumed Gaussian prior z1 ∼
N (ẑ1,Pz1), the conditional distribution of z1 given r̃, ẑ1,

and Pz1 is

f (z1|r̃) ∝ f (r̃|ẑ1)N (ẑ1,Pz1). (19)

Since z1 is low dimensional, the conditional moments

ẑ1|r̃ and Cz1|r̃ can be evaluated by sampling. With

the marginalization (12) and the inverse transformation

T−1
1 , this will give the conditional mean and covariance

of x.

Since the likelihood function (18) is typically heavy

tailed, it cannot easily be described by a set of sam-

ples. However, since the prior is (assumed) Gaussian,

the sampling of it can efficiently be implemented with

the eigenvalue decomposition. With sample points u(i)

of the standard Gaussian distribution, the corresponding

sample points of the prior is given by

s(i) = ẑ1 + Q�
1/2u(i),

where Pz1 = Q�Q⊤ is the eigenvalue decomposition

of Pz1 . With the sample points s(i), the associated prior

weights only become dependent on u(i) (apart from nor-

malization) since

w(i)
pr ∼ e

− 1
2 (s(i)−ẑ1)

⊤P−1
z1

(s(i)−ẑ1) = e
− 1
2 ‖u(i)‖2

and can therefore be precalculated. Reweighting with the

likelihood function, w̃
(i)
po = w

(i)
pr · f (r̃|s(i)) and normalizing

the weights w
(i)
po = w̃

(i)
po · (

∑

w̃
(i)
po)

−1, with suitable chosen

u(i), the conditional moments can be approximated by

ẑ1|r̃ ≈
∑

i

w(i)
pos

(i) and Cz1|r̃ ≈
∑

i

w(i)
pos

(i)(s(i))⊤.

Consequently, as long as the likelihood function can be

efficiently evaluated, any likelihood function may be used.

For analytical convenience, we have typically let V(·, ·)
be Cauchy-distributed, giving the heavy-tailed likelihood

function

f (r̃|s(i)) ∼ atan
(

r̃−‖s(i)‖+γr
σr

)

−atan
(

r̃−‖s(i)‖−γr
σr

)

. (20)

The sampling-based range update with this likelihood

function and u(i) from a square sampling lattice is

λ
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Figure 7 Illustration of the suggested range update in two

dimensions. From left to right, the plots show the Gaussian prior
given by the mean ẑ1 (blue dot) and the covariance Pz1 (blue ellipse),
and with indicated samples (red dots) and eigenvectors/values, the
(one-dimensional) likelihood function given by the range
measurement r̃ and used to reweight the samples, and the resulting
posterior with conditional mean ẑ1|r and covariance Pz1|r calculated
from the reweighted samples.

illustrated in Figure 7. Potential more elaborate tech-

niques for choosing the sample points can be found

in [103].

The presented ranging update gives a robustness to

outliers in the measurement data. In Figure 8, the influ-

ence functions for the sample-based update and the tra-

ditional Kalman measurement update are shown for the

ranging likelihood function (20) with γr = 2 m and σr =
0.5 m, and position covariance values of Pz1 = I m2 and

Pz1 = 0.3 I m2. By comparing the blue solid and the

red dashed-dotted lines, it is seen that when the posi-

tion and ranging error covariances are of the same size,

the suggested ranging update behaves like the Kalman

update up to around three standard deviations, where it

gracefully starts to neglect the range measurement. In

addition, by comparing the blue dashed and the red dotted

lines, it is seen that for smaller position error covari-

ances, in contrast to the Kalman update, the suggested

range update neglects ranging measurements with small

errors (flat spot in the middle of the influence function).

Figure 8 Influence functions for range updates for ‖ẑ1‖ = 10m.

The different functions correspond to the suggested method (blue
solid/dashed lines) and a traditional Kalman measurement update
(red dashed-dotted/dotted lines) with Pz1 = Im2 and Pz1 = 0.3Im2 ,
respectively. For the suggested update, γr = 2 m and v2 were Cauchy
distributed with σr = 0.5 m, and for the Kalman measurement
update, the measurement error variance was 1 m2 .
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Figure 9 Illustration of the gain of dual foot-mounted sensors

and inter-agent ranging. The upper plot shows the step-wise dead
reckoning of the individual feet (in blue and green) without any
further information. The middle plot shows the step-wise dead
reckoning with range constraints between the feet of the individual
agents. The lower plot shows the complete cooperative localization
with step-wise dead reckoning, range constraints, and inter-agent
ranging.

This has the effect that multiple ranging updates will

not make the position error covariance collapse, which

captures the fact that due to correlated errors, during

standstill, multiple range measurements will contain a

diminishing amount of information; and during motion,

the range measurements should only ‘herd’ the dead

reckoning.

With slight modifications, the ranging updates can be

used to incorporate information from many other infor-

mation sources. Ranging to anchor nodes whose positions

are not kept in x or position updates (from a GNSS
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0

5

10

15

20

25

distance [m]

er
ro

r
[m

]

RMSE as a function of distance

RMSE absolute position
RMSE relative position

Figure 10 Absolute position RMSEs (blue lines) and relative

position RMSEs (red lines) as functions of distance. The different
blue lines correspond, in ascending order, to the increasing number of
agents and are the results of 100 Monte Carlo runs. Clearly, the relative
error is bounded by the inter-agent ranging while the absolute error
grows slower the larger the number of agents. The final position
RMSEs as a function of the number of agents are shown in Figure 11.

Figure 11 Final position RMSEs as a function of the number of

agents (blue crossed line). From the fit to 1/
√
N (dashed red line),

the position error is seen to be decaying as the square root of the
number of agents. The RMSEs are the results of 100 Monte Carlo runs.

receiver or similar) may trivially be implemented as range

updates (zero range in the case of the position update)

with z1 = xa − xb replaced with z1 = xa − xc, where

xc is the position of the anchor node or the position

measurement. Fusion of pressure measurements may be

implemented as range updates in the vertical direction,

either relative to other agents or relative to a reference

pressure.

4.4 Summary of sensor fusion

The central sensor fusion, as described in Section 3.3,

keeps the position and heading of all feet in the global

state vector x. From all agents, it receives dead reck-

oning updates, [ dpℓ, dψℓ], Ppℓ
, Ppℓ,ψℓ

, and Pψℓ,ψℓ
, and

inter-agent range measurements r̃. The dead reckoning

updates are used to propagate the corresponding states

and covariances according to (7). At each dead reckon-

ing update, the range constraint is imposed on the state

space as described in subsection 4.2, and the correc-

tions are sent back to the agent. The inter-agent range

measurements are used to condition the state space as

described in subsection 4.3. Pseudo-code for condition-

ing the state mean and covariance estimates on the

range constraint and range measurements is shown in

Algorithms 2 and 3.

0 100 200 300 400 500

0

0.5

1

Position error correlations

distance [m]

co
rr

.
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ef
.

Figure 12 Position error correlation coefficients for two agents

in the straight-line march scenario. The lines correspond to the x
direction (solid blue), y direction (dashed green), and z direction
(dotted/dashed red). Clearly, the position errors of the different agents
become strongly correlated with the increasing distance traveled.
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Algorithm 2 Pseudo-code for imposing the range con-

straint (13), between navigation points xa and xb, on the

global state estimate x̂.

1: ẑ := Tγ x̂ and Pz := TγPxT
⊤
γ

2: L := chol(Pz1)

3: Sample and project sigma points/weights

(z
(i)
1 ,w(i)) ← (ẑ1,L)

4: ẑ1|γ :=
∑

i w
iz

(i)
1 and Cz1|γ :=

∑

i w
iz

(i)
1 (z

(i)
1 )⊤

5: Calculate conditional mean and covariance by

marginalization

(ẑ|γ ,Pz|γ ) ← (ẑ1|γ , ẑ2,Cz1|γ ,Pz)

6: x̂|γ := T−1
γ ẑ|γ and Px|γ := T−1

γ Pz|γT−⊤
γ

Algorithm 3 Pseudo-code for conditioning the global

state estimate x̂ on the range measurements (17) between

navigation points xa and xb.

1: ẑ := T1x̂ and Pz := T1PxT
⊤
1

2: (Q,�) := eig(Pz1)

3: s(i) := ẑ1 + Q�
1/2u(i) ∀i

4: w̃
(i)
po := w

(i)
pr · f (r̃|s(i)) ∀i

5: w
(i)
po := w̃

(i)
po · (

∑

w̃
(i)
po)

−1 ∀i
6: ẑ1|r̃ :=

∑

i w
(i)
pos

(i) and Cz1|r̃ :=
∑

i w
(i)
pos

(i)(s(i))⊤

7: Calculate conditional mean and covariance by

marginalization

(ẑ|r̃ ,Pz|r̃) ← (ẑ1|r̃ , ẑ2,Cz1|r̃ ,Pz)

8: x̂|r̃ := T−1
1 ẑ|r̃ and Px|r̃ := T−1

1 Pz|r̃T
−⊤
1
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Figure 13 Estimated trajectory from the scenario with three

static agents and a fourth mobile agent. Clearly, the position
estimation errors are bounded.
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Figure 14 Position RMSEs of the mobile unit for the three static

agents scenario. The RMSEs are the results of 100 Monter Carlo runs.
Being static, the three stationary agents essentially become anchor
nodes, and therefore, the RMSE is bounded.

5 Experimental results
To demonstrate the characteristics of the sensor fusion

presented in the previous section, in the following subsec-

tion, we first show numerical simulations giving a quanti-

tative description of the fusion. Subsequently, to demon-

strate the practical feasibility of the suggested architecture

and sensor fusion, a real-time localization system imple-

mentation is briefly presented.

5.1 Simulations

The cooperative localization by foot-mounted inertial

sensors and inter-agent ranging is non-linear, and the

behavior of the systemwill be highly dependent on the tra-

jectories. Therefore, we cannot give an analytical expres-

sion for the performance. Instead, to demonstrate the

system characteristics, two extreme scenarios are simu-

lated. For both scenarios, the agents move with 1 m steps

at 1 Hz. Gaussian errors with standard deviation 0.01 m

and 0.2° were added to the step displacements and the

heading changes, respectively, and heavy-tailed Cauchy

distributed errors of scale 1 m were added to the range

measurements. The ranging is done time-multiplexed in a

round-robin fashion at a total rate of 1 Hz.

OpenShoe units
(foot-mounted inertial sensors)

USB hub

Ubisense radio tag
(synthetic inter-agent ranging)

Android phone
(proc. and com. device)

Figure 15 Agent equipment carried by each agent in the

prototype implementation. The OpenShoe units are connected to
the USB-hub. Radio tags and a Ubisense real-time location system are
used to generate synthetic range measurements between agents.
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Figure 16 Four agents with equipment displayed in Figure 15. The OpenShoe units are integrated in the soles of the shoes, and the radio tags
are attached to the helmets. The cables and the USB hubs are not displayed.

5.1.1 Straight-linemarch

N agents are marching beside each other in straight lines

with agent separation of 10 m. The straight line is the

worst case scenario for the dead reckoning, and the posi-

tion errors will be dominated by errors induced by the

heading errors. In Figure 9, examples of the estimated

trajectories of the right (blue) and left (green) feet are

shown from three agents without any further informa-

tion, with range constraints between the feet and with

range constraints and inter-agent ranging. The absolute

and relative root-mean-square error (RMSE) as a function

of the walked distance, and for different number of agents,

are shown in Figure 10. The relative errors are naturally

bounded by the inter-agent ranging. However, the heading

RMSE grows linearly with time/distance, and therefore,

the absolute position error is seen to grow with distance.

Similar behavior can be observed in the experimental data

in [64,91]. Naturally, the heading error and therefore also

the absolute position RMSE drop as 1/
√
N , where N is

the number of agents. This is shown in Figure 11. We may

also note that the position errors of the different agents

become strongly correlated. The correlation coefficients

for two agents as a function of distance are shown in

Figure 12.

5.1.2 Three static agents

Three non-collinear agents are standing still. This will be

perceived by the foot-mounted inertial navigation, and

Figure 17 Screenshot of the cooperative localization system user interface overlayed on a photography of the Android phone. The
interface shows the recursively estimated positions (trajectories) of three smoke divers, a smoke diving pair (magenta), and a smoke diving leader
(blue), during a ∼10-min search of the R1 reactor hall and adjacent rooms. The built-up rooms/walls are not displayed but can clearly be seen in the
search pattern. At the time of the screenshot, the smoke diving pair has advanced to the second floor as can be seen by the hight estimates
displayed on the left side.
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therefore, they essentially become anchor nodes. This is

obviously the best-case scenario. A fourth agent walks

around them in a circle. An example of an estimated tra-

jectory is shown in Figure 13, and the RMSE as a function

of time is shown in Figure 14. Since anchor nodes are

essentially present in the system, the errors are bounded.

See [104] for further discussions. The non-zero RMSE

reflects the range constraints in the system.

From the two scenarios, we can conclude that the rel-

ative position errors are kept bounded by the inter-agent

ranging, while the absolute position errors (relative start-

ing location) are bounded in the best case (stationary

agents) and that the error growth is reduced by a factor of

1/
√
N in the worst case.

5.2 Real-time implementation

The decentralized system architecture has been realized

with OpenShoe units [15] and Android smartphones and

tablets (Samsung Galaxy S III and Tab 2 10.1, Samsung

Electronics Co., Ltd., Suwon, Korea) in the in-house

developed tactical locator system TOR. The communi-

cation is done over an IEEE 802.11 WLAN. Synthetic

inter-agent ranging is generated from position measure-

ments from a Ubisense system (Ubisense Research &

Development Package, Ubisense Group plc., Cambridge,

UK), installed in the KTH R1 reactor hall [105]. The

intension is to replace the Ubisense system with in-house

developed UWB radios [26]. The equipment for a single

agent is shown in Figure 15. The multi-agent setup with

additional equipment for sensor mounting is shown in

Figure 16.

The step-wise inertial navigation and the associated

transfer of displacements and heading changes have been

implemented in the OpenShoe units. The agent filtering

has been implemented as Android applications together

with graphical user interfaces. A screenshot of the graphi-

cal user interface with trajectories from a ∼10-min search

in the reactor hall and adjacent rooms (built-up walls not

displayed) by three smoked divers is shown in Figure 17.

The central sensor fusion has been implemented as a

separate Android application running on one agent’s

Android platform. Recently, voice radio communication

and 3D audio have been integrated into the localization

system [106].

6 Conclusions
Key implementation challenges of cooperative localiza-

tion by foot-mounted inertial sensors and inter-agent

ranging are designing an overall system architecture to

minimize the required communication and computa-

tional cost while retaining the performance and making

it robust to varying connectivity, and fusing the informa-

tion from the system under the constraint of the system

architecture while retaining high integrity and accuracy.

A solution to the former problem has been presented

in the partially decentralized system architecture based

on the division and physical separation of the step-wise

inertial navigation and the step-wise dead reckoning. A

solution to the latter problem has been presented in the

marginalization and sample-based spatial separation con-

straint and ranging updates. By simulations, it has been

shown that in the worst case scenario, the absolute local-

ization RMSE improves as the square root of the number

of agents, and the relative errors are bounded. In the best

case scenario, both the relative and the absolute errors are

bounded. Finally, the feasibility of the suggested architec-

ture and sensor fusion has been demonstrated with sim-

ulations and a real-time system implementation featuring

four agents and a meter-level accuracy for operation times

of tenth of minutes in a harsh industrial environment.
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