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Cooperative Localization for Mobile Agents

A recursive decentralized algorithm based on

Kalman filter decoupling

Solmaz S. Kia, Stephen Rounds and Sonia Martı́nez

Technological advances in ad-hoc networking and in miniaturization of electro-mechanical

systems have enabled us to use large numbers of mobile agents (e.g., mobile robots, human

agents, unmanned underwater vehicles or spacecraft) to perform surveillance, search and

rescue, transport and delivery tasks—beyond the capabilities of a single device—in aerial,

underwater, space, and land environments. However, the successful execution of higher level

tasks undertaken by these mobile agents often hinges on accurate position information, which

is needed in lower level locomotion and path planning algorithms for agent control. Common

techniques for localization in mobile agent applications are the classical pre-installed beacon-

based localization algorithms [1], fixed feature-based Simultaneous Localization and Mapping
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(SLAM) algorithms [2] and GPS navigation [3], for further details see Fig. 1.

Despite the availability of this variety of localization techniques for various environment

types, there are still mobile agent team operations, for example, in search and rescue [4], [5],

environmental monitoring [6], [7], and oceanic exploration [8], for which the environment is often

uncharted, is not accessible in advance, does not have distinct features or the features are dynamic

or not revisited during the operation. Moreover in such applications the environment is fully or

partially GPS denied. Cooperative localization (CL) seems to be the best localization technique

for such applications. In CL a group of mobile agents, with processing and communication

capabilities, use relative measurements with respect to each other (no reliance on external

features) as a feedback signal to jointly estimate the poses of the team members, resulting

in an increased accuracy for the entire team. CL is particularly appealing, because it can

expand the benefit of intermittent accurate absolute localization information access of some

team members to the rest of the group through the coupling that is created in state estimations

across team members. Another nice feature of the CL strategy is its cost-effectiveness, as it does

not require extra hardware beyond the operational components normally used in aforementioned

cooperative tasks. In such tasks, agents are normally equipped with unique identifiers and sensors

which enable them to locate other members. And, to coordinate, these agents often broadcast

status information to one another. In addition, given the wide and affordable availability of

communication devices, CL has also emerged as an augmentation system compensation system

for poor odometric measurements, noisy and distorted measurements from other sensor suites

such as IMU systems on board of mobile vehicles, see e.g., [9].
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Cooperative Localization

Consider a team of N mobile agents with communication, processing and measurement

capabilities. Every agent has a bounded communication range. Communications can happen

either in a single broadcast to the entire team or in multi-hop fashion, i.e., every agent re-

broadcasts every received message intended to reach the entire team, see Fig. 2. Each agent has

a detectable unique identifier (UID) which, without loss of generality, here we assume to be

a unique integer belonging to the set V = {1, . . . , N}. Using a set of so-called proprioceptive

sensors every agent i ∈ V measures its self-motion and uses it to propagate its equations of

motion

xi(k + 1) = f i(xi(k),ui(k)) + gi(xi(k))ni(k),

where xi ∈ Rni , ui ∈ Rmi , and ni ∈ Rpi are, respectively, the pose vector, the input vector and the

process noise vector of agent i. Here, f i(xi,ui) and gi(xi), are, respectively, the system function

and process noise coefficient function of the agent i ∈ V . The team can consist of heterogeneous

agents, nevertheless, the collective motion equation of the team can be represented by

x(k + 1) = f(x(k),u(k)) + g(x(k))n(k), (1)

where, f(x,u) = (f1(x1,u1), · · · , fN(xN ,uN)) and g(x) = Diag(g1(x1), · · · ,gN(xN)).

One can clearly see that if agents only rely on propagating their equations of motion

in (1) using self-motion measurements, because of the noise terms ni(k), this pose estimate will

diverge. To bound this pose estimation error, a CL strategy can be employed. Thus, let every

agent i ∈ V also carry exteroceptive sensors to monitor the environment to detect, uniquely, the
3



other agents j ∈ V in the team and take relative measurements

zij(k + 1) = hij(x
i(k),xj(k)) + νi(k), (2)

where zij ∈ Rni
z from them, e.g., range or bearing measurements, or both. Here, hij(x

i,xj)

is the measurement model and νi is the measurement noise of agent i ∈ V . To demonstrate

the features of a CL strategy and discuss challenges in its design and implementation, let

us employ an Extended Kalman Filter (EKF) to the collective system model of the team

of mobile agents described above, following [10]. To do this, we assume that the process

noises ni and the measurement noise νi, i ∈ V , are independent zero-mean white Gaussian

processes with, respectively, a known positive definite variance Qi(k) = E[ni(k)>ni(k)] and

Ri(k) = E[νi(k)>νi(k)]. All sensor noises are assumed to be white and mutually uncorrelated.

Here, we assume that all sensor measurements are synchronized. Then, the application of an

EKF over the collective motion model (1) using the relative measurement model (2) results in

the following propagation and update stages. The propagation stage of this algorithm is

x̂-(k + 1) = f(x̂+(k),u(k)), (3a)

P-(k + 1) = F(k)P+(k)F(k)> + G(k)Q(k)G(k)>. (3b)

where F = Diag(F1, · · · ,FN), G = Diag(G1, · · · ,GN) and Q = Diag(Q1, · · · ,QN), with,

for all i ∈ V , Fi = ∂
∂xi f(x̂i+(k),ui(k)) and Gi = ∂

∂xi g(x̂i+(k)).

If there exists a relative measurement in the network at some given time k+1, the states are

updated as follows. The residual of the relative measurement and its covariance are, respectively,
4



ra = zab − hab(x̂
a-(k + 1), x̂b-(k + 1)), (4a)

Sab =Hab(k+1)P-(k+1)Hab(k+1)>+Ra(k+1). (4b)

where (without loss of generality we let a < b)

Hab(k) =
[1

0
···· · ·

a

−H̃a (k)
a+1

0
···· · ·

b

H̃b(k)
b+1

0
···· · ·
]
,

H̃a(k) = − ∂

∂xa
hab(x̂

a-(k), x̂b-(k)), (5)

H̃b(k) =
∂

∂xb
hab(x̂

a-(k), x̂b-(k)).

Then, the Kalman filter gain is given by

K(k + 1) = P-(k + 1)Hab(k + 1)>Sab
−1.

And, finally, the collective pose update and covariance update equations for the network are:

x̂+(k+1) =x̂-(k+1)+K(k+1)ra, (6a)

P+(k+1) =P-(k+1)−K(k+1)SabK(k+1)>. (6b)

Because K(k+1)SabK(k+1)> is a positive semi-definite term, the update equation (6b) clearly

shows that any relative measurement update results into a reduction of the estimation uncertainty.

To explore the interaction among team members’ estimation equations, we express the

aforementioned collective form of the EKF CL in terms of its agent-wise components, as shown

in Algorithm 1. Here, the Kalman filter gain is partitioned into K =

[
K>1 , · · · ,K>N

]>
, where

Ki ∈ Rni×ni
z is the portion of the Kalman gain used to update the pose estimate of the agent
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i ∈ V . To process multiple synchronized measurements, sequential updating (c.f. e.g., [11,

Ch. 3],[12]) is employed.

Algorithm 1 clearly showcases the role of past correlations in a CL strategy. First, observe

that, despite having decoupled equations of motion, the source of the coupling in the propagation

phase is the cross-covariance equation (14c). Upon an incidence of a relative measurement

between agents a and b, this term becomes non-zero and its evolution in time requires the

information of these two agents. Thus, these two agents have to either communicate with each

other all the time or a centralized operation has to take over the propagation stage. As the

incidences of relative measurements grow, more non-zero cross-covariance terms are created. As

a result, the communication cost to perform the propagation grows, requiring the data exchange

all the time with either a Fusion Center (FC) or all-to-all agent communications, even when

there is no relative measurement in the network. The update equations (16) are also coupled and

their calculations need in principle a FC. The next observation regarding the role of the cross-

covariance terms can be deduced from studying Kalman gain equation (17). As this equation

shows, when an agent a takes a relative measurement from agent b, any agent whose pose

estimation is correlated with either of agents a and b in the past, (i.e., P-
ib(k+1) and/or P-

ia(k+1)

are non-zero) has non-zero Kalman gain and as a result the agent benefits from this measurement

update.

The following simulation study demonstrates the significance of maintaining an accurate

account of cross-covariance terms between the state estimates of the team members. Figure 3

demonstrates the the x-coordinate estimation error (solid line) and 3σ error bound (dashed lines)
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of 3 robots moving on a flat terrain when they (a) only propagate their equations of motion

using self-motion measurements (black plots), (b) employ an EKF CL ignoring past correlations

between the estimations of the robots (blue plots), (c) employ an EKF CL with accurate

account of past correlations (red plots). As this figure shows, employing a CL strategy improves

the localization error, but, as plots in blue show, ignoring the past correlations (here cross-

covariances) among the robots state estimates results in estimations with almost vanished 3σ

error bound, an indication of inconsistent estimation. In contrast, by taking the past correlations

into account (see red plots), one sees a more consistent estimation, which clearly showcases the

benefit of using the relative measurement updates to reduce the estimation error and uncertainty,

and to expand this benefit to other robots that are the subject of a relative or an absolute

measurement in a given time interval.

Decentralized Cooperative Localization

Based on the observations that

(a) past correlations cannot be ignored,

(b) they are useful to increase the localization accuracy of the team,

(c) the coupling that the correlations create in the state estimation of team members is the main

challenge in developing a decentralized cooperative localization algorithm,

one can observe, regardless of the technique, two distinct trends in the design methodology

of decentralized cooperative localization algorithms in the literature that we term as “loosely

coupled” and “tightly coupled” decentralized cooperative localization (D-CL) strategies (see
7



Fig. 4).

In loosely coupled D-CL methodology, only one or both of the agents involved in a relative

measurement, update their estimates using that measurement. Here, we do not maintain the exact

account of the ‘network’ of correlations (see Fig. 4) due to the past relative measurement updates

however, to ensure the estimation consistency, we take steps to account for the past correlations.

Examples of loosely coupled D-CL are given in [8] and [13]. In the algorithm of [8], only the

agent obtaining the relative measurement updates its state. Here, in order to produce consistent

estimates, a bank of extended Kalman filters (EKFs) is maintained at each agent. Using an

accurate book-keeping of the identity of the agents involved in previous updates and the age of

such information, each of these filters is only updated when its propagated state is not correlated

to the state involved in the current update equation. Although this technique does not impose a

particular communication graph on the network, the computational complexity, the large memory

demand, and the growing size of information needed at each update time are its main drawbacks.

In the approach [13] it is assumed that the relative measurements are in the form of relative pose.

This enables the agent taking the relative measurement to use its current pose estimation and the

current relative pose measurement to obtain and broadcast a pose and the associated covariance

estimation of its landmark agent, the agent the relative measurement is taken from it. Then,

the landmark agent uses the covariance intersection method to fuse the newly acquired pose

estimation with its own current estimation to increase its estimation accuracy. Another example

of use of covariance intersection method for D-CL is given in [14] for the localization of a group

of space vehicles communicating over a fixed ring topology. Here, each vehicle propagates a

model of the equation of motion of the entire team and at the time of relative pose measurements
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fuses its estimation of the collective team model and its landmark vehicle using a covariance

intersection method. Even though the covariance intersection method can produce consistent

estimations for a loosely coupled D-CL strategy, this method is known to produce conservative

estimates.As showcased by the example strategies above, the loosely coupled algorithms have

the advantage of not imposing any particular connectivity condition on the team. However, they

are conservative by nature, as they do not enable other agent in the network to benefit from

the update. The reader interested on technical details of Covariance Intersection can find a brief

literature guide in “Covariance Intersection.”

In the tightly coupled D-CL methodology, the goal is to exploit the ‘network’ of correlations

created across the team (see Fig. 4), so that the benefit of the update can be extended beyond the

agents involved in a given relative measurement. However, this advantage comes at a potentially

higher computational, storage and/or communication cost. The dominant trend in developing

decentralized cooperative localization algorithms in this way is to distribute the computation of

components of a centralized algorithm among team members. Some of the examples for this

class of D-CL is given in [15], [10], [16], [17]. In a straightforward fashion, decentralization

can be conducted as a multi-centralized CL, wherein each agent broadcasts its own information

to the entire team. Then, every agent can calculate and reproduce the centralized pose estimates

acting as a fusion center [15]. Besides a high-processing cost for each agent, this scheme

requires all-to-all agent communication at the time of each information exchange. A D-CL

algorithm distributing computations of an EKF centralized CL algorithm is proposed in [10]. To

decentralize the cross-covariance propagation, [10] uses a singular-value decomposition to split

each cross-covariance term between the corresponding two agents. Then, each agent propagates
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its portion. However, at update times, the separated parts must be combined, requiring an all-to-all

agent communication in the correction step. Subsequently, [16] presents a maximum-a-posteriori

(MAP) D-CL algorithm in which all the agents in the team calculate parts of the centralized

CL. The aforementioned techniques all assume that communication messages are delivered,

as prescribed, perfectly all the time. A D-CL approach equivalent to a centralized CL, when

possible, which handles both limited communication ranges and time-varying communication

graphs is proposed in [17]. This technique uses an information transfer scheme wherein each

agent broadcasts all its locally available information to every agent within its communication

radius at each time-step. The broadcasted information of each agent includes the past and present

measurements, as well as past measurements previously received from other agents. The main

drawback of this method is its high communication and storage cost, which may not be affordable

in applications with limited communication bandwidth and storage resources. CL techniques to

handle system and measurement models with non-Gaussian noises are discussed in [18], [19]

but they do not address the communication message dropouts.

In the remainder of this note, we review a recursive D-CL algorithm called Interim Mas-

ter D-CL , proposed in [20], which is exactly equivalent to a centralized EKF for CL, i.e., it is

a tightly coupled CL strategy. This algorithm is developed by using new intermediate variables

that eliminate the explicit calculation of the cross-covariance terms, resulting in decoupled

propagation equations. The update stage is performed by designating the agent making the

relative measurement as the interim master, which provides the rest of the agents with the

information they need to update their pose and covariance in a manner that exactly matches

those of a centralized EKF for CL. To calculate the update equations, the interim master only
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requires information from the interim landmark, the agent that the relative measurement is taken

from. Because the propagation stage is fully decoupled, if there is no relative measurement in

the network, no intra-network communication is needed. The communication interaction between

agents can be time-varying with the only requirement that the message from the masters must

reach every agent in the network. Furthermore, we show that the Interim Master D-CL can easily

incorporate absolute measurements, and is robust to permanent agent drop-outs. We discuss the

storage, computation and communication cost per agent of this algorithm and show that the size

of the associated messages is independent of the size of the team.

The Interim Master D-CL algorithm

The Interim Master D-CL algorithm, which is a decentralized implementation of the

centralized CL algorithm, is constructed based on the following observation. Let the last

measurement update to be in time-step k and for the m consecutive steps no relative measurement

incidence takes place among the team members, i.e., no intermediate measurement update is

conducted in this time interval. In such a scenario, the propagated cross-covariance terms for

these m consecutive steps are given by

P-
ij(k + l) = Fi(k + l − 1) · · · Fi(k) P+

ij(k) Fj(k)
> · · · Fj(k + l − 1)

>
, l ∈ {1, · · · ,m},

(7)

for i ∈ V and j ∈ V\{i}. That is, at each time-step after k, the propagated cross-covariance term

is obtained by recursively multiplying its value at past time-step from left by the Jacobian of

the system function of agent i and from the right by the transpose of the Jacobian of the system
11



function of agent j at that time-step. Based on this observation, Roumeliotis and Bekey in [10]

proposed to decompose the last updated cross-covariance term P+
ij(k) between any agent i with

any agent j of the team into two parts (for example using the singular value decomposition

technique). Then, agent i will be responsible for propagating the left portion while agent j

propagates the right portion. Note that, as long as there is no relative measurement among team

members, each agent can propagate its portion of the cross-covariance term locally without

a need of communication with others. This was an important result, which lead to a fully

decentralized estimation algorithm during the propagation cycle. However, in the update stage,

all the agents needed to communicate with one and other to put together the split cross-covariance

terms and proceed with the update stage. The approach to obtain Interim Master D-CL , which

is outlined below, is also based on the special pattern that the cross-covariance propagation

equations have in (7). That is, we also remove the explicit calculation of the propagated cross-

covariance terms by decomposing them to the intermediate variables that can be propagated

by agents locally. However, this alternative decomposition allows every agent to update its

pose estimate and its associated covariance in a centralized equivalent manner, using merely

an scalable communication message that it receives from the team member that has taken a

relative measurement. As such, the Interim Master D-CL algorithm removes the necessity of

an all-to-all communication in the update stage and replaces it with receiving communication

message from a team member that holds the crucial piece of information in the update stage.

In particular, we observe that P-
ij(k+ l−1) in (7) is composed of the following 3 parts: a)

Fi(k+ l−1) · · · Fi(k) which is local to agent i, b) the P+
ij(k) that does not change unless there

is relative measurement among the team members, and c) Fj(k)
> · · · Fj(k + l − 1)

> which is
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local to agent j. Given this observation, we write the propagated cross-covariances (14c) as:

P-
ij(k + 1) = Φi(k + 1)P̄ij(k)Φj(k + 1)>, (8)

where Φi ∈ Rni×ni , for all i ∈ V , is a time-varying variable that is initialized at Φi(0) = Ini

and which evolves as:

Φi(k + 1) = Fi(k)Φi(k), (9)

and P̄ij ∈ Rni×nj , for i, j ∈ V and i 6= j, which is also a time-varying variable that is initialized at

P̄ij(0) = 0ni×nj . When there is no relative measurement at time k+1, (8) results into P̄ij(k+1) =

P̄ij(k). However, when there is a relative measurement among the team members P̄ij must be

updated. Given this decomposition, as is shown below, we decentralize the propagation cycle of

the EKF for CL by requiring that every agent i ∈ V to keep a local copy of P̄lj’s of the entire

team, i.e., P̄
i
jl for all j ∈ V\{N} and l ∈ {1, · · · , N}\{j}.

Next, we derive an expression for P̄ij(k+ 1) when there is a relative measurement among

team members at time k+1, such that at time k+2 one can write P-
ij(k+2) = Φi(k+2)P̄ij(k+

1)Φj(k + 2)>. For this, notice that the update equations (15) and (17) of the centralized CL

algorithm can be rewritten by replacing the cross-covariance terms by (8):

Sab = Ra + H̃aP
a-(k + 1)H̃

>
a + H̃bP

b-(k + 1)H̃
>
b −

H̃aΦ
a(k + 1)P̄ab(k)Φb(k + 1)>H̃

>
b − H̃bΦ

b(k + 1)P̄ba(k)Φa(k + 1)>H̃
>
a , (10)

and the Kalman gain is

Ki = Φi(k + 1)D̄i(Sab)
− 1

2 , i ∈ V ,
13



where

D̄i =(P̄ib(k)Φb>H̃
>
b −P̄ia(k)Φa>H̃

>
a )Sab

− 1
2 , i∈V\{a,b}, (11a)

D̄a =(P̄ab(k)Φb>H̃
>
b −(Φa)−1Pa-H̃

>
a )Sab

− 1
2, (11b)

D̄b =((Φb)−1Pb-H̃
>
b −P̄ba(k)Φa>H̃

>
a )Sab

− 1
2 . (11c)

Here, we employ the assumption below which generically is valid for mobile agent models:

Assumption 1: Fi(k) is invertible for all k ≥ 0 and i ∈ V .

Notice that due to Assumption 1, Φi(k), for all k ≥ 0 and i ∈ V , is invertible. Next, for i 6= j

and i, j ∈ V , we let

P̄ij(k + 1) = P̄ij(k)− D̄iD̄
>
j . (12)

Then, the cross-covariance update (16c) can be rewritten as:

P+
ij(k + 1) = Φi(k + 1)P̄ij(k + 1)Φj(k + 1)>.

Therefore, at time k + 2, the propagated cross-covariances satisfy (8) where k is replaced by

k+ 1. As such, we can reproduce the effect of the cross-covariance terms of the centralized CL

using the variables Φi(k)’s and P̄ij’s. Notice that we can write the updated state estimate and

covariance matrix in the new variables as follows, for i ∈ V ,

x̂i+(k + 1) = x̂i-(k + 1) + Φi(k + 1) D̄i r̄
a, (13)

Pi+(k + 1) = Pi-(k + 1)−Φi(k + 1)D̄iD̄
>
i Φi(k + 1)>,

where r̄a =(Sab)
− 1

2 ra.
14



Given the decomposition above, examining (5), (4a), (10) and (11) shows that agent a can

calculate these terms by acquiring x̂b-(k+1) ∈ Rnb , Φb(k+1) ∈ Rnb×nb , and Pb-(k+1) ∈ Mnb

from agent b if it knew P̄ij(k), ∀i, j ∈ V . Then agent a can assume the role of the interim

master and issue the update terms for other agents in the network. Based on this observation,

we develop the Interim Master D-CL algorithm by keeping a local copy of P̄lj’s at each agent

i ∈ V , i.e., P̄
i
jl for all j ∈ V\{N} and l ∈ {j + 1, · · · , N}–because of the symmetry of the

covariance matrix we only need to save, e.g., the upper triangular part of this matrix. In the

following, we assume that if P̄
i
jl is not explicitly maintained by agent i, the agent substitutes

the value of (P̄
i
lj)
> for it. The Interim Master D-CL works as presented in Algorithm 2. This

algorithm works based under the following assumption

Assumption 2: We assume that the message from the agent taking the relative measure-

ment, the interim master, can reach the entire team (see Fig. 2).

Remark 0.1 (Multiple synchronized relative measurements): To accommodate multiple

synchronized relative measurements in the network, we use sequential updating (c.f. [11, ch.

3],[12]). In the Kalman filter development, sequential updating is possible under the assumption

that the measurements across time and sensors are white sequences. To implement a sequential

updating procedure in the Interim Master D-CL algorithm, we assume that all agents have an

identical pre-specified the sequential-updating-order guideline indicating the priority order for

agents to request the landmark-message and broadcast the update-message. It is reasonable to

expect that the updating order should not dramatically change the results. Discussion regarding

the update ordering can be found in [12, page 10] and references therein. The sequential updating
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procedure in the Interim Master D-CL algorithm is then as follows: (a) every agent i ∈ V making

relative measurements informs the entire team that it has made N i
z relative measurements; (b) in

the order dictated by sequential-updating-order, the interim master agents, one by one, proceed by

requesting the landmark-message from their landmarks and (c) broadcasting the update-message.

�

Relative measurements help the agents improve their localization accuracy but they can not

bound the overall uncertainty. As shown in [10], even when all the agents in the team are taking

relative measurements simultaneously, the observability matrix of the collective system is rank

deficient. This rank deficiency can be removed by incorporating absolute pose measurements

in the process. As such, the tracking performance can be improved significantly if agents have

occasional absolute positioning information, e.g., via GPS or relative measurements taken from

a fixed landmark with a priori known absolute location. The inclusion of absolute measurements

in the Interim Master D-CL is straightforward. The agent making an absolute measurement is an

interim master that can calculate the update-message using only its own data and then broadcast

it to the team.

Finally, observe that the Interim Master D-CL algorithm is robust to permanent agent

dropouts from the network. The operation only suffers from a processing cost until all agents

become aware of the dropout. Also, notice that an external authority, e.g., a search-and-rescue

chief, who needs to obtain the location of any agent, can obtain this location update in any

rate (s)he wishes to by communicating with that agent. This reduces the communication cost of

the operation.
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Complexity analysis

For the sake of an objective performance evaluation, a study of the computational

complexity, the memory usage, as well as communication cost per agent per time-step of the

Interim Master D-CL algorithm in terms of the size of the mobile agent team N is provided

next.

In the Interim Master D-CL algorithm, at the propagation stage the computations per agent

are independent of the size of the team but at the update stage, for each measurement update,

because of (19c), the computation of every agent is of order N(N − 1)/2. As multiple relative

measurements are processed sequentially, the computational cost per agent at the completion of

any update stage depends on the number of the relative measurements in the team, henceforth

denoted by Nz. Then, the computational cost per agent is O(Nz×N2), implying a computational

complexity of order O(N4) for the worst case where all the agents take relative measurement

with respect to all the other agents in the team, i.e., Nz = N(N −1). The storage cost per agent

is of order O(N2) which, due to the recursive nature of the Interim Master D-CL algorithm,

is independent of Nz. This cost is caused by the initialization (18) and update equation (19c),

which are of order N(N − 1)/2. We complete the analysis by evaluating the communication

cost. There is no communication required in the propagation stage of the Interim Master D-CL

algorithm. However at the update stage, due to the actions outlined in Remark 0.1, intra-network

communications are needed. Recall that every agent re-broadcasts any received message other

than their landmark-messages. Let Nr be the number of the agents that have made a relative

measurement at the current time. Therefore, to fulfill the steps (a) and (c) of the sequential

17



updating in Remark 0.1, every agent will end up broadcasting, respectively, Nr and Nz times.

Every agent can be a master of Nb agents and/or a landmark of Na agents, requiring that

agent to, respectively, broadcast Nb requests and Na landmark-messages, to fulfill step (b). As

Na ≤ Nr ≤ Nz and Nb < Nz, then the total number of broadcast per agent is of order O(Nz),

implying a worst case (Nz = N(N−1)) broadcast cost of O(N2) per agent. If the communication

range is unbounded, the broadcast cost per agent is O(max{Nb, Na}), with the worst case cost of

order O(N). The communication message size of each agent in both single or multiple relative

measurements is independent of the group size N and as such for the worst case scenario the

communication message size is of order O(1).

The results of the analysis above are summarized in Table I and are compared to those

of a trivial decentralized implementation of the EKF for CL (denoted by T-D-CL) in which

every agent i ∈ V at the propagation stage computes (14)–using the broadcasted Fj(k) from

every other team member j ∈ V\{i}–and at the update stage computes (17) and (16)–using

the broadcast (a, b, ra, Sab, H̃a, H̃b, Ra, Pa-, Pb-) from agent a that has made relative

measurement from agent b. Agent a calculates Sab, H̃a, H̃b by requesting (x̂b-, Pb-) from agent

b. We assume that multiple measurements are processed sequentially and the communication

procedure is multi-hop. Although the overall cost of the T-D-CL algorithm is comparable with

the Interim Master D-CL algorithm, this implementation has a more stringent communication

connectivity condition, requiring a strongly connected digraph topology (i.e., all the nodes on

the communication graph can be reached by every other node on the graph) at each time-step,

regardless of whether there is a relative measurement incidence in the team. As an example,

notice that the communication graph of Fig. 2 is not strongly connected and as such the T-D-CL

18



algorithm can not be implemented whereas the Interim Master D-CL algorithm can be. Recall

that the Interim Master D-CL algorithm needs no communication at the propagation stage and it

only requires an existence of a spanning tree rooted at the agent making the relative measurement

at the update stage. Finally, the Interim Master D-CL algorithm incurs less computational cost

at the propagation stage.

Conclusions

In this note, we reviewed the cooperative localization strategy for increasing the localization

accuracy of team of communicating mobile agents. This strategy relies on use of agent-to-agent

relative measurements (no reliance on external features) as a feedback signal to jointly estimate

the poses of the team members, resulting in an increased accuracy for the entire team. In par-

ticular, we discussed the challenges involved in designing decentralized cooperative localization

algorithms. Moreover, we presented a decentralized cooperative localization algorithm that is

exactly equivalent to the centralized EKF algorithm of [10]. In this decentralized algorithm, the

propagation stage is fully decoupled i.e., the propagation is a local calculation and no intra-

network communication is needed. The communication between agents is only required in the

update stage when one agent makes a relative measurement with respect to another agent. The

algorithm declares the agent made the measurement as interim master that can, by using the

data acquired from the landmark agent, calculate the update terms for the rest of the team and

deliver it to them by broadcast.
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Algorithm 1 EKF CL (centralized)
Require: Initialization (k = 0): For i ∈ V , the algorithm is initialized at

x̂i+(0)∈Rni
, Pi+(0)∈Mni ,P+

ij(0) = 0ni×nj , j∈V\{i}.

Iteration k

1: Propagation: for i ∈ V , the propagation equations are:

x̂i-(k+1)= f i(x̂i+(k),ui(k)), (14a)

Pi-(k+1)= Fi(k)Pi+(k)Fi(k)>+Gi(k)Qi(k)Gi(k)>, (14b)

P-
ij(k+1)= Fi(k)P+

ij(k)Fj(k)>, j ∈ V\{i}. (14c)

2: Update: While there are no relative measurements no update happens, i.e.,

x̂+(k + 1) = x̂-(k + 1), P+(k + 1) = P-(k + 1).

When there is a relative measurement at time-step k+ 1, for example robot a makes a relative measurement of robot b, the update proceeds

as below. The residual of the relative measurement and its covariance are, respectively,

ra = zab − hab(x̂a-(k + 1), x̂b-(k + 1)),

and

Sab = Ra(k + 1) + H̃a(k + 1)Pa-(k + 1)H̃a(k + 1)> + H̃b(k + 1)Pb-(k + 1)H̃b(k + 1)>

− H̃b(k + 1)P-
ba(k + 1)H̃a(k + 1)> − H̃a(k + 1)P-

ab(k + 1)H̃b(k + 1)>. (15)

The estimation updates for the centralized EKF are:

x̂i+(k+1)=x̂i-(k+1) + Ki(k+1)ra(k+1), (16a)

Pi+(k+1)=Pi-(k+1)−KiSab(k+1)Ki(k+1)>, (16b)

P+
ij(k+1)=P-

ij(k+1)−Ki(k+1)Sab(k+1)Kj(k+1)>, (16c)

where i ∈ V , j ∈ V\{i} and

Ki = (P-
ib(k + 1)H̃

>
b −P-

ia(k + 1)H̃
>
a )Sab

−1. (17)

3: k ← k + 1
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Algorithm 2 Interim Master D-CL
Require: Initialization (k = 0): Every agent i ∈ V initializes its filter at

x̂i+(0) ∈ Rni
,Pi+(0) ∈ Mni , Φi(0) = Ini , P̄

i
jl(0) = 0nl×nj , j ∈ V\{N}, l ∈ {j + 1, · · · , N}. (18)

Iteration k

1: Propagation: Every agent i ∈ V propagates the variables below

x̂i-(k+1)= f i(x̂i+(k),ui(k)), Pi-(k+1)=Fi(k)Pi+(k)Fi(k)>+Gi(k)Qi(k)Gi(k)>, Φi(k+1)=Fi(k)Φi(k).

2: Update: while there are no relative measurements in the network, every agent i ∈ V updates its variables as:

x̂i+(k + 1) = x̂i-(k + 1), Pi+(k + 1) = Pi-(k + 1), P̄
i
jl(k + 1) = P̄

i
lj(k), j ∈ V\{N}, l ∈ {j + 1, · · · , N}.

If there is an agent a that makes a measurement with respect to another agent b, then agent a is declared as the interim master and acquires

the following information from agent b:

landmark-message =
(
x̂b-(k + 1),Φb(k + 1),Pb-(k + 1)

)
.

Agent a makes the following calculations upon receiving the landmark-message:

ra = zab − hab(x̂b-, x̂a-),

Sab = Ra + H̃aPa-H̃
>
a + H̃

>
b Pb-H̃b − H̃aΦaP̄

a
abΦ

b>H̃
>
b − H̃bΦ

bP̄
a
baΦa>H̃

>
a ,

D̄a = (Φa−1ΦaP̄
a
abΦ

b>H̃
>
b −Φa−1Pa-H̃

>
a )Sab

− 1
2 , D̄b = (Φb−1

Pb-H̃
>
b − P̄

a
baΦa>H̃

>
a )Sab

− 1
2 ,

where H̃a(k + 1) = H̃a(x̂a-, x̂b-) and H̃b(k + 1) = H̃b(x̂a-, x̂b-) are obtained using (5).

The interim master passes the following data, either directly or indirectly (by message passing), to the rest of the agents in the network:

update-message =
(
a, b, r̄a, D̄a, D̄b,Φ

b>H̃
>
b Sab

− 1
2 ,Φa>H̃

>
a Sab

− 1
2

)
.

Every agent i ∈ V , upon receiving the update-message, first calculates, ∀j ∈ V\{a, b}, using information obtained at k:

D̄j = P̄
i
jbΦ

b>H̃
>
b Sab

− 1
2 − P̄

i
jaΦa>H̃

>
a Sab

− 1
2 ,

and then updates the following variables where j∈V\{N}, l∈{j + 1, · · · , N}:

x̂i+(k+1) = x̂i-(k+1)+Φi(k+1) D̄i r̄a, (19a)

Pi+(k+1) = Pi-(k+1)−Φi(k+1)D̄iD̄
>
i Φi(k+1)>, (19b)

P̄
i
jl(k+1) = P̄

i
jl(k)−D̄jD̄

>
l . (19c)

3: k ← k + 1
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TABLE I: Complexity analysis per agent of the Interim Master D-CL algorithm (denoted by

IM-D-CL) compared to that of the trivial decentralized implementation of EKF for CL (denoted

by T-D-CL) introduced in Subsection .

Computation Storage Broadcast? Message Size Connectivity

Algorithm IM-D-CL T-D-CL IM-D-CL T-D-CL IM-D-CL T-D-CL IM-D-CL T-D-CL IM-D-CL T-D-CL

Propagation O(1) O(N2) O(N2) O(N2) 0 O(N) 0 O(1) None strongly

connected

digraph

Update per Nz

relative measur.
O(Nz×N2) O(Nz×N2) O(N2) O(N2) O(Nz) O(Nz) O(1) O(1)

interim mas-

ter can reach

all the agents
Overall worst case O(N4) O(N4) O(N2) O(N2) O(N2) O(N2) O(1) O(1)

∗Broadcast cost is for multi-hop communication. If the communication range is unbounded, the broadcast cost per agent is O(max{Nb, Na})

with the worst cost of O(N).
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uk+1

zk,i

Beacon-based localization

uk+1

zk,i

SLAM GPS navigation

Legend: True agent Estimated agent True landmark Estimated landmark

Figure 1: Schematic representation of common localization techniques for mobile platforms: In beacon-based

localization, the map of the area is known and there are pre-installed beacons or landmarks with known locations

and identities. By taking relative measurements with respect to these landmarks, the mobile agents can improve

their localization accuracy. For operations where a priori knowledge about the environment is not available, but

nevertheless, the environment contains fixed and distinguishable features that agents can measure, SLAM is normally

used to localize the mobile agents. SLAM is a process by which a mobile agent can build a map of an environment

and at the same time use this map to deduce its location. On the other hand, GPS navigation provides location and

time information in all weather conditions, anywhere on or near the earth but it requires an unobstructed line of

sight to at least four GPS satellites.
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1 2

3

4
5

6

Figure 2: The spheres represent the robots and the dashed circles around them represents the communication

range of the robots. The circular sectors depict the exteroceptive sensing zone of the corresponding robot. Here,

robots 1 and 6 make relative measurements, respectively, of robots 2 and 3. For each of robots 1 and 6, there is a

spanning tree in the communication graph of this team that is rooted at these robots.
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Figure 3: Estimation error (solid line) and 3σ error bound (dashed lines) in the x−coordinate variable of 3 robots

moving on a flat terrain when they (a) only propagate their equations of motion using self-motion measurements

(black plots), (b) employ cooperative localization ignoring past correlations between the estimations of the robots

(blue plots), (c) employ cooperative localization with accurate account of past correlations (red plots). The figures

in the right column are the repetition for figures in the left where the localization case (a) is removed for clearer

demonstration of cases (b) and (c). Here, a→ b over the time interval marked by two vertical blue lines indicates

that robot a has taken a relative measurement with respect to robot b at that time interval. The symbol a → a

means that robot a obtains an absolute measurement.
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A team of communicating robots

I am conscious about our correlation
I am conscious about our correlation

Loosely coupled D-CL

A team of communicating robots

Network of correlations is maintained

Tightly coupled D-CL

Figure 4: Schematic representation of the D-CL classification based on how the past correlations are accounted

for.
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Sidebar 1

Notation used throughout this document

We denote by Mn, 0n×m (when m = 1, we use 0n) and In, respectively, the set of real positive

definite matrices of dimension n × n, the zero matrix of dimension n × m, and the identity

matrix of dimension n× n. We represent the transpose of matrix A ∈ Rn×m by A>. The block

diagonal matrix of set of matrices A1, . . . ,AN is Diag(A1, · · · ,AN). For finite sets V1 and V2,

V1\V2 is the set of elements in V1, but not in V2. For a finite set V we represent its cardinality

by |V |. In the network of N robots, the local variables associated with robot i are distinguished

by the superscript i, e.g., xi is the pose (i.e., position and orientation) of robot i, x̂i is its pose

estimate, and Pi is the covariance matrix of its pose estimate. In this note, we use the term cross-

covariance to refer to the correlation terms between two robots in the covariance matrix of the

entire network. The cross-covariance of the pose vectors of robots i and j is Pij . We denote the

propagated and updated variables, say x̂i, at time-step k by x̂i-(k) and x̂i+(k), respectively. We

drop the time-step argument of the variables as well as matrix dimensions whenever they are

clear from the context. In a network of N robots, p = (p1, . . . ,pN) ∈ Rd, d =
∑N

i=1 n
i is the

aggregated vector of local vectors pi ∈ Rni .
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Sidebar 2

Further Reading on EKF Cooperative Localization

CL using EKF, or EKF CL in what follows, is a convenient strategy both for analysis and

implementation purposes. For a group of N homogeneous robots with the same level of

uncertainty in their proprioceptive measurements that move on a flat terrain and use exteroceptive

relative pose measurements, [S1] provides an analytical expression for the upper bound on the

positioning uncertainty increase rate as a function of N , the odometric and orientation uncertainty

for the robots, and the accuracy of a robot tracker measuring relative positions between pairs of

robots. The accuracy of position estimation for groups of possibly heterogeneous robots moving

on a flat terrain and performing cooperative localization is studied in [S2] where an analytical

expression for the upper bound on the expected positioning uncertainty or robots is provided.

This bound is determined as a function of the sensors’ noise covariance and the eigenvalues of

the relative position measurement graph, i.e., the weighted directed graph which represents the

network of robot-to-robot exteroceptive measurements. The consistency of EKF CL from the

perspective of observability is studies in [S3]. Huang et al. in [S3] analytically show that the

error-state system model employed in the standard EKF CL always has an observable subspace

of higher dimension than that of the actual nonlinear CL system. This results in unjustified

reduction of the EKF covariance estimates in directions of the state space where no information

is available, and thus leads to inconsistency. To address this problem, Huang et al. in [S3] adopt

an observability-based methodology for designing consistent estimators in which the linearization

points are selected to ensure a linearized system model with an observable subspace of the correct
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dimension.
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Sidebar 3

Covariance Intersection

Covariance intersection, proposed by Julier and Uhlmann in [S4], [S5], is a general

approach to the problem of fusing correlated estimates of two or more different estimates of

a random variable, each represented by its own estimated mean and covariance. Through a

fusion process which resembles the update step of the Kalman filter, the covariance intersection

algorithm, despite the lack of explicit knowledge about the correlation between the estimates,

produces a posterior fused estimation with a covariance that guarantees consistency under the

assumption of Gaussian noise. Examples of estimation divergence as a result of a naive approach

of fusing the state estimations without taking into account the intrinsic correlation between them

are given in [S4], [14].
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