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Abstract— This paper addresses the problem of cooperative
object manipulation with the coordination relying solely on
implicit communication. We consider a decentralized leader-
follower architecture where the leading robot, that has exclusive
knowledge of the object’s desired trajectory, tries to achieve the
desired tracking behavior via an impedance control law. On the
other hand, the follower estimates the leader’s desired motion
via a novel prescribed performance estimation law, that drives
the estimation error to an arbitrarily small residual set, and im-
plements a similar impedance control law. Both control schemes
adopt feedback linearization as well as load sharing among
the robots according to their specific payload capabilities.
The feedback relies exclusively on each robot’s force/torque,
position as well as velocity measurements and apart from a
few commonly predetermined constant parameters, no explicit
data is exchanged on-line among the robots, thus reducing the
required communication bandwidth and increasing robustness.
Finally, a comparative simulation study clarifies the proposed
method and verifies its efficiency.

I. INTRODUCTION

The study of decentralized multi-robot systems in object
carrying tasks (see Fig. 1) has received increasing atten-
tion over the last decades. In such tasks, the inter-robot
communication has been proven critical, since there is no
central unit to supervise the agents’ actions. In general, there
are two types of communication, namely the explicit and
the implicit. The former type is designed solely to convey
information such as control signals or sensory data directly
to other robots [1]. On the other hand, the latter occurs as
a side-effect of robot’s interactions with the environment or
other robots, either physically (e.g., the interaction forces
between the object and the robot) or non-physically (e.g.,
visual observation). In this case, the information needed is
acquired by appropriate sensors attached on the agents.

The most investigated and frequently employed communi-
cation form is the explicit one. It usually leads to simpler the-
oretic analysis and renders teams more effective. However, in
case of faulty communication environments, severe problems
may arise, such as dropping the object, exertion of excessive
forces and performance degradation. Moreover, as the num-
ber of cooperating robots increases, communication protocols
require complex design to deal with crowded bandwidth. On
the other hand, several of the aforementioned limitations can
be overcome by employing implicit communication instead.
Despite the increased difficulty of the theoretical analysis, it
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Fig. 1. Two KUKA Youbots manipulating an object in 3-D motion.

leads to simpler protocols and saves bandwidth as well as
power, since no or very few data is explicitly exchanged. It
also increases robustness in case of faulty environments as
well as stealthiness of operation, since the agent activity is
not easily detected.

Cooperative manipulation has been well-studied in the
literature, especially the centralized schemes [2]–[5]. Despite
its efficiency, centralized control is less robust, since all units
rely on a central system, and its complexity increases rapidly
as the number of participating robots becomes large. On the
other hand, decentralized control usually depends on either
explicit communication or off-line knowledge of the desired
object trajectory [6]–[8]. Moreover, in other leader-follower
schemes [9], [10], the leader has to transmit on-line the
desired object trajectory to the follower.

Implicit communication has been exclusively employed in
a few decentralized schemes for holonomic mobile manipu-
lators. Kosuge et. al. in a series of works [11]–[13] presented
a leader-follower scheme for holonomic manipulators. The
leader implements a desired trajectory profile through an
impedance scheme, while the follower estimates it through
the motion of the object. However, the dynamics of the object
are neglected and the estimation error remains bounded
close to zero only if the desired acceleration is zero (i.e.,
trajectories with constant velocity profile). Finally, regarding
non-holonomic mobile robots, the follower’s passive caster
behavior was adopted in [14], [15]. Although, the stability
of the follower’s contact is established, it is not stated how
the object’s trajectory can be controlled.

This paper addresses the problem of decentralized cooper-
ative object manipulation. The challenge lies in completely
replacing explicit communication with implicit. We employ
a leader-follower formation, similarly to [13]. The leader is
aware of the object’s desired trajectory and implements it via
an impedance control law. The follower, estimates it by ob-
serving the object’s motion and imposes a similar impedance
law. Both impedance laws linearize the dynamics, adopt
similar control gains and incorporate coefficients for load-
sharing. The estimation process is based on the prescribed



performance methodology [16] that drives the estimation
error to an arbitrarily small residual set. As a result, the
tracking error is ultimately bounded with customizable ulti-
mate bounds. Finally, it should be noted that both agents use
solely their own force, position and velocity measurements.
The only explicit information needed, is limited down to a
few constant parameters, which may be transmitted off-line.

In this work, we extend the current state of art [11]–
[13], via a more robust estimation algorithm that converges
even though the desired object’s acceleration profile is non-
zero (i.e., arbitrary object’s desired trajectory as long as it is
bounded and smooth). Moreover, the customizable ultimate
bounds allow us to achieve practical stabilization of the
tracking error, with accuracy limited only by the sensors’
resolution. Finally, we provide a novel way to share the
object load among the participating robots.

The rest of the manuscript is organized as follows: Sec-
tion II introduces the prescribed performance concept and
some preliminary results on dynamical systems. Section III
describes the problem and the system’s model. The control
scheme along with the estimation algorithm are presented
in Section IV. Section V validates our approach through
simulated paradigms and Section VI concludes the paper.
Finally, the proof of the main result is given in the appendix.

II. DEFINITIONS AND PRELIMINARIES
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Fig. 2. Graphical illustration of the prescribed performance definition.

A. Prescribed Performance
It will be clearly demonstrated in the sequel that the

concepts and techniques of prescribed performance control,
recently proposed in [17], [18] for nonlinear systems, are
innovatively adapted herein to develop a novel estimation
scheme. Prescribed performance characterizes the behavior
where an error converges to a predefined arbitrarily small
residual set with convergence rate no less than a certain
predefined value. In that respect, consider a generic scalar
error e (t). The mathematical expression of prescribed per-
formance is given by the following inequalities:

−ρ (t) < e (t) < ρ (t) , ∀t ≥ 0 (1)

where ρ (t) is a smooth and bounded function of time
satisfying limt→∞ ρ (t) > 0, called performance function.
The aforementioned statements are clearly illustrated in
Fig. 2 for an exponential performance function ρ (t) =
(ρ0 − ρ∞) e−st + ρ∞ with appropriately chosen positive
constants ρ0, ρ∞, s, which impose transient and steady state
performance characteristics on the error e (t).

B. Dynamical Systems

Consider the initial value problem:

ξ̇ = h (t, ξ) , ξ (0) = ξ0 ∈ Ωξ (2)

with h : <+ × Ωξ → <n where Ωξ ⊂ <n is a non-empty
open set.

Definition 1: [19] A solution ξ (t) of the initial value
problem (2) is maximal if it has no proper right extension
that is also a solution of (2).

Theorem 1: [19] Consider the initial value problem (2).
Assume that h (t, ξ) is: a) locally Lipschitz on ξ for almost
all t ∈ <+, b) piecewise continuous on t for each fixed
ξ ∈ Ωξ and c) locally integrable on t for each fixed ξ ∈ Ωξ.
Then, there exists a maximal solution ξ (t) of (2) on the time
interval [0, τmax), such that ξ (t) ∈ Ωξ, ∀t ∈ [0, τmax).

Proposition 1: [19] Assume Theorem 1 holds. For a
maximal solution ξ (t) on the time interval [0, τmax) with
τmax <∞ and for any compact set Ω′ξ ⊂ Ωξ there exists a
time instant t′ ∈ [0, τmax) such that ξ (t′) /∈ Ω′ξ.

III. PROBLEM FORMULATION

Fig. 3. Two mobile manipulators handling a rigidly grasped object.

Consider two mobile manipulators in a leader-follower
scheme handling a rigidly grasped object as shown in Fig.
3. We assume that each robot has at least 6 DoFs and is
fully actuated. Only the leader knows the object’s desired
trajectory xdl (t), whereas the follower estimates it by xdf (t)
via its own state measurements. Owing to the strict com-
munication constraints (i.e., no on-line communication), the
problem becomes very challenging. Hence, we relax the
asymptotic tracking requirements down to ultimate bound-
edness of the tracking errors. We assume that measurements
of position, velocity and interaction forces/torques with the
object are available for each robot exclusively. The geometric
and inertial parameters of the mobile manipulators as well
as of the object are considered known. Finally, the only
information allowed to be exchanged, is the values of a few



constant control parameters that are transmitted off-line to
the follower.

A. Kinematics

We denote the leader’s and follower’s task space (end
effector) coordinates with respect to an inertial frame {I} by
xi =

[
xTip, x

T
ir

]T
, i ∈ {l, f}, where xip and xir correspond

to the end-effector’s position and orientation respectively.
Similarly, we denote the object’s coordinates with respect to
{I} by xo =

[
xTop, x

T
or

]T
. Let also qi, i ∈ {l, f} be the joint

space variables. Invoking the forward kinematics equations,
we express the task space variables as a nonlinear function of
the joint variables: xi = fi (qi) , i ∈ {l, f}. Differentiating,
we also obtain: ẋi = Ji (qi) q̇i, i ∈ {l, f}, where Ji (qi) =
∂fi(qi)
∂qi

is the Jacobian matrix. Moreover, since the contacts
are considered rigid, the following relations hold:

xip = xop + li, xir = xor + ai, i ∈ {l, f} (3)

where the vectors li = [lix, liy, liz]
T and ai = [aix, aiy, aiz]

T

represent the relation between the object’s and the end
effector’s frames (see Fig. 3). Since the object’s geometric
parameters are considered known, each robot may compute
the object’s coordinates via (3). Furthermore, we establish a
velocity relation by differentiating (3) as follows:

ẋi = Joiẋo, i ∈ {l, f} (4)

where Joi is the Jacobian from the end-effector to the object’s
center of mass. Since the end-effector and the object are
rigidly connected, the aforementioned Jacobian has always
full rank and hence a well defined inverse J−1

oi . Thus, each
robot may compute the velocity of the object’s center of mass
through (4). Finally, differentiating once more, we establish
the acceleration relation:

ẍi = J̇oiẋo + Joiẍo, i ∈ {l, f} (5)

B. Dynamics

The dynamic model in terms of task space coordinates,
for a single robot, is described by:

Mi (qi) ẍi+Ci (q̇i, qi) ẋi+Gi (qi) = Ui+Fi, i ∈ {l, f} (6)

where Mi is the positive definite inertial matrix, Ci is a
matrix representing Coriolis and centrifugal forces and Gi
represents gravitational forces. The vector Fi, i ∈ {l, f}
represents the interaction force/torque exerted at the end
effector by the object and Ui, i ∈ {l, f} denotes the input
task space wrench. The relation between the joint torques
τi and the task space wrench is given by: τi = J

T

i Ui +(
I − JTi J

T

i

)
τin, i ∈ {l, f}, where J i is the generalized

inverse that is consistent with the equations of motion of the
manipulator [3]. The vector τin does not contribute to the
end-effector’s wrench and can be regulated independently
to achieve secondary goals (e.g., manipulability increase or
collision avoidance). Invoking the kinematic relations (3)-(5),
we may express the aforementioned dynamic models (6) with
respect to the object’s coordinates as follows:

Moi (qi) ẍo+Coi (q̇i, qi) ẋo+Goi (qi) = JToiUi+JToiFi (7)

for i ∈ {l, f}, where

Moi (qi) = JToiMi (qi) Joi, Goi (qi) = JToiGi (qi) ,

Coi (q̇i, qi) = JToi(Ci (q̇i, qi) Joi +Mi (qi) J̇oi)

Similarly, the dynamic equation of the object is given by:

Mo (xo) ẍo + Co (ẋo, xo) ẋo +Go (xo) = Fo (8)

Assuming that no other external forces are exerted on the
object, the total force Fo equals to Fo = −JTolFl−JTofFf =

−GF , where G =
[
JTol, J

T
of

]
denotes the grasp matrix of

the overall configuration and F =
[
FTl , F

T
f

]T
.

Remark 1: Wrenches that lie on the null space of the
grasp matrix G do not contribute to the object dynamics.
Therefore, we may incorporate in the control scheme an
extra component Fint,i =

(
I −G#G

)
F̂int, i ∈ {l, f}, that

belongs to the null space of G, in order to regulate the steady-
state internal forces, where G# is the right pseudo-inverse of
G. Since li, i ∈ {l, f} are considered known to both agents,
if F̂int is constant, no communication is needed during task
execution in order to compute G, G# and Fint,i.

IV. CONTROL METHODOLOGY

A. Impedance Control Scheme

The inertial and geometric parameters of both mobile
manipulators and the object are considered known, hence a
feedback linearization scheme may be applied in each robot.
In this respect, we select the following control inputs:

Ui = −Fi + J−Toi (MoiVi + Coiẋo +Goi) , i ∈ {l, f} (9)

to cancel the nonlinearities of (7). Moreover, the auxiliary
inputs Vi, i ∈ {l, f} are chosen as:

Vi = ẍcmd,i +M−1
o JToi (Fi − Fdi) , i ∈ {l, f} (10)

imposing thus the desired impedance behavior 1 ẍo =
ẍcmd,i + M−1

o JToi (Fi − Fdi) where Fdi, i ∈ {l, f} denote
the desired robot/object interaction wrench:

Fdi = Fint,i − J−Toi ci (Coẋo +Go +Moẍcmd,i) (11)

Notice that the aforementioned selection cancels the object’s
nonlinearities, ensures adequate internal forces via Fint,i
(see Remark 1) and achieves the motion control objectives
through the appropriate design of ẍcmd,i, that will be pre-
sented in the sequel. Moreover, the load distribution coeffi-
cients ci, i ∈ {l, f}, that are subject to the design constraints
cl + cf = 1, cl, cf > 0, are assigned values according to
the payload capabilities of the mobile manipulators (e.g.,
in case of heterogeneous robots) thus introducing a load
sharing attribute as opposed to previous related work [11]–
[13]2. Finally, the commanded acceleration signal, that is
responsible for the tracking objective, is designed as follows:

ẍcmd,i = ẍdi −Di (ẋo − ẋdi)−Ki (xo − xdi) (12)

1The desired impedance behaviour can be easily verified by substituting
(9) and (10) in (7).

2In these works, the object’s dynamics was neglected.



where Di, Ki, i ∈ {l, f} are diagonal positive definite
control gain matrices. As stated above, xdl (t) and xdf (t)
stand for the actual object’s desired trajectory profile to be
implemented by the leader, and its estimate at the follower’s
side respectively. Hence, substituting (9)-(12) in (7), we
obtain the leader’s and follower’s tracking error dynamics:

∆ẍi +Di∆ẋi +Ki∆xi = M−1
o JToi (Fi − Fdi) (13)

where ∆xi = xo − xdi, i ∈ {l, f}. Selecting Dl = Df =
D and Kl = Kf = K as well as adding the object’s
dynamics (8) in (13), we get:

∆ẍ+D∆ẋ+K∆x = 0 (14)

where ∆x = xo − (cl+1)xdl+(cf+1)xdf
3 . In this way,

the positive definiteness of the control gain matrices
D, K renders the aforementioned system asymptotically
stable. Therefore, ∆x and ∆ẋ converge exponentially
to the origin (i.e., ∆x

(
∆x (0) ,∆ẋ (0) ; t

) exp→ 0 and
∆ẋ
(
∆x (0) ,∆ẋ (0) ; t

) exp→ 0). Finally, it can be easily
verified that the object’s trajectory suffices:

xo (t) =
(cl+1)xdl(t)+(cf+1)xdf (t)

3

+ ∆x
(
∆x (0) ,∆ẋ (0) ; t

)
(15)

B. Estimation law

The follower is not aware of the object’s actual desired
trajectory profile xdl (t). However, even though explicit
communication between the leader and the follower is not
permitted, the follower may estimate the error xdl (t)−xdf (t)

by measuring the term 3
xo(t)−xdf (t)

cl+1 , which is easily obtained
via (15), after a few trivial algebraic manipulations, and
the fact that ∆x

exp→ 0. Moreover, the estimator should
also compensate for acceleration residuals, since acceleration
measurements are not available. Thus, we sacrifice asymp-
totic stability by adopting a robust prescribed performance
estimator that guarantees ultimate boundedness of the es-
timation error xdl (t) − xdf (t) and consequently ultimate
boundedness of the tracking error xo (t)− xdf (t).

Let us define the error e (t) = 3
xo(t)−xdf (t)

cl+1 . The expres-
sion of prescribed performance for each element of e (t) =
[e1 (t) , e2 (t) , . . . ]

T is given by the following inequalities:

−ρj (t) < ej (t) < ρj (t) , ∀t ≥ 0 (16)

where ρj (t) denotes the corresponding performance func-
tion. As stated in Subsection II-A, a candidate performance
function would be ρj(t) = (ρj,0 − ρj,∞)e−st + ρj,∞ where
the constant s dictates the exponential convergence rate, ρj,∞
denotes the ultimate bound and ρj,0 is chosen to satisfy
ρj,0 > |ej (0)|. Hence, following the prescribed performance
control technique [17], the estimation law is designed:

ẋdfj = kj ln

(
1+

ej(t)

ρj(t)

1− ej(t)

ρj(t)

)
, kj > 0 (17)

from which the follower’s estimate xdfj (t) is calculated
via a simple integration. Moreover, differentiating (17) with

respect to time, we acquire the desired acceleration signal:

ẍdfj =
2kj

1−
(
ej(t)

ρj(t)

)2

ėj(t)ρj(t)−ej(t)ρ̇j(t)
ρ2
j (t)

(18)

which is bounded if the performance bounds (16) are met.

C. Stability Analysis

The main results of this work are summarized as follows.
Theorem 2: Consider the error e (t) = [e1 (t) , e2 (t) ,

. . . ]
T

= 3
xo(t)−xdf (t)

cl+1 . Given a smooth and bounded desired
trajectory xdl (t) with bounded derivatives as well as some
appropriately selected performance functions ρj (t) satisfy-
ing |ej (0)| < ρj (0), the estimation law (17) guarantees that
|ej (t)| < ρj (t) , ∀t ≥ 0.

Corollary 1: The follower’s estimation error and the ob-
ject’s trajectory tracking error are ultimately bounded.

Proof: Notice from Theorem 2 and (15) that:

|ej (t)| =
∣∣∣∣xdlj (t)− xdfj (t) +

3∆xj(∆xj(0),∆ẋj(0);t)
cl+1

∣∣∣∣ < ρj (t)

which leads to:

|xdlj (t)− xdfj (t)| < ρj (t) +
3|∆xj(∆xj(0),∆ẋj(0);t)|

cl+1 (19)

Therefore, the estimation error |xdlj (t)− xdfj (t)| is ulti-
mately bounded by ρj,∞ ≡ limt→∞ ρj (t) owing to the fact
that ∆xj

(
∆xj (0) ,∆ẋj (0) ; t

) exp→ 0. Similarly:

|xoj (t)− xdlj (t)| < cf+1
3 |xdlj (t)− xdfj (t)|

+
∣∣∆xj (∆xj (0) ,∆ẋj (0) ; t

)∣∣
Therefore, the tracking error |xoj (t)− xdlj (t)| is ultimately
bounded by cf+1

3 ρj,∞.
Remark 2: The aforementioned ultimate bounds depend

directly on ρj,∞, which can be set arbitrarily small to a
value reflecting the resolution of the measurement device,
thus achieving practical convergence of the estimation and
tracking errors to zero. Moreover, the transient response de-
pends on the convergence rate of the performance functions
ρj (t), that is affected by the parameter s, as well as the
choice of the impedance control gain matrices D, K in (14).

Remark 3: The proposed method does not utilize any
explicit on-line communication. The only information needed
on-line to implement the developed control schemes concerns
the measurements acquired exclusively by each robot’s sen-
sor suite (i.e., force, position and velocity). Some constant
parameters, though, should be transmitted off-line, namely
the gain matrices D, K, the load distribution coefficients
ci, i ∈ {l, f}, the internal force F̂int and the contact
points relative to the object. Nevertheless, this amount of
information is not significant.

Remark 4: The proposed estimation scheme is more ro-
bust against desired trajectory profiles with non-zero accel-
eration than previous works presented in [11]–[13]. The only
necessary condition concerns the smoothness and bounded-
ness of the desired trajectory. In this sense, our method guar-
antees bounded closed loop signals and practical asymptotic
stabilization of the estimation and tracking errors.



V. SIMULATIONS
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Fig. 4. Two mobile robots handling an object in 1-D motion. The leader
knows the object’s desired trajectory. The follower estimates it via (17).

We consider a simple 1-D scenario with two mobile robots
in a leader-follower scheme handling an object (see Fig. 4).
The leader is assigned the desired sinusoidal trajectory and
the follower estimates it via the proposed algorithm (17),
by simply observing the motion of the object and without
communicating explicitly with the leader. A comparative
simulation study was carried out between the proposed
control scheme and the one presented in [11], assuming
that the object load is equally shared to both agents, i.e.,
cl = cf = 0.5. Moreover, in order to examine the robustness
of the closed loop system, we considered a realistic case,
where the model parameters and the force measurements
adopted in both control schemes deviate up to 5% from their
actual values. Finally, the damping and stiffness coefficients
were selected as D = 2, K = 1, the parameters of the
proposed estimator and the one presented in [11] were chosen
as k1 = 0.5, ρ1(t) = 0.49e−t + 0.01 and a = 2, b = 1
respectively and Fint,i, i ∈ {l, f} were set to zero.
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Fig. 5. The estimation errors along with the performance bounds imposed
by the proposed method.

The results of the comparative simulation study are given
in Figs. 5-7. Notice that both the estimation error (Fig.
5) and the tracking error (Fig. 6) of the proposed scheme
practically converge to zero without requesting high control
input signals (see Fig. 7). On the contrary, the method
presented in [11] was unable to control the system satis-
factorily and yielded high control signals owing to the non-
zero acceleration profile of the desired trajectory. Finally,
the accompanying video demonstrates the aforementioned
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Fig. 6. The tracking errors.

comparative simulation study as well as a realistic simulated
paradigm of the proposed method with two KUKA Youbots
manipulating an object in a 3-D motion (see Fig. 1), carried
out in the Virtual Robot Experimentation Platform (V-REP).

VI. CONCLUSION

This paper presented a leader-follower scenario for cooper-
ative object manipulation under implicit communication. We
managed to completely avoid explicit on-line communica-
tion. The only information exchanged off-line concerned the
values of a few constant parameters. The leader imposed the
object’s desired trajectory profile via an impedance scheme.
The follower adopted a similar impedance law with identical
control gains and a prescribed performance estimator to
evaluate the object’s desired trajectory, that was unaware
of. The achieved ultimate boundedness of the estimation
errors resulted in ultimate boundedness of the tracking errors,
with bounds depending exclusively on the choice of certain
designer-specified performance parameters, thus enabling
practical stabilization. We extended the related literature by:
i) introducing the object’s dynamics, ii) incorporating a load
sharing technique and iii) robustifying the estimation process
against any smooth and bounded object’s desired trajectory.
Future research efforts will be devoted towards extending
the current methodology in multiple cooperating robots and
considering uncertainties in the dynamic model of both the
mobile manipulators and the grasped object.

VII. APPENDIX

Proof of Theorem 2: The proof follows identical arguments
for each element of e (t). First, let us define the normalized
error:

ξj =
ej(t)
ρj(t)

. (20)

Differentiating ξj with respect to time, we obtain a dynamical
system of the form ξ̇j = hj (t, ξj). We also define the
non-empty and open set Ωξj = (−1, 1). Since |ej (0)| <
ρj (0), we conclude that ξj (0) ∈ Ωξj . Additionally, owing
to the smoothness of: a) the leader’s desired trajectory, b)
the exponentially decreasing term ∆ẋj and c) the proposed
estimation scheme (17) over Ωξj , the function hj (t, ξj) is
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continuous for all t ≥ 0 and ξj ∈ Ωξj . Therefore, the
hypotheses of Theorem 1 stated in Subsection II-B hold and
the existence of a maximal solution ξj (t) on a time interval
[0, τmax) such that ξj (t) ∈ Ωξj , ∀t ∈ [0, τmax) is ensured.

Notice now that the transformed error signal εj (t) =

ln
(

1+ξj(t)
1−ξj(t)

)
is well defined for all t ∈ [0, τmax). Hence,

consider the positive definite and radially unbounded func-
tion Vj = 1

2ε
2
j . Differentiating, we obtain:

V̇j =
2εj

(1−ξ2
j )ρj(t)

(
ẋdlj (t) + 3

∆ẋj(∆xj(0),∆ẋj(0);t)
cl+1

− kjεj − ξj ρ̇j (t)
)

(21)

Since ∆ẋj
(
∆xj (0) ,∆ẋj (0) ; t

)
is exponentially decreas-

ing, ξj ∈ Ωξj and ẋdlj (t) , ρ̇j (t) are bounded either by
assumption or by construction, we conclude that:∣∣∣∣ẋdlj (t) + 3

∆ẋj(∆xj(0),∆ẋj(0);t)
cl+1 + ξj ρ̇j (t)

∣∣∣∣ ≤ Ūj
for an unknown positive constant Ūj . Moreover, 1

1−ξ2
j
> 1,

∀ξj ∈ Ωξj and ρj (t) > 0, ∀t ≥ 0. Hence, we conclude that
V̇j < 0 when |εj (t)| > Ūj

kj
and consequently that:

|εj (t)| ≤ ε̄j = max
{
|εj (0)| , Ūjkj

}
, ∀t ∈ [0, τmax) . (22)

Thus, taking the inverse logarithmic function we get:

−1 < e−ε̄j−1
e−ε̄j+1

= ξ
j
≤ ξj (t) ≤ ξj = eε̄j−1

eε̄j+1
< 1. (23)

Therefore, ξj(t) ∈ Ω
′

ξj
=
[
ξ
j
, ξj

]
, ∀t ∈ [0, τmax), which

is a nonempty and compact subset of Ωξj . Now we will
prove by contradiction that τmax can be replaced with ∞.
Assuming τmax < ∞ and since Ω

′

ξj
⊂ Ωξj , Proposition 1

in Subsection II-B dictates the existence of a time instant
t
′ ∈ [0, τmax) such that ξj

(
t
′
)
/∈ Ω

′

ξj
, which is a clear

contradiction. Therefore, τmax is extended to∞. As a result,

all closed loop signals remain bounded and moreover ξj (t) ∈
Ω
′

ξj
⊂ Ωξj , ∀t ≥ 0. Finally, from (20) and (23), we conclude:

−ρj (t) < ξ
j
ρj (t) ≤ ej (t) ≤ ξjρj (t) < ρj (t)

for all t ≥ 0, which completes the proof.
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