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Abstract—Base station cooperation is an attractive way of

increasing the spectral efficiency in multiantenna communica-

tion. By serving each terminal through several base stations in a

given area, intercell interference can be coordinated and higher

performance achieved, especially for terminals at cell edges. Most

previous work in the area has assumed that base stations have

common knowledge of both data dedicated to all terminals and

full or partial channel state information (CSI) of all links. Herein,

we analyze the case of distributed cooperation where each base

station has only local CSI, either instantaneous or statistical. In

the case of instantaneous CSI, the beamforming vectors that can

attain the outer boundary of the achievable rate region are char-

acterized for an arbitrary number of multiantenna transmitters

and single-antenna receivers. This characterization only requires

local CSI and justifies distributed precoding design based on a

novel virtual signal-to-interference noise ratio (SINR) framework,

which can handle an arbitrary SNR and achieves the optimal

multiplexing gain. The local power allocation between terminals

is solved heuristically. Conceptually, analogous results for the

achievable rate region characterization and precoding design

are derived in the case of local statistical CSI. The benefits of

distributed cooperative transmission are illustrated numerically,

and it is shown that most of the performance with centralized

cooperation can be obtained using only local CSI.

Index Terms—Coordinated multipoint (CoMP), network mul-
tiple-input–multiple-output (MIMO), base station cooperation,
distributed precoding, rate region, virtual signal-to-interference
noise ratio (SINR).
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I. INTRODUCTION

T
HE performance of cellular communication systems can
be greatly improved by multiple-input–multiple-output

(MIMO) techniques. Many algorithms have been proposed
for the single-cell downlink scenario, where a base station
communicates simultaneously with multiple terminals [1].
These approaches exploit various amounts of channel state
information (CSI) and improve the throughput by optimizing
the received signal gain and limiting the intracell interference.
In multicell scenarios, these single-cell techniques are how-
ever obliged to treat the interference from adjacent cells as
noise, resulting in a fundamental limitation on the performance
[2]–[5]—especially for terminals close to cell edges.

In recent years, base station coordination (also known as
network MIMO [4]) has been analyzed as a means of handling
intercell interference. In principle, all base stations might
share their CSI and data through backhaul links, which enable
coordinated transmission that manages the interference as in a
single cell with either total [6] or per-group-of-antennas power
constraints [7]. Unfortunately, the demands on backhaul ca-
pacity and computational power scale rapidly with the number
of cells [8], [9], which makes this approach unsuitable for
practical systems. Thus, there is a great interest in distributed
forms of cooperation that reduce the backhaul signaling and
precoding complexity, while still benefiting from robust in-
terference control [9]–[12]. Two major considerations in the
design of such schemes are to which extent the cooperation
is managed centrally (requires CSI sharing) and whether each
terminal should be served by multiple base stations (requires
data sharing).

We consider the scenario of base stations equipped with
multiple antennas and terminals with a single antenna each.
In this context, the multiple-input–single-output interference
channel (MISO IC) represents the special case when each base
station only serves a single unique terminal, but can share CSI
to manage coterminal interference. Although each base station
aims at maximizing the rate achieved by its own terminal,
cooperation over the MISO IC can greatly improve the per-
formance [13]. The achievable rate region was characterized
in [14] and the authors proposed a game-theoretic precoding
design based on full CSI sharing [13]. Distributed precoding
that only exploits locally available CSI can be achieved when
each base station balances the ratio between signal gain at the
intended terminal and the interference caused at other terminals
[15]–[17]. Recently, this approach has been shown to attain
optimal rate points [17].

1053-587X/$26.00 © 2010 IEEE

Authorized licensed use limited to: KTH THE ROYAL INSTITUTE OF TECHNOLOGY. Downloaded on July 13,2010 at 07:13:13 UTC from IEEE Xplore.  Restrictions apply. 



BJÖRNSON et al.: COOPERATIVE MULTICELL PRECODING 4299

In this paper, we consider distributed network MIMO where
the cooperating base stations share knowledge of the data
symbols but have local CSI only, thereby reducing the feedback
load on the uplink and avoiding cell-to-cell CSI exchange. The
fundamental difference from the MISO IC is that multiple base
stations can cooperate on serving each terminal, which means
that the achievable rate region is larger [18]. In addition, the
number of terminals is not limited by the number of base sta-
tions. In this paper, we derive a characterization of the optimal
linear precoding strategy, which formally justifies a distributed
approach that treats the system as a superposition of broadcast
channels. This leads to novel distributed beamforming and
power allocation strategies. The major contributions are the
following.

• We characterize the achievable rate region for network
MIMO with an arbitrary number of links and antennas at
the transmitters, and either instantaneous or statistical CSI.
The optimal beamformers belong to a certain subspace
defined using local CSI. This parametrization provides
understanding and a structure for heuristic precoding.

• We propose a distributed virtual SINR framework based
on uplink-downlink duality theory [19]. This framework is
used for distributed beamforming design and power allo-
cation with local instantaneous CSI, and handles an arbi-
trary number of links. It achieves the optimal multiplexing
gain and numerical examples show good and stable per-
formance at all SNRs, which makes it more practical than
distributed maximum ratio transmission (MRT) and zero-
forcing (ZF).

• We extend this framework to handle beamforming design
with local statistical CSI, for cases when instantaneous
fading information is unavailable. A heuristic power allo-
cation scheme is also proposed under these conditions.

Preliminary results with two base stations and two terminals
were presented in [18]. The performance and complexity dif-
ferences between centralized and distributed precoding are dis-
cussed in [20]. An alternative approach based on superposition
of ICs is analyzed in [21].

Notations: Boldface (lower case) is used for column vectors,
, and (upper case) for matrices, . Let , and de-

note the transpose, the conjugate transpose, and the conjugate
of , respectively. The orthogonal projection matrix onto the
column space of is , and that onto its
orthogonal complement is , where is the iden-
tity matrix. is used to denote circularly symmetric
complex Gaussian random vectors, where is the mean and
is the covariance matrix.

II. SYSTEM MODEL

The communication scenario herein consists of single-an-
tenna receivers1 (e.g., active mobile terminals) and trans-
mitters (e.g., base stations in a cellular system) equipped with

antennas each. The th transmitter and th receiver are de-
noted and , respectively, for and

. This setup is illustrated in Fig. 1 for .
Let be the signal transmitted by and let the cor-
responding received signal at be denoted by . The

1The results herein also apply to simple multi-antenna receivers that fix their
receive beamforming (e.g., antenna selection) prior to base station optimization.

Fig. 1. The basic scenario with� base stations and� terminals (illustrated
for � � � transmit antennas).

propagation channel to is assumed to be narrowband, flat
and Rayleigh fading with the system model

(1)

where represents the channel between
and and is white additive noise. The
channel correlation matrix
is positive semi-definite. Throughout the paper, each receiver

has full local CSI (i.e., perfect estimates of for
). At the transmitter side, we will distinguish between

two different types of local CSI:
• Local Instantaneous CSI: knows the current channel

vector and the noise power , for .
• Local Statistical CSI: knows the statistics of (e.g.,

type of distribution and ) and the noise power , for
.

Observe that in both cases, the philosophy is that transmitters
only have CSI that can be obtained locally (either through feed-
back or reverse-link estimation [22]). Hence, there is no ex-
change of CSI between them, thus allowing the scalability of
multicell cooperation to large and dense networks. For sim-
plicity, each transmitter has CSI for its links to all receivers,
which is nonscalable when the resources for CSI acquisition are
limited. However, it is still a good model for large networks as
most terminals will be far away from any given transmitter and
thus have negligibly weak channel gains.

A. Cooperative Multicell Precoding

Let be the data symbol intended for .
Unlike the MISO IC [13]–[17], we assume that the data symbols

Authorized licensed use limited to: KTH THE ROYAL INSTITUTE OF TECHNOLOGY. Downloaded on July 13,2010 at 07:13:13 UTC from IEEE Xplore.  Restrictions apply. 



4300 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 8, AUGUST 2010

intended for all receivers are available at all transmitters. This
enables cooperative precoding techniques, where each receiver
is served simultaneously by all the transmitters in the area2.
Herein, we will consider distributed linear precoding where
each transmitter selects its beamforming vectors independently
using only local CSI, as defined above. Proper transmission
synchronization is however required to avoid intersymbol
interference. The signal transmitted by is

(2)

where the beamforming vectors have unit norms
(i.e., ) and represents the power allo-
cated for transmission to from . is subject
to an individual average power constraint of ; that is,

. Thus, the main differences
between the scenario at hand and the MISO broadcast channel
(BC) is that in the latter all antennas are controlled by a central
unit with CSI of all links and a joint power constraint.

When the receivers treat coterminal interference as noise, the
instantaneous SINR at is

SINR (3)

for . The maximal achievable instantaneous
transmission rate is accordingly .

In the case of local statistical CSI at each transmitter, we
introduce the notation

, and .
The collective beamforming matrix is statistically inde-
pendent of the instantaneous channel realizations , since it
is only based on statistical CSI. Then, the stochastic behavior
of the SINR in (3), seen by the transmitters, is clarified by the
alternative expression

SINR

with (4)

When the transmitters only have statistical CSI, they can only
optimize an average performance measure. Herein, we therefore
consider the expected achievable transmission rate,

. Using the notation introduced above, it
can be calculated using the next theorem. The result will be used
for precoding design in Section IV-B.

2This assumption will ease the exposition, but in practice the subset of ter-
minals served by a given base station will be determined by a scheduler. This
scheduling problem is however beyond the scope of this paper.

Theorem 1: Let be the matrix obtained by removing the
th column and th row of . Then

(5)

where and are the nonzero

distinct eigenvalues of and , respectively. Here,
is the exponential integral.

Proof: The proof is given in Appendix A.
As stated in Theorem 1, a requirement for the expression in

(5) is that all nonzero eigenvalues of and are distinct. In
the unlikely event of nondistinct eigenvalues, general expres-
sions can be derived using the theory of [23] and [24].

III. CHARACTERIZATION OF THE PARETO BOUNDARY

In this section, we analyze the achievable rate region for the
scenario at hand, which will provide a precoding structure that
is used for practical precoding design in Section IV. Since the
receivers are assumed to treat co-channel interference as noise
(i.e., not attempting to decode and subtract the interference),
the achievable rate region will in general be smaller than the
information theoretic capacity region. This limiting assumption
is however relevant in the case of simple receiver structures.
In the case of instantaneous CSI, we define the achievable rate
region as

(6)

while in the case of statistical CSI we define the achievable ex-
pected rate region as

(7)
Observe that all rates are functions of all and , although
not written explicitly. The above rate regions characterize, re-
spectively, all rate tuples and expected rate tu-
ples that are achievable with feasible
precoding strategies, regardless of how these strategies are ob-
tained. Our assumption of local CSI at the transmitters deter-
mines which rate tuples can be reached by practical algorithmic
selection of and , since it restricts the latter to be func-
tions of the local knowledge alone, as opposed to being func-
tions of the whole channel knowledge as traditionally assumed
(see Section IV).

The outer boundary of is known as the Pareto boundary.
The rate tuples on this boundary are Pareto optimal, which
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means that the rate achieved by cannot be increased
without decreasing the rate of any of the other receivers. Each
Pareto optimal rate tuple maximizes a certain weighted sum
rate. We have the following definition of the Pareto boundary
in the case of instantaneous CSI.

Definition 1: Consider all achievable rate tuples
. The Pareto boundary consists of all such tuples

for which there exist no nonidentical achievable rate tuple
with for all .

The corresponding definition with statistical CSI is achieved
by replacing all rates by their expectations. Next, we will param-
eterize the Pareto boundary of by showing that beam-
formers, , that can be used to attain the boundary lie in a
certain subspace defined by only local CSI and that full transmit
power should be used by all base stations. In
Section III-B, we derive a similar characterization of the Pareto
boundary of for systems with statistical CSI.

A. Characterization With Instantaneous CSI

Two classic beamforming strategies are maximum ratio com-
bining (MRT) and zero-forcing (ZF), which maximizes the re-
ceived signal power and minimizes the coterminal interference,
respectively. In the special case of , these beamforming
vectors are aligned with and , respectively, for

. It was shown in [14] that the Pareto boundary of the
MISO IC and BC with can only be attained by
beamformers that are linear combinations of MRT and ZF. This
optimal strategy is interesting from a game theoretical perspec-
tive, since it can be interpreted as a combination of the selfish
MRT and the altruistic ZF approach.

The system defined in Section II represents cooperative multi-
cell precoding with data sharing. This scenario is fundamentally
different from the MISO IC as the data sharing enables termi-
nals to be served by multiple transmitters, and thus the achiev-
able rate region can be considerably larger. The following the-
orem derives the optimal precoding characterization for this sce-
nario, which turns out to be a conceptually similar combination
of MRT and ZF. It also constitutes a novel extension to an arbi-
trary number of transmitters/receivers.

Theorem 2: For each rate tuple on the Pareto
boundary it holds that

i) It can be achieved by beamformers that fulfill

for all (8)

ii) If for some , then a necessary
condition for Pareto optimality is that uses full power
(i.e., ) and selects that satisfy (8) for all .

Proof: The proof is given in Appendix A.
The theorem implies that to attain rate tuples on the Pareto

boundary, all transmitters are required to use full transmit power
(except in a special case with zero probability) and use beam-
forming vectors that can be expressed as

for all (9)

for some coefficients . This is a linear com-
bination of zero-forcing vectors (each inflicting
zero interference at ) and the following MRT beamformer:

Definition 2 (Maximum Ratio Transmission):

for all

Complete ZF beamforming that inflicts zero interference on
all co-terminals exists if and can be defined in the
following way, but observe that it can also be expressed as the
linear combination in (9).

Definition 3 (Zero-Forcing Beamforming): If

where is an orthogonal basis of
, for all .

Several important conclusions can be drawn from the
theorem. First, the precoding characterization reduces the pre-
coding complexity if (since the beamforming vectors
we are looking for each lie in a -dimensional subspace3),
especially if is large. Second, the optimal beamforming ap-
proach can be interpreted as a linear combination of the selfish
MRT approach and altruistic interference control towards each
co-terminal. This behavior has been pointed out in [14] for the
MISO IC, but not for multicell precoding systems. Third, the
characterization is defined using only local CSI, while global

information is required to find the optimal coefficients .
In Section IV, we discuss heuristic approaches for distributed
computation of the coefficients and evaluate their performance
in Section V. Apart from selecting beamforming vectors, it
is necessary to perform optimal power allocation to attain the
Pareto boundary. Some power allocation strategies that exploit
local CSI are also provided in Section IV.

B. Characterization With Statistical CSI

Next, we characterize the Pareto boundary in a similar
manner as in Theorem 2, but for the case of statistical CSI. It
was shown in [25], for the MISO IC, that an exact parametriza-
tion can be derived when the correlation matrices are rank
deficient. This is however rarely the case in practice and there-
fore we concentrate on general spatially correlated channels
and characterize their correlation matrices, . Depending
on the antenna distance and the amount of scattering, the
channels from transmit antennas to the receiver have varying
spatial correlation; large antenna spacing and rich scattering
correspond to low spatial correlation, and vice versa. High
correlation translates into large eigenvalue spread in and
low correlation to almost identical eigenvalues. The existence
of strongly structured spatial correlation has been verified
experimentally, in both outdoor [26] and indoor [27] scenarios,

3In practice, this dimension can be further reduced by ignoring inactive re-
ceivers and those with negligible link gains to the transmitter.
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and we will show herein how to exploit these results in the con-
text of multicell precoding. In particular, these results suggest
the existence of a dominating subspace.

Similar to [28], we partition the eigenvalue decomposition
of the correlation matrix in signal and

interference subspaces based on the size of the eigenvalues. As-
sume that the eigenvalues in the diagonal matrix are ordered
decreasingly with the corresponding eigenvectors as columns of
the unitary matrix . Then, we partition as

(10)

where spans the subspace associated with
the dominating eigenvalues. The transmit power al-
located to these eigendirections will have large impact on the
SINR. Consequently, data transmission should take place in the
range of eigendirections included in , while one should
avoid receiving interference in these directions. Assuming that
the nondominating eigenvalues associated with the remaining
eigenvectors in are much smaller than the
dominating ones, the interference in this subspace will be lim-
ited. The design parameter depends strongly on the amount
of spatial correlation, and can be a small fraction of in an
outdoor cellular scenario. In completely uncorrelated environ-
ments, the partitioning can be ignored since . Feed-
back of instantaneous channel norms and receive beamforming
(in the case of multi-antenna receivers) can increase the effec-
tive spatial correlation and thereby decrease [23]. In prac-
tice, careful measurements are necessary to determine the value
that maximizes the average throughput.

Now, we will characterize the Pareto boundary of the achiev-
able expected rate region for cooperative multicell precoding.
It will be done in an approximate manner, using the eigenvector
partitioning in (10). The following theorem is more general than
its counterpart for the MISO IC in [25] as it considers an arbi-
trary number of transmitters/receivers and correlation matrices
of full rank.

Theorem 3: Let the sum of nondominating eigenvalues in
be denoted ,

for all . For each expected rate tuple
on the Pareto boundary, there exists with probability one another
achievable tuple that fulfills

for all , where the small function means
that as . For the rate tuple

it holds that
1) It can be reached using beamforming vectors

span

for all (11)

2) If for some , it can be
reached when uses full power.
Proof: The proof is given in Appendix A.

Observe that in the special case of zero-valued eigenvalues
within each nondominating eigenspace (i.e., ),

the theorem gives an exact characterization since
.

There are clear similarities between the precoding character-
ization in (8) for instantaneous CSI, and its counterpart in (11)
for statistical CSI. In both cases, all interesting beamforming
vectors are linear combinations of eigenvectors that (selfishly)
provide strong signal gain and that (altruistically) limit the in-
terference at coterminals. These eigenvectors are defined using
local CSI, which enables distributed precoding in a structured
manner (see Section IV). The results with statistical CSI are
however weaker, which is natural since each channel vector be-
longs (approximately) to a subspace of rank while the chan-
nels with instantaneous CSI are known vectors (i.e., rank one).
In the special case of , the characterization in Theorem
3 becomes essentially the same as in Theorem 2.

From these observations, it is natural to consider the two ex-
tremes that satisfy the beamforming characterization, namely
MRT and ZF. Analogously to the MRT and ZF approaches with
instantaneous CSI in Definitions 2 and 3, we propose extensions
to the case of statistical CSI. The straightforward generalization
of MRT is to use the dominating eigenvector of as beam-
former in . We denote the normalized eigenvector associ-

ated with the largest eigenvalue of by . The general-
ization of ZF is to maximize the average received signal power
under the condition that the beamformer lies in the nondom-
inating eigen-subspace of all coterminals. Formally, we
have the following precoding approaches.

Definition 4 (Generalized MRT):

for all

Definition 5 (Generalized ZF):

where is the normalized dominating eigenvector of

with , for all .
Observe that generalized ZF only exists for certain combina-

tions of and as it is necessary that .
The generalizations in Definition 4 and 5 are made for multicell
precoding. For broadcast channels, and in general, other gener-
alizations are possible.

IV. DISTRIBUTED PRECODING WITH LOCAL CSI

In the previous section, we characterized the beamforming
vectors that can be used to attain the Pareto boundary of the
achievable rate region. These are all linear combinations of
MRT and ZF, the two extremes in beamforming. Intuitively,
MRT is the asymptotically optimal strategy at low SNR, while
ZF works well at high SNR or as the number of antennas
increases. In general, the optimal strategy lies in between these
extremes and cannot be determined without global CSI. Next,
we use these insights to solve distributed precoding at an arbi-
trary SNR using only local CSI. The proposed beamforming
approach is inspired by uplink-downlink duality for broadcast
channels [19] and the transmit power is allocated heuristi-
cally by solving local optimization problems. The approach is
asymptotically optimal at high SNR and the numerical evalua-
tion in Section V shows a limited performance loss at all SNRs.
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A. Transmission Design With Local Instantaneous CSI

In general, we would like the precoding to solve

maximize SINR (12)

subject to and for all and . Un-
fortunately, none of the transmitters or receivers have sufficient
CSI to calculate the sum rate, which makes the optimization
problem in (12) intractable in a truly distributed scenario. Thus,
we will look for distributed design criteria that allow approxi-
mated beamforming vectors, , and power allocation coeffi-
cients, , of to be determined locally at the transmitter.
The goal will still be to achieve performance close to the max-
imum sum rate. An important feature of the precoding charac-
terization in Theorem 2 is that the optimal fulfills

span (13)

where all the spanning vectors are known locally at . In
other words, the beamforming design consists of determining
the coefficients of the linear combination in (9). To find heuristic
coefficients, we exploit the following result based on the uplink-
downlink duality theory of [19].

Theorem 4: Assume that is the only active base sta-
tion. Then, each Pareto optimal rate tuple of the corresponding
achievable rate region is achieved by beamforming vectors

(14)

for some positive coefficients with .
Proof: The proof is given in Appendix A.

Thus, in the special case of a MISO broadcast channel, the
optimal beamforming vectors are achieved by maximizing the
SINR-like expression in (14) where the signal power that
generates at is balanced against the noise and interference
power generated at all other receivers. We call it a virtual SINR

as it originates from the dual virtual uplink [19] and does not
directly represent the SINR of any of the links in the downlink.
However, it is easy to show4 that solutions to (14) are of the type
described in (9) and (13). In fact, by varying the coefficients

, different solutions within the span of Theorem 2 can be
achieved. In general, the coefficients that provides the largest
sum rate can only be found using global CSI.

Network MIMO can be seen as a superposition of broad-
cast channels. We propose to exploit this fact for distributed
precoding by letting each base station optimize its performance
based on Theorem 4. In the superposition case, the noise term of
(14) should be modified to compensate for the interference from
other base stations, or equivalently the coefficients should
be increased beyond what is allowed for pure broadcast chan-
nels. To account for stronger interference we therefore select

4Observe that� should lie in the span of � , for all �, as no other directions
will affect (14). We achieve (13) by rewriting this span following the approach
in the proof of Theorem 2.

(i.e., equal to its upper bound) and arrive at a novel
distributed virtual SINR (DVSINR) beamforming approach:

Strategy 1: should select its beamformers as

for all

(15)

Observe that the virtual SINR in (15) is a Rayleigh quotient
and thus the maximization can be solved by straightforward
eigenvalue techniques. For example

where

The solution to (15) is nonunique, since the virtual SINR is unaf-
fected by phase shifts in . However, the expression above was
selected to make positive and real-valued, which means
that the signals arriving at a given terminal from different base
stations will do so constructively. By its very definition, max-
imization of a virtual SINR effectively balances between the
useful signal power at a target terminal and the interference gen-
erated at others; along with judicious power allocation coeffi-
cients for all , this can be shown to provide good perfor-
mance at all SNRs (see Section V). Observe that (15) gives so-
lutions similar to MRT and ZF in the SNR regimes where these
methods perform well (i.e., low SNR and high SNR, respec-
tively). Asymptotic optimality conditions are provided by the
following theorem.

Theorem 5: Assume an arbitrary power allocation which
guarantees that each terminal is allocated nonzero total transmit
power (i.e., for all ). If 5 and each

increases with , then with probability one DVSINR
beamforming achieves the full multiplexing gain of asymp-
totically in .

Proof: The proof is given in Appendix A.
This means that the sum rate behaves as

at high . Thus, the absolute performance loss com-
pared with optimal centralized precoding is bounded at high
SNR and the relative loss goes to zero. The absolute loss is
primarily due to the fact that distributed beamforming limits
the magnitude of interference from each transmitter to every

terminal, while the global solution can coordinate and cancel
out the sum of interference from different transmitters. How-
ever, such centralized interference coordination is practically
questionable even under optimal conditions [29].

The power allocation has a clear impact on the practical per-
formance, although Theorem 5 holds for any allocation. Next,
we propose a heuristic power allocation scheme for . This
is based on the observation that with proper beamforming, the
interference is negligible at both low and high SNR. Assuming

5The constraint � � � can be removed if each �� have nonnegligible
channel gain to at most � terminals.
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constructive signal contributions from all base stations, the sum
rate then becomes

SINR

(16)

where denotes the channel gain between and
and is the signal gain from the other transmitters (in-
cluding power allocation). All and can be taken as posi-
tive real-valued, due to the assumption of transmission synchro-
nization. For fixed values on all and , the power alloca-
tion at is solved by the following lemma.

Lemma 1: For a given and some positive constants ,
the optimization problem

maximize

subject to (17)

is solved by

(18)

If , this reduces to . The
Lagrange multiplier is selected to fulfill the power con-
straint with equality.

Proof: The maximization of a concave function can
be solved by standard Lagrangian methods, using the
Karush–Kuhn–Tucker (KKT) conditions ([30, Ch. 5.5]).
In this case, the optimal power allocation follows from straight-
forward differentiation, solving of a third-order polynomial
equation with respect to , and identifying the two false
roots.

The local channel gains are known at each , while
the contributions from other transmitters are unknown when
having local CSI. Thus, needs to estimate these parameters.
To avoid that all transmitters believe that someone else serves a

given terminal, the estimate should be pessimistic. In a sym-
metric environment, the selection

(19)

represents that one other transmitter uses of its power to
serve the terminal (the channel gain is estimated as the average
gain from to all terminals). In other cases, the worst-case
selection

(20)

can give better performance or robustness. In practice,
should be considered design parameters and tuned based on
measured properties of the actual propagation environment. For
given and beamforming vectors , we use Lemma 1 to
propose the following power allocation scheme.

Strategy 2: Using local CSI, an efficient power allo-
cation at for is given by Lemma 1 using

and some that reflects the propagation
environment.

In the case , the interference can in general not
be considered negligible as was assumed in the heuristic
power allocation. Thus, alternative power allocation schemes
should be considered—for example, the simple scheme

evaluated in [20] and [21].
Observe that the power allocation in Strategy 2 has the wa-

terfilling behavior, which means that zero power is allocated to
weak terminals. Thus, terminals far from the base station are
disregarded automatically, which limits the computational com-
plexity as and increases.

B. Transmission Design With Local Statistical CSI

Next, we extend the precoding design in the previous subsec-
tion to the case of local statistical CSI. As in the previous case,
maximizing a virtual SINR will balance the generated signal
and interference powers. We propose the following novel exten-
sion where the Rayleigh quotient represents maximization of an
SINR where expectation has been applied to the numerator and
denominator (using that ).

Strategy 3: For given power allocation coefficients,
should select its beamformers as

for all (21)

Unlike the case of instantaneous CSI, beamforming design
with statistical CSI cannot guarantee coherent arrival of useful
signals at a given receiver, but an increase in signal power will
improve the average rate. The distributed SINR beamforming
vectors of (21) satisfy (approximately) the beamforming char-
acterization in Theorem 3.

Finally, we derive a distributed power allocation scheme.
Since the expected rate expression in (5) is complicated, we
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simplify it by neglecting the interference. For , the ex-
pected rate in Theorem 1 becomes

SINR

(22)

using the upper part of the bound
. Here, denotes the

average channel gain between and and is an esti-
mation of the average signal gain from the other transmitters (in-
cluding power allocation). For fixed values on all , the power
allocation at is solved by the following lemma.

Lemma 2: For a given and some positive , the op-
timization problem

maximize

subject to (23)

is solved by , where the La-
grange multiplier is selected to fulfill the power constraint
with equality.

Proof: The solution to this convex optimization problem
follows from straightforward Lagrangian methods, see the proof
of Lemma 1 for details.

Using only local statistical CSI, the average local channel
gains are known at , while the contributions from
other transmitters are unknown. Thus, needs to estimate
these parameters, which can be done similarly to (19) and (20):

(24)

For given and beamforming vectors , we use Lemma 2
to propose the following power allocation scheme.

Strategy 4: Using local CSI, an efficient power allocation at
is given by Lemma 2 using and

some that reflects the propagation environment.

V. NUMERICAL EXAMPLES

In this section, the performance of the distributed beam-
forming and power allocation strategies in Section IV will be
illustrated numerically. The DVSINR approach in Strategy
1 will be compared with what we call distributed MRT and
distributed ZF. These two approaches use the beamforming
vectors in Definition 2 and 3, respectively. Observe that there
are major differences from regular MRT and ZF for broadcast

Fig. 2. Achievable rate regions with different beamforming and power allo-
cation for � � � � �� � � �, and a random realization with � �

� � �� � � � � ����, and SNR 5 dB. The sum rate point and the
points achieved by MRT, ZF, and DVSINR with the power allocation in Strategy
2 are shown for comparison.

and interference channels, namely that the same message is sent
from multiple transmitters with individual power constraints.
When used, distributed MRT and ZF need to be combined
with some power allocation, for example the one proposed in
Strategy 2.

A. Transmitter–Receiver Pairs With Varying Crosslinks

First, consider the case of two transmitter–receiver links
where the strengths of the crosslinks are varied. The environ-
ment is spatially uncorrelated with ,
and , where is the average cross link power.
This represents a two-cell scenario where determines how
close the terminals are to the common cell edge. The SNR is
defined as (with normalization )
and represents the average SNR for beamforming to the own
terminal.

In Fig. 2, the Pareto boundary with and an average
SNR of 5 dB is given for a random realization of drawn
from , for all . As a comparison, we give the
Pareto boundary of the MISO IC [14] and show the outer bound-
aries of the achievable rate regions with the DVSINR approach
in Strategy 1, distributed MRT, and distributed ZF. The rate
tuples achieved with the power allocation in Strategy 2 (with

) and the sum rate maximizing point are given as refer-
ences. For the selected realization there is a clear performance
gain of allowing cooperative multicell precoding as compared
with forcing each transmitter to only communicate with its own
receiver. As expected, MRT is useful to maximize the rate of
only one of the terminals, while ZF and DVSINR are quite close
to the optimal sum rate point. The proposed power allocation
scheme provides performance close to the boundary of each
achievable rate region.

In Fig. 3, the average sum rates (over channel realizations) are
given with optimal linear precoding (i.e., sum rate maximization
through exhaustive search) and with the DVSINR approach in
Strategy 1, distributed MRT, and distributed ZF (all three using
the power allocation in Strategy 2 with to ensure ro-
bustness), and the VSINR approach in [17] for the MISO IC.

Authorized licensed use limited to: KTH THE ROYAL INSTITUTE OF TECHNOLOGY. Downloaded on July 13,2010 at 07:13:13 UTC from IEEE Xplore.  Restrictions apply. 



4306 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 8, AUGUST 2010

Fig. 3. Average sum rate (over channel realizations) in a system with local
instantaneous CSI, � � � � �� � � �, and a varying average cross link
power: � � � � ��� � � � ��. (a) SNR 10 dB. (b) SNR 0 dB.

The performance is shown for varying cross link power and
at an SNR of 0 or 10 dB. We observe that MRT is good at low
SNR and/or weak cross link power, while ZF is better at high
SNR and/or strong cross link power. However, the DVSINR ap-
proach is the most versatile strategy as it provides higher per-
formance at low SNR and combines the benefits of MRT and
ZF at high SNR. The three cooperative approaches clearly yield
better performance than the noncooperative VSINR approach.

In practice, two common terminal locations are close to a base
station (i.e., high SNR with weak cross link power) and close
to the cell edge (i.e., low SNR with strong crosslink power).
From Fig. 3 it is clear that DVSINR is the only of the distributed
schemes that provides good performance in both cases, which is
an important property as both types of terminals appear simul-
taneously in practice. Thus, although distributed MRT and ZF
achieve performance comparable to DVSINR in special cases,
it is fair to say that the DVSINR scheme is the most versatile.
Due to the distributed nature of the schemes, there is some per-
formance loss compared with sum rate maximizing precoding.
However, we argue that the backhaul and computational de-
mands required to achieve the optimal solution may not be mo-
tivated in light of the small performance loss.

Fig. 4. Average sum rate (over terminal locations and channel realizations) in a
system with local instantaneous CSI and� � � � �. The scenario considers
uniformly distributed terminals within a square with base stations in each corner.
(a) � � �. (b) � � �.

B. Quadratic Multicell Area

Next, we evaluate a scenario with terminals located in both
cell centers and at cell edges. The scenario consists of four uni-
formly distributed terminals in a square with base stations in
each of the corners. The power decay is proportional to ,
where is the distance from a transmitter, the SNR is defined
as (with normalization ), and its
value in the center of the square represents the cell edge SNR.
This represents a scenario where terminals are moving around
in the area covered by four base stations. We will illustrate the
performance with both instantaneous and statistical CSI.

In Fig. 4, the average sum rate (over terminal locations and
channel realizations) with instantaneous CSI and no spatial
correlation is shown as a function of the SNR. In the case of

, the DVSINR approach is superior to MRT and ZF
at most SNRs, although ZF approaches DVSINR at very high
cell edge SNR. The performance loss compared with optimal
precoding is at most 15–20%, depending on the SNR, and
will asymptotically approach zero since DVSINR achieves the
optimal multiplexing gain (see Theorem 5). This raises the
question of whether the high backhaul demands for achieving
the optimal solution are justifiable in practice. In the case of

(with the power allocation in [20, eq. (10)]), the perfor-
mance of both DVSINR and MRT saturates at high SNR since
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Fig. 5. Expected sum rate (over terminal locations and channel statistics) in a
system with local statistical CSI, � � � � �� � � �, and an angular
spread of 10 degrees (as seen from each base station). The scenario considers
uniformly distributed terminals within a square with base stations in each corner.

, but DVSINR still constitutes a major performance
improvement compared with MRT. Distributed ZF does not
exist for this number of antennas.

In Fig. 5, the expected sum rate (over terminal locations) with
, statistical CSI, and an angular spread of 10 degrees

(as seen from a transmitter) is shown as a function of the SNR.
The G-DVSINR approach in Strategy 3, G-MRT, and G-ZF (all
using the power allocation in Strategy 4 with ) are
compared with equal time sharing between the terminals and
an upper bound consisting of the broadcast GZF approach in
[28] that requires both statistical CSI and perfect instantaneous
norm feedback. In this scenario, the G-DVSINR approach is
clearly the better choice among the distributed methods; it even
beats the upper bound at high SINR, since the performance GZF
approach saturates at around 15 dB SNR. All the cooperative
approaches outperform time sharing.

VI. CONCLUSION

We have considered cooperative multicell precoding in a
system with an arbitrary number of multi-antenna transmit-
ters and single-antenna receivers. The outer boundary of the
achievable rate region was characterized for transmitters with
either instantaneous or statistical CSI. At each transmitter, the
spans of beamforming vectors that can attain this boundary
only depend on local CSI, and can be interpreted as linear
combinations of MRT and ZF vectors. This enables distributed
precoding in a structured manner that only requires local CSI
and processing. By viewing the multicell system as a superpo-
sition of broadcast channels, we propose a novel framework of
distributed virtual SINR (DVSINR) beamforming that satisfies
the optimal beamforming characterization and achieves the
optimal multiplexing gain. It was applied for distributed beam-
forming with instantaneous and statistical CSI, along with two
heuristic power allocation schemes. The performance of this
approach was illustrated and shown to combine the benefits of
conventional MRT and ZF, and outperform them at most SNRs.
Finally, the loss in performance of having only local CSI is
rather small, compared with the backhaul and computational
demands of sharing and processing global CSI.

APPENDIX A
COLLECTION OF LEMMAS AND PROOFS

Lemma 3: Let be independent random vari-
ables with distinct variances for , and let

. Then

(25)

where is the exponential integral.

Proof: Let and observe that

(26)

using the PDF expression for in [23, (5)]. The integrand that
contains is

(27)

where the first equality follows from the variable substitution
and the second from integration by parts. Substitution

into (26) gives the final expression.
Proof of Theorem 1: Using the notation for the SINR in

(4), the expected rate can be divided as

SINR

(28)

Observe that and since the Eu-
clidean norm is invariant under unitary transformations,

has identical distribution for independent
variables . Using these variables, we can apply
Lemma 3 and achieve the first term in (5). The second term
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is achieved by a similar transformation based on eigenvalues
of .

Proof of Theorem 2: Consider a rate tuple
on the Pareto boundary that is achieved by beamforming
vectors and power allocation for all . The
following approach can be taken (for each ) to re-
place with a beamformer that fulfills (8) and reduces
the power usage, while achieving the same rate tuple. Let

and observe that the vector
can be expressed as the linear combination

(29)

for some complex-valued coefficients and some orthogonal
basis for the orthogonal complement to .
Now, observe that

for all that are nonorthogonal to (while orthogonal chan-
nels can be removed from , since these directions only create
interference). Thus, for and

. Since only appears in the SINR
expression in (3) as inner products with and , the iden-
tical rate tuple is achieved by the beamforming vector

(30)

and transmit power
. Thus, we have proved that all rate tuples on the

Pareto boundary can be achieved by beamforming vectors
.

Next, we will show that if for
some , then needs to use full power to reach the
Pareto boundary. The given property corresponds to that

, where is an orthog-

onal basis of . Consequently, there should
exist a zero-forcing vector that

satisfies for all .
Now, assume for the purpose of contradiction that the Pareto

boundary is attained for a set of beamforming vectors
and power allocations that fulfills . Then,
we can replace and by

(31)

for some positive parameter that makes .
This corresponds to increasing the power in the zero-forcing
direction and making sure that the signal powers add up
constructively at the intended receiver. Thus, can in-
crease the signal power at as

, without affecting
the co-terminal interference. In other words, has been
increased without affecting for , which is a contra-
diction to the assumption that the initial rate tuple belonged to
the Pareto boundary. Thus, full transmit power is required to
attain the Pareto boundary. The condition in (8) also becomes
a necessary condition, because otherwise we can decrease the
power by the approach in the first part of the proof and then
increased it again using (31).

Proof of Theorem 3: Consider an expected rate tuple
on the Pareto boundary that is achieved

by beamforming vectors and power allocation for all
. The beamformers can in general be expressed as the

linear combination

(32)

where is an orthogonal basis of the -dimensional

given by and is an orthogonal
basis of the orthogonal complement. The coefficients are
complex-valued and fulfill , since is ex-
panded in terms of an orthonormal basis. To avoid allocating
power to the weak eigenvalues in the orthogonal complement,
we can replace by

(33)

and reduce the transmit power to .
This new precoding satisfy (11) and will achieve a new
rate tuple . Next, we show that the
difference in performance is bounded by . With the
new precoding, the change in the covariance matrix in
(4) is limited since , where

and the elements of the
symmetric perturbation matrix are bounded as . By
applying the eigenvalue perturbation result in ([31], Theorem
7.2.2) when deriving in (5), the eigenvalues and
can be replaced by and ,
respectively. Observe that each term in (5) has the structure

(34)

where the equality follows from straightforward appliance
of l’Hospital’s rule. Thus, by applying this result to each
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term in (5), we achieve . To
finalize the proof of the first part, observe that for arbi-
trary covariance matrices it holds with probability one that

for all . Since,

it follows that

span span

Finally, consider the case when
for some . If , we propose the following way of
increasing the power usage while guaranteeing the same type
performance. We assume that the beamforming vector ful-
fills (11), otherwise we can follow the approach in first part of
the proof to decrease the power usage, retain the performance,
and fulfill (11). Select a unit vector span . If
we replace the beamformer and the power allocation with

(35)

the difference in signal and interference variance yields a per-
turbation in on the order of and we can use the ap-
proach above to show that resulting rate tuple fulfills

. Hence, full transmit power can be used to
achieve .

Proof of Theorem 4: Let rep-
resent an arbitrary Pareto optimal rate tuple. Observe that this
rate tuple is achieved by solving

maximize

subject to for all (36)

since [19, Lemma 1] shows that all solutions to (36) must satisfy
. Thus, with as

rate constraints for the different terminals, the uplink-downlink
duality result of ([19, , Th. 1]) can be applied. This means that
the optimal beamforming vectors for the downlink problem in
(36) should also maximize the virtual uplink SINRs in (14) for
each user, and the parameters represents the optimal power
allocation in the virtual dual uplink.

Proof of Theorem 5: Let the arbitrary power allocation be
denoted with (normalized) coefficients . As

, we let for some parameters

for all . Using the SINR expression in (3) and the given power
allocation, the sum rate becomes

(37)

If , then with probability

for all . By analyzing the expression

it is straightforward to show that

as . Thus, the last term
of (37) is bounded as and the multiplexing gain is .
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