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Abstract. Stackelberg games and their resulting nonconvex pro-
gramming problems can be used to model the behavior of independent
decison-makers acting within a hierarchy. This paper examines the
formation of coalitions within such organizations of optimizers for
a large class of hierarchica problems. The mathematical character-
izations of these games and the implications of their solutions are
considered.

1 Introduction

Conflict and cooperation among groupsof individualsareanatural part
of the organizational process. An organization might consist of manu-
facturers competing within an economic system for the same market,
or computerswithin a network sharing system resources. Thetypes of
communication and coordination of activitieswithin the organi zational
structure can cause the system to flourish or decay. By understanding
the behavior of such systems, we can improve their effectiveness and
eliminate their inherent inefficiencies.

Chew [22] and Bidas and Chew [11] present amodel of cooperation
among decision-makers in a hierarchical organization. The model is
based on Stackelberg games and related optimal control problems
(see, for example, Simaan and Cruz [51], Bagar and Olsder [6], and
Tolwinski [53]). This early work was restricted to a linear objective
function for each of the players and a requirement that al feasible
decisions had to reside within a convex polytope. This paper extends
these resultsto continuous objective functionsover abounded decision
space.

2 Overview

This paper will consder modedls for the behavior of interacting
decison-makers, each attempting to optimize individua objectives
in view of decisions made by others. These problems can be found
in many scientific disciplines, including operations research, control
theory, economics, psychology, sociology and political science. Be-
cause of the pervasive nature of thistopic, it has appeared in avariety
of settings and adorned in different mathematical notation (see, for
example, von Neumann and Morgenstern [55]).

With the development of the Dantzig-Wolfe Decomposition Prin-
ciple [24] and its economic interpretation by Baumol and Fabian [7],
mathematical programming has been used to describe the behavior of
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individuas interacting within organizations. Some of this work can
be found in Anandalingam [1], Beckmann [8], Cassdy, et al. [21],
Dirickx and Jennergren [25], Goreux [28], Haimes, et al. [29], Hax,
et al. [30], Keeney and Raiffa [33], Koopmans [34], Marschak and
Radner [40], and Wendell [57].

In addition, socia scientists and psychologists have provided
experimental studies of codition formation. See, for example,
Caplow [19, 20], Gamson [27], and Vinacke and Arkoff [54].

These citations represent only some of the research devoted to this
subject. They do, however, suggest the broad interest in thistopic.

3 The General Problem

We will briefly reintroduce the Stackelberg model presented by Bidas
and Chew [11], and the related multilevel programming problem (see
Bialas and Karwan [14, 15]). In this model, a decision-maker at one
level of the hierarchy may have his objective function and decision
space determined, in part, by decisions taken at other levels.

These Stackelberg games [52] have the following common charac-
terigtics:

1. The system hasinteracting playerswithin ahierarchical structure.

2. The leader begins the game by announcing his decision, and the
process continues for each player down through the hierarchy.
Each subordinate player executes his policies after, and with the
full knowledge of, his superior players.

3. The decision of a player can impact any other player’s objective
function, and a subsequent player’s set of feasible choices.

Definition 1 Let the vector z € RY be partitioned as = = (2%, z%).
Let S ¢ RY be compact, and let f : RV — R be continuous on S.
Then

Wi (s) = { es ’f’(i’) = e () }

isthe set of rational reactions of f over S.!

To formally define the n-player Stackelberg game, let the vector of
decision variablesfor al players, denoted by = € RY, be partitioned
among n playerswith

TkE(T]iTIZ‘T]}Vk) erRM (k=1,2,...,n)

where >7'_; N, = N. We will require that the n players choose
values of z € ST RV, where S* is compact. The shape of S* will

1Some authors call this set the inducible region.
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determine the ability of one player to affect the set of feasible choices
of the other players.

Let { fi(z), f2(z), ..., fn(z)} beaset of continuous functions with
fi(z) : 8" = Rfordli=1,...,n2

Definition 2 Let the vector 2 € RY be partitioned asz = (2%, z°)
withz® = (21,... 2% 1) and2® = (2*, ..., 2"). Thelevel-k feadble
region, S¥, is recursively defined as S* = Wy, (Sk71) for k =
2,3,...,n.

The set S* represents the feasible outcomes resilting from the ra-
tional reactionsof playersat levels 1,2, ...,k — 1. Hence S* contains
al of the information necessary for player i to assess the behavior of
these players.

Given the preemptive decisions (2F*1,...,2") of the first n — k
leading players, the optimization problem which must be solved by the
player at level k isthen

(L% max{fi(x)}
s zest
=2 (i=k+1,...,n).

This establishes a collection of nested mathematical programming
problems { LY L2,..., L™} jointly representing the decision problems
of n playersin ahierarchical organization.®

Bard, et al. [3, 4, 5], Benson [9], Bidas and Karwan [13, 14, 15],
Bialas and Wen [16], Candler and Townsey [18], Fortuny and Mc-
Carl [26], and others have characterized the properties of the non-
convex programming problem produced when the objective functions
fi(z) arelinear, and devel oped solution algorithms (of varying effec-
tiveness) for n = 2 and n = 3. There has also been some work on
solutions procedures for quadratic f;(x) (see Papavassilopoulos [44]).

4 An lllustration

Consider a game with three players, named 1, 2 and 3, each of whom
controls an unlimited quantity of a commodity, with a different com-
modity for each player. Their task isto fill acontainer of unit capacity
with amounts of their respective commaodities, never exceeding the ca-
pacity of the container. Thiswill be performedin asequential fashion,
with player 3 (the player at the “top” of the hierarchy) taking his turn
first. A player cannot remove acommodity placed in the container by
aprevious player.

At the end of the sequence, areferee pays each player one dollar (or
fraction, thereof) for each unit of hiscommodity which has been placed
in the container. It is easy to see that, since player 3 has preemptive
control over thecontainer, hewill fill it completely with hiscommodity,
and collect one dollar.

Suppose, however, that the rules are dightly changed so that, in
addition, player 3 could collect five dollars for each unit of player
one's commodity which isplaced in the container. Sinceplayer 2 does
not receive any benefit from player one’'s commodity, player 2 would
fill the container with his own commodity on his turn, if given the
opportunity. Thisisthe rational reaction of player 2. For this reason,
player 3 has no choice but to fill the container with his commodity and
collect only one dollar.

2This might also be written as fi(z) : S* — Rforalli = 1,...,n. Thequestion
of S* compact implying that S? = W, (S") is compact is addressed for the linear case
by Wen [56].

3Note that the leader is designated as player n, not player 1. Although not imme-
diately intuitive, this convention results in many properties of L* being invariant for
fixed k and varying n. For example, L? will have the mathematical properties of a
two-level problemin asystem with any number of levels.

5 Coalition Formation

In the previous example, there are six dollars available to the three
players. Divided equally, each of the playerscould receivetwo dollars.
However, because of the sequentiad and independent nature of the
decisions, such a solution cannot be attained.

The solution to the above problem is, thus, not Pareto-optimal (see
Chew [22]). However, as suggested by the example, the formation
of acodition among subsets of the players could provide a means to
achieve Pareto-optimality. The members of each coalition act for the
benefit of the coalition as a whole. The question immediately raised
ae

e which coalitionswill tend to form,
e are the coalitions enforceable, and

e what will be the resulting distribution of wealth to each of the
players?

The gamein partition function form (see Lucas and Thrall [38] and
Shenoy [49]) provides a framework for answering these questions in
this Stackelberg setting.

Definition 3 An abstract gameisa pair (X, dom) where X isa set
whose members are called outcomes and dom isa binary relation on
X called domination.

Let G = {1,2,...,n} denote the set of n players. Let P =
{R1, Ry, ..., Ry} denote acoalition structure or partition of G into
nonempty coditions, where R;NR; = @forali # jandUM, R; = G.

Let Po = {{1},{2},...,{n}} denote the codition structure where
no coalitions have formed and let P = {G} denote the grand coali-
tion.

Consider P = {Ra, Rz, ..., Ry}, an arbitrary coalition structure.
Assume that utility is additive and transferable. As a result of the
coalition formation, the objective function of each player in coalition
R; becomes

(@) = filw).
i€R;
Although the sequence of the players decisions has not changed, their
objectivefunctionshave. Let R(¢) denotetheunique coalition R; € P
suchthat player i € R;. Instead of maximizing f;(z), player i will now
be maximizing j”R(i)(x). Let Z(P) denote the solution to the resulting
n-level optimization problem.

Definition 4 Suppose that S* is compact and Z(P) is unique. The
value of coalition R; € P, denoted by v(R;, P), is given by

v(R;,P) = > fi(&(P)).

i€R;

Biaas and Chew [12] have shown that v(-) need not be superaddi-
tive. Hence, onemust be careful when applying some of thetraditional
game theory results which require superadditivity to this class of prob-
lems.

Definition 5 A solution configuration is a pair (r,P), where r is
an n-dimensional vector (called an imputation) whose elements r;
(z = 1,...,n) represent the payoff to each player ¢ under coalition
structure P.

Definition 6 A solution configuration (r, P) is a feasible solution
configuration if andonly if }-,cp i < v(R,P) foral R € P.
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Let © denotethe set of all solution configurationswhich arefeasible
for the hierarchical decision-making problem under consideration. We
can then define the binary relation dom, as follows:

Definition 7 Let (r,P.), (s,Ps) € ©. Then (r,P,) dominates
(s,Ps), denoted by (r, P, )dom (s, Ps), if and only if there exists an
nonempty R € P, such that

r,>s; forall ieR and 1)
Z ri <v(R,Pp). 2
i€R

Condition (1) impliesthat each decision maker in R preferscoalition
structure P, to codlition structure ;. Condition (2) ensuresthat R is
afeasible codition in P,.. That is, R must not demand more for the
imputation r than itsvalue, v(R, P;).

Definition 8 The core, C, of an abstract game is the set of undomi-
nated, feasible solution configurations.

When the coreis nonempty, each of its elementsrepresents an enforce-
able solution configuration within the hierarchy.

6 Results

We have now defined a model of the formation of coalitions among
playersin a Stackelberg game. Perfect information is assumed among
the players, and coditions are allowed to form freely.

When codlitions form, the order of the players actions remains
unchanged. Each coalition earns the combined proceeds that each in-
dividual coalition member would have received in the origina Stack-
elberg game. Utility istransferrable. A player now acts for the joint
benefit of the members of his coalition, and utilmately himself. There-
fore, aplayer’srationa decision may change.

Using the above model, severd results can be obtained regarding
theformation of coalitionsamong theplayers. First, thedistribution of
wedlth to any feasible coalition cannot exceed the value of the grand
codition. Thisis provided by the following lemma:

Lemma 1 If solution configuration (z, P) € © then

Proof. LetP = {Ry, Ra,..., Ry }. Since Y;cp, zi < v(Ry, P)
foradlk=1,2,...,m.

DI
ERy

k=1j

m

B P) =30 Y HEP)).

k=1 k=1j€Ry

Since P isa partition, we can rewrite the |eftmost and rightmost terms
to produce

S5 <3 HGEP)).
=1 =1

We also know that 7, f;(2(P)) < V* since 2(P) € S1, and #(Pg)
is the solution to the mathematical programming problem

max Y. £(x)
s:xglsl
Hence
Zl < ilfi(%(%)) =V

u

Theorem 1 shows that coalition structures in the core have an even

stricter requirement. Specifically, if the core of the abstract game is

non-empty, the total value of any imputation must equal the value of
the grand coalition.

Theorem 1 If (2, P) e C #Dthen Y1, z; = V*.

Proof. From Lemma 1, we dready have >1, z; < V*. We
must now show that -7 ; z; > V*. We will do this by contradiction.
Supposethat (z,P) € C # @and > z; < V*. Let

A=V*—3"2>0
izl
Consider the solution configuration (2/, P¢) with

z;:zi+é>zi fordli=1,2,...,n.
n

Note that (', Pg) € © and (2', Pg)dom(z, P). Hence, (z,P) ¢ C
which isa contradiction. [ ]

We are now prepared to show that if the coreisnonempty, thenthere
aways exists a solution configuration involving the grand coalition
among the solution configurationsin the core.

Theorem 2 If C # @then there existsan imputation z = (21, ..., 2z,)
such that (Z,P(;) ecC.

Proof. Let(z,P.) € C. From Theorem 1, we know that

Sy=Vr (3)
=1
From Equation (3) we seethat (z, Pg) isfeasible (i.e., (z,Pg) € ©).
To further show that (z,P¢) € C, suppose that there is a solu-
tion configuration (r,P,) € C and (r, P,)dom(z, Pg). But then
(r,Pr)dom(z, P.) whichyields a contradiction. Hence (z, P¢) € C.
[ ]

Itis also possible to construct a sufficient condition for the core to
be empty. Thisis provided in Theorem 3.

Theorem 3 The abstract game (©, dom) has C = @ if there exists
coalition structures P, Po, ..., P and coalitions R; € P; (j =

1....,m)with R; N Ry, = @for all j # k such that

Z?}(Rj, 73]) > V* (4)
j=1

Proof. We will show that, given Condition (4), for any solu-
tion configuration (z, P¢) € ©, we can find a solution configuration
(y,P;) € ©@suchthat (y, P;)dom(z, Pg).

We will prove the result by contradiction. Suppose that there does
not exist a solution configuration (y, P;) € © for any j which domi-
nates (z, Pg). Then, fordl (y, ;) € © (j = 1,...,m), wehave

i€R; i€R;

In particular, Relation (5) will be true for a solution configuration
(y,P;) €0 (j =1,...,m) with
Z Yi = 7)(Rj773j) for all R] € P] (6)
i€R;
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Summing both sides of Relations (5) and (6) over j yields

SR PHSI Y m<Vr
j=1 j=1i€R;
which isa contradiction to Condition (4).
Therefore, for any choice (2, P¢;) € © wecan find asolution config-
uration (y, P;) € @suchthat 3,cp yi > Yicr, 2 forsomeR; € P;.
Hence (y, P;)dom(z, Pg). u

Finally, we can easily show that, in any 2-person game of thistype,
the coreis aways nonempty.

Theorem 4 Ifn = 2thenC # @.

Proof. There are only two possible coalition structures, namely
Po = {{1},{2}} and P¢ = {{1,2}}. Note that #(Pg) € S* and
Z(P¢) solves

max f1(z) + fa(z)
stz e St
Therefore,
f1(E(Po)) + f2(2(Po)) < f1(2(Pc)) + f2(2(Pc))-
This can be rewritten as
v({1},Po) + v({2}, Po) < v({1,2},Pg) (7)

We will show that if (r, 7o) € © and (s,Pe) € © then (r,Po)
cannot dominate (s, P¢) for any r» when s = (s1, s2) with s1 + s2 =
f1(&(Pa)) + f2(2(Pe)). We can assume, without loss of generdlity,
that r1 = v({1},Po) and r» = v({2},Po) since al other feasible
solution configurationsinvolving Py are dominated by ((r1,72), Po).
We can also assume that s1 + s = v({1, 2}, P¢) for asimilar reason.

From Relation (7), we have r1 + r < s1 + s2, SO we can choose

s1=3[0({L,2}, Pe) + v({1}, Po) — v({2}, Po)] > v({1}, Po)
and
s2 = 3[v({1, 2}, Pg) +v({2}, Po) — v({1}, Po)] > v({2}, Po).

Therefore, there exists a feasible choice of s = (s1,s2) such that
(r,Po) cannot dominate (s, P¢) for any feasibler. HenceC # @. =

7 An Example

We will expand on theillustration givenin Section 4. Let c;; represent
therewardto player  if the commodity controlled by player j isplaced
in the container. Let C represent the matrix [c;;] and let = be an n-
dimensional vector with 2; representing the amount of commodity
Jj placed in the container. Note that 37, z; < 1and z; > O for
j=1,...,n. Fortheillustration provided in Section 4,

C =

g o
o r o
= OO

Notethat CzT isavector whose components represent the earningsto
each player.

Chew [22] provides a smple procedure to solve this game. The
algorithm requires cq1 > 0.

Step O: Initidlize: = 1and j = 1. Goto Sep 1.

Step 1. If i = n, stop. Thesolutionis; = 1and z; = Ofor k # j.
If ¢ # n, then go to Step 2.

Step 2: Seti =i+ L If ¢i; > ¢;j, thenset j = 4. Goto Step 1.

If no ties occur in Step 2 (i.e., ¢;; # c;;) then it can be shown that
the above a gorithm solves the problem (see Chew [22]).
Consider the three player game of thisform with

41 4
C=Cp=|10 3
251

With codlition structure Py = {{1},{2},{3}}, the solution is
(z1,22,23) = (1,0,0) and the codlition values are v({1}, Po) = 4,
v({2},Po) = 1and v({3}, Po) = 2.

Under the formation of codlition structure Py = {{1}, {2,3}}, the
resources of players 2 and 3 are combined. Thisyieldsapayoff matrix
of
4 1 4
35 4
354

Cp =

and asolution of (0, 1,0). Thevalues of the coalitionsin this case are
v({1},P) =1land v({2,3},P) = 5.

Finally, if all of the playersjointo formthe grand coalition, P, the
payoff matrix becomes

7 6 8
Cpo=|7 6 8
7 6 8
with asolution of (0,0, 1) and v({1, 2,3}, Pc) = 8. Note that

v({1}, Po) +v({2,3},P) > v({1,2,3}, Pg).

From Theorem 3, we know that the core for this gameis empty.

8 Conclusion

This paper has extended previous results for evauating codition for-
mation for a class of games which can be called cooperative Stackel-
berg games. We have defined a Stackelberg game with an imbedded
cooperative game which gtill retainsthe information framework of the
original Stackelberg game.

Theresults shown hereareamong thefirst stepsin using cooperative
Stackelberg games to characterize the behavior of decison makersin
an organized system. It would be surprising if some of the results
provided here cannot be extended to even more generd cases.
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