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Abstract. Stackelberg games and their resulting nonconvex pro-
gramming problems can be used to model the behavior of independent
decision-makers acting within a hierarchy. This paper examines the
formation of coalitions within such organizations of optimizers for
a large class of hierarchical problems. The mathematical character-
izations of these games and the implications of their solutions are
considered.

1 Introduction

Conflict and cooperation among groups of individuals are a natural part
of the organizational process. An organization might consist of manu-
facturers competing within an economic system for the same market,
or computers within a network sharing system resources. The types of
communication and coordination of activities within the organizational
structure can cause the system to flourish or decay. By understanding
the behavior of such systems, we can improve their effectiveness and
eliminate their inherent inefficiencies.

Chew [22] and Bialas and Chew [11] present a model of cooperation
among decision-makers in a hierarchical organization. The model is
based on Stackelberg games and related optimal control problems
(see, for example, Simaan and Cruz [51], Başar and Olsder [6], and
Tolwinski [53]). This early work was restricted to a linear objective
function for each of the players and a requirement that all feasible
decisions had to reside within a convex polytope. This paper extends
these results to continuous objective functions over a bounded decision
space.

2 Overview

This paper will consider models for the behavior of interacting
decision-makers, each attempting to optimize individual objectives
in view of decisions made by others. These problems can be found
in many scientific disciplines, including operations research, control
theory, economics, psychology, sociology and political science. Be-
cause of the pervasive nature of this topic, it has appeared in a variety
of settings and adorned in different mathematical notation (see, for
example, von Neumann and Morgenstern [55]).

With the development of the Dantzig-Wolfe Decomposition Prin-
ciple [24] and its economic interpretation by Baumol and Fabian [7],
mathematical programming has been used to describe the behavior of
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individuals interacting within organizations. Some of this work can
be found in Anandalingam [1], Beckmann [8], Cassidy, et al. [21],
Dirickx and Jennergren [25], Goreux [28], Haimes, et al. [29], Hax,
et al. [30], Keeney and Raiffa [33], Koopmans [34], Marschak and
Radner [40], and Wendell [57].

In addition, social scientists and psychologists have provided
experimental studies of coalition formation. See, for example,
Caplow [19, 20], Gamson [27], and Vinacke and Arkoff [54].

These citations represent only some of the research devoted to this
subject. They do, however, suggest the broad interest in this topic.

3 The General Problem

We will briefly reintroduce the Stackelberg model presented by Bialas
and Chew [11], and the related multilevel programming problem (see
Bialas and Karwan [14, 15]). In this model, a decision-maker at one
level of the hierarchy may have his objective function and decision
space determined, in part, by decisions taken at other levels.

These Stackelberg games [52] have the following common charac-
teristics:

1. The system has interacting players within a hierarchical structure.

2. The leader begins the game by announcing his decision, and the
process continues for each player down through the hierarchy.
Each subordinate player executes his policies after, and with the
full knowledge of, his superior players.

3. The decision of a player can impact any other player’s objective
function, and a subsequent player’s set of feasible choices.

Definition 1 Let the vector x ∈ RN be partitioned as x = (xa , xb).
Let S ⊂ RN be compact, and let f : RN → R be continuous on S .
Then

Ψf (S) ≡
{

x̂ ∈ S

∣∣∣∣∣ f(x̂) = max
x∈S∩{xb=x̂b}

{f(x)}
}

is the set of rational reactions of f over S .1

To formally define the n-player Stackelberg game, let the vector of
decision variables for all players, denoted by x ∈ RN , be partitioned
among n players with

xk ≡ (xk
1 , xk

2 , . . . , xk
Nk

) ∈ RNk (k = 1, 2, . . . , n)

where
∑n

k=1 Nk = N . We will require that the n players choose
values of x ∈ S1 ⊂ RN , where S1 is compact. The shape of S1 will

1Some authors call this set the inducible region.
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determine the ability of one player to affect the set of feasible choices
of the other players.

Let {f1(x), f2(x), . . . , fn(x)} be a set of continuous functions with
fi(x) : Si→ R for all i = 1, . . . , n.2

Definition 2 Let the vector x ∈ RN be partitioned as x = (xa, xb)
with xa = (x1, . . . , xk−1) and xb = (xk , . . . , xn). The level-k feasible
region, Sk, is recursively defined as Sk = Ψfk−1(S

k−1) for k =
2, 3, . . . , n.

The set Sk represents the feasible outcomes resulting from the ra-
tional reactions of players at levels 1, 2, . . . , k− 1. Hence Sk contains
all of the information necessary for player i to assess the behavior of
these players.

Given the preemptive decisions (x̂k+1, . . . , x̂n) of the first n − k
leading players, the optimization problem which must be solved by the
player at level k is then

(Lk) : max{fk(x)}
st: x ∈ Sk

xi = x̂i (i = k + 1, . . . , n).

This establishes a collection of nested mathematical programming
problems {L1, L2, . . . , Ln} jointly representing the decision problems
of n players in a hierarchical organization.3

Bard, et al. [3, 4, 5], Benson [9], Bialas and Karwan [13, 14, 15],
Bialas and Wen [16], Candler and Townsley [18], Fortuny and Mc-
Carl [26], and others have characterized the properties of the non-
convex programming problem produced when the objective functions
fi(x) are linear, and developed solution algorithms (of varying effec-
tiveness) for n = 2 and n = 3. There has also been some work on
solutions procedures for quadratic fi(x) (see Papavassilopoulos [44]).

4 An Illustration

Consider a game with three players, named 1, 2 and 3, each of whom
controls an unlimited quantity of a commodity, with a different com-
modity for each player. Their task is to fill a container of unit capacity
with amounts of their respective commodities, never exceeding the ca-
pacity of the container. This will be performed in a sequential fashion,
with player 3 (the player at the “top” of the hierarchy) taking his turn
first. A player cannot remove a commodity placed in the container by
a previous player.

At the end of the sequence, a referee pays each player one dollar (or
fraction, thereof) for each unit of his commodity which has been placed
in the container. It is easy to see that, since player 3 has preemptive
control over the container, he will fill it completely with his commodity,
and collect one dollar.

Suppose, however, that the rules are slightly changed so that, in
addition, player 3 could collect five dollars for each unit of player
one’s commodity which is placed in the container. Since player 2 does
not receive any benefit from player one’s commodity, player 2 would
fill the container with his own commodity on his turn, if given the
opportunity. This is the rational reaction of player 2. For this reason,
player 3 has no choice but to fill the container with his commodity and
collect only one dollar.

2This might also be written as fi(x) : S1 → R for all i = 1, . . . ,n. The question
of S1 compact implying that S2 = Ψf (S1 ) is compact is addressed for the linear case
by Wen [56].

3Note that the leader is designated as player n, not player 1. Although not imme-
diately intuitive, this convention results in many properties of Lk being invariant for
fixed k and varying n. For example, L2 will have the mathematical properties of a
two-level problem in a system with any number of levels.

5 Coalition Formation

In the previous example, there are six dollars available to the three
players. Divided equally, each of the players could receive two dollars.
However, because of the sequential and independent nature of the
decisions, such a solution cannot be attained.

The solution to the above problem is, thus, not Pareto-optimal (see
Chew [22]). However, as suggested by the example, the formation
of a coalition among subsets of the players could provide a means to
achieve Pareto-optimality. The members of each coalition act for the
benefit of the coalition as a whole. The question immediately raised
are:

• which coalitions will tend to form,

• are the coalitions enforceable, and

• what will be the resulting distribution of wealth to each of the
players?

The game in partition function form (see Lucas and Thrall [38] and
Shenoy [49]) provides a framework for answering these questions in
this Stackelberg setting.

Definition 3 An abstract game is a pair (X, dom) where X is a set
whose members are called outcomes and dom is a binary relation on
X called domination.

Let G = {1, 2, . . . , n} denote the set of n players. Let P =
{R1, R2, . . . , RM} denote a coalition structure or partition of G into
nonempty coalitions, whereRi∩Rj = Ø for all i 6= j and∪M

i=1Ri = G.
Let P0 ≡ {{1}, {2}, . . . , {n}} denote the coalition structure where

no coalitions have formed and let PG ≡ {G} denote the grand coali-
tion.

Consider P = {R1, R2, . . . , RM}, an arbitrary coalition structure.
Assume that utility is additive and transferable. As a result of the
coalition formation, the objective function of each player in coalition
Rj becomes

f ′Rj(x) =
∑
i∈Rj

fi(x).

Although the sequence of the players’ decisions has not changed, their
objective functions have. Let R(i) denote the unique coalition Rj ∈ P
such that player i ∈ Rj . Instead of maximizing fi(x), player i will now
be maximizing f ′R(i)(x). Let x̂(P) denote the solution to the resulting
n-level optimization problem.

Definition 4 Suppose that S1 is compact and x̂(P) is unique. The
value of coalition Rj ∈ P , denoted by v(Rj ,P), is given by

v(Rj ,P) ≡
∑
i∈Rj

fi(x̂(P)).

Bialas and Chew [12] have shown that v(·) need not be superaddi-
tive. Hence, one must be careful when applying some of the traditional
game theory results which require superadditivity to this class of prob-
lems.

Definition 5 A solution configuration is a pair (r,P), where r is
an n-dimensional vector (called an imputation) whose elements ri

(i = 1, . . . , n) represent the payoff to each player i under coalition
structure P .

Definition 6 A solution configuration (r,P) is a feasible solution
configuration if and only if

∑
i∈R ri ≤ v(R,P) for all R ∈ P .
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Let Θ denote the set of all solution configurations which are feasible
for the hierarchical decision-making problem under consideration. We
can then define the binary relation dom, as follows:

Definition 7 Let (r,Pr ), (s,Ps) ∈ Θ. Then (r,Pr ) dominates
(s,Ps), denoted by (r,Pr)dom(s,Ps), if and only if there exists an
nonempty R ∈ P , such that

ri > si for all i ∈ R and (1)∑
i∈R

ri ≤ v(R,Pr ). (2)

Condition (1) implies that each decision maker in R prefers coalition
structure Pr to coalition structure Ps. Condition (2) ensures that R is
a feasible coalition in Pr. That is, R must not demand more for the
imputation r than its value, v(R,Pr).

Definition 8 The core, C, of an abstract game is the set of undomi-
nated, feasible solution configurations.

When the core is nonempty, each of its elements represents an enforce-
able solution configuration within the hierarchy.

6 Results

We have now defined a model of the formation of coalitions among
players in a Stackelberg game. Perfect information is assumed among
the players, and coalitions are allowed to form freely.

When coalitions form, the order of the players’ actions remains
unchanged. Each coalition earns the combined proceeds that each in-
dividual coalition member would have received in the original Stack-
elberg game. Utility is transferrable. A player now acts for the joint
benefit of the members of his coalition, and utilmately himself. There-
fore, a player’s rational decision may change.

Using the above model, several results can be obtained regarding
the formation of coalitions among the players. First, the distribution of
wealth to any feasible coalition cannot exceed the value of the grand
coalition. This is provided by the following lemma:

Lemma 1 If solution configuration (z,P) ∈ Θ then

n∑
i=1

zi ≤
n∑

i=1

fi(x̂(PG)) = v(G,PG) ≡ V ∗.

Proof. Let P = {R1, R2, . . . , Rm}. Since
∑

i∈Rk
zi ≤ v(Rk ,P)

for all k = 1, 2, . . . ,m.

n∑
k=1

∑
j∈Rk

zi ≤
m∑

k=1

v(Rk ,P) =
m∑

k=1

∑
j∈Rk

fj(x̂(P)).

Since P is a partition, we can rewrite the leftmost and rightmost terms
to produce

n∑
i=1

zi ≤
n∑

i=1

fi(x̂(P)).

We also know that
∑n

i=1 fi(x̂(P)) ≤ V ∗ since x̂(P) ∈ S1, and x̂(PG)
is the solution to the mathematical programming problem

max
n∑

i=1

fi(x)

st: x ∈ S1

Hence
n∑

i=1

zi ≤
n∑

i=1

fi(x̂(PG)) = V ∗.

Theorem 1 shows that coalition structures in the core have an even
stricter requirement. Specifically, if the core of the abstract game is
non-empty, the total value of any imputation must equal the value of
the grand coalition.

Theorem 1 If (z,P) ∈ C 6= Ø then
∑n

i=1 zi = V ∗.

Proof. From Lemma 1, we already have
∑n

i=1 zi ≤ V ∗. We
must now show that

∑n
i=1 zi ≥ V ∗. We will do this by contradiction.

Suppose that (z,P) ∈ C 6= Ø and
∑n

i=1 zi < V ∗. Let

∆ ≡ V ∗ −
n∑

i=1

zi > 0.

Consider the solution configuration (z′,PG) with

z′i = zi +
∆
n

> zi for all i = 1, 2, . . . , n.

Note that (z′,PG) ∈ Θ and (z′,PG)dom(z,P). Hence, (z,P) /∈ C
which is a contradiction.

We are now prepared to show that if the core is nonempty, then there
always exists a solution configuration involving the grand coalition
among the solution configurations in the core.

Theorem 2 If C 6= Ø then there exists an imputation z = (z1, . . . , zn)
such that (z,PG) ∈ C.

Proof. Let (z,Pz) ∈ C. From Theorem 1, we know that

n∑
i=1

zi = V ∗. (3)

From Equation (3) we see that (z,PG) is feasible (i.e., (z,PG) ∈ Θ).
To further show that (z,PG) ∈ C, suppose that there is a solu-

tion configuration (r,Pr ) ∈ C and (r,Pr )dom(z,PG). But then
(r,Pr)dom(z,Pz) which yields a contradiction. Hence (z,PG) ∈ C.

It is also possible to construct a sufficient condition for the core to
be empty. This is provided in Theorem 3.

Theorem 3 The abstract game (Θ, dom) has C = Ø if there exists
coalition structures P1,P2, . . . ,Pm and coalitions Rj ∈ Pj (j =
1, . . . ,m) with Rj ∩ Rk = Ø for all j 6= k such that

m∑
j=1

v(Rj ,Pj) > V ∗. (4)

Proof. We will show that, given Condition (4), for any solu-
tion configuration (z,PG) ∈ Θ, we can find a solution configuration
(y,Pj) ∈ Θ such that (y,Pj )dom(z,PG).

We will prove the result by contradiction. Suppose that there does
not exist a solution configuration (y,Pj) ∈ Θ for any j which domi-
nates (z,PG). Then, for all (y,Pj) ∈ Θ (j = 1, . . . ,m), we have∑

i∈Rj

yi <
∑
i∈Rj

zi for all Rj ∈ Pj . (5)

In particular, Relation (5) will be true for a solution configuration
(y,Pj) ∈ Θ (j = 1, . . . ,m) with∑

i∈Rj

yi = v(Rj ,Pj) for all Rj ∈ Pj. (6)
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Summing both sides of Relations (5) and (6) over j yields

m∑
j=1

v(Rj ,Pj) ≤
m∑

j=1

∑
i∈Rj

zi ≤ V ∗

which is a contradiction to Condition (4).
Therefore, for any choice (z,PG) ∈ Θ we can find a solution config-

uration (y,Pj) ∈ Θ such that
∑

i∈Rj
yi >

∑
i∈Rj

zi for some Rj ∈ Pj .
Hence (y,Pj)dom(z,PG).

Finally, we can easily show that, in any 2-person game of this type,
the core is always nonempty.

Theorem 4 If n = 2 then C 6= Ø.

Proof. There are only two possible coalition structures, namely
P0 = {{1}, {2}} and PG = {{1, 2}}. Note that x̂(P0) ∈ S1 and
x̂(PG) solves

max f1(x) + f2(x)
st: x ∈ S1.

Therefore,

f1(x̂(P0)) + f2(x̂(P0)) ≤ f1(x̂(PG)) + f2(x̂(PG)).

This can be rewritten as

v({1},P0) + v({2},P0) ≤ v({1, 2},PG) (7)

We will show that if (r,P0) ∈ Θ and (s,PG) ∈ Θ then (r,P0)
cannot dominate (s,PG) for any r when s = (s1, s2) with s1 + s2 =
f1(x̂(PG)) + f2(x̂(PG)). We can assume, without loss of generality,
that r1 = v({1},P0) and r2 = v({2},P0) since all other feasible
solution configurations involving P0 are dominated by ((r1, r2),P0).
We can also assume that s1 + s2 = v({1, 2},PG) for a similar reason.

From Relation (7), we have r1 + r2 ≤ s1 + s2, so we can choose

s1 = 1
2 [v({1, 2},PG) + v({1},P0)− v({2},P0)] ≥ v({1},P0)

and

s2 = 1
2 [v({1, 2},PG) + v({2},P0) − v({1},P0)] ≥ v({2},P0).

Therefore, there exists a feasible choice of s = (s1, s2) such that
(r,P0) cannot dominate (s,PG) for any feasible r. Hence C 6= Ø.

7 An Example

We will expand on the illustration given in Section 4. Let cij represent
the reward to player i if the commodity controlled by player j is placed
in the container. Let C represent the matrix [cij] and let x be an n-
dimensional vector with xj representing the amount of commodity
j placed in the container. Note that

∑n
j=1 xj ≤ 1 and xj ≥ 0 for

j = 1, . . . , n. For the illustration provided in Section 4,

C =

 1 0 0
0 1 0
5 0 1

 .

Note that CxT is a vector whose components represent the earnings to
each player.

Chew [22] provides a simple procedure to solve this game. The
algorithm requires c11 > 0.

Step 0: Initialize i = 1 and j = 1. Go to Step 1.

Step 1: If i = n, stop. The solution is x̂j = 1 and x̂k = 0 for k 6= j.
If i 6= n, then go to Step 2.

Step 2: Set i = i + 1. If cii > cij , then set j = i. Go to Step 1.

If no ties occur in Step 2 (i.e., cii 6= cij) then it can be shown that
the above algorithm solves the problem (see Chew [22]).

Consider the three player game of this form with

C = CP0 =

 4 1 4
1 0 3
2 5 1

 .

With coalition structure P0 = {{1}, {2}, {3}}, the solution is
(x1, x2, x3) = (1, 0, 0) and the coalition values are v({1},P0) = 4,
v({2},P0) = 1 and v({3},P0) = 2.

Under the formation of coalition structure P0 = {{1}, {2, 3}}, the
resources of players 2 and 3 are combined. This yields a payoff matrix
of

CP =

 4 1 4
3 5 4
3 5 4


and a solution of (0, 1, 0). The values of the coalitions in this case are
v({1},P) = 1 and v({2, 3},P) = 5.

Finally, if all of the players join to form the grand coalition, PG, the
payoff matrix becomes

CPG =

 7 6 8
7 6 8
7 6 8


with a solution of (0, 0, 1) and v({1, 2, 3},PG) = 8. Note that

v({1},P0) + v({2, 3},P) > v({1, 2, 3},PG).

From Theorem 3, we know that the core for this game is empty.

8 Conclusion

This paper has extended previous results for evaluating coalition for-
mation for a class of games which can be called cooperative Stackel-
berg games. We have defined a Stackelberg game with an imbedded
cooperative game which still retains the information framework of the
original Stackelberg game.

The results shown here are among the first steps in using cooperative
Stackelberg games to characterize the behavior of decision makers in
an organized system. It would be surprising if some of the results
provided here cannot be extended to even more general cases.
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