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Cooperative Optimal Control of Battery Energy

Storage System under Wind Uncertainties in a

Microgrid
Tianqiao Zhao, Zhengtao Ding, Senior Member, IEEE,

Abstract—Since high penetration renewable sources are in-
tegrated into the future power system, energy storage systems
are often installed to maintain the frequency stability in a
microgrid. The operation mode of a microgrid may frequently
change due to the intermittency of renewable sources, and energy
storage systems will be charged/discharged accordingly to smooth
and balance the generation of renewable sources. Thus, energy
storage systems should be coordinated in a proper approach
to ensure the supply-demand balance while increasing their
profits and energy efficiency. To this end, a distributed optimal
solution for energy storage systems to maintain the supply-
demand balance while maximizing their welfare and energy
efficiency is proposed to energy storage systems by enhancing
the coordination through the communication under a multi-
agent system framework. Under this framework, each energy
storage system is designated as an agent, and it only utilizes
the local information to interact with the neighbouring agents.
Additionally, since the participants in microgrid may not be
willing to release their information about cost functions, or even
the local gradient with other neighbouring agents, the proposed
solution could be implemented without these private information
to the individual agents. The simulation studies are carried out for
IEEE 14-bus and 30-BESS systems to validate the effectiveness
of the proposed distributed solution.

Index Terms—energy storage systems, distributed cooperative
control, microgrid, multi-agent system, wind uncertainties

I. INTRODUCTION

T
HE microgrid is a promising solution to integrate con-

trollable power electronics devices and advanced man-

agement and protection technology into the electricity net-

work [1]. Since the emerging technologies, such as renewable

energy sources and battery energy storage systems (BESSs),

grow rapidly to make the grid eco-friendly, these technologies

are expected to undertake the responsibility of the system

stability.

With a proper designed pitch angle and rotor speed control

strategy [2], [3], the effectiveness of the wind power generation

for maintaining the grid frequency stability has been verified

by several existing researches in different areas such as inertial,

primary and second frequency control [4], [5]. However,

due to the intermittency of wind power generation supply,

new challenges are posed to the operation and control of a

microgrid, especially under high penetration levels. As a result,

the stability of the microgrid would be affected by integrating

high penetration wind power generation, which may cause

a mismatch between supply and demand when the available

wind power generation is not equal to total load demand.

To overcome this problem, a solution is to install BESSs

for the intermittent renewable sources [6]–[8], since they

can provide a faster response to absorb excessive power and

compensate the insufficient power during peak generation and

load periods, respectively. Thus, the active power imbalance

caused by integrating high penetration wind power generation

can be addressed by introducing and coordinating the BESSs

in a well-designed cooperative manner.

The cooperative approaches in the existing studies are

mainly clarified into three categories, namely centralized

schemes, decentralized approaches and distributed control

strategies. The centralized schemes work well for conventional

power system by introducing a microgrid central controller

[9], [10]. The methods implemented in a centralized manner

require an information centre to collect global information

and a central controller to process the amounts of received

data [11]. Thus, the required computational capacity of the

control centre is rapidly growing with the increase of the

grid scale and it may be more vulnerable to the single-point

failures. The decentralized approaches may be robust and

less costs in terms of no communication network is needed.

However, in [12], it shows that the available resources in

the network would be not utilized in a cost-effective way

because of the deficiency of broader available information.

In contrast, the cooperative solution in the distributed way

that only utilizes local information through a local private

communication network [13]. In light of the smart grid, it

will consist of more distributed controllable power-electronics

devices with the ability to exchange information through a

communication network. Therefore, the emerging management

solution should be efficient and low-cost for an economically

viable microgrid.

Recently, the control and optimization of BESSs have drawn

the attention of researchers [14]–[17]. In [14], the size of

operation BESSs is optimized based on adjusting state of

charge (SoC) limits. In [15], group BESSs are coordinated

by a distributed control algorithm for voltage and frequency

deviation regulation. To achieve the SoC equalization, authors

in [16] improved the conventional droop control by modifying

a virtual droop resistance according to the SoC imbalance. A

cooperative control method is presented in [17] for BESSs

based on time-of-use (ToU) pricing. However, the relevant

results in the existing literatures are designed by assuming

the energy efficiency of multiple BESSs remains as a constant

value. It is indicated that the variation of charging/discharging

efficiency of multiple BESSs is indispensable [18]. Addition-
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ally, the experiment in [19] shows that the energy efficiency

fluctuates drastically according to the charging/discharging

rate and SoC. In this case, the energy efficiency should be

taken into consideration in the optimization and control design

of multiple BESSs.

In this paper, a novel distributed algorithm is proposed to

coordinate multiple BESSs under wind uncertainties by maxi-

mizing the total welfare of BESSs while respecting the supply-

demand balance. By considering the energy efficiency and ToU

pricing, an objective function is formulated to maximize the

total welfare of multiple BESSs that can encourage BESSs

to participate in grid regulation. Furthermore, a coordination

scheme of BESSs under wind power generation uncertainties is

proposed for multiple BESSs to maintain active power balance.

To make the proposed algorithm more compatible with the

requirement of the power grid, the multi-agent system (MAS)

framework is further developed in this paper. By regarding

each BESS as an agent, it only needs to exchange information

with its neighbouring agents through a local communication

network. Thus, the proposed strategy can work in a distributed

way so that computational and communication burdens are

reduced comparing with centralized methods. Besides, the

information sharing of the cost function may result in the

privacy concerns of the participants in the microgrid. To

this end, in this paper, the proposed algorithm solves the

formulated problem privately which is achieved by introducing

a mismatch estimator to update the local power output and

removing the requirement of gradient information sharing. A

comparison study is first introduced to present the advantage

of the proposed algorithm. Then, the effectiveness and the

scalability of our algorithm are further validated through

simulation studies under different operation conditions of

simulation studies in IEEE 14-bus system and a 30-BESS

system, respectively.

The remainder part of the paper is organized as follows.

Section II outlines the multiple BESS system architecture and

gives a description of the network model under a microgrid

environment. Section III introduces the distributed energy

management of BESSs. Section IV proposes a distributed

optimal solution for the energy management problem of mul-

tiple BESSs. Section V presents the simulation results and

corresponding analysis. Finally, the conclusion is drawn in

Section VI.

II. NETWORK MODEL OF MULTIPLE BATTERY ENERGY

STORAGE SYSTEMS

A. Overview of Multiple Battery Energy Storage Systems

Fig. 1 presents a MAS framework for an architecture

of multiple BESSs and wind power generations, which is

connected to the main grid through the Point of Common

Coupling (PCC). The PCC of the main grid is used to observe

the power delivered/withdrawn and decide the operation mode

of the microgrid. Each BESS consists of several lithium-ion

batteries interfaced with the DC-AC inverter. In the proposed

framework, a BESS is designated as an agent, and controlled

by an energy management system (EMS). A communication

network is embedded in the EMS to transfer the information

Fig. 1. Multiple BESSs System

with its neighbouring agents that to achieve a determined

objective. In addition, following the control strategy in [20],

a storage system controller (SSC) is applied to adjust the

power output of the BESS to the signal generated by the

communication network.

B. Network Model Based on the Multi-agent Framework

The proposed MAS framework consists of N distributed

BESSs, which are assigned as controllable agents. A weighted-

balanced directed graph G = (V, E) is constructed to

represent the communication topology of the network, where

V = {ν1,. . . , νn} denotes the agent set and E is the edge set.

Assuming that there exists a directed path that connects any

pair of BESSs, and the weight of an edge from ith agent to

jth agent is aij > 0, and the weight on the self loop of ith

agent is aii = 0, respectively. In the communication network,

each BESS has ingoing and outgoing edges, and the weighted

in-degree and out-degree of ith agent are din(i) =
∑n

j=1
aij

and dout(i) =
∑n

j=1
aji, respectively. It should be noted that

dout(ν) = din(ν) for all agents because the communication

network is weighted-balanced. The Laplacian matrix L asso-

ciated with G is defined as Lii =
∑

j 6=i aij and Lij = −aij ,

i 6= j. As indicated in [20], the designed communication

network is independent of the power network, and hence it can

be constructed in a cost-effective approach based on practical

requirements of a microgrid.

III. DISTRIBUTED ENERGY MANAGEMENT OF BATTERY

ENERGY STORAGE SYSTEMS UNDER WIND POWER

UNCERTAINTIES

In a microgrid, the frequency may change rapidly and

frequently due to the uncertainties of wind power generation,

which is mainly influenced by the supply-demand mismatch of

the active power. The active power balance at t0 in a microgrid

can be represented as

∑

k∈SW

P 0

W,k +
∑

i∈SB

P 0

B,i =
∑

j∈Sl

P 0

l,j , (1)

where SW , SB and Sl are the index set of wind turbines

(WTs), BESSs and load demands, respectively; P 0

B,i is the
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charging/discharging power of ith BESS that can be posi-

tive/negative; P 0

W,k and P 0

l,j are the wind power generation

and load demand of kth WT and jth load, respectively.

Although wind power generation can relieve the fatigue of

the frequency regulation, it is deficient in terms of accuracy

due to its intermittent nature. Furthermore, when wind power

generations are controlled in the MPPT mode, it cannot be

treated as dispatchable. In contrast, BESSs have the fast

response property and exhibit high performance. As a result,

installing BESSs in a power grid is a promising solution for

absorbing excessive power and compensating the insufficient

power.

Then the net power required from the BESS for the fre-

quency regulation in a short-term can be calculated as
∑

i∈SB

PB,i = ∆PD =
∑

k∈SW

∆PW,k −
∑

j∈Sl

∆Pl,j , (2)

where PB,i is the power output of ith BESS; ∆PW,k and ∆Pl,j

are active power change of kth WT and jth load, respectively.

However, as indicated in [19], the output power level is one

of the factors affecting the energy efficiency of a BESS. Thus,

a factor called inner energy rate is defined as (3) to express

the rate of inner charging or discharging energy of a BESS

for output power.

εi =
∆EB,i

PB,i

. (3)

where ∆EB,i is the change of battery’s inner energy. Then the

actual output power is calculated as

P o
B,i = εiPB,i. (4)

Note that the electricity price is an important factor that

can encourage the BESS to participate the frequency regu-

lation. As indicated in [21]–[23], the electricity price is an

effective method of energy management for the participants in

a microgrid to adjust their electricity consumption behaviors

in a cost-effective way. In this paper, we adjust the ToU

pricing, ρ(t), as a variable to coordinate BESSs to discover

the maximum efficient point of the operation. Thus , the

objective is defined as maximizing the total welfare of BESSs

by adjusting the price while considering the efficiency of the

BESSs and maintaining the active power balance, such as

Max
∑

i∈SB

(

ρ(t)PB,i − εiPB,i

)

(5)

where εi is the inner rate energy. The experiment in [19] shown

that the function of the inner rate energy can be written in a

piecewise linear function as

εi = αiPB,i + βi. (6)

By substituting (6) into (5), the objective function can be

rewritten as

Max
∑

i∈SB

(

ρ(t)PB,i −
(

αiP
2

B,i + βiPB,i

)

)

s.t
∑

i∈SB

PB,i = ∆PD

Pm
B,i ≤ PB,i ≤ PM

B,i (7)

where Pm
B,i and PM

B,i are the lower and upper bound of

ith BESS, respectively. The equality constraint describes the

balance between the net power demand and the total output

power of BESSs, and the inequality constraint are the local

boundary of the output power for ith BESS.

It should be noted that the transmission losses are inevitable,

and these are about 5% - 7% of the total load according to the

energy information administration (EIA) [24]. Thus, it can be

modelled by multiplying the load by 5% - 7%.

For multiple BESSs, they may be operated on different

SoC due to the efficiency difference. Since the power is

predominately shared among BESSs with higher SoC, some

BESS will be overloaded even the required power is lower

than the total power capacities of BESSs. As a result, a proper

power sharing method is required to coordinate BESSs based

on their energy level. To this end, the objective function is

rewritten as,

Min
∑

i∈SB

fi(PB,i) (8)

s.t
∑

i∈SB

ωiPB,i = ∆PD (9)

hi(PB,i) = (Pm
B,i − PB,i)(P

M
B,i − PB,i) ≤ 0, (10)

where fi(PB,i) =
(

αiP
2

B,i + βiPB,i

)

− ρ(t)PB,i. ωi is the

weight on the contribution of ith BESS. It can be defined as

a ratio of the energy level in order to prevent BESSs from

running out prematurely, i.e.,

ωi =
Ei

∑

i∈SB
Ei

where Ei is the energy level of ith BESS.

A central coordinator could be deployed to solve the above

problem. The coordinator communicates with each BESS in

the network by a bi-directional communication line to collect

the data required to solve the problem, such as the objective

functions, the operation constraints and the actual power out-

put. With the revived data, it solves the problem and broadcasts

the reference to all connected BESSs. However, due to the

high penetration of wind power generations, the centralized

strategy may lose its control efficiency if operating conditions

change frequently and unpredictably. In the following section,

a distributed algorithm is proposed to coordinate the BESSs

to maintain the active power balance, and in the meantime,

a coordination scheme of BESSs and WTs is presented to

overcome the problem of wind power generation errors.

Remark 3.1: A model of the distribution loss can be adopted

to estimate the value of these loss according to [25] ([25] in

the manuscript). Then, the total demand required from BESSs

can be recalculated including these available values. As a

result, the network can discover a new optimization result by

considering the distribution loss.

IV. CONSENSUS-BASED COOPERATIVE ALGORITHM

DESIGN

The formulated optimization problem of BESSs in (8) is

a convex problem with both equality and inequality con-
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straints. In this section, the solution set is firstly char-

acterized by the so-called refined Slater condition and

the Karush–Kuhn–Tucker (KKT) optimality conditions. A

consensus-based distributed cooperative algorithm is presented

for discovering the optimal solution of the energy management

problem. Then the implementation of the proposed algorithm

is presented.

A. Solution Set of Distributed Energy Management

Let L be the Lagrangian equation with the Lagrangian

multiplier λ, one has

L =
∑

i∈SB

(

(

αiP
2

B,i + βiPB,i

)

− ρ(t)PB,i

)

+





∑

i∈SB

λiωiPB,i −∆PD



 , (11)

where λi is the Lagrange multiplier and let λ = {λ1, . . . , λn}.
It should be noted that the inequality constraints are unneces-

sary to be added in the augmented function due to they are

local and can be treated as boundaries of the problem domain

[26]. These inequality constraints can be taken into account by

applying additional projection operations, which do not affect

the convergence analysis as shown in [27].

Remark 4.1: By using the dual decomposition [28], one has

L =
∑

i∈SB

(

(

αiP
2

B,i + βiPB,i

)

− (ρ(t)− λiωi)PB,i

)

+∆PD. (12)

It can be found that the Lagrange multiplier λi acts as a virtual

price to adjust the real price so that BESSs are coordinated to

find the maximum efficient point.

Since the energy management problem is a convex optimiza-

tion problem with affine constraints, the global optimality can

be ensured by using KKT optimality conditions [29]. Follow-

ing the KKT conditions, a point P ∗
B = {P ∗

B,1, . . . , P
∗
B,n} ∈

Rn is a solution of the energy management problem if and

only if there exists a point λ∗ such that

▽fi(P
∗
B,i) + λ∗ωi = 0, i ∈ {1, . . . , n}

ω1P
∗
B,1 + · · ·+ ωiP

∗
B,i = ∆PD. (13)

B. Distributed Cooperative Algorithm Design

In this section, a distributed algorithm is presented for the

energy management of BESSs. Following [30], the active

power dynamics of ith BESS can be written as

ṖB,i = uB,i, (14)

where uB,i is the control input for ith BESS. In a micro-

grid, the distributed energy management of BESSs aims to

maximize the efficiency of BEESs under a proper designed

strategy, which can be achieved by controlling the references

of BESSs. Then the design objective is defined such that the

control input only requires the information from neighbouring

BESSs, and then PB,i converges to the solution set of the

proposed problem (8).

To this end, the solution for the problem (8) is the following

continuous-time distributed algorithm,

˙PB,i = −▽fi(PB,i)− ωiλi

λ̇i = −γ1
∑

i∈n

aij(λi − λj)− γ2
∑

i∈n

aij(zi − zj)

+ γ3(ωiPB,i − ri∆PD)

żi =
∑

i∈n

aij(λi − λj) (15)

where γ1, γ2 and γ3 > 0 are the positive constants, respec-

tively. We assume ri is the ability that ith BESS is able to

detect the total required load, and denote r = [r1, . . . , rn]
T

with 1Tn r = 1, for i ∈ n., where 1n = [1, 1, . . . ]T ∈ R
n.

To solve the optimization problem in a distributed way,

inspired by the centralized saddle-point dynamics in [31], a

mismatch estimator is introduced by taking advantage of the

idea of distributed average estimation to observe the global

information. With the estimator to observe the supply-demand

mismatch, the algorithm (15) then can be implemented in

a distributed way since the only information required is the

states of ith BESS, i.e. λi and zi. As a result, each BESS only

needs to send/receive the value of λi and zi to its neighbour

BESSs. With considering the privacy concerns of BESSs,

the proposed algorithm does not require BESSs to share

their gradients of the cost function with neighbouring BESSs.

Furthermore, in view of Remark. 4.1, the ToU signal ρ(t) will

be adjusted by λi so that multiple BESSs are coordinated to

discover the most efficient point.

According to (15), the control input for ith BESS is de-

signed as

uB,i = −▽fi(PB,i)− ωiλi. (16)

Remark 4.2: To keep the BESS operating in a feasible

mode, various local constraints can be integrated in the pro-

posed algorithm, such as the SoC constraint, the constraints

of minimum/maximum charging/discharging duration. These

local constraints can be dealt with by the proposed algorithm

by including corresponding projection operation.

C. Convergence Analysis

To facilitate convergence analysis, the proposed algorithm

(15) is written in a compacted form, such as

ṖB = −▽f(PB)− ωλ

λ̇ = −γ1Lλ− γ2Lz + γ3(ωPB − r∆PD)

ż = Lλ (17)

where PB = [PB,1, . . . , PB,n]
T , λ = [λ1, . . . , λn]

T ,

▽f(PB) =
∑

i∈SB
fi(PB,i) and z = [z1, . . . , zn]

T , respec-

tively, and let ω = Diag(ω1, . . . , ωn). The inspiration of our

algorithm is based on multiple time-scale operations, which

applies a distributed estimator to distribute the centralized

saddle-point algorithm. To analyze the convergence, we first

consider the equilibrium point (PB , λ, z) of the proposed

algorithm. When executing the algorithm over a connected

and weight-balanced graph, it results in

1T
n ż = 1TnLλ = 0, (18)
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where the fact that 1TnL = 0 is used to deduce (18). Then, the

equilibrium point can be obtained by

0 = −▽f(PB)− ωλ (19a)

0 = −γ1Lλ− γ2Lz + γ3(ωPB − r∆PD) (19b)

0 = Lλ. (19c)

Left multiplying (19c) by 1Tn gives

γ31T
n

(

ωPB − rPD

)

= 0 (20a)

▽f(PB) + ωλ1n = 0. (20b)

Thus, it is shown that the equilibrium point (PB , λ, z) satisfies

PB,i = P ∗
B , λi = λ∗, zi = z∗, for i ∈ n, (21)

where (P ∗
B , λ∗, z∗) is the solution set of the optimization

problem given in (13). For the convenience of the convergence

analysis, the states in (17) are translated to the equilibrium

point as

P̂B =
(

PB − PB

)

, λ̂ = mT
(

λ− λ
)

, ẑ = mT (z − z) ,

(22)

where (PB , λ, z) is any equilibrium point of (17) and m can

be defined as in [32]. Thus, one has

˙̂
PB = −φ− ωmλ̂ (23a)

˙̂
λ = −γ1m

TLmλ̂− γ2m
TLmẑ − γ3ωmP̂B (23b)

˙̂z = mTLmλ̂ (23c)

where φ =
(

▽f(P̂B + PB)− f(PB)
)

. To study the stability

of the proposed algorithm, we consider a candidate Lyapunov

function

V =
1

2
γ3P̂

T
B P̂B +

1

2
λ̂T λ̂+

1

2
γ2ẑ

T ẑ. (24)

The Lie derivative of V along with (23) is given as

V̇ = γ3P̂
T
B (−φ− ωmλ̂) + γ2ẑ

T (mTLmλ̂)

+ λ̂T (−γ1m
TLmλ̂− γ2m

TLmẑ − γ3ωmP̂B)

= −γ3P̂
T
Bφ− γ1λ̂

TmTLmλ̂

≤ −γ3(P̂B + P ∗
B − P ∗

B)φ− γ1λ̂
TmTLmλ̂, (25)

where the convexity of the cost function, i.e., γ3(P̂B + P ∗
B −

P ∗
B)φ ≥ 0 is invoked for obtaining the last inequality. So far, it

is shown that the trajectories of (23) and also (15) are bounded

as V̇ ≤ 0. With the invariant set Theorem 1 in [32], it can be

concluded that the points on V̇ = 0 are the equilibrium points

of the algorithm.

D. The Coordination of BESSs under Wind Power Generation

Error

Due to the intermittent nature of the wind power gen-

eration, it may lose its accuracy for maintaining supply-

demand balance, whereas BESSs have the characteristic of

the fast response and high performance for balancing short-

term variations of the network power. For this reason, the

wind power generations are supplemented by the BESSs in

real application.

Fig. 2. Coordination scheme of wind generations and BESSs

As depicted in Fig. 2, a brief scheme is provided to coordi-

nate the BESSs and wind power generations for maintaining

the system stability. The power management system (PMS)

can collect the operation points of all participants in the

grid to observe the supply-demand balance. As shown in

power regulation part, if there is unbalance in net power,

wind power will be employed to compensate the mismatch

as much as possible firstly. However, the wind power may be

insufficient and inaccurate, and there are also control errors

of the wind power generations. Therefore, a regulation signal

will be generated based on both the mismatched power and

the control error of wind power generations. Following the

regulation signal (∆PD), BESSs are then implemented to

absorb the excessive power or compensate the insufficient

power according to the proposed algorithm.

E. Algorithm Implementation

With designating each BESS as an agent, the proposed

algorithm is implemented in a distributed manner under a

MAS framework. Each agent consists of two control levels.

The top control level consists of three function modules,

i.e., the measurement module, the communication module

and the optimal solution discovery module. The measurement

module obtains and updates the local information, and the

communication module exchanges the information with the

neighbouring agents. With the information provided by the

measurement and communication module, the optimal solution

discovery module updates the information and generates the

output power reference for the bottom control level. Once

the power reference is generated, the bottom-level control is

implemented to control the agent to track this reference, which

can follow the control scheme introduced in Fig. 3.
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Fig. 3. The control diagram for a BESS

Fig. 4. IEEE 14-bus system with five BESSs

V. SIMULATION RESULTS AND ANALYSIS

In this section, four case studies are provided to verify

the effectiveness of the proposed optimization algorithm. In

Case 5.1, the proposed algorithm is compared with another

resource management approach to show the advantages of our

algorithm. In Case 5.2, a modified IEEE 14-bus system with

five BESSs and two WTs, as depicted in Fig. 4, is built in the

MATLAB/Simulink that to demonstrate the convergence of the

proposed algorithm under constant renewable generation and

load demand. Case 5.3 is carried out with uncertain output

power from the renewable generation. Finally, the scalability

of the proposed algorithm is investigated in Case 5.4 where

a 30-BESSs system is built in the MATLAB/Simulink.

During the simulation studies, the ToU signal is adopted

as Fig. 7 to imitate the tariff in real application, which

simplifies the signal in [33] but keeping the same property.

The simulation parameters are summarised in Table. I that are

adopted from the experimental results in [19], and the topology

of the communication network is implemented to be identical

to the physical network.

A. Case 5.1

To reveal the effectiveness of the proposed algorithm, our

algorithm is first compared with another continuous algorithm

TABLE I
PARAMETERS OF SIMULATION STUDIES

αi βi Pmin
B,i

(kW) Pmax
B,i

(kW) ωi

BESS1 0.2037 1.0460 0 60 0.20
BESS2 0.2815 1.2309 0 65 0.16
BESS3 0.1987 1.0292 0 68 0.24
BESS4 0.2092 1.1245 0 62 0.22
BESS5 0.2247 1.0996 0 70 0.18

0 10 20 30 40 50 60 70 80 90 100

Time (s)

5

10

15

20

25

30

35

T
h

e
 m

a
rg

in
a
l 
c
o

s
t

BESS1

BESS2

BESS3

BESS4

BESS5

Fig. 5. The marginal cost update under the proposed algorithm

in [34]. Without loss of generality, the ToU pricing and the

supply-demand mismatch are assumed to be a constant value

and the operation condition is assumed to be same for this

comparison study. As shown in Figs. 5 - 6, the marginal cost

of each BESS can converge to its optimal value under both

of the algorithms. However, by replacing the global mismatch

estimator by a distributed estimator, the convergence speed

of the proposed algorithm is faster than the algorithm in [34].

Additionally, the proposed algorithm guarantees the optimality

without sharing the information about its own cost function.

B. Case 5.2

In this case study, the performance of the proposed dis-

tributed strategy is investigated in the IEEE 14-bus system.

The microgrid is operated in the islanded mode and the supply-

demand mismatch is set to be a constant value as 180kW. As

shown in Fig. 8, the marginal cost of each BESS converges

to the optimal value, and with the change of the ToU tariff

during the simulation, the marginal cost will converge to a new

optimal value according the price signal. Figs. 9 - 11 depict

the output power references, the supply-demand mismatch

estimation, and the total output power of BESSs, respectively.

The results show that the output power references converge to

the optimal value according to the marginal cost update and
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Fig. 6. The marginal cost update under the algorithm in [34]
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Fig. 8. The marginal cost update under the proposed algorithm

meanwhile, the supply-demand mismatch is eliminated by the

proposed algorithm, which indicates its promising application

in real-time control.

C. Case 5.3

Since the output power from the wind power generations

will be uncertain and time-varying, the required power from

BESSs will be time-varying when high penetration renewable

sources are integrated into the microgrid. In this case, a simu-

lation study is carried out under a time-varying output power

from the wind power generation to verify the effectiveness
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Fig. 9. The output power update under the proposed algorithm
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Fig. 10. The power balance estimation
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Fig. 11. The total output power of BESSs
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Fig. 12. The output power profile of the wind power generation

of the proposed algorithm. the microgrid is supposed to be

islanded in 0s intentionally. The WTs in Fig. 4 are controlled

in the reactive power regulation mode, and the output power

from each WT is given in Fig. 12, respectively. During the sim-

ulation period, each BESS implements the proposed algorithm

and is controlled by the strategy in Fig.3. With the coordination

scheme in Fig. 2, Figs. 13 - 14 present the results for the output

power, the power balance estimation, respectively. It can be

observed that the power outputs from BESSs converge to the

optimal value, and meanwhile, the supply-demand mismatch is

eliminated by the proposed algorithm under the time-varying

wind power generations.

D. Case 5.4

To extend the proposed algorithm to a large-scale system,

the algorithm should be rendered to converging to the optimal

value in a timely manner. Thus, the scalability of the proposed

algorithm is investigated in this case. To this end, a 30-

BESS system is built in Matlab/Simulink, and the single line

diagram of the 30-BESS system is shown in Fig. 15. The

communication network is designed to be weight-balanced

and strongly connected, and the supply-demand mismatch
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Fig. 13. The output power update under the proposed algorithm
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Fig. 14. The power balance estimation

Fig. 15. Single line diagram of the 30-BESS system

is assumed as 1000 kW. The scalability is demonstrated by

observing the results in Figs. 16 - 17, which show the output

power of each BESS converges to their optimal values while

the deviations between demand and supply power converge to

zero.

VI. CONCLUSION

The coordination problem of BESSs in a microgird under

high penetration of renewable sources is investigated in this

paper. A distributed cooperative control strategy is proposed

for BESSs to maintain the supply-demand balance in a mi-

crogrid while increasing their profits and energy efficiency.

Based on the proposed MAS framework, the proposed solution
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Fig. 16. The output power update under the proposed algorithm
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Fig. 17. The power balance estimation

can be implemented in a distributed manner without a central

coordinator. Besides, the results indicate that the optimal

solution is achieved without releasing the information of the

cost function. The effectiveness and the scalability of the

proposed distributed strategy are further demonstrated by the

simulation using the IEEE test systems and 30-BESS system.
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