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Abstract 

In this paper we make a qualitative study of the dynamics of diffusively coupled identical 

systems. In particular, we derive conditions on the mutual coupling of the systems that guar- 

antee global synchronization of the systems, and analougously, conditions that guarantee certain 

oscillatory behavior to occur. 

Keywords: Synchronization, Cellular neural networks, passivity. 

1 Introduction 

Recently an increasing interest has been devoted to the study of cellular neural networks 

(CNNs) [4, 22, 23, 191. A CNN consists of mutually coupled dynamical systems and due 

to interactions it can demonstrate very complex behavior even in case when each cell itself 

is described by simple equations. Among the possible applications of CNNs we mention 

the very interesting fields of telecommunication [12] and mathematical biology [9]. 

Even CNNs consisting of simple cells form, after coupling, high dimensional nonlinear 

systems, and therefore such CNNs are difficult to  study analytically. However, recently 

some progress in the qualitative study of CNNs has been made. A thorough analysis of 

*The work was performed while the author was with the Faculty of Mechanical Engineering, Eindhoven 

+Also at Faculty of Mechanical Engineering, Technical University of Eindhoven, PO Box 513,5600 MB, 
Technical University, The Netherlands 

Eindhoven, The Netherlands. 
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CNNs consisting of cells described by first order equations coupled in linear 1-D arrays can 

be found in [23, 191. It was shown that even in such simple setting it is possible to  observe 

nontrivial phenomena called local diffusion and global propagation. 

In the present paper we are interested in oscillatory behavior in networks composed of 

identical dynamical systems and coupled in arbitrary arrays via zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdiflusive coupling, that is 

the systems are mutually linearly coupled with some restrictions on the coupling matrix. 

Two particular phenomena will be studied: synchronization and generation of oscillations 

via diffusion. We will present conditions in terms of the coupling that guarantee global 

synchronization in the diffusive network and we will show that in growing networks (the 

number of cells grows) when the number of interconnections grows no more than linearly 

with respect to the number of cells the systems eventually will lose this synchronization 

property. However the synchronization can be retained if one aiiows for a quadratic growth 

of the number of interconnections. Our research generalizes some studies of synchronization 

in arrays of linearly coupled dynamical systems (see e.g.[26, i]) because we allow for an 

arbitrary topology of interconnections. 

We will also show that diffusive networks can generate oscillations which can be ob- 

served for almost all initial conditions even in case when each unconnected cell is globally 

asymptotically stable. For diffusive coupling this phenomenon is possible only if each cell 

is described by a third (or larger) order differential equation. 

The paper is organized as follows. First (Sections 2 and 3) we present necessary back- 

ground material. A notion of diffusive coupling will be defined in Section 4. Section 5 
deals with the synchronizatiori phenomena occuring via diffusion. In Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 we present 

condition resulting in oscillatory behavior in diffusively coupled systems. Some useful prop- 

erties of diffusive networks are discussed in Section 7. Section 8 contains some concluding 

remarks. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 Notations 

The Euclidean norm in R" is denoted simply as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 1, /xi2 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxTx, where defines transpo- 

sition. We will study notions relative to nonempty subsets zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA, of R", O E A; for such a set 
A, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1x1~ = dist(x, A) = inf,,A dist(x, q)  denotes the Hausdorf distance from x E R" to A. 

A function V : X -+ R+ defined on a subset X of R", O E X is positive definite if 
V ( x )  > O for all x E X \ {O) and V(0) = O. It is radially unbounded (if X = R") or proper 
if V ( x )  -+ co as 1x1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 co. A nonnegative function V : X -+ R+ is said to  be positive 
definite with respect to the set A if V ( x )  > O for all x E X \ A  and V ( x )  = O for all x E A. 
It is proper with respect to A if boundedness of V ( x )  implies boundedness of I X I A .  

If a quadratic form xTPx with a symmetric matrix P = PT is positive definite then 

the matrix P is called positive definite. For positive definite matrices we use the notation 

P > O; moreover P > Q means that the matrix P - Q is positive definite. 

A matrix A for which all eigenvalues have negative real parts is called Hurwitz or stable. 

An invariant set A c R" for the dynamics II: = f(x) is said to  be noncritically stable 
if it is Lyapunov stable, that is all solutions starting close enough to  A remain close to 

A for all t and additionally Ix(t)lA 5 Ceëbtlx(0)(A for sufficiently small Ix(0)l~ with C, 6 
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perhaps depending on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIx(0) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI A .  
The system zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= f ( x )  is called Lagrange stable if all its solutions are bounded. If the 

ultimate bounds can be chosen independently of the initial conditions we will say that all 

solutions are ultimately bounded. 
For matrices A and B the notation A@ B (the Kronecker product) stands for the matrix 

composed of submatrices A, B, i.e. 

where Aij, i , j  = I . .  . n, stands for the ij-th entry of the n x n matrix A. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 On passivity with respect to sets 

Consider the nonlinear time-invariant affine system: 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx E R" is the state, u E R" is the input which is assumed to  be a COII~~IXQUS 

and (essentially) bounded function of time: u(.) E Co n ,Cm, y ( t )  E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE" is the output; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
f : R" + R", f ( 0 )  = O, g : Rn + BnX" are smooth enough to ensure existence of solutions 

in any reasonable sense, e.g. in the sense of Filippov, at least on a finite time interval 

O < t < T,o,u; h : R" -+ R" is the output mapping. 

Suppose there exist a nonnegative differentiable' storage function V : R" + R+, V(0) = 
O and nonnegative continuous function S : R" + B+,S(O) = O such that for all admis- 

sible inputs u and initial conditions z(0) = zo and for all time instants O 5 t < Szo,u the 

following dissipation inequality is valid: 

V ( x ,  u) 5 yTu - S(x) .  (3) 

Then the system (2) is called a passive system, see, e.g. [lo, 31. If, additionally, S is 
positive definite then the system (2) is called strictly passive. 

From the definition of passive systems one can draw two important conclusions. First, if 

the strictly passive system (2) possesses an inherent dynamics consistent with the constraint 

y = O (zero dynamics) and V is positive definite, then the origin is an asymptotically stable 

equilibrium of the zero dynamics. Secondly, if V is positive definite, then the origin is a 

stable equilibrium of the free system (u O) (in case of strict passivity the origin is 

asymptotically stable). 

'In fact, the function V is not necessarily differentiable. In this case we will assume that V is locally 

Lipschitz continuous (it satisfies a Lipschitz condition on any compact set). Indeed, if z(t) is a bounded 
solution in the sense of Filippov, then it is absolutely continuous function of time and therefore V(z( t ) )  is 
also an absolutely continuous function of time, that is its time derivative exists almost everywhere. 
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The theory of passive systems plays an important role in modern control theory ([3, 

13, 251). In a natural way it extends the notion of positive real linear systems to  nonlinear 

systems. 

In this paper we need some weakened version of passivity because we focus our attention 

on systems exhibiting oscillatory behavior for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu E O. 

Next we define a semipassive system. This notion was introduced in [15]; in [17] an 

equivalent notion was called quasipassivity. Roughly speaking a semipassive system behaves 

as a passive system for sufficiently large zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1x1. More precisely, assume that there exists a 

nonnegative function V zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: R" -+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE+ such that for all admissible inputs, for all initial 

conditions and for all t for which the corresponding solution of (2) exists we have 

,Y(.> 

where the function H : Rn -+ R is nonnegative outside some ball: 

for some continuous nonnegative function e defined for 1x1 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp. If the function H is positive 

outside some ball, i.e. (5) holds for some continuous positive function e, then the system 

(2) is said to be strictly semipassive. 
The notions of semipassivity and strict semipassivity can be treated as a generalization 

of the passivity concept to  the passivity with respect to  compact sets. Indeed, if V is 

radially unbounded then from (4) it follows that semipassivity of (2) impiies that (2) is 

Lagrange stable for u 3 O or all solutions of (2) are ultimately bounded for u O (in 
case of strict semipassivity). However, the concept of passivity with respect t o  sets can 

be introduced in a slightly different manner [15]. Namely, if the function V in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3) obeys 

V ( x )  = O for all x E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA and the function S is positive definite with respect t o  A then 

the system (2) is referred to as strictly passive with respect t o  A. From the notion of 

strict semipassivity with respect to sets it is also possible to  derive a stability property 

of the set A of free system (u 3 O). Indeed, if V is proper w.r.t A and A is compact, 

then A is globally asymptotically stable set for (2). Moreover, if A is not compact but 

all solution of the free system exist on the infinite time interval, then again the set A is 

asymptotically stable set for (2) with u 3 O. These statements immediately follow from 

Lyapunov theorems for stability of sets, see e.g. [li]. 

In fact, there is a close connection between the concepts of semipassivity and passivity 

with respect to compact sets, however, we will not discuss this topic here. 

The concept of semipassivity alows one to find simple conditions which ensure bound- 

edness of the solutions of interconnected systems. Consider IC identical systems of the form 

2 . -  f .  
3 - 3 ( 4  + sj(x3)uj 

Y3 = hj (x3) 

(2) : 

(6) 

where j = 1,. . . , k .  
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Define the symmetric zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx k matrix r as 

where rij = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAyji zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 O. The matrix r is symmetric and therefore all its eigenvalues are 
real. Moreover applying Gerschgorin's theorem about localization of eigenvalues (see, e.g. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[Li]) one can see that all eigenvalues of I' are nonnegative, that is the matrix r is positive 

semidefinite. 

The foiiowing result gives conditions under which the solutions of the interconnected 

systems (6) are bounded. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Lemma 1 ([16]) Consider the systems (6) in closed loop with the following feedback 

uj = -7j1(Gj - 7Jl) - 'Yjz(7J.j - y 2 )  - * .  . - ?jk(Yj - Yk) (8) 

where yj = Kj(xj) and kj : Rnj +- R" is a smooth mapping such that &(O) = O .  Suppose 
that the systems (6) are semipassive with respect to  input uj  and output y j  = hj(xj) with 
radially unbounded storage functions V, 1 Rnj -+ R+ and functions Hi satisfying (5), 
j = 1,. . . k .  Assume the function 

with x = C O ~ ( X ~ ,  . . . zk), y = col(y1,. . . yk) ,  7J = col(y1,. . . , y k ) ,  satisfies 

for some continuous function e defined f o r  1x1 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp. Then if the function e is nonnegative, 
then all solutions of the closed loop system (6), (8) exist fo r  all t 2 O and are bounded, 
that is the system (6), (8) is Lagrange stable, moreover if the function e is positive, then 
the closed loop system (6), (8) has ultimately bounded solutions. 

Corollary 1 ([16]) Suppose that the systems (6) are semipassive with radially unbounded 
storage functions V, : Rnj --+ R+. Then all solutions of the systems (6) in closed loop 
with the feedback 

with yji = yij 2 O ,  exist for all t >_ O and are bounded, that is, the system (6), (10) 
is Lagrange stable. Moreover, i f  the systems (6) are strictly semipassive with radially 
unbounded storage functions 6 : Rnj -+ Et+ then all solutions of the coupled system (6), 
(10) exist fo r  all t 2 O and are ultimately bounded. 
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4 Diffusively coupled dynamical systems 

Let us give a definition of diffusive coupling of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk identical systems. This definition was 

introduced in [16] and was inspired by the paper of Smale on interaction between two cells 

[20]. We will understand a diffusive medium as a system of ordinary differential equations 

consisting of interconnected identical systems. Each separate system has an input and 

output of the same dimension. The diffusive coupling is described by a static relation 

between all inputs and all outputs. Notice that our approach to  describe the diffusion is 

different from that proposed in [23]. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Definition 1 Given the systems zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

/ x .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt B U j  t yj  = cx j  

where j = 1,. . . , k ,  xj(t) E IRn is the state of the j-th system, uj(t) E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIR" is the input, 
y j ( t )  E R" is the output of the j-th system, f ( O )  = O and B, C are constant matrices of 
appropriate dimension. We say that the systems (11) are diffusively coupled if the matrix 
CB is similar t o  a positive definite matrix and the systems (11) are interconnected by  the 
f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo1 lowing feedback 

uj = -"vj.l(yj - yi) - Yj2(yj  - 32) - . . . - 7'  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ k  ( Y3 . - yk )  (12) 

where rij = ~ j i  2 O are constants such that 

A motivation for this definition comes from the paper by Smale [20] who studied os- 

cillatory behavior of coupled cells when each unconnected cell is globally asymptotically 

stable. This phenomenon will be briefly described in Section 6, for more details, see [16]. 

yji > O for all i = 1, . . . , k .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 Synchronization of diffusively coupled systems 

Nowadays synchronization of dynamical systems is a very popular topic. It attracts atten- 

tion of researchers from different fields (see e.g the November 1997 special issue of IEEE 
Transactions on Circuits and Systems, Part I>. Various definitions of this phenomenon 

coexist and below we define synchronization following [2]. 

Consider IC dynamical systems described by the k interconnected systems of ordinary 

differential equations: 

si : ai = Fi(xl, 2 2 , .  . . , xk, i), i = 1,. . . , k (13) 

where Fi : IRn1 x . . . x Rnk x R+ + Rni. In this paper for simplicity we will give a coordinate 

dependent definition of synchronization. A more general coordinate-free definition of the 

problem of controlled synchronization involves a coordinate-free definition of dynamical 

systems and can be found for example in [2]. Associated with the systems (13) consider 

some time-dependent functional Q defined on the solutions xi(-) to  these systems: Q : 
Xl x . . . x Xk x IR+ -+ IR, where Xi C {xi : R+ -+ IRni}. We will say that solutions of the 

systems Si are synchronized if the value of the functional Q is identically zero for these 

solutions for all t 2 O. 
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Definition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASolutions x l ( t ) ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . . , xk(t) o j  the systems sl, . . . , s k  with initial conditions 
xl(0), . . . , xk(0)  are called synchronized with respect to  the functional Q i f  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

&(xi(*), . . . , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxk(*), t )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE O, (14) 

f o r  all t E R+. 

are asymptotically synchronized with respect to the functional &, i f  
The solutions x1 (i), . . . , (i) of the systems SI ,  . . . , s k  with initial conditions x1 ( O ) ,  . . . , xk (O) 

t-tm lim(&(xl('),...,lck(')it)) = o  (15) 

As one can notice this definition includes different variants of synchronization as intro- 

dücec! by severa! authors. Fer example, synchronization with respect to the functional 

k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i=2 

when all systems are identical and written in the same coordinate systems is usually re- 

ferred to as identical synchronization. Obviously, here the functional Q can be taken as a 

time independent function of the state variables. In this case the synchronization can be 

interpreted as a convergence to  the "diagonal" set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA = (21, . . . , xk E IKn : xi = xj; i, j = 
1,. . . I C } .  If this is the case for all initial conditions in some open neighborhood of A then 

the synchronization is equivalent to  attractivity of A. For practical reasons i t  is conve- 

nient to  consider a stronger case when the set A is not only attractive but also Lyapunov 

stable. This case is called strong synchronization [8]. However attractivity of A does not 
necessarily imply Lyapunov stability of A. Indeed, even if A is a singleton, e.g. A = {O} 

then even if any solution of the system It: = f ( x ) ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf ( 0 )  = O ,  x( t )  E R", n 2 2 starting close 

to the origin satisfies x( t )  +- O as t +- 00 it does not mean that the origin is asymptoti- 

cally stable, see [7]Section 40. The case when A attracts solutions starting from a set of 

positive Lebesque measure but A is not Lyapunov stable is called weak synchronization 
[8]. Although the case of weak synchronization is of some theoretical interest, for practical 

purposes it is not so important because small disturbances affecting the system can destroy 

the synchronization. In the sequel, we will study strong synchronization, namely we will 

present sufficient conditions when A has a compact asymptotically stable subset. 

Using the above definition of synchronization it is also possible to  capture other syn- 

chronization notions. For example, the case k = 2 and 

where G is some continuous function corresponds to  the so called generalized synchroniza- 
t ion [14]. 

In what follows we are interested in the case of identical synchronization of identical 

systems forming a diffusive network. 

In this case we rewrite the systems (li) in a form which can be obtained from (11) via 

a linear change of coordinates: 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx j ( t )  E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEX"-", q zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: R"-" x Rm + IR"-", a : R"-" x Rm + R". 
Let the eigenvalues of the matrix I? be ordered as: O = yl <_ y2 5 . . . 5 yk. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Theorem 1 Assume that 
A l .  The functions q,  a are locally Lipschitz continuous. 
A2. The system 

.i = 4 2 ,  Y) 
6 = a(x ,  y )  + CBu 

is strictly semipassive with respect to  the input u and output y with a radially unbounded 
storage function V : E" + R+. 
A3. There exist a C2-smooth positive definite function V-, : R"-" -+ R+ and a positive 
number Q such that the following inequality is satisfied 

fo r  all z1,x2 E EtnWrn, y1 E IRm. 
Then  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor all positive semidefinite I' as in (7) all solutions of the closed loop system (ij), 
(12) are ultimately bounded and there exists zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 such that for all positive semidefinite l7 for 
which y2 > 'y there exists a globally asymptotically stable compact subset of the diagonal 
set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA= (xj =R" : xi =xj, i , j  = 1, . .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. , k ) .  

PI-QQ~: Assumption A l  ensures existence of unique solutions of the closed loop system 

at  least on a finite time interval. By Corollary 1 all solutions are ultimately bounded. 

Moreover, from the proof in [15], [16] one can see that the bounds in the inequalities 

1x1 5 &, JyI 5 BY do not depend on the coupling matrix r. 

IRkrn. Introduce a new set of variables: 2l = xl, 22 = x1 - x2, . . . , 2 k  = x1 - xk. In matrix 

notation this change of coordinates can be written as 2 = Adz, where M = P @ I, is the 

orthogonal matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk n  x k n  with 

Let x = col(xl, x2,. . . , xk) E x = col(xl,x2,. . . , z k >  E R'("-") , Y = COl(Y1, Y2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf . . , Y k )  E 

P = ( 1  1 Ik-1 O ) 
Notice that 

where the ( k  - i) x ( k  - i) matrix I'1 has eigenvalues y2, . . . , yk. 

existence of a positive definite function Vi : 

Denote w1 = col(Z2, . . . , Zk) and w2 = c01(jj2,. . . , Qk). Assumption A3 implies the 

-+ R+ such that 

with a1 > O. 

Since l7 = rT one can conclude that there exists a nonsingular ( k  - i) x ( k  - i) matrix 

F such that FrlF-' = diag(~2, .  . . , yk). Introduce new coordinates 61 = ( F  @ I,-m)wi 
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and 6 2  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( F  
there exists a positive definite function V2 : zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIR("')("-") -+ R+ such that 

I m ) w 2 .  Since stability is invariant under a linear change of coordinates 

for some 012 > O 
Now consider the following Lyapunov function candidate: 

Notice that due to  the ultimate boundedness of all solutions and smoothness of the right 

hand side of the dosed loop system we have for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1x1 I &, IyI 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk$,, 

%(GI, 6 2 )  - %(&, O) I c11611 ' 1621 

and 
d 
d t  -6 ,T@2/2  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI C 2 1 ~ 1 1 -  I 6 2 J  - ( y 2 P  - C3) IW2I2  

for some nonnegative C1, C 2 ,  C, with p > O being the smallest eigenvalue of the matrix 

CB. 
Hence 

v 3  L -aI61I2 + (Cl + C,)l6ll 11-021 - ( y 2 P  - C 3 ) I 6 2 I 2 .  

In other words, for sufficieniy large y 2  we have for some E > U 

Integrating this inequality over [O, t )  yields 

which proves the Lyapunov stability of the set 

contains a compact attractive subset which attracts all solutions. 

and therefore exist on the infinite time interval) yields 

= O, 6 2  = O. Next we prove that this set 

Integrating (20) over [O, 00) (recall that we have proved that all solutions are bounded 

The left hand side of this inequality is bounded, the integrand is nonnegative, therefore 

the integral exists and is finite. Consequently, all solutions of the closed loop system are 

bounded, the right hand side of the closed loop system is locally Lipschitz continuous, 

therefore the right hand side of the closed loop system is bounded for any solution, or, 

equivalently, 41 (t) ,  ?Lja(t) are bounded. Hence 61 ( t ) ,  6 2 ( t )  are uniformly continuous in t 
and therefore I1-0l(t) 12+11-02(t)12 is uniformly continuous in t as well. So, we have proved that 

there exists a finite integral over the infinite interval of the uniformly continuous function 

IZUl(t)I2 + I1-02(t)I2. According to Barbalat's lemma [18] this function tends to zero, that is 

lwl(t)I2 + I ~ ~ ( t ) l ~  -+ O as t -+ 00. a 
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Remark 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASince Assumption A2 implies ultimate boundedness of all solutions it is suf- 

ficient to  require that Assumption A3 is valid only on the compact set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(21 < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABZ, IyJ < Bg. 
n 

At this point it is useful to make some comments. Consider the systems (17). It can be 

seen that these systems have inherent dynamics consistent with the external constraints 

y1 - y2 = O, y1 - y3 = O , .  . . , y1 - y,+ = O governed by the following equations: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
j/l = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4% Pi) (22) 

Moreover Assumption A3 can be interpreted as follows: the dynamics (21) driven by an 

admissible zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy l ( t )  has a noncritically stable set z1 = x2 = . . . = z k .  Therefore Assumption 

A3 is a natural generalization of the notion of hyperbolically minimum phaseness to  the 

case of stabilization of sets. 

Recall that hyperbolically minimum phaseness of each subsystem means that the system zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Z = q(z, O) 

has a noncritically stable zero solution. As one can notice Assumption A3 is a sufficient 

condition for hyperbolic minimum phaseness but not necessary. A possible characterization 

of Assumption A3 can be given by the use of concept of convergent systems. 

Consider the following system: 

X = q(z, d)  (23) 

where x ( t )  E R", d( t )  E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAID, D is some compact subset of Rp, the function d : R1 -+ ID 
is assumed to be continuous and the vector field q : R" x ID + R" is locally Lipschitz 

continuous in z and continuous in d. 
Following Demidovich [5] we give the following definition: 

Definition 3 The system (23) is said to  be convergent i f  

i. all solutions z( t )  are well defined for all t E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJR1 and all initial conditions z (0) .  

ii. there exists a globally asymptotically stable unique solution x ( t )  bounded for all -00 < 
t < 00, i.e. for any solution z ( t )  it follows that 

lim Ix(t) - Z ( t ) (  = O 
t+m 

, 
Moreover, if ( z ( to )  - Z ( t o ) l  := ó(t0) is sufficiently small so we have Ix( t )  - %(t)J 5 

Cexp(-a(t - to))  with C > O and Q > O, perhaps depending on ó(to), we will say that the 

system (23) is noncritically convergent. 
If, additionally, the system (23) is convergent for all continuous functions d from the 

given class 27 = { d  E Co : RI -+ ID}, the system (23) is referred to as convergent in D. 
According to [5] there exists a simple sufficient condition which guarantees that the 

system (23) is convergent (see [5], page 286; we present a more general result which can be 

derived from [SI via linear coordinate change): 

, 
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Theorem 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAssume that there exists a positive de.finite matrix P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPT > 0 such that all 
eigenvalues of the symmetric matrix 

are negative zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor all z E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIRs and 
Then the system (23) is noncritically convergent in the class D. 

E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJD. 

Remark 2 It is also worth mentioning that the result of Theorem I can be considered in 

the framework of passivity/passifiability with respect to  sets. Indeed, consider the systems 

(17) in c!osed !ûop with 

uj = -'yji(!/j - y l )  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 j2(y j  - y2) - . - 7' 3k ( y3 . - yk) + vj (24) 

where j = 1,. . . , k and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv = col(vl, . . . ,uk) is a new input. In this case Theorem 1 ensures 

existence of a ( k  - 1)m x km matrix L such that the closed loop system is strictly passive 

with respect to set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA with input Lu and output 6 2  with a storage function being the 

n function V, as in equation (19). 

Example 1 Synchronization of an array of Lorenz systems. 
Consider the following k systems: 

kj = a(y j  - X j )  + uj 

rx j  - yj  - 2 .z .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 3  
i .  - -bz. + z .  . 

3 - 3 3Y3 

with j = I , .  . . , k and 

uj = -Tji(yj - y1) - 7 j 2 ( 7 J j  - y2) - . . . - 7'  3k ( Y3 . - yk) 

We will show that if the smallest nonzero eigenvalue of the matrix F is large enough then 

the k systems synchronize according to 

k k k c I X d Q  - -+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA07 c I Y l ( t )  - Y j M  + o, I Z l ( t )  - &)I -4 o 
j=2  j=2  j=2 

as t -+oo.  

First we check that the system 

is strictly semipassive with respect to the input u and output ~ 1 .  To this end consider the 

smooth function 
1 

V(% Y i ,  2 1 )  = - 2 (x: + ys + ( X i  - 0 - r )2 )  (27) 
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Its time derivative with respect to the uncontrolled system zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(u($) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 O) satisfies: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

' $1 = ?-XI - y1 - 21z1 

21 = -bz1 + x1y1 

Y2 = TX1 - Y2 - X l 2 2  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
32 = -bz2 + ~ 1 7 ~ 2  

< .  

y k  = rx1 - yk  - x 1 z k  

i k  = -bzk + X l y k  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
k 51 = O(Y1 - X i )  

(a  + r )2  
V(x1, y1, XI) = -ax: - y; - b (zl - ->2 + b 4 

2 

It is seen that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV = O determines an ellipsoid outside which the derivative of V is negative. 

If K satisfies 

K2 = - + - max{ -, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI} 
1 b  1 

4 4  a 
then this ellipsoid lies inside the ball 

Now let us show that the system 

is noncritically convergent for any bounded x1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(i). Indeed, the symmetrized Jacobi matrix 

for this system has two eigenvalues -1 and -b and therefore, according to Theorem 2 there 

exists a quadratic function which satisfies Assumption A3 of Theorem 1. 

Thus all the conditions of Theorem 1 are satisfied and so there exists a number 7 such 

that for sufficiently large y2 > 7 the system of k diffusively coupled Lorenz systems has 

an asymptotically stable compact subset of the set {XI = 2 2  = . . = x k ,  y1 = y 2  = . . . = 
n yk,  21 = 22 = . . . = xk}- r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

6 On diffusion driven instability 

In the previous section we considered a phenomenon which can be observed in a network of 

diffusively coupled minimum phase systems. Even in case when each separate free system 

oscillates irregularly coupled together they may exhibit some kind of synchronization. In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
12 



this case synchronization can be considered as a sign of cooperation via diffusion. However 

arrays of diffusively coupled systems may exhibit asynchronous oscillatory behavior also as 

a result of cooperation via diffusion. Namely, assume that each free system in the array of 

diffusively coupled systems is globally asymptotically stable. A common understading of 
diffusion is a smoothening or trivializing process; however an array of diffusively coupled 

globally asymptotically stable systems may demonstrate oscillatory behavior. 

First we restrict the class of oscillatory systems we will deal with. Given a system of 

autonomous differential equations 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx E R". We will say that the system (30) is oscillatory in the sense of Yakubovich, 

er zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY-oscillatcry if any sd~ t io f i  of (30) is bounded and for almost ail initial conditims the 

corresponding solution does not tend to a constant (see e.g. [24]). 

The purpose of this section is to give an explicit construction of diffusively coupled 

globally asymptotically stable systems that become oscillatory being interconnected. One 

of the possible motivation of this problem lies in the field of mathematical biology, see [2O]. 
We assume that the topology of the interconnection is described by the matrix r as 

defined in (7) with entries 7i.j as in Definition 1. 

Let A be a n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx n matrix, n 2 3 

X = F ( x )  (30) 

where All is a (n - m) x (n - m) matrix, 1 5 m 5 n - 2 and the other matrices are of 

corresponding dimensions. Let B and C be full rank n x m and m x n matrices such that 

the product CB is a positive definite matrix. 

The following theorem was proved in [16]. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Theorem 3 Assume that the following assumptions hold f o r  the above matrices A, B and 
C.  
A l  The matrix A is Hurwitz. 
A2 The matrix All has an even nonzero number zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof eigenvalues with positive real parts. 
A3 The matrix (CB)-lT, where T = (A22 - A21A;iA12), has no positive real eigenvalues. 
Then there exists a C1-function f R" + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR", f ( z ,  y) = col(q(z, y), a(z ,  y)), where 
z E R"-", y E IRm, q IR"-" x IR" -+ Rm, such that 

: 

IR"-" x IR" -+ IR"-", a 

Moreover we have that 
1) The system 

2 = q ( 4  Y )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ii = a ( z , y )  

has a unique globally asymptotically stable equilibrium at the origin. 

i 
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2) For all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAyij zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 O the system consisting of k diflusively coupled systems zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- q(Zj ,Y j )  

$j = u ( z ~ ,  y j )  + CBuj (32) r uj - = -Tj ï ( ! / j  - yi) - ’ y j 2 ( ! / j  - 9 2 )  - . - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy’ 3k ( Y3 ‘ - g k )  

has ultimately bounded solutions, has the origin as a unique equilibrium and there exists a 
positive number zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 such that f o r  all yk > 7, where yk stands f o r  the maximal eigenvalue of 

the matrix r (cf. (7)), the closed loop system is Y-oscillatory. 

Let us clarify the assumptions of the theorem. Assumption A l  allows t o  find a smooth 

vector field on R” such that A is the Jacobian of f at zero and therefore the origin is a 

noncritical locally stable equilibrium of the system i = f (z). Assumption A2 guarantees 

that the zero dynamics of the system i = f(z) + Bu, y = Cz is hyperbolically unstable 
at the origin. Assumption A3 is required in order to prove that when losing stability the 

origin does not undergo a bifurcation that results in the birth of additional equilibria. I t  

is worth to  mention that Assumption A3 cannot be satisfied if the matrix All has an odd 

number of eigenvalues with positive real parts (This follows from Schur’s decomposition 

since Assumption A3 in this case contradicts the stability of the matrix A). 
The idea of the proof is relatively easy. It is based on an explicit construction of the 

vector field f in the form f (2) = A(1+ 1 ~ 1 ~ ) ~ .  In this case stability of the matrix A allows 

one to  prove ultimate boundedness of solutions of the interconnected systems (the result 

follows from Lemma 1). According to Gerschgorin’s theorem the matrix T‘ has nonnegative 

eigenvalues, therefore the diffusive feedback can be understood as a kind of “negative” 

feedback which is a “destabilizing” feedback for nonminimum phase systems. Moreover 
the hypotheses imply that the closed loop system has a unique equilibrium which, for 

sufficiently large yk, is hyperbolically unstable and therefore according to  the Hartman- 

Grobman theorem the set of initial conditions for which the corresponding solution tends 

to  a constant is of zero measure. Details of the proof can be found in [16]. 

It is worth mentioning that the condition n 2 3 is necessary in the following sense: if 

for n = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 the closed loop system is Y-oscillatory then each free system cannot be globally 

asymptotically stable (see Proposition 1 in [16]). This result answers one of the questions 

posed by Smale in [20] of finding a minimal order example of globally asymptotically stable 
systems which become oscillatory via diffusion. 

Example zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 Consider the following k systems 

where xj E IR3, y j  = Czj, 
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and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A = (  -i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA"). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB=( H), C = ( O O i ) .  

Simple calculations show that all conditions of Theorem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 are satisfied and therefore for 

sufficiently large ~ k ,  where yk is the largest eigenvalue of the matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI' the closed loop 

2 -3 

system is Y-oscillatory. n 

The above results allow for a better understanding of different oscillatory phenomena 

occuring as a result of cooperation via diffusion. Loosely speaking) in an array of diffusively 

coupled minimum phase systems one can expect the existence of synchronous properties 

while, in contrast, an array of CiiEusiveiy coupied nonminimum phase systems may exhibit 

oscillatory behavior even when each free system is globally asymptotically stable. 

7 Properties of diffusive networks 

In the previous sections we discussed some oscillatory phenomena occuring as a result 

of diffusive interaction between identical subsystems. We presented results which are es- 

sentially based on some properties of the matrix I? which describes the topology of the 

interconnections. In this section we will discuss the synchronization or oscillatory behavior 

of the diffusively coupled systems in relation to the topology of the coupling. 

Definition 4 A system consisting of k diflusively coupled systems is said to  be a cellular 

diffusive network i f  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAit cannot be decomposed in two or more disconnected subsystems. 

First we give a simple characterization of diffusive networks. 

Lemma 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA system consisting of k diflusively coupled systems is a cellular diffusive net- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
work i f  and only i f  any p x p , p  5 I% - 1 principal submatrix of ï i s  nonsingular. 

Proof: If the coupled system can be decomposed in disconnected systems then obviously 

there exists a singular principal submatrix of I' of the order less than k .  Therefore we need 

to prove that if there is a p x p ,  p 5 k - 1 singular principal submatrix of I' then the whole 

system can be decomposed in at least two sets of mutually not interconnected systems. In 

other words, if there is a singular principal submatrix of I' of the order strictly less than k 
then necessarily ï has at least two zero eigenvalues. Consider the matrix 

where E E [O, 11 and I" is a p x p ,  1 5 p 5 k - 1 principal submatrix of r. By assumption) 

I?' is singular) that is Po has two zero eigenvalues. Consider the matrix 
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It has only nonnegative eigenvalues. Therefore according to Weyl’s perturbation theorem 

the zero eigenvalues of the perturbed matrix cannot decrease and the number of zero 

eigenvalues of can not be less than the number of zero eigenvalues of ro. 

Definition 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe maximal number N of cells connected to  one cell in a diffusively coupled 
array of systems is called the density zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the cellular network. 

Definition 6 A cellular diflusive network is said to  be regular if 

i. All coupling constants are equal: yij zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy fo r  all i # j 
2. Each cell is ccnnected to  N other cells. 

Notice that we did not impose any other restrictions on the topology of the inter- 

connections, for example symmetry. Note that regular networks can model very complex 

structures including isotropic or anisotropic media. I t  is worth mentioning, however, that 

some symmetry in the coupling can generate very interesting properties of solutions bi- 

furcated via a Poincaré-Andronov-Hopf bifurcation which leads to  oscillations in coupled 

systems [6]. Moreover in some particular cases, e.g. for linear one-dimensional arrays, for 

rosette-like structures, the matrix r has a special structure (it turns out to  be a cyclic 
matrix) for which all eigenvalues can be found analytically [9]. 

It is worth mentioning that the numbers k (i.e. number of cells) and N (i.e. maximal 

number of connections at each cell) in no way define the complete topology of the network. 

Many different structures of the network can correspond to  the same k and N .  As before 

denote the eigenvalues of the matrix I? as follows: O = y1 5 y2 5 . . . 5 ~ k .  For any given 

IC and N the largest possible y2 will be denoted as yz (k ,N)  while the smallest possible yk 
will be denoted as yk(k ,  N ) .  

As we have seen in the previous sections stability analysis in diffusive networks es- 

sentially depends on two eigenvalues of the matrix I‘ which describes the topology of 
the interconnections. Therefore in the design of diffusive networks the following discrete 

optimization problems are of interest. Given N and k .  Find a structure of the (regu- 
lar) network which maximizes y2 ( k ,  N) (maximizes yk ( k ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN ) )  under the constraint that 

all nonzero yij,i # j are bounded from below and above by given constants. In general 

an analytic solution to  these problems is an open question. However, using methods of 

discrete programming one can find solutions based on computer computation. Clearly, 

the computational complexity increases significantly for large k .  In what follows we will 

present a solutions for particular cases and then we will focus our attention to  asymptotic 

behavior of yz(k, N )  and yk(k,  N )  when k tends to infinity. 

1 

Example 3 Consider the following problem. Given the density N ,  find k and a structure 

for a regular network such that y z ( k , N )  is maximal possible for all k .  A solution to 

this problem is trivial: k = N + 1. It corresponds to the “all to all” structure. In this 

case the matrix r has N eigenvalues equal to  (N  + i)? and one zero eigenvalue. Since 

a t r r  = N ( N  + 1)y the solution is optimal. 
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Example zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANow consider a similar problem. Given zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN, find zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk and a structure of regular 

network such that yk(k, N) is maximal possible for all k .  A solution is k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 2N. Take 

two clusters consisting of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN cells and connect each cell from the first cluster to  each cell 

from the second cluster. The matrix I? in this case has one zero eigenvalue, one eigenvalue 

equal to 2Ny and 2(N - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1) eigenvalues equal to Ny. According to Gerschgorin’s theorem 

2Ny is the maximal possible eigenvalue for regular networks of density N for arbitrary k .  
n Therefore the solution is optimal. 

Next we will investigate the asymptotic behavior of 72(k,  N) and yk(k, N) when k -+ 00. 

We are able to establish two remarkable facts for regular networks. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
rnl ~neosem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 For regular netwcrks the fellowing re ldon  is valid 

lim y2(k,N)  = O. 
k+m 

Proof: For simplicity take y = 1. Rewrite the matrix r in the following form 

where the column vector a E IRkp1 contains only N entries equal to -1. According 

to  Gerschgorin’s theorem all eigenvalues of I?’ are nonnegative. According to  Lemma 2 

F’ is nonsingdar, that is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI” is positive definite. Consider the vector x E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIRk-’, z = 
( l /dm,  l / d m , .  . . , l/d-). Clearly, 1x1 = 1. Moreover it follows that xTr’x = 
N ( k  - l)-I  (the sum of k - N - 1 rows of I” is zero, while the sum of the other rows is 1). 
According to  Fischer’s theorem (see, e.g. [21]) the smallest eigenvalue of the symmetric 

matrix I?’ is equal to rninl+~ xTr’z. Therefore the smallest eigenvalue of r’ is less or equal 

to N(k - 1)-’ and it tends to  zero when k tends to  00. 

Notice that 

where 
u=( Ik-1  T 1-1 O )  

-a r i 

Since a congruence transformation preserves the inertia (Silvester- Jacobi theorem) and I?’ 
is nonsingular while I‘ is singular it follows that aTr’-la = N. Moreover since is 

positive definite and the vector a consists of N nonzero entries one can see that the last 

string of n/í consists of N + 1 nonzero entries which are bounded for all k .  Rewrite the 

congruence transformation in the following form 

where 
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Since the eigenvalues of r’ can be made arbitrary small for large enough zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk for any zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> O it 

is possible to find zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk. and a two-dimensional subspace ID of IRk such that Idiag{I”, 0)zl < E 

for all z E D with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1x1 = 1 and all k 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk.. Using properties of the matrix M one can see 

that this implies the existence of a two-dimensional subspace ID1 of IRk such that IrzI can 

be made arbitrary small for large enough k and z E D1, IzJ = 1. According to  Fischer’s 

theorem 

7 2  = min max zTrX 
dimX=2 zEX,lzl=i 

Therefore 

Remark zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 The theorem statement remains true for arbitrary cellular networks if we 

assume that its density and maximal value of the coupling constants rij, i # j are bounded 

for k + 00. A 

In other words, if the number of interconnections grows at  most linearly with respect to 

the number of cells, then the smallest nonzero eigenvalue of the matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI’ which is “respon- 

sible” for synchronization with respect t o  the functional (16) decays as k goes t o  infinity. 

This fact significantly restricts possible synchronous modes in large diffusive networks. For 

example, if the regular network consisting of Lorenz systems studied in Example 1 grows 
then for any given y and N there exist a k. such that there is no synchronization as soon 

as k 2 k.. This fact explains the computer simulations carried out in [12]. 
Moreover, using the same technique as in the proof of the previous theorem it is possible 

to  show that zero is an accumulation point in the spectrum of the matrix I’ when k increases. 

At the same time if one allows for the number of interconnections to grow quadratically 

with respect to the number of cells in regular networks (this is the case for example in “all 

to all’ structures) then the smallest nonzero eigenvalue grows with k and the coupling gain 

y which ensures synchronization decays as IC-’ (see Proposition 1 in [15]). 
Now let us investigate the asymptotic behavior of the largest eigenvalue of the matrix 

I’ which is “responsible” for generation of oscillations in diffusive networks. 

Theorem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 For regular networks the following relation is valid: 

lim yk(k,  N )  = 2Ny. 
k+cc zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Proof: For simplicity take y = 1. According t o  the Gerschgorin theorem all eigenvalues 

of I? are less or equal to  2N, that is the matrix r+ = 2NIk - r has no negative eigenvalues. 

If the matrix r+ is singular then the largest eigenvalue of r is equal to 2N, therefore 

consider the case when I’+ is nonsingular and therefore positive definite. Using the same 

technique as in the proof of the previous theorem we prove that the smallest eigenvalue of 

I’+ tends to zero as as k -+ 00, in other words, the largest eigenvalue of I’ tends t o  2N. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw 
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Example zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThis theorem allows us t o  establish that the statement conjectured by Wu 

and Chua [27] is wrong. Given two diffusive networks with coupling matrices r’ and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I”’ such that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7;. The Wu-Chua conjecture claims that the conditions of global 

(identical) synchronization for the first network are equivalent to  the conditions of global 

synchronization in the second network. Theorem 1 gives sufficient conditions under which 

this statement is true. At the same time Theorem 5 asserts that for growing regular 

diffusive networks the largest eigenvalue does not tend to  zero. Since it is possible to 

design a system consisting of two diffusively coupled subsystems which are synchronized 

only if the coupling strength lies in some region (e.g. when each system is hyperbolically 

n nonminimum phase), in the general case the Wu-Chua conjecture is not true. 

8 Conclusion 

In this paper we presented analytical tools for the study of oscillatory behavior in the 

arrays of diffusively coupled systems with an arbitrary topology of interconnections. The 

dynamics of the network is essentially based on stability property with respect to  sets of 

the constrained dynamics usually referred to as zero dynamics. In case that this dynamics 

has a noncritically asymptotically stable compact set consistent with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1c1 = 22 = . . . = xk 
the whole system has a tendency to synchronization. Instability of the zero dynamics, in 

turn, leads to  generation of oscillations in diffusive networks. 

We also have shown that in growing networks the growth rate of the number of intercon- 

nection is essential for synchronization but not so important for generation of oscillations 

via diffusion in large networks. 
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