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Abstract--- A mobile ad hoc network is an autonomous system
of infrastructureless, multihop wireless mobile nodes. Reactive
routing protocols perform well in such an environment due to
their ability to cope quickly against topological changes. In this
paper, we propose a new routing protocol called Caching and
Multipath (CHAMP) Routing Protocol. CHAMP uses cooperative
packet caching and shortest multipath routing to reduce packet
loss due to frequent route breakdowns. Simulation results reveal
that by using a five-packet data cache, CHAMP exhibits excellent
improvement in packet delivery, outperforming AODV and DSR
by at most 30% in stressful scenarios. Furthermore, end-to-end
delay is significantly reduced while routing overhead is lower at
high mobility rates.

I. INTRODUCTION

A mobile ad hoc network is an autonomous system of mul-
tihop, wireless mobile nodes that does not require basestations
or any fixed infrastructure. It is characterized by dynamic
topologies, bandwidth-constrained, variable capacity links, en-
ergy constrained operation and limited physical security [1].
The lack of infrastructure, in combination with multihop
connections and constantly changing topology pose difficult
challenges on the routing protocol; foremost among them is
how to deliver data packets while incurring the least routing
overhead possible.

Over the last few years, many routing protocols for mobile
ad hoc networks have been proposed [2], [3], [4], [5], [6],
[7], [8]. These protocols can be broadly classified into three
categories, namely, proactive, reactive, and hybrid. Studies
show that reactive routing protocols perform better in terms
of packet delivery and routing overhead especially in the
presence of mobility due to the ability of these protocols to
quickly detect link failures [9], [10], [11].

In reactive routing, a node declares a link to a neighbor
as down if it fails to forward a packet to this neighbor. This
may cause one or more packets (at the node that encountered
the forwarding failure) to become undeliverable. To avoid
dropping such packets, DSR proposed an optimization known
as ‘‘packet salvaging’’ [6]. In this optimization, the node that
encountered the forwarding failure searches its route cache for
alternative routes. If a route is found, undeliverable packets
are forwarded through the alternative path. However, when
no alternative path is found, these undeliverable packets are

simply discarded. It is evident that in situations where link
failures are frequent, this simple mechanism may result in
increased packet loss as there is no guarantee that packet
salvaging will always be successful.

In this paper, we introduce cooperative packet caching, a
technique that exploits temporal locality in dropped packets,
aimed at reducing packet loss due to route breakage. Every
node maintains a small buffer for caching data packets that
pass through it. When a downstream node encounters a
forwarding error, an upstream node with the pertinent data
in its buffer and alternative route can retransmit the data. For
this strategy to be effective, nodes must store multiple routes
to every active destination. Hence, we propose a simple route
discovery mechanism that selects the shortest multipath routes.

The rest of the paper is organized as follows: Section
II discusses the property of temporal locality in dropped
packets. This property forms the basis of cooperative packet
caching. Section III presents CHAMP, a routing protocol that
implements cooperative packet caching and shortest multipath
routing. In Section IV, we discuss the simulation models based
on ns-2. In Sections V and VI, we evaluate the performance
of CHAMP and compare it with AODV and DSR. In Section
VII, we present a survey of related work. In Section VIII, we
finally state our conclusions.

II. EXPLOITING LOCALITY IN AD HOC NETWORKS

The use of caching to improve performance is not a new
concept. In fact, caching has been around since 1965 when
Wilkes [12] introduced it to bridge the speed gap between
processor and main memory. Basically, a cache is a small
but fast memory that stores data for use in the near future. It
exploits the property of locality in memory references in order
to reduce latency and increase memory bandwidth.

Two kinds of locality have been observed - temporal and
spatial [13]. Spatial locality is the property whereby an access
to a memory location indicates that a nearby location will very
likely to be accessed in the near future. Temporal locality is
the property whereby an access to a memory location indicates
that the same location will very likely to be accessed again
soon. It must be emphasized that without these properties,
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(that is, if memory accesses are totally random and indepen-
dent) caching will not improve performance since most cache
accesses will lead to ‘‘misses’’ which results in the processor
always accessing the main memory.

At present, caching is used not only in single-processor
environments but also in distributed systems [14]. The un-
derlying principle, though, is still locality. In mobile ad hoc
networks, Castaneda and Das [15] first investigated spatial
locality in the context of node mobility. They observed that
when a mobile node moves, ‘‘it cannot move too far too
soon’’. Query localization techniques exploit this property to
lower routing overhead during route discovery and repair.
Instead of network-wide flooding, route requests are flooded
only to a limited region that is previously part of a valid
route [15]. The reasoning is that the destination (or some nodes
with valid routes) can never be too far too soon from these
nodes, hence there is a big probability of finding it.

We now consider this situation: Suppose that some node i
is along some route from source h to destination j. Suppose
further that whenever a node fails to forward a data packet
to its next hop, it drops the packet and sends a route error
message to the source using the reverse route. Observe that
whenever i receives a route error from a downstream node k,
the error indicates the dropping of a data packet that source
h has recently sent and i has recently forwarded. Clearly,
dropped packets exhibit the property of temporal locality, that
is, ‘‘a dropped packet is a recently sent packet’’. Therefore,
if i has a buffer for caching forwarded data packets, even if
the buffer is small, there is a big probability that the packet
is still in that buffer. And if i has some other route to j, it
can ‘‘salvage’’ the dropped packet and need not forward the
route error upstream.

Although additional storage overhead is required for the
data cache and multiple routes, this technique, which we call
cooperative packet caching, can reduce packet loss due to
route breakdowns. In existing reactive routing protocols, only
the node encountering the error can salvage or retransmit a
data packet. Cooperative packet caching enables more nodes
to salvage a dropped packet, or in essence, packet salvaging
is distributed.

For cooperative packet caching to be effective, every node
must maintain at least two routes to every active destination.
One major problem of multiple path routing is the large routing
overhead generated during route search and maintenance.
A study revealed that TORA [3], a multiple path protocol,
generates more than 50 times the routing overhead of AODV
and DSR [9]. One solution to eliminate maintenance overhead
is to use data packets in place of the ‘‘keep-alive’’ packets by
spreading the packets over all the routes. However, per-packet
spreading creates another problem. The number of packets that
arrive out-of-order in the destination will increase, possibly
degrading the performance of certain applications. To address
this problem, we only select shortest multipath routes [16]
with equal lengths.

III. CHAMP ROUTING PROTOCOL

We briefly describe the routing protocol in this Section and
illustrate the important features, particularly shortest multipath
route discovery and cooperative packet caching. A complete
discussion of the routing algorithm including the proof of
correctness is presented in a previous work [17].

An ad hoc network is represented as a graph G = (N,L),
where N is the set of nodes and L is the set of edges or links.
Any node i ∈ N can act both as a router or data source. Let
Ni be the set of neighbors of i defined as the set nodes where
i has direct bidirectional connectivity.

The successor set at node i for each active destination j,
denoted by Si

j ⊆ Ni, is defined as the set of nodes that can be
used by i as a next hop for packets destined to j. The length
of any route from k ∈ Si

j to j is Dk
j . A unique property of

CHAMP is that it only includes a node k in Si
j if the length

of the route from k to j is equal to the shortest path.

A. Data Structures

Every node maintains two data structures: a route cache
to contain forwarding information; and a route request cache
for storing recently received and processed route requests.
The route cache at node i is a list containing an entry for
each active destination j. Each entry contains the following:
destination identifier (j), distance to the destination (Di

j), set
of successor or next hop nodes to the destination (Si

j), the
time each successor node k was last used for forwarding
(ltui

jk,∀k ∈ Si
j), and number of times each successor node k

is used (usei
jk,∀k ∈ Si

j). A route entry which has not been
used for more that RouteLifeT ime seconds is deleted.

The route request cache at node i is a list containing an
entry for every unique route request received and processed.
Each entry contains the following: source identifier of the
route request (h), identifier of the node being searched (j),
sequence number of the request (sn), minimum forward
count (minfch

ji(sn)), set of nodes that forwarded the same
request with fc = minfch

ji(sn) (Ph
ji(sn)), and status of the

route request (statush
ji(sn)) which can either be Replied or

NotReplied.
In addition to the two data structures, every node also

maintains two first-in first-out buffers: a send buffer for storing
packets waiting for routes; and a data cache for storing
recently forwarded data packets.

B. Route Discovery

CHAMP operates on-demand, that is, node i maintains Si
j

only if there data packets to be sent to j. Its route discovery is
similar to the ‘‘diffusing computations’’: given a direct acyclic
graph (DAG), each node computes its distance based on the
distance reported by the downstream nodes and reports its
distance to its upstream nodes [18].

A source node h initiates route discovery when it has data
to send to j but it has no available route. Node h floods
the network with a RREQ (route request message) for j. This
establishes a DAG rooted at h. When j receives a RREQ, it

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003



sends back a RREP (route reply message) to i through some
nodes that is a subset of the DAG rooted at h.

Every RREQ from h to j has a forward count fc field,
which is initialized to zero by the source and incremented
by one every time the message is retransmitted. The first
time i receives a RREQ from h to j, it initializes minfch

ji

to fc and Ph
ji to the previous hop of the message. Every

time i receives a request with fc = minfch
ji (meaning the

request traversed a path of the same length from h to this
node), it includes the previous hop of the message in Ph

ji.
If i receives a request with fc < minfch

ji (meaning the
request traversed a shorter path from h to this node), it resets
minfch

ji to fc and Ph
ji to the previous hop of the message.

The set Ph
ji contains the identifiers of nodes that can receive

a corresponding RREP from i, if i sends one.
When a destination node j receives a RREQ, it immediately

sends back a RREP if fc ≤ minfch
jj . Every RREP explicitly

specifies the set of nodes P that can accept it. The destination
node j initializes this field to the previous hop of the RREQ,
effectively indicating that the RREP is only intended for this
node. Every RREP also has a hop count field hc initialized to
zero by the destination.

A node i processes a RREP if i ∈ P. Node i then accepts
the route in RREP if hc ≤ Di

j or its existing routes to j
have not been used for more than RouteFreshT ime seconds
and provided that the number of routes to j is less than or
equal to MaxRoutes. If the received route is shorter (hc <
Di

j) or existing routes to j have not been used for more than
RouteFreshT ime seconds, Si

j is reset to contain the previous
hop of RREP. Node i then computes its distance Di

j ← hc
and forwards the message to its upstream nodes by setting
P ← Ph

ji and incrementing hc by one if the corresponding
request has not been replied yet. This process is repeated until
the RREP reaches the source h.

C. Data Forwarding

In CHAMP, data packets are identified by the source
identifier and a source-affixed sequence number. They also
include their respective previous hop in their header, serving
as a ‘‘pointer’’ to the upstream node which cached the same
data.

When forwarding a data packet, a node i chooses the least
used next hop neighbor k. This spreads the packets over all
the routes in a round-robin fashion. Node i then saves a copy
of the packet in its data cache, sets the previous hop field to
its address, and then forwards the data packet to the chosen
next hop. If i has no route to j and it is the source of the
packet, it saves the packet in its send buffer and performs
a route discovery. However, if i is not the source, it simply
drops the packet and broadcasts a RERR containing the header
information (source, destination, previous hop and sequence
number) of the dropped packet.

D. Route Maintenance

Nodes rely on data packet acknowledgment provided by the
link layer to determine the state of a link. Since packets are

forwarded in a round-robin fashion, all links are periodically
refreshed. Route maintenance occurs only when a node i
loses all its active routes to some destination j after a data
forwarding failure.

A link (i, k) is declared as ‘‘down’’ when node i does
not receive an acknowledgment from the next hop node k
after forwarding a data packet to k. When this occurs, k is
deleted from Si

j . If i has another route to j, it forwards all
undeliverable packets through this route. If i has no other route
to j, i broadcasts a RERR containing the header information
of all data packets (excluding packets that are originating from
this node) that cannot be delivered as a result of the link
failure. If there are undeliverable packets originating from this
node, i performs a route discovery.

E. Packet Salvaging from Data Cache

Recall that it is possible for the RERR to contain header
information of one or more data packets. Before parsing the
RERR received from k, i creates a new RERR message that it
will propagate upstream should it fail to salvage any packet.
For every packet referred to in the message, node i performs
the following:

Node i deletes k from Si
j , where j is the destination of the

packet. If i originated the referred packet and it has no other
route j, it initiates a new route discovery if there is none in
progress. If i has other routes to j and it has a copy of the data
packet in its data cache, it forwards the data packet according
to the data forwarding rule (see Section III-C). If i has no
other route to j and it has a copy of the data being referred
to in its data cache, it removes the referred data packet from
its data cache and adds the data packet header information
in the RERR it created. If i does not have the packet in its
data cache and it is the previous hop of the packet, i adds the
data packet header information in the RERR it created. If after
parsing the RERR node i fails to salvage one or more data
packets, it broadcasts the RERR it created.

IV. SIMULATION MODEL

All simulation models are based on the simulator program
ns-2 [19] with the extensions from the Monarch Project [20].
The simulations are divided into two parts. The first part
evaluates the effect of data cache size and number of stored
routes per destination on the performance of CHAMP. The
second part is a performance comparison between CHAMP
(using the optimum parameters derived in the first part),
AODV and DSR.

The network used for the simulations consists of 100 nodes
in a 1500 m × 600 m area. The movement of the nodes follows
the ‘‘random way-point’’ model [9]. Six different pause times
are used: 0, 30, 60, 120, 300, and 600 seconds. A zero pause
time indicates that nodes are continuously moving while a
600-second pause time means that nodes are at rest for the
entire simulation duration. Nodes move at speeds between 0
and 20 m/s.

For simulations using constant-bit-rate (CBR) sources, the
packet size is set to 512 bytes and sending rate is set to 4
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Fig. 1. Performance of CHAMP as a function of the number of routes per destination. Each line plot represents a particular value for the data cache size.
The text in the legend refers to the size of the data cache.

packets per second. For simulations using TCP Reno sources,
the packet size is set to 1460 bytes and maximum window to
8.

The two-ray ground reflection approximation is used as
the radio propagation model. The wireless interface device is
modeled after the 2 Mb/s Lucent WaveLan card [21]. For the
medium access control protocol, the IEEE 802.11 Distributed
Coordination Function (DCF) is used. The interface queue is
a 50-packet drop-tail priority queue. At the network layer, a
send buffer that can accommodate at most 64 packets is used
for storing packets waiting for routes.

The performance of the protocols are evaluated using the
following criteria. For the CBR simulations, the performance
metrics are: (i) packet delivery ratio - the total number of
packets delivered divided by the total number of packets sent;
(ii) end-to-end delay - the delay for every packet delivered;
and (iii) routing overhead - the total number of routing packets
sent and forwarded throughout the simulations. For the TCP
simulations, the performance metrics are: (i) TCP throughput,
and (ii) routing overhead as defined previously. In evaluating
CHAMP, we also measure the fraction of packets that arrive
out-of-order.

V. CHAMP PERFORMANCE

The performance of CHAMP is influenced by two parame-
ters, namely, data cache size and number of stored routes per
active destination. We vary these parameters and determine
their effects on the packet delivery ratio, end-to-end delay,
routing overhead, and fraction of out-of-order packets. Fig. 1
shows the results when where there are 20 CBR sources at 0
pause time.

A. Impact of Data Cache Size

Every node that uses CHAMP maintains exactly one first-in
first-out data cache regardless of the number of connections or
destinations that node serves. A larger data cache means that
more data packets can be stored at any given time. Since the
data cache uses a simple first-in first-out replacement policy, a
larger data cache also implies that data packets can stay longer
in the cache. Increasing the data cache size therefore increases
the probability of success of packet salvaging. Expectedly, the
packet delivery ratio should incrementally increase as the data
cache size is incrementally increased. However, the results do
not completely support this hypothesis.

While the packet delivery ratio increases as the data cache
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Fig. 2. Fraction of successfully delivered data packets as a function of mobility.

size is increased, the rise is only significant, around 4-5%,
when the data cache size changes from 0 to 5. The packet
delivery ratio for data cache sizes 5, 10, 15 and 20 are almost
the same at 95%. This result suggests that there is no benefit
in having a large data cache. Indeed, when we examined the
trace files, we found out that due to temporal locality of
dropped packets, only the most recent packets are used for
packet salvaging. No matter how large the data cache is, the
relatively old packets are never utilized; hence, they do not
contribute to the packet delivery ratio.

There is a slight increase in end-to-end delay as the data
cache size is incrementally increased. Meanwhile, the fraction
of out-of-order packets shows a significant two-fold rise as
the data cache size increases from 0 to 5, and continues to
increase from hereon. When the data cache size is 20 packets,
the fraction of out-of-order packets becomes three-fold. The
worse delay and out-of-order packet arrival when the data
cache size is larger is expected. If the data cache is small,
only nodes close to the route failure may have the packet in
their respective caches. On the other hand, if the data cache
is large, many nodes, including those that are far from the
route failure (and therefore farther from the destination) may
still have the packet in their respective caches. Consequently,
if these far nodes can successfully salvage packets, delays

should increase. Furthermore, the variation of these delays
becomes bigger since both near and far nodes can salvage
packets, leading to increased number of out-of-order packets.

B. Impact of Number of Stored Routes

The success of packet salvaging from data cache depends
on the availability of at least one alternative route to the
destination of a packet. Having the pertinent packet in the data
cache does not guarantee that a salvaged packet will reach
the destination. Logically, having more routes should result
in increased packet delivery ratio since there will be a greater
chance for salvaged packets to get delivered to the destination.

As the number of routes increases from one to two, the
packet delivery ratio increases by 10% from 81% to 91%.
There is a negligible increase as the number of stored routes
is further increased to five. This indicates that there is no
advantage in storing more than two routes for each destination.
We found two reasons for this behavior. First, note that the
parameter specifies the maximum value. Most nodes do not
actually reach this value especially when it is high. And
second, a node requires only one alternative route at any given
time to successfully perform packet salvaging.

The presence of at least two routes significantly reduces
both the end-to-end delay and routing overhead. Note that
the end-to-end delay drops to almost half when the number
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Fig. 3. End-to-end delay as a function of mobility.

of routes is increased to two or more. This benefit can be
attributed to the per packet, round-robin load distribution fea-
ture of CHAMP. Meanwhile, the routing overhead decreases
by 1/4 when there are two or more routes. This reduction is
also expected since the presence of more than one route helps
nodes to reduce route discoveries.

There is an increase in the fraction of out-of-order packets
as the number of next hop choices increases from one to
two. However, no further increase can be observed when the
number of routes is increased to five. The increase when the
number of routes increases from one to two is due to the
per packet load distribution employed by CHAMP. But since
CHAMP uses multiple routes of equal lengths, the fraction
of out-of-order packets when there are two or more routes is
almost the same.

VI. PERFORMANCE COMPARISON

In the previous Section, we have shown that cooperative
packet caching and shortest multipath routing indeed improves
the performance of CHAMP. Having a data cache that can
accommodate at most five packets and storing two routes to
every active destination already results in optimum perfor-
mance. In this Section, we compare CHAMP, using a five-

packet data cache and two routes per destination configuration,
with DSR and AODV. The default protocol parameter values
for AODV and DSR reported in a performance evaluation [9]
are used as they offer the best performance. The simulations
are divided into two sets. In the first set, source nodes are
constant-bit-rate (CBR) sources while in the second set; source
nodes are TCP Reno sources.

A. CBR Simulation Results

Fig. 2 shows the packet delivery ratio with varying number
of CBR sources and averaged over 20 trials. CHAMP shows
the highest packet delivery ratio especially in more mobile and
higher load scenarios. Its biggest advantage occurs in the 30-
and 40-source scenarios where it leads AODV and DSR by at
most 30% at 0 pause time.

The packet delivery ratio for all the protocols decreases as
the rate of mobility increases. The largest decrease in this
metric can be observed in the 30- and 40-source scenarios.
DSR incurs the largest drop of more than 45%. AODV
decreases by at most 35% while CHAMP drops by not more
than 20%. At 20 sources, DSR already shows a noticeable
decrease of more than 25%. The low packet delivery of DSR
can be attributed to its aggressive route caching without any
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Fig. 4. Routing overhead in terms of packets as a function of mobility.

expiration mechanism. As we have observed and as noted in a
related work [22], this policy causes stale routes to be used for
packet relay causing additional bandwidth consumption due to
mis-routed packets. More seriously, since any node can reply
to route requests, stale routes contained in route replies cause
further pollution of the route caches of other nodes.

Packet delivery ratio is also affected by the number of
sources. As expected, the packet delivery ratio decreases as the
traffic increases. DSR and AODV show a significant decrease
of 70% while CHAMP drops by 45% drop. The biggest change
can be seen between the 20-source and 30-source scenarios.
This significant drop can be attributed to network congestion
at 30 sources. Note that even when there is no node movement,
all protocols deliver less than 90% of the data packets. At 40
sources, the congestion becomes worse as the packet delivery
ratio of all the protocols drops further.

A closer inspection of the trace files reveals the undesirable
impact of congestion on the routing protocols. In a congested
network, the medium access control protocol encounters many
collisions when sending a packet. This latency in accessing the
channel causes the interface queue to become full, causing
packets to be dropped. Furthermore, if congestion is severe, it
causes the MAC protocol to timeout. The MAC then informs
the routing protocol that the packet cannot be forwarded to the

next hop. Since the routing protocol is not aware of congestion,
it assumes that a forwarding failure is due to link failure even
when this is not the case. Consequently, the routing protocol
either propagates route error messages or performs a new route
discovery that causes additional routing overhead. This kind
of reaction by the routing protocol worsens the congestion,
causing more packets to be dropped and increasing the delay.

Fig. 3 shows the end-to-end delay for the simulations with
varying number of CBR sources and averaged over 20 trials.
CHAMP exhibits the smallest and most consistent end-to-end
delay. Its largest performance advantage occurs in the 30- and
40-source scenarios where its delay is less than half that of
AODV and DSR at certain mobility rates.

The end-to-end delay of all the protocols increases as the
number of sources increases. At 10 and 20 sources, the delay
of all the protocols is almost the same. At 30 sources, the
delay of AODV and DSR shoots up to more than two seconds
while the delay of CHAMP rises to more than one second.
This dramatic increase is due to congestion. At 40 sources,
the worsening congestion causes the delay of all the protocols
to further increase. At this point, the delay of AODV and DSR
rises to 4.5 seconds while the delay of CHAMP reaches 2.8
seconds.

One interesting observation at 40 sources is that the delay

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003



0 100 200 300 400 500 600
0

100

200

300

400

500

600

700

800

Pause Time (sec)

T
C

P 
T

hr
ou

gh
pu

t (
kb

/s
)

DSR
AODV
CHAMP

(a) TCP Throughput

0 100 200 300 400 500 600
00 

2 

4 

6 

Pause Time (sec)

R
ou

tin
g 

O
ve

rh
ea

d 
(1

05  p
ac

ke
ts

) DSR
AODV
CHAMP

(b) Routing overhead

Fig. 5. Simulation results for 1 TCP Reno connection.
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Fig. 6. Simulation results for 1 TCP Reno connection with 10 CBR background traffic.

of all the protocols unexpectedly rises as the rate of mobility
decreases. This result implies that mobility can somehow ease
congestion, as delays are smaller at more mobile scenarios.
When we examined the trace files, we found out that this is
indeed the case. Node mobility aids in distributing traffic due
to source movements, thereby reducing congestion in specific
areas. This kind of phenomenon was also observed by prior
simulation studies [22], [11].

Fig. 4 shows the routing overhead, in terms of packets,
generated throughout the entire simulations with varying num-
ber of CBR sources and averaged over 20 trials. In terms of
this metric, the performance of CHAMP is still comparable
to that of AODV and DSR. While there is no significant
improvement, these results indicate an excellent achievement
for CHAMP since it is a multiple path routing protocol.
Expectedly, CHAMP should generate a larger routing over-
head since more nodes are involved in the route discovery
particularly in the route reply propagation. However, note that
storing multiple paths to active destinations reduces the need
for route discoveries, and therefore routing overhead, since
CHAMP only performs a new route discovery when it loses

all its routes.

The routing overhead of all the protocols is affected by
the number of sources. At 10 sources, all protocols generate
less than 60K packets of overhead. At 20 sources, the routing
overhead of AODV and DSR increases more than two-fold
to around 150K packets at the pause time of 30 seconds. The
routing overhead of CHAMP doubles to around 120K packets.
At 30 sources, the routing overhead of all the protocols
continues to increase two-fold. Finally at 40 sources, the
protocols show their worst overhead. CHAMP generates at
most 350K packets; AODV generates at most 400K packets
and DSR at most 540K packets.

The routing overhead of the protocols is also sensitive to
mobility. The observable trend is for the routing overhead
to rise as the rate of mobility rises. DSR shows the biggest
change at 40 sources as its routing overhead increases nine-
fold from 60K to 540K packets. AODV and CHAMP show
a more than two-fold increase at 30 and 40 sources. An
interesting feature of the plots for the 30- and 40-source
scenarios is that at low mobility rates (pause times of 600 and
300 seconds), DSR shows the lowest routing overhead. This
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is the advantage of caching of overheard routes employed by
DSR. At low mobility rates, since routes tend to be valid for
longer periods, caching of overheard routes reduces the need
for route discoveries. However at higher mobility rates, since
routes are short-lived, cached routes are often invalid causing
complications such as incorrect forwarding of packets to stale
routes and pollution of route caches of other nodes.

B. TCP Simulations

As mentioned in Section III, CHAMP performs load-
balancing on a per-packet basis that can possibly re-order the
arrival of packets at the destination. To determine whether
this can degrade TCP performance, we performed simulations
using one TCP Reno connection. Figs. 5 and 6 show the TCP
throughput and routing overhead in terms of packets for these
simulations averaged over 20 trials.

In both tests, CHAMP shows the highest TCP throughput at
all pause times. At higher mobility rates (less than 300 seconds
of pause time), CHAMP outperforms AODV by 20% and
DSR by 70%. In terms of routing overhead, all the protocols
generate very small overhead when there is only one TCP
connection. In the presence of the background traffic, AODV
shows larger overhead than CHAMP and DSR. DSR shows
the smallest routing overhead because of caching of overheard
routes. However, this comes at the expense of lower TCP
throughput.

The higher TCP throughput of CHAMP when mobility is
higher can be attributed to its per-packet load balancing policy.
In Fig. 1(b), we have seen that by using two or more routes,
CHAMP reduces its end-to-end delay by 1/4. Furthermore,
the use of equal-length routes do not significantly reorder the
arrival of packets as shown in Fig. 1(d). In the performance
comparison using CBR sources, CHAMP shows the smallest
end-to-end delay at lower pause times. This translates to
smaller round-trip times, and hence, higher TCP throughput
for CHAMP at lower pause times.

We noticed that in some trials, DSR failed to send any TCP
packet (0 throughput) while AODV and CHAMP both regis-
tered non-zero throughputs. This behavior has been reported
in previous work [23] and can be attributed to the aggressive
route caching and no route expiration policy of DSR. Invalid
stale routes cause severe adverse effects on the TCP.

VII. RELATED WORK

Since the introduction by Wilkes [12] in 1965, caching is
now used in many systems such as distributed file systems
and the World Wide Web and in various system layers [14].
In this paper, we introduced data packet caching in the context
of the mobile ad hoc networks. Performance improvements
in terms of higher packet delivery, lower delays and reduced
routing overhead are obtained due to the temporal locality of
dropped packets. A related work by Castaneda and Das [15]
investigated the spatial locality of mobile nodes and observed
that ‘‘a mobile node cannot move too far too soon’’. They
exploited this property to lower routing overhead during route
discovery and repair.

One of the earliest works on adaptive multipath routing,
proposed by Gafni and Bertsekas [24], uses a series of ‘‘link-
reversals’’ to form a directed acyclic graph (DAG) rooted at
the destination. One problem is that this protocol, which came
to be known as GB, exhibits instability when the network
is partitioned. Corson and Ephremides [25] developed a new
algorithm based on this concept, termed Lightweight Mobile
Routing (LMR) algorithm. Subsequently, the same authors in-
troduced TORA [3]. LMR and TORA share many similarities
including the route construction and route maintenance phases.
TORA has an additional phase known as route deletion.
One major drawback of TORA is the maintenance overhead.
CHAMP eliminates such overhead by spreading packets over
all the routes in a round-robin fashion.

Vutukury and Garcia-Luna-Aceves [16] used shortest mul-
tipath routes in MDVA, a proactive multipath distance-vector
routing protocol for a network with changing topology. The
emphasis of their work is to ensure loop-freedom and correct-
ness at every instant by using loop-free invariant conditions.
MDVA operates proactively and may not be suitable for
mobile ad hoc networks. In this study, we developed a fast
and simple way of discovering shortest multipath routes that
does not cause large overheads.

Several studies have made multipath extensions to single-
path routing protocols. Lee and Gerla [26] proposed an ex-
tension to AODV, called AODV-BR (AODV with back-up
routes). AODV-BR utilizes multiple routes organized in a
‘‘fish-bone’’ structure and has been shown to improve protocol
performance and robustness against mobility in light load
conditions. However, unlike CHAMP, it does not perform well
in highly loaded scenarios.

Marina and Das [27] proposed another multipath exten-
sion of AODV called AOMDV. It uses the notion of an
‘‘advertised hop count’’ to maintain multiple loop-free paths.
This approach also lends some similarities to CHAMP’s route
discovery procedure. Simulation results show that AOMDV
outperforms AODV by as much as 5% in terms of packet
delivery, half the delay and 20% less routing overhead. While
CHAMP discovers non-disjoint multipath routes, AOMDV en-
sures the discovery of link-disjoint routes. A recent study have
shown that non-disjoint multipath routes are more resilient and
energy-efficient than disjoint routes [28].

Nasipuri and Das [29] proposed a multipath extension to
DSR. As noted in many similar studies [22], [23], DSR’s
aggressive route caching and no route expiration policy cause
severe adverse effects on both CBR and TCP connections in
mobile scenarios. Hence, extending DSR to support multiple
routes without addressing the caching problem may also
multiply this problem. Furthermore, there is a high probability
that the alternative route is always stale, as it is never used
until the primary route fails. CHAMP cleverly avoids this
problem by using all the available routes in a round-robin
fashion.

Gallager [30] introduced an algorithm for distributing load
over multiple paths that leads to minimum delays. As the
algorithm converges slowly, it is unsuitable or networks
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where load is highly dynamic. Vutukury and Garcia-Luna-
Aceves [31] discussed an approximate solution to the problem.
Krishnan and Silvester [32] found that a per packet load
distribution policy provides the best results. However, this
comes at the expense of out-of-order packet delivery, which
can incur additional packet re-sequencing delays [33] and may
adversely affect TCP connections [34]. CHAMP employs a
simple load-balancing algorithm to distribute the load. Packets
are spread over all the routes in a round-robin fashion. Since
chosen routes are of equal length, packet reordering is not
severe.

VIII. CONCLUSIONS

In this paper, we introduced cooperative packet caching,
a strategy similar to cooperative caching aimed at reducing
packet loss due to frequent route breakdowns. We have shown
that because of the property of temporal locality in dropped
packets, a small data cache (five packets) is sufficient to im-
prove packet delivery. In essence, cooperative packet caching
enables distributed packet salvaging. Although caching is
now employed in many distributed systems, this is the first
application in the network layer, particularly of mobile ad hoc
networks.

A multiple path route discovery mechanism suitable for
mobile ad hoc networks is also developed. The discovery
mechanism selects non-disjoint shortest multipath routes of
equal distance. We have shown that having at most two routes
for every destination is already the optimum. Having more
routes does not give any additional benefit. Obviously, a five-
packet data cache and two routes per destination configuration
does not entail a large overhead.

We have shown that by using the above-mentioned values
for the data cache size and number of stored routes per destina-
tion, significant improvement can be obtained over AODV and
DSR especially in more dynamic and higher load scenarios.
In terms of packet delivery, CHAMP outperforms AODV and
DSR by at most 30%. In highly congested scenarios, the
delay of CHAMP is half that of AODV and DSR. In terms
of routing overhead, CHAMP generates a relatively lower
overhead at higher mobility rates. Although CHAMP has a
higher percentage of out-of-order packets due load-balancing
in a per-packet basis, it does not degrade TCP performance.
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