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Abstract

We present a cooperative parallel tabu search method for the fixed charge, capacitated, multicommodity network
design problem. Several communication strategies are analyzed and compared. The resulting parallel procedure
displays excellent performances in terms of solution quality and solution times. The experiments show that
parallel implementations find better solutions than sequential ones. They also show that, when properly designed
and implemented, cooperative search outperforms independent search strategies, at least on the class of problems
of interest here.
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1. Introduction

The fixed charge network design problem is a well-known problem, of both practical and
theoretical significance. Fixed charge capacitated multicommodity network design formula-
tions with linear costs (CMND) appear prominently when addressing issues in infrastructure
or service network construction or improvement. Transportation, logistics, telecommuni-
cation, as well as power system design and production planning are among the main ap-
plication areas of this class of formulations. Here, several “commodities”— goods, data
packets, people, . . . — have to be moved, from their respective origins to their particular
destinations, over the links of a network with limited capacities. Two types of costs are
incurred. A variable “transportation” cost related to the volume of each commodity flowing
though a given link, and a fixed construction or utilization cost that is payed as soon as a
link is used or capacity is added.

Most network design formulations present considerable algorithmic challenges, espe-
cially when one attempts to solve realistically sized problem instances. These usually take
the form of mixed-integer optimization models with multicommodity network flow con-
straints and a number of complicated additional restrictions. The mathematical formulations
are combinatorial and, usually, NP-hard. The trade-offs between the variable and fixed costs
inherent in the selection of any given solution, as well as the interplay between the lim-
ited network capacity, the resulting competition among commodities, and the fixed costs
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associated with using the links of the network, add to the difficulty to efficiently solve
CMND problems. For details on network design formulations, solution methods, applica-
tions, and recent results, the interested reader may consult Magnanti and Wong (1986),
Minoux (1986), Balakrishnan, Magnanti, and Wong (1989), Balakrishnan, Magnanti, and
Mirchandani (1997), Gendron and Crainic (1994b, 1996), Crainic, Frangioni, and Gendron
(2001), Gendron, Crainic, and Frangioni (1998), Crainic (2000, 1999), and the references
cited in these papers.

Metaheuristics and parallel computation appear as important building blocks of efficient
solution methods for complex problems. Metaheuristics, and particularly tabu search proce-
dures (Glover, 1989, 1990; Glover and Laguna, 1997), are increasingly used to identify good
feasible solutions to realistically sized network design problems. Thus, Crainic, Gendreau,
and Farvolden (2000) have proposed a tabu search metaheuristic that currently appears to
be the best procedure for finding good feasible solutions for the CMND. Parallel computing
offers the possibility to design procedures that exploit more efficiently the solution space.
This may be achieved through the acceleration of some tedious computational phases of
the algorithm, the decomposition of the problem domain or search space, or the design of
a multi-thread parallel search with various degrees of synchronization and cooperation. It
also opens the door to efficient combinations of heuristic procedures and exact algorithms,
such as branch-and-bound. See, for example, Gendron and Crainic (1994a), Grama and
Kumar (1995), Crainic, Toulouse, and Gendreau (1997), Crainic and Toulouse (1998), and
the references cited in these papers.

We develop and analyze a parallel cooperative multi-search method for the CMND. This
approach appeared in previous studies (e.g., Crainic, Toulouse, and Gendreau, 1995b) as
the most appropriate for formulations which, similarly to the network design problems we
address, combine a combinatorial nature to complex evaluation subproblems (in the present
case, a capacitated multicommodity minimum flow problem). The parallel approach is based
on several tabu search threads which cooperate by asynchronously exchanging information
about the best solutions identified so far. The individual searches use the same sequential
tabu search method (Crainic, Gendreau, and Farvolden, 2000), but differ in the values of a
number of search parameters and, eventually, initial solutions. The results that we present
show that the parallel procedure achieves both excellent quality solutions and remarkable
accelerations as compared to its sequential counterpart.

The main contributions of this paper are as follows. First, we present several cooperation
strategies—what information to exchange and when to exchange it—and analyze their
impact on the search trajectory and the solutions reached. In particular, we present and
compare several memory-based strategies for the selection of the information to exchange
among individual search threads. This contributes towards a better understanding of parallel
tabu search methods. Second, we describe a parallel procedure which displays excellent
performance measures and which allows to solve efficiently large capacitated fixed charge
multicommodity network design problems.

The paper is organized as follows. Section 2 recalls the formulation of the problem and
the basic ideas of the tabu search method. The parallel strategies are detailed in Section 3.
Experimental results are reported and analyzed in Section 4. We conclude with a few general
remarks and research perspectives.
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2. Formulation and sequential tabu search

This section is dedicated to a recapitulation of the general formulation and the sequential
tabu search procedure. Crainic, Gendreau, and Farvolden (2000) present full descriptions
and analyses.

The tabu search procedure is developed for the path-based formulation of the fixed-cost,
capacitated multicommodity network design problem (PCMND). The model is defined on
a graph G = (N ,A) with N the set of nodes, A = {a = (i, j) | i �= j, i ∈ N , j ∈ N }
the set of arcs (for the sake of simplicity, we assume all links to be directed design arcs),
and P the set of commodities to be distributed. Without loss of generality, we define a
commodity p ∈ P to be the flow between an origin node r p ∈ N and a destination node
s p ∈ N , r p �= s p, while the corresponding demand is denoted w p.

Three measures characterize each arc a ∈ A : cp
a , the unit cost of moving commodity

p ∈ P through the link, fa , the fixed cost of including the arc in the final design of the
network (or to introduce additional capacity on the arc), and ua , the total capacity of the
arc. The flow of commodity p moves from its origin r p to its destination s p by using one or
several paths in Lp. According to standard network notation, δ p

al = 1 if arc a belongs to the
l th path for commodity p and 0 otherwise, while the unit transportation cost of path l ∈ Lp

is k p
l = ∑

a∈A cp
a δ

p
al.

The PCMND formulation may then be written as follows:

Minimize z(h, y) =
∑
a∈A

fa ya +
∑
p∈P

∑
l∈Lp

k p
l h p

l (1)

Subject to
∑
l∈Lp

h p
l = w p p ∈ P (2)

∑
p∈P

∑
l∈Lp

h p
l δ

p
al ≤ ua ya a ∈ A (3)

h p
l ≥ 0 p ∈ P, l ∈ Lp (4)

ya ∈ {0, 1} a ∈ A (5)

where ya = 1 if arc a ∈ A is included (opened) in the final design of the network and 0 oth-
erwise, and h p

l represents the flow of commodity p ∈ P on path l ∈ Lp. The corresponding
arc flows, x p

a , may be obtained by the usual computation x p
a = ∑

l∈Lp h p
l δ

p
al.

The sequential tabu search method is based on the exploration of the space of extreme
points H̃ of H defined by Eqs. (2), (3), and (4). The adjacency relationships in H̃ define a
natural neighborhood structure, while the pivoting rules of the simplex method provide an
efficient way to determine the neighbors of any given solution. Furthermore, for any given
path flow pattern h̃ ∈ H̃, a design with minimal cost relative to the path flows, denoted
y(h̃), can be obtained by setting

ya(h̃) =
{

0 if
∑

p∈P
∑

l∈Lp h̃ p
a δ

p
al = 0,

1 otherwise.

The algorithm, displayed in figure 1, exhibits the main structure of the primal simplex
method with basis partitioning and column generation, similar to that of Farvolden, Powell,
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Figure 1. Sequential tabu search procedure.

and Lustig (1992). Following an initialization phase, the search proceeds with a sequence of
local searches and diversification phases. Each local search is made up of several alternating
series of pivot moves and path generation (neighborhood expansion) phases. Computations
stop with the best solution encountered during the search, Zbest, once a predefined number
of diversification phases, max div, have been performed.
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Formally, N (h̃), the continuous (local search) neighborhood of an element h̃ ∈ H̃, is
defined as the subset of all extreme points of H̃ adjacent to h̃, that is, all extreme points which
can be reached from h̃ by one simplex pivot. In Linear Programming terms (Dantzig and
Thapa, 1997), a move thus corresponds to a transition from a basis of the system defined by
Eqs. (2) to (4) to an adjacent one. A basic path thus becomes non-basic, while a previously
non-basic path takes its place in the basis.

A candidate move is then simply a pair of variables (path in basis, path not in basis) on
which a simplex pivot may be performed. The candidate list is the set of all such pairs of
variables. To avoid cycling, recently pivoted out variables are forbidden to enter back into
the basis for a number of moves. The tabu tenure of each exiting variable is randomly chosen
in a [low tab mv, high tab mv] interval according to a discrete uniform distribution. Note
that pivots that involve the slack variables introduced in constraints (3) do not correspond
to moves in the tabu search-sense of the term. These pivots are therefore not part of the
computations of the tabu tenures or iteration counts.

Moves are revised simplex pivots (Dantzig and Thapa, 1997), implemented according to
the primal partitioning logic of Farvolden, Powell, and Lustig (1992), and executed on the
capacitated multicommodity network flow polyhedron defined by H. Since H corresponds
to a design where all arcs are open, the objective function of the corresponding minimum cost
network flow formulation reduces to the continuous component of the objective function
of the design model (relation (1)):

Minimize z(h) =
∑
p∈P

∑
l∈Lp

t

k p
l h p

l . (6)

This formulation—(6) subject to (2) to (4)—is used to compute dual variables and price
non-basic path variables. Then, the value of a potential move is defined as the variation it
induces in the value of the objective function of the design formulation (relation (1)). This
variation is computed in two steps as the sum of the

1. Variation in the value of (6) due to the pivot;
2. Variation in the total fixed cost of the network,

∑
a∈A fa ya , due to the corresponding

modification (if any) to the vector of design variables y.

The move with the largest decrease is selected and implemented. Non-improving moves
(i.e., moves that increase the objective function value) are accepted. Moves conducting
to non-feasible solutions are also accepted if they represent the best local option. The
corresponding overflows are assigned to artificial arcs with arbitrarily high costs. Note that,
using the actual objective function of the design formulation to evaluate moves does imply
an extra cost in computing time, but it offers both a precise ordering of potential moves and
a direct aspiration criterion.

Since not all path variables are available at each iteration, column generation is used
to expand the neighborhood and enrich the set of candidates whenever a local optimum
solution appears to have been reached. This condition is detected when the best solution
identified during the current series of pivot moves, Zlocal, did not improve for max move
consecutive moves. Two variants of a modified shortest path algorithm over the links of
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G are used to generate new paths. In the basic method all arcs may be considered. In the
SAT variant saturated arcs are eliminated. To capture the interplay between the fixed costs
and capacities of the arcs, the reduced arc costs used by the column generation subproblem
correspond to a continuous relaxation of the design formulation with the surrogate cost
function c̃ p

a = cp
a + fa/ua, a ∈ A, p ∈ P . A fixed number, k gen, of paths is generated for

all O-D pairs each time the procedure is executed.
A sequence of neighborhood explorations by pivoting followed by a column generation

phase is called a column generation cycle. Local search is terminated when no improve-
ment to the current local best solution is obtained after max col gen consecutive column
generation cycles. The method then either stops or proceeds to diversify the search.

The diversification strategy is based on a discrete neighborhood and a long term frequency
memory structure. The diversification neighborhood is defined relative to the design vari-
ables and is used to drastically modify the network configuration. Formally, a discrete
neighbor ĥ of h̃ ∈ H̃ at iteration t is the set of optimal paths in ∪p∈PLp

t that corresponds to
the network configuration ŷ obtained by “closing” a given number of network arcs in ỹ. The
corresponding diversification move is thus a complex sequence of operations which usually
includes several (primal and eventually dual) pivots. The long term memory records for
how many iterations an arc has been in the basis (i.e., it belonged to at least one basic path).
To diversify, one selects a small number of often used arcs and closes them. During the tabu
tenure of these arcs, all paths that contain them are not allowed to enter the basis (unless, of
course, the aspiration criterion overrides the tabu status). Furthermore, the closed arcs are
not available during the column generation phases. The length of the tabu tenure is defined
in terms of a number of column generation cycles, tabu cycle, following which the normal
termination criterion of the local search procedure is activated.

To initiate the procedure, one may assume that all design arcs are available or that a
number of them are closed according to some criterion such as “close those with high fixed
cost to capacity ratio up to a given percentage of the total number of arcs”. Then, a shortest
path is generated for each demand using the surrogate arc costs and demand is sequentially
loaded on these paths. The overflow is assigned to the artificial arcs. Starting from this
principle, two variants may be used. The first, identified as YES initial solution, performs
simplex pivots without the tabu mechanisms until a first feasible solution is obtained. The
second, identified as NO initial solution, makes use of the local search routine when looking
for the first feasible solution, thus initiating the tabu logic from the very start.

The sequential tabu search procedure has been extensively calibrated and tested. This
experimental study yielded the parameter settings that are used to define the parallel method
presented in this paper.

3. Parallel strategies

Several classes of strategies may be envisioned when contemplating the development of
parallel tabu search methods. See Crainic and Toulouse (1998) for a general review and
analysis of parallel metaheuristics, and Crainic, Toulouse, and Gendreau (1997) for a tax-
onomy of parallel approaches for tabu search. We focus on multi-search, also called multi-
thread, parallel strategies which have proved to offer superior performances (Battiti and
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Tecchiolli, 1992; Andreatta and Ribeiro, 1994; Rego and Roucairol, 1996; Taillard, 1994;
Taillard et al., 1997; Badeau et al., 1997; Gendreau et al., 1999; Schulze and Fahle, 1999;
Toulouse, Thulasiraman, and Glover, 1999; Ouyang et al., 2000, 2002), in particular for
network design-type of problems (Crainic, Toulouse, and Gendreau, 1995a, 1995b; Crainic
and Toulouse, 1998).

In our implementation of multi-thread parallelism, each process independently executes
a complete tabu search procedure as specified in the previous section. The initial solution
and particular setting of a number of important search parameters differentiates each tabu
search thread from the others. Thus, each thread follows a different search strategy. Full im-
plementation details are given in the following section. We implement both an independent
search method and several variants of a cooperative search framework. In the former, all
searches proceed independently, and the best solution is collected at the end. In the latter,
it is hoped that exchanging information among the tabu search threads will increase the
efficiency of the search to yield a higher quality of the final solution.

The cooperation aspect of the parallelization scheme is achieved through asynchronous
exchanges of information. Previous studies (Crainic, Toulouse, and Gendreau, 1995a,
1995b) have shown the superiority of this approach over synchronous cooperation. To
fully characterize the cooperation process, one has to specify (i) the information which is to
be shared, (ii) when communications may occur, (iii) between which threads information is
to be exchanged, as well as (iv) the utilization each search thread will make of the imported
information (Toulouse, Crainic, and Gendreau, 1996).

The information exchanged among search threads has to be meaningful, in the sense that
it has to be useful for the decision process of the receiving threads. Information that gives
correct indications concerning the current status of the global search or, at least, of some
other searches is, in this sense, meaningful. In the implementations described in this paper,
threads share information about their respective good solutions identified so far. When a
search thread improves its best local search solution Zlocal, it sends out the value of the
solution, z(h, ylocal), as well as its context defined as the vector of design variables ylocal.
This scheme is intuitive and simple, and it satisfies the meaningfulness requirement. Note
that threads do not exchange full solutions. In particular, neither the flow distributions x ,
nor the sets of paths h are exchanged. We believe that the efficiency gains thus obtained
more than compensate for the fact that the reconstructed solutions might result in different
flow patterns.

Information is shared through a central memory or pool of solutions. In this scheme,
whenever a thread desires to send out information, it sends it to the pool. Similarly, when
a thread accesses outside information, it reaches out and takes it from the pool. Com-
munications are initiated exclusively by the individual threads, irrespective of their role
as senders or receivers of information. No broadcasting is taking place, and there is no
need for complex mechanisms to select the threads that will receive or send informa-
tion and to control the cooperation. The pool is thus an efficient implementation device
that allows for a strict asynchronous mode of exchange, with no pre-determined connec-
tion pattern, where no process is interrupted by another for communication purposes, but
where any thread may access at all times the data previously sent out by any other search
thread.
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What information to exchange, when to exchange it, and what to do with the external
information once one has it are important issues for the efficiency of cooperative search
procedures. Unfortunately, there are not, as yet, well-defined procedures to specify these
parameters.

Previous empirical evidence shows, however, that cooperative parallel metaheuristic
searches with unrestricted access to shared knowledge may experience serious premature
convergence problems. This follows from the excessive bias to the contents of shared mem-
ories introduced by intense exchanges of the best solutions found by the search threads and
the subsequent stabilization of the shared memory contents and exchanged information.
Recent work on formal representation of cooperative processes (Toulouse, 1996; Toulouse,
Crainic, and Sansó, 1999, 2002; Toulouse, Crainic, and Thulasiraman, 2000, Toulouse et al.,
1998) confirms these observations. It also highlights the fact that simple information ex-
changes (e.g., best values) may direct the search into unexpected regions, with little concern
for an “optimization logic”. The implementation of communications and exchanges through
a pool of solutions that gives to each search process the control on requesting and accepting
external information constitutes a mechanism aimed at addressing these issues. The spec-
ification of strategies concerning what external solution to select and when to request it,
presented in the next subsections, proceed from the same preoccupations.

We develop five selection strategies corresponding to different ways to access the pool
data and extract the information requested by an individual search thread. We also examine
six import criteria to determine when a search tread looks for, and eventually accepts, an
external solutions.

3.1. Pool data selection strategies

For all five strategies, the pool stores and manages all the information received from the
individual searches and, on request, returns the corresponding solution.

The first strategy (Sbest) corresponds to always extracting the solution with the lowest
value. Hence, upon request, each individual search thread gets the global best solution,
(Z g

best, yg
best).

The other variants aim to diversify the information received by the individual searches
and go beyond the simple exchange of best solutions strategy. This is in response to a desire
to avoid having the threads prematurely converge towards a limited number of regions or
solutions. This undesirable phenomenon has been observed in other studies, and it generally
emerges when a solution is dominant for a period of time and many (all) threads import it
and inflect their search trajectory accordingly. On the other hand, individual searches need
good quality information. Hence, while trying to avoid sending always the same solution,
one desires to bias the selection process towards solutions with low values. The probabilistic
mechanisms described in the following are designed to select with high probability solutions
that are good but different from the current global best, while displaying low probabilities
of extracting poor (high value) solutions.

Let S = {Si } be the set of the n solutions that make up the pool at a given time, and
assume the set is ordered in increasing order of solution values, i.e. i < j ⇒ zi < z j for
any Si , Sj ∈ S. The second strategy (SProb) selects among the best solutions based directly



COOPERATIVE PARALLEL TABU SEARCH 609

on their rank according to the solution values. A probability P(Si ) = (n + 1 − i)/
∑n

1 i is
assigned to each solution Si . P(Si ) increases as solutions are closer in value to the current
global best. The solution returned to a requesting search thread by the S2 strategy is then
randomly selected (Uniform distribution) over S according to these probabilities.

The third variant (SMobil) proceeds of the same principle, but defines the probabilities
associated to the solutions in the pool according to their respective mobility. Each time a
new solution Snew is inserted into the ordered pool S, the mobility coefficients mi of all
solutions Si better than Snew, i.e., znew ≤ zi , are incremented by 1. Then, at any given point
in time, the mobility coefficient of a solution indicates how many worst solutions have been
inserted into the pool since the beginning of the computation: the higher the coefficient,
the better the solution. (The term mobility was coined to reflect the movement towards the
top of the list good solutions perform under this strategy.) The probability assigned to each
solution Si then becomes P(Si ) = (mi + n − i + 1)/

∑n
1(mi + i).

Strategies SHhigh and SHlow represent a first attempt to take into account not only the
solution values, but also some measure related to the corresponding design, the so-called
solution context. The strategies aim to identify common characteristics of good solutions
to build an “ideal” individual to which to compare the solutions in the pool. Selection
probabilities are then biased based on these comparisons. The method proceeds as follows.
A subset B ⊆ S of best solutions (e.g., the best 5% or 10% ones) is first selected. A design
pattern yB is then built such that for each design arc a ∈ A

yB
a =




1 if ya = 1 for all Si ∈ B
−1 if ya = 0 for all Si ∈ B

0 otherwise

The Hamming distance between the design pattern and any solution Si ∈ B is then
computed as Di = ∑

a∈A da , where

da =




0 if yB
a = 1 and ya = 1

0 if yB
a = −1 and ya = 0

1 otherwise

and the probability associated to solution Si is computed as P(Si ) = (1 − Di/
∑n

1 Di )/n.
Variant SHhigh then selects among solutions with high probability values, while SHlow
extracts solutions with low values. This last choice is again justified by a desire to increase the
variety of solutions that are returned to individual searches. Here, one selects good solutions
according to their objective values (Si ∈ B) but which are “far” from the characteristics
common to the solutions in the best subset.

3.2. External solution import strategies

To complete the description of the cooperative process, one has to define when individual
threads request external information and how the imported solution is used locally. As dis-
cussed earlier, the objective of this mechanism is double: to (1) accept external information
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that may improve the search trajectory while, (2) limit the amount of exchanges such as not
to disrupt too much the normal exploration pattern of the particular tabu search thread.

In the sequential tabu search algorithm displayed in figure 1, three points appear as
potentially interesting relative to the import of external solutions:

1. Following the identification of the best current move (Step 6);
2. Before the neighborhood is expanded through a column generation phase (i.e., before

Step 10);
3. Before a diversification operation (Step 11).

We exclude from further considerations approaches based on the first option and that
interrupt a sequence of pivot moves to access external information. These would generate
a very high number of information exchanges, which we want to avoid. Moreover, by
potentially replacing pivot moves with imports of external solutions, such approaches would
also transform the tabu search into a random search procedure. We focus, therefore, on
strategies based on options 2 and 3. Note that for all strategies, local memories are not
touched when the external solution is substituted. Thus, a search thread always proceeds
according to the information it gathered locally.

According to the basic strategy (CDiv), a solution is requested from the pool before
a diversification operation. Then, if the imported solution is better than the current best,
the diversification proceeds from the new solution. Otherwise, the imported solution is
discarded and the procedure proceeds as usual.

A number of alternative strategies based on option 2 may be envisioned to increase the
volume of information exchanges. The alternative criteria thus look for external information
once the pivoting sequence stops and before the neighborhood is to be expanded through a
column generation phase. If the imported solution is accepted, a new pivoting sequence is
initiated. Otherwise, the column generation phase proceeds as usual.

Let yout and Zout be the external solution and its value, respectively. Recall that Zlocal

gives the value of the best solution found during the current sequence of pivot moves, while
Zprev denotes the value of the best solution found during the current local search phase up
to the beginning of the current sequence of pivot moves. We tested the following criteria:

CFdiv: Accept the external solution if better than the local best. This corresponds to a forced
diversification, even if the local search trajectory is improving.

CWait: Import of external solution is delayed until after the first diversification; yout is always
accepted afterwards (assuming, of course, Zout < Zlocal). It attempts not to disturb the
initial local search.

CLoc: Accept yout if “significantly” better than the local best solution:

Zout < Zlocal − ε with ε = 10%Zout.

It attempts not to interfere with the local search trajectory unless the external solution
represents a significant improvement.

CPrev: Accept yout if it represents a more significant improvement relative to ylocal than
ylocal compared to yprev, the starting point of the current pivoting sequence:

Zlocal − Zout > Zprev − Zlocal.



COOPERATIVE PARALLEL TABU SEARCH 611

CRel: Accept yout if better than the current best, relative to the improvement effort of the
current pivot move sequence

Zout < Zlocal − ε with ε = (Zprev − Zlocal)/nbpiv,

where nbpiv indicates the number of pivots performed during the last pivoting sequence.

3.3. The cooperative tabu search method

To summarize:

The central pool

• Receives solution values and contexts.
• Manages the set of solutions.
• On request, extracts a solution, according to one of the above-defined strategies

(Section 3.1), and returns it to the requesting thread.

The individual search thread

• Executes a sequential tabu search procedure (as defined in Section 2) following a specified
strategy: initial solution and set of search parameters.

• When it improves Zlocal, the local best solution, sends its value and context to the pool.
Solutions are sent during regular local search phases as well as immediately following
a diversification move (even if infeasible). Note that sending the improved local best
solutions instead of the improved global best increases the size and diversity of the pool.

• Requests a solution from the pool at a moment determined by one of the six import
criteria defined previously (Section 3.2). If the external solution is accepted, it becomes
the local best, otherwise it is discarded. The tabu search then proceeds normally, using
its current memories.

According to the taxonomy of Crainic, Toulouse, and Gendreau (1997), this method can
be classified as a p-C MPDS strategy: collegial control distributed among p processes,
asynchronous communications, multiple initial points, diverse search strategies. The selec-
tion of particular selection and import strategies defines and instantiates the cooperation
mechanism. Many variants of the basic cooperative parallel algorithm may thus be built.
The next section tests and compares several of them.

An independent search strategy (identified as p-RS MPDS in the same taxonomy) also
executes several search threads in parallel, but no communication is allowed among pro-
cesses, except at the end when the best solution is determined. The same individual search
threads are used in our experimentation of cooperative and independent parallel tabu search.

4. Experimentation and analyses

There are few studies aimed at parallelization strategies for problems that, similarly to the
capacitated multicommodity network design formulation, display both a strong combina-
torial nature and complex flow structures. A major objective of the experimental phase
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therefore is to explore the behavior and influence of the various parallelization strategies:
independent versus cooperative search, solution pool management, communication inter-
val. The other main objective is to select a parallel strategy and to analyze its performance
characteristics for the class of problems at hand.

To analyze the behavior and performance of the parallel tabu search methods, comparisons
are made with the output of the sequential tabu search metaheuristic of Crainic, Gendreau,
and Farvolden (2000). To further characterize the quality of the solutions, we also refer to
the optimal solutions obtained by using the standard branch-and-bound algorithm offered
by a widely known commercial software.

The sequential tabu search metaheuristic is programmed in FORTRAN77. The cooper-
ation mechanisms are programmed in C. The parallel experiments reported in this section
have been performed on a cluster of SUN Ultra Sparc1/140 workstations with a 143 MHz
clock, 512 kb of cache memory and 64 Mb of RAM memory (3 out of the 16 computers have
128 Mb of RAM). No other applications were running during the parallel experimentation.
The sequential tabu search and branch-and-bound results come from the paper by Crainic,
Gendreau, and Farvolden (2000). It is reported in the paper that both procedures were ran
on a SUN UltraSparc-II workstation (2 CPUs, but only one allocated to our experiments),
with a 296 MHz clock, 2 Mb of cache memory, and 2 Gb of RAM memory.

Section 4.2 examines the comparative performance of the selection and import strategies
described previously (Section 3). A particular setting of the cooperative parallel tabu search
procedure is then selected and its performance is analyzed in Section 4.3. But first, the
description of the general experimental setup.

4.1. Experimentation setup

To set up the experimental phase, one has to decide how to instantiate each individual tabu
search thread. One also has to specify when the global search terminates.

Each tabu search thread is characterized by how the initial solution is obtained and by
particular settings of a number of search parameters. For the initial solution procedure, we
used three methods: (1) YES initial solution on the whole network; (2) NO initial solution
on the entire network; (3) NO initial solution on the network reduced by closing a number
of arcs with high fixed cost to capacity ratios. The search parameters that were varied are:
the short term tabu tenure interval ([low tab mv, high tab mv]), the number of consecutive
unimproving pivot moves before a column generation is initiated (max move), the number
of paths generated (k gen), the proportion of arcs dropped in the initial solution.

When analyzing the performance of a parallel procedure, normally one compares it
to the performance of the best implementation of the sequential algorithm for the given
problem instance (Barr and Hickman, 1993; Barr et al., 1995). This is reasonably clear
for most numerical procedures and optimization methods. The issue is less simple when
parallel metaheuristics are concerned. On the one hand, one certainly does not want to
consider the best sequential implementation for each problem instance. Metaheuristics
require the calibration of a number of search parameters. Then, normally, a limited set
of problems is used to select a set of parameters that perform “well” on these instances.
Performance results of the metaheuristic using this “best sequential implementation” are
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then reported on larger and different sets of problems. It is this metaheuristic version, and
the corresponding test problems, that should be used for parallel experiments. On the other
hand, a cooperative parallel metaheuristic brings together several procedures. Often, one
just takes the best sequential version and starts it from different initial solutions. We do not
believe this approach takes full advantage of the cooperation mechanisms. Indeed, some of
our earlier experiments have shown that just varying the starting point of the search does
not address the issue of building a more robust solution method relative to variations in
problem characteristics. Consequently, several different parameter settings are used in our
approach to instantiate the individual search threads.

To select the parameter settings, we turn to the experimental results reported by Crainic,
Gendreau, and Farvolden (1998, 2000). The calibration of the sequential tabu search yielded
a set of preferred parameter settings that were then used to obtain the results reported in that
paper. Since we compare to these results, it is only fair that this parameter setting be included
as one the cooperative procedures. The same calibration operation has also pointed toward
alternative parameter settings, some of which were displaying performances almost as good
as those of the preferred set. We used this information to vary the search strategies of the
parallel threads. Finally, the sequential experimentation also indicated that for a few very
tightly capacitated problem instances, a column generation procedure that explicitly avoids
saturated arcs was required. This variant is identified as SAT. When included in the parallel
experiments, the SAT variant always uses the preferred sequential parameter settings.

We designed the parallel experiment such that the “best” (the preferred) sequential pa-
rameter settings are always used. The other search strategies combine initial solutions and
parameter settings that appeared interesting in sequential testing, but were not exhaus-
tively tested. Therefore, 4-process searches implement the four “best” sequential strategies.
8-process experiments implement on four processors the same settings used in the 4-process
tests, while the other four receive new parameter settings. 16-process experiments use the
settings of the 8-process tests, plus eight new ones. In all experiments, the independent
and cooperative parallel procedures use exactly the same search strategies for their threads.
Note that we use “best” to qualify a given parameter settings in the same sense as Crainic,
Gendreau, and Farvolden: a robust set of parameters which offers consistent performance
levels over the problems used to calibrate the sequential method. Only ten (10) problems
were used to calibrate the sequential tabu search. There is therefore no guarantee that the
preferred parameter setting is the “best” in any general sense. It is also noteworthy that
neither the sequential nor the parallel tabu search procedures underwent any particular cal-
ibration for the parallel experiment. The parameter settings were directly transposed form
the sequential experiment without any further study. The only calibration-like experiment
that was undertaken concerned the choice of selection and import strategy presented next.

The same problem instances used by Crainic, Gendreau, and Farvolden (2000) are also
used in this study. Two sets of problems have been generated. The 196 problems are general
transshipment networks, with no parallel arcs and one commodity per origin-destination
pair. On each arc, the same unit cost is used for all commodities. Problems differ in the
number of nodes, arcs, all of which are design arcs, and commodities. Several instances
have been generated for each problem dimension by varying the relative importance of fixed
versus variable costs and the capacity of the network compared to the total demand. The
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problem generators (see Gendron and Crainic (1994b, 1996) for a complete description),
as well as the problem instances can be obtained from the authors.

Initial experiments have shown that sending to the pool all solutions that improve the
best solution of the current local search phase is counterproductive. Too many very similar
solutions are tightly packed together in the pool and the selection criteria no longer discrim-
inate adequately. Thus, the communication strategies have been implemented to avoid this
problem. Thus, when an individual search thread performs a series of improving moves,
it waits until the series stops and then sends to the pool the last improving solution only.
In all experiments, the independent and cooperative parallel procedures are stopped on the
same criteria used for the sequential tabu search: three diversification phases. Thus, parallel
versus sequential comparisons are easier to perform.

4.2. Communication strategies and parallelism

The first phase of experimentation aimed to analyze the influence of a number of parameters
on solution quality performance: number of processes, strategy to manage the pool and select
a solution following a request, criteria to decide when to import an external solution from
the pool. This experimentation was performed on the same set of ten problems used to
calibrate the sequential procedure. These problems were selected initially out of a set of 43
problem instances (set C of Section 4.3) to represent the entire range of network sizes and
number of commodities. They also display tight capacities and dominant fixed costs, since
the initial sequential experiments had shown that these characteristics make problems more
difficult to solve. In Tables 1 to 4, the problems are identified by their respective number of
nodes, arcs, and commodities. The (F) and (T ) letters indicate that capacities are tight and
the fixed costs are dominant, respectively.

Tables 1–3 display results obtained with four, eight, and sixteen processes (and proces-
sors), respectively. For each problem, the tables display results for the independent parallel

Table 1. Selection strategies, 4 processors: Improvement (in %) over sequential search.

PROB (C) IND SBest SProb SMobil SHhigh SHlow

25, 100, 10, F, T 0.46 0.46 1.87 1.87 0.61 0.46

25, 100, 30, F, T 0 −0.04 0.14 0.14 0.19 −0.17

100, 400, 10, F, T 1.50 0.52 1.77 1.77 1.50 1.50

20, 230, 40, F, T 0.13 0.02 0 0 0 0.02

20, 300, 40, F, T 0.16 0 0.16 0.16 0.16 0

20, 300, 200, F, T 5.08 8.01 7.74 7.38 5.50 5.31

30, 520, 100, F, T 4.03 2.41 3.13 3.13 3.13 3.13

30, 520, 400, F, T 1.37 1.44 1.08 2.12 1.03 1.36

30, 700, 100, F, T 1.17 1.65 1.31 1.17 1.17 1.31

30, 700, 400, F, T 2.77 2.00 1.70 1.70 0.55 0.54

Average improvement 1.67 1.64 1.89 1.95 1.38 1.38
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Table 2. Selection strategies, 8 processors: Improvement (in %) over sequential search.

PROB (C) IND SBest SProb SMobil SHhigh SHlow

25, 100, 10, F, T 0.46 0.46 1.19 0.81 0.61 0.46

25, 100, 30, F, T 0 −0.04 0.19 0.19 0.19 −0.17

100, 400, 10, F, T 1.50 0.52 −0.84 −0.46 1.52 3.16

20, 230, 40, F, T 0.13 0.02 0.02 0.02 0 0.13

20, 300, 40, F, T 0.16 0 0.16 0.16 0.16 0.16

20, 300, 200, F, T 5.08 9.26 8.84 5.93 7.98 8.94

30, 520, 100, F, T 4.03 3.27 4.03 3.51 4.03 3.64

30, 520, 400, F, T 1.37 3.68 5.16 4.20 3.60 3.25

30, 700, 100, F, T 1.17 1.72 1.71 1.71 1.53 1.31

30, 700, 400, F, T 2.77 3.70 4.06 2.77 2.77 3.53

Average improvement 1.67 2.26 2.45 1.88 2.24 2.24

Table 3. Selection strategies, 16 processors: Improvement (in %) over sequential search.

PROB (C) IND SBest SProb SMobil SHhigh SHlow

25, 100, 10, F, T 0.56 0.61 0.79 0.46 0.50 0.79

25, 100, 30, F, T 0 0.09 0.11 0.14 0.23 0.23

100, 400, 10, F, T 1.50 1.89 1.50 1.50 1.77 1.77

20, 230, 40, F, T 0.13 0 0.02 0.02 0.02 0.02

20, 300, 40, F, T 0.16 0.16 0.16 0.16 0.16 0.16

20, 300, 200, F, T 5.08 7.98 7.72 7.98 7.54 8.05

30, 520, 100, F, T 4.03 3.51 4.03 4.03 3.51 3.51

30, 520, 400, F, T 1.37 1.93 1.37 2.08 3.90 1.42

30, 700, 100, F, T 1.17 1.50 1.17 1.17 1.33 1.68

30, 700, 400, F, T 2.77 3.47 2.97 2.84 2.84 2.77

Average improvement 1.67 2.12 1.98 2.04 2.18 2.18

search (column IND), and the five selection strategies described in Section 3 to extract a
solution from the pool: columns SBest, SProb, SMobil, SHhigh, and SHlow. All experi-
ments use the basic import strategy (CDiv) that examines external information before a
diversification phase. The performance of each strategy is measured for each problem as
the improvement in solution quality, in percentage, with respect to the corresponding re-
sult of the sequential procedure. A negative value indicates that a worst solution has been
identified.

A number of interesting observations may be made comparing these results. First, parallel
search helps improve the solution quality. Over the one hundred eighty parallel runs, only
six found a solution worst than the sequential one, and eleven identify the same solution.
In one hundred and sixty-three executions, or over 90% of cases, a better solution is found.
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Table 4. Selection strategies with SAT, 8 processors: Improvement (in %) over sequential search.

PROB (C) IND SBest SProb SMobil SMobil- SHhigh SHlow

25, 100, 10, F, T 0.46 0.46 0.50 0.50 0.65 0.50 0.50

25, 100, 30, F, T 0.22 −0.04 0.22 0.22 0.39 0.22 0.22

100, 400, 10, F, T 1.50 0.88 1.52 2.63 0.66 1.52 −0.84

20, 230, 40, F, T 0 0.02 0 0.02 0.02 0 0

20, 300, 40, F, T 0.26 0 0.26 0.26 0.10 0.26 0.26

20, 300, 200, F, T 5.50 9.75 7.36 9.36 5.82 7.36 5.50

30, 520, 100, F, T 4.03 4.54 3.33 2.32 2.71 3.23 4.03

30, 520, 400, F, T 0.54 2.95 2.66 3.14 3.25 1.92 0.54

30, 700, 100, F, T 1.17 2.00 1.37 1.83 2.20 1.86 1.17

30, 700, 400, F, T 1.73 3.67 3.97 3.95 3.31 4.32 1.73

Average improvement 1.54 2.42 2.12 2.42 1.91 2.12 1.31

At first glance, the improvements might not always seem impressive. They are significant,
however, especially when one notices that the sequential results are already very good (the
gap of the sequential and parallel procedures with respect to the optimal solution, when
known, are indicated in Table 6).

The results also indicate that, as expected, independent search offers interesting results.
Using exactly the same search threads, cooperative search outperforms it, however. When
four processors are used, the observation is true for two selection strategies; it is almost
always true for larger numbers of processors. In fact, the superiority of cooperative search
appears to be greater when more processes participate: when eight or sixteen processes are
active, all cooperative strategies significantly outperform the independent search approach.

The number of processes clearly has an impact on performance. Not on relatively small
problems. And not for the independent search approach, of course. But for most problems,
increasing the number of cooperating searches improves the solution quality. On the other
hand, increasing the number of processes to sixteen does not contribute, in general, to en-
hance further the quality of the solutions. In fact, for most strategies, a larger computational
effort translates into somewhat lower solution quality. Not all strategies behave in a similar
way, however.

On closer examination of the 16-processor results, the solutions sent to the pool by the
last eight tabu searches are, for the most part, of lower quality than those of the other
search threads. And few make it to the top of the pool list. However, their presence and the
modifications it forces on the ordering of the solutions in the pool, appears to significantly
disturb the search patterns of most threads under most selection strategies, in particular
strategies SBest and SProb that rely directly on the solution values. Strategies SHhigh and
SHlow fare better because their evaluations are based not on direct comparison of solution
values but on distances from a constructed partial solution that reflects the common attributes
of a group of best solutions. Thus, the impact of any particular solution is less important than
for the other two strategies. However, even for the SHhigh and SHlow selection strategies the
contributions of the last eight processes to the pool do not appear to be of sufficient quality
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to compensate for the increased volatility of the pool. Only for SMobil a larger number of
processors has a beneficial impact on solution quality. A larger number of lower quality
solutions reinforces the positions of the solutions that top the pool, thus reinforcing the
global search pattern induced by the strategy when only eight processors are available. But
even for SMobil, the improvement is marginal and does not compensate for the additional
computational effort. Thus, for the current set of problems and parameter settings, eight
processors appear appropriate.

Over all trials, the traditional approach of always exchanging the best solutions is often
competitive and generally outperforms the independent search strategy. It is not the best,
however. Strategies that increase the diversity of the solutions returned to requesting pro-
cesses do as well and often better. Strategies that bias the selection probabilities by taking
into account the relative position of solutions in the pool, SProb and SMobil, fare generally
well. In our trials, the two strategies behave rather similarly, SMobil being less disturbed
when the size of the pool is increased by a significant number of solutions of lower quality.

Strategies based on building a partial solution that reflects characteristics common to a
set of best solutions and using the distance between a solution and this image to bias the
selection probability display interesting performances as well. Certainly not appropriate
when few processors are used, strategies SHhigh and SHlow are competitive when this
number is increased. This follows from the fact that when few search threads are used, all
good solutions available in the pool are sent by the same processes. The good solutions are
in fact quite strongly interrelated, the better ones often resulting from a search process
started at some other solution in the candidate set. The similarity of characteristics is
thus not meaningful. A larger number of search threads makes for a more diverse set
of good solutions in the pool and their common characteristics correspond to meaningful
information. Although interesting and encouraging, we believe that more work is needed
to refine this concept.

Recall that the SAT variant of the tabu search procedure forbids saturated arcs to be
considered during the column generation process. This modification was introduced to
tackle particularly tightly capacitated problem instances. Including into the cooperation at
least one search thread that implements the SAT strategy should thus increase the robustness
of the parallel method relative to the characteristics of the problem instances. Experimental
results with eight search threads, one of which implements SAT (and the preferred sequential
parameter setting), are displayed in Table 4. With the exception of SHlow, all cooperative
strategies perform very well and compare advantageously to the non-SAT variants. Given
its overall performances the SMobil selection strategy with the SAT variant has been chosen
for the experiments described in Section 4.3.

All the preceding results, as well as those discussed later on (see Section 4.3), are ob-
tained by using the basic communication criterion CDiv: a search thread requests an external
solution just before a diversification move. This approach clearly outperformed the five oth-
ers. Table 5 displays statistics to support this allegation. The figures represent the average
improvement in solution quality achieved by the parallel methods as compared to the se-
quential tabu search. Each parallel method is defined by a strategy to extract solutions from
the pool and by a communication criterion. The improvements are averaged over the same
ten problems. Eight processors were used, with no SAT process. The only other criterion that
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Table 5. Communication ciriteria on 8 processors—Average improvement.

Communication criteria

Pool strategies CDiv CFdiv CWait CLoc CPrev CRel

SBest 1.69 −0.37 0.64 −0.67 −0.01 −0.79

SProb 1.88 −0.25 0.50 −0.71 0.43 −0.68

SMobil 1.30 0 0.82 −0.65 0.26 −0.45

SHigh 1.67 −0.18 0.45 −0.88 −0.08 −0.52

Average 1.64 −0.20 0.60 −0.73 0.15 −0.61

displays improvements over the sequential approach is CWait where acceptance of external
solutions is delayed after the first diversification move, which is also the moment when
one starts requesting external solutions according to the CDiv strategy. This emphasizes the
importance of an undisturbed initial search phase. The results also clearly support the idea
that too frequent communications are not beneficial.

An interesting question in cooperative search is just how much the individual threads
contribute to the common goal. The results already reported in this section show that
cooperation is beneficial and that it improves over independent search. They also illustrate,
however, that cooperation has to be carefully defined and implemented. We have monitored
the evolution of the pool for many problems solved using a large number of the parallel
methods presented herein. We observed that all processes contributed to the pool, almost
all contributing the best solution at one moment, especially when four or eight processes
cooperate. Figures 2 and 3 illustrate the evolution of the pool when strategies SBest and
SMobil, respectively, are used to solve problem 30, 700, 100, F, T on eight processors. The
values of the solutions are plotted at the moment they enter the pool. A particular symbol
is used for each search thread. The evolution of the sequential tabu search procedure is also
indicated. The � symbol is used to plot the values of the solutions found by the sequential
procedure on one of the computers used for the parallel runs.

When the best solution in the pool is always returned to a requesting thread (figure 2), one
notices that the values of the solutions transmitted to the pool tend to cluster together. Even
here cooperation is beneficial, however: the best solution significantly improves over the
sequential one and is identified by a process not in the four “best” (process 6, symbol �).
When, on the other hand, the SMobil selection strategy is used, the solutions returned to
requesting threads are more diverse. Then, as illustrated in figure 3, the search trajectories
of the individual threads are modified (the series of symbols that seem to descend from
the top of the figure passed the initial descent, indicate that the corresponding threads have
significantly diversified the search following the import of an external solution) and the
solutions in the pool are also more diverse, at least in their corresponding solution values.
Thread 5 (symbol �) identifies the best solution in this case.

The graphs for other strategies and problems display similar behaviors. This indicates
that (1) the extraction strategies we propose achieve their goal of a more diversified global
search trajectory and, (2) external solutions are indeed accepted. Imported external solutions
then modify the search path of the thread and, eventually, allow to identify better solutions.



COOPERATIVE PARALLEL TABU SEARCH 619

Figure 2. Evolution of the pool: Prob. 30, 700, 100, F, T , strategy SBest, 8 processors.

To close this part of the result analysis, we briefly touch upon an intriguing issue related
to the instantiation of cooperative parallel procedures: the impact of the “quality” of the
individual search strategies included in a particular experiment. We have indicated earlier
in this section that our choices were dictated by the sequential experiments. We believe
such a policy to be very reasonable, since one always have some information concerning
the behavior of the procedure in a sequential setting. On the other hand, it is not at all clear
how else to select search strategies, especially if one desires to avoid extensively calibrating
the parallel method. Consequently, we performed a very limited experiment. We discarded
the two “best” sequential parameter settings and, for eight searches, we selected the next
eight strategies (i.e., from the third to the tenth). We then run the ten test problems, with the
SMobil selection strategy and the SAT variant. The results are displayed in column SMobil-
of Table 4.

The results are very good. Certainly competitive with the experiment that included the two
best parameter settings. And better than Independent search. This provides no indication,
however, on how to choose search strategies for cooperative parallel implementations. We
still believe that basing this selection process on the sequential results is a reasonable
approach. In the same time, however, it is an indication of the intrinsic value of parallel
computation and cooperation.
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Figure 3. Evolution of the pool: Prob. 30, 700, 100, F, T , strategy SMobil, 8 processors.

4.3. Performance analysis

Following these experiments, we solved the full sets of test problems using eight processors,
the basic communication criterion CDiv, the SMobil selection strategy, and one of the eight
processes running the SAT version of the sequential tabu search.

The first set is made up of 43 problem instances. These problems are identified with the
letter C and a quintuplet which indicates (i) the number of nodes; (ii) the number of arcs;
(iii) the number of commodities; (iv) if the fixed costs are relatively high (F) or low (V )
compared to the variable costs; and (v) if the problem is tightly (T ) or somewhat loosely (L)
capacitated. This set includes the ten problems used to calibrate the sequential tabu search
(Crainic, Gendreau, and Farvolden, 2000) and to select the communication strategies. It also
includes the largest problem instances solved, up to 700 design arcs and 400 commodities.

Table 6 displays computational results for problems in set C. For comparison purposes,
column SEQ OPT GAP displays the optimality gap between the solution obtained by the
sequential tabu search and the corresponding “optimal” solution. The gap is computed
with respect to the optimal solution and is displayed as a percentage. The optimal solution
is obtained by using the branch-and-bound algorithm of CPLEX version 4.0, with pri-
mal simplex-based bounding. The branch-and-bound algorithm has been run for six hours
(21000+ CPU seconds) but it still had difficulties solving the larger problems (actually,
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Table 6. Performance results—C problems.

SEQ PTS BEST PTS
PROB OPT GAP SEQ TIME OPT GAP PTS TIME TIME

20, 230, 40, V, L 0.28 71.29 0.16 216.26 79.80

20, 230, 40, F, T 0.09 90.28 0.09 218.37 10.28

20, 230, 40, F, T 0.17 121.79 0.12 235.23 93.02

20, 230, 200, V, L (t) 29.38 504.50 12.67 4471.12 2479.90

20, 230, 200, F, L (t) 34.82 491.63 27.85 4182.90 2003.79

20, 230, 200, V, T (t) 20.40 548.36 14.80 3587.83 1680.98

20, 230, 200, F, T (t) 32.68 889.69 21.32 1510.57 850.99

20, 300, 40, V, L 0.12 71.05 0.12 230.50 21.63

20, 300, 40, F, L 0.53 113.44 0.06 301.08 43.93

20, 300, 40, V, T 0 145.33 0 299.21 63.42

20, 300, 40, F, T 0.35 123.42 0.10 283.03 77.04

20, 300, 200, V, L (t) 17.15 982.21 9.44 6281.34 2331.23

20, 300, 200, F, L (t) 29.54 1316.75 15.85 5961.83 3260.63

20, 300, 200, V, T (t) 10.17 938.29 11.09 4736.64 823.11

20, 300, 200, F, T (t) 20.37 1065.88 9.23 6222.3 2763.56

25, 100, 10, V, L 0 5.60 0 20.91 1.25

25, 100, 10, F, L 6.35 8.37 5.27 32.95 12.24

25, 100, 10, F, T 3.52 17.10 3.00 43.53 13.89

25, 100, 30, V, T 0 16.57 0 167.91 20.73

25, 100, 30, F, L 4.72 33.01 7.04 82.39 39.94

25, 100, 30, F, T 1.07 71.84 0.85 131.09 49.23

30, 520, 100, V, L (t) 4.29 995.64 1.94 2629.52 1278.35

30, 520, 100, F, L (t) 7.94 939.24 4.86 3069.79 2150.41

30, 520, 100, V, T (t) 1.97 1218.52 1.21 3225.35 644.06

30, 520, 100, F, T (t) 8.03 670.29 3.89 5246.94 3960.93

30, 520, 400, V, L (t) 11.33 5789.27 8.63 11337.30 4536.26

30, 520, 400, F, L (t) – 6406.62 5.22 29132.10 10154.20

30, 520, 400, V, T (t) – 6522.23 3.34 19754.50 12733.80

30, 520, 400, F, T (t) – 8415.24 2.52 19167.80 18841.70

30, 700, 100, V, L 2.90 1265.11 1.23 3192.03 1766.84

30, 700, 100, F, L (t) 7.92 1479.59 6.68 7029.04 2371.26

30, 700, 100, V, T (t) 1.12 2426.02 1.12 6176.90 896.02

30, 700, 100, F, T (t) 5.56 1735.72 3.19 5693.10 2175.09

30, 700, 400, V, L (t) – 12636.20 1.08 18445.50 10688.60

30, 700, 400, F, L (t) – 11367.70 8.05 32752.70 25556.90

30, 700, 400, V, T (t) – 15879.50 1.84 19778.70 6504.07

30, 700, 400, F, T (t) – 11660.40 3.96 29948.90 19298.50

(Continued on next page.)
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Table 6. (Continued).

SEQ PTS BEST PTS
PROB OPT GAP SEQ TIME OPT GAP PTS TIME TIME

100, 400, 10, V, L 0.18 32.66 0.04 596.56 2.57

100, 400, 10, F, L (t) −1.00 33.00 −1.64 469.31 174.81

100, 400, 10, F, T (t) −0.44 81.23 −1.95 617.74 189.81

100, 400, 30, V, T 0 277.50 0 800.34 365.80

100, 400, 30, F, L (t) 12.23 100.16 8.83 1438.78 492.50

100, 400, 30, F, T (t) 2.89 215.71 1.37 922.07 497.45

almost all problems with 100 or more commodities). The problems for which this time
limit has been attained are indicated with a (t). When the branch-and-bound has identified
a feasible solution, the “optimality” gap is then computed with respect to the best solution
found: it is the best available, even if it may be far from the actual optimum. The time re-
quired by the sequential tabu search appears in CPU seconds in column SEQ TIME. These
results are from Crainic, Gendreau, and Farvolden (2000).

Column PTS OPT GAP displays the optimality gap of the parallel procedure with respect
to the same branch-and-bound solution used to for the sequential procedure gap. When the
branch-and-bound did not identify any feasible solution (signaled in Table 6 by a – symbol
in column SEQ OPT GAP), the percentage of improvement of the parallel solution relative
to the sequential one is displayed instead. Column PTS TIME displays the CPU seconds
required by the parallel procedure to complete the same number of diversification phases (3)
as the sequential tabu search. Column BEST PTS TIME indicates the CPU seconds required
by the parallel procedure to find the best overall solution (used to compute the optimality
gap). Recall that the parallel experiments have been performed on computers slower than
those used for the sequential runs.

The second set of problems, identified with the letter R, comprises 153 instances. To gen-
erate these problems, the numbers of nodes, design arcs, and commodities are systematically
varied, and for each combination of dimensions, nine problem instances are generated to
account for various levels of variable to fixed cost and total demand to total capacity ratios.
In this way, one may examine the impact on performance of problem of modifications to
one problem characteristic only. The network dimensions appear in Table 7. Three levels
of fixed cost ratio have been used: F01 (Fixed cost ratio = 0.01), F05 (Fixed cost ratio =
0.05), and F10 (Fixed cost ratio = 0.10). A high fixed cost ratio indicates that fixed costs
are relatively high compared to the total transportation cost of the problem instance and,
in most cases, makes the problem harder to solve. Three levels have also been used for
the capacity ratio: C1 (Capacity ratio = 1.0), C2 (Capacity ratio = 2.0), and C3 (Capacity
ratio = 8.0). A high capacity ratio indicates that the total capacity of the network is relatively
low compared to the total commodity demand. The tighter the capacity, the more difficult
the problem instance is to solve. Thus, the “easiest” problems generally have F01 and C1
as fixed cost and capacity ratios, respectively, while instances with F10 and C8 ratios are
more difficult.
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Table 7. Average optimality gaps (in %), problems R, by network dimensions.

|P|, |N |, |A| SEQ PTS |P|, |N |, |A| SEQ PTS |P|, |N |, |A| SEQ PTS

10, 10, 25 1.85 1.97 10, 10, 50 2.33 1.83 10, 10, 75 3.67 1.94

25, 10, 25 0.85 0.86 25, 10, 50 2.78 1.33 25, 10, 75 3.13 1.88

50, 10, 25 0.54 0.44 50, 10, 50 7.45 5.51 50, 10, 75 8.94 3.93

40, 20, 100 5.00 3.36 40, 20, 200 8.43 5.86 40, 20, 300 6.47 6.08

100, 20, 100 9.03 4.93 100, 20, 200 16.87 9.67 100, 20, 300 20.81 14.25

200, 20, 100 8.07 4.12 200, 20, 200 24.41 14.74 200, 20, 300 23.25 13.50

Table 8. Average optimality gaps (in %), problems R, by fixed cost and capacity ratios.

C1 C2 C8

SEQ PTS SEQ PTS SEQ PTS

F01 3.44 (5) 2.48 (6) 3.06 (5) 1.67 (5) 3.17 (1) 1.95 (2)

F05 13.85 (2) 7.85 (2) 9.69 (1) 6.76 (2) 6.33 6.41

F10 22.34 (2) 12.09 (2) 13.92 8.99 (2) 8.05 4.94

The large amount of data precludes the inclusion of detailed results for problems R
(these may be found in Crainic and Gendreau, 1998). Tables 7 and 8 present global perfor-
mance statistics over the 153 instances. Table 7 displays the average optimality gaps for the
sequential and parallel procedures according to the problem dimensions. Table 8 presents
the same information but distributed according to the combination of fixed cost and capacity
ratios. The figures between parentheses that follow some average gaps indicate the number
of problem instances in that particular class that were solved to optimality.

The results are very satisfactory. With very few exceptions (2 C-instances and 4 in set
R), the parallel procedure significantly reduces the optimality gap, dramatically so for most
cases. This behaviour is consistent over the entire range of problem dimensions, number of
commodities, and complexity (in terms of importance of fixed costs and capacity tightness).
This, for us, constitutes a clear indication of the robustness of the cooperative parallel
method.

Table 6 displays the CPU times required by the sequential and parallel procedures. Even
accounting for the fact that the sequential procedure was run on a computer faster than
the machines used for the parallel experimentation, it would appear that the parallelization
requires longer computing times. The same observations may be made relative to the reso-
lution of problems R (Crainic and Gendreau, 1998). This is not surprising, however, given
the setup of the experiments reported in this paper.

Recall that the parallel procedure is stopped on the same criterion as the sequential one:
after a number of diversification phases (three for the experiments reported in this paper).
Consequently, a priori, there cannot be a gain in computing time. Given dedicated comput-
ers, the parallel procedure with p processors should take about the same wall clock time
as the sequential method, for a total work effort p times superior. The pool management
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activities do not significantly impact the time of the parallel procedure. The termination
operations do have a slight impact, since one has to make sure all processes have completed
their search. Communications have an impact on the time of each process. At each diver-
sification point, a process has to stop, get an external solution, and decide on its next step.
These operations do not explain, however, all the differences in computing times.

Two additional factors explain these differences. First, continuing the search from an
external solution requires a more significant set up time than a normal diversification.
Recall that only the context of the solution, the y variables, are exchanged. No information is
exchanged concerning the path flows or the simplex basis. Consequently, when a completely
foreign design vector is imported, the work required to reconstruct a feasible solution (and
that includes generating new paths) may be more significant than recovering from the
closure of a few arcs. This time could be reduced either by changing the current dual
simplex procedure we are using (one could solve the multicommodity flow problem from
scratch, for example), or by exchanging more information. One could, for example, store
the full bases that correspond to the solutions in the pool. Another possibility is to build an
associated pool of good paths, that is, paths used in the solutions sent to the pool, out of
which individual threads could extract paths as needed.

The second factor has to do with the exploration each method performs. An imported
solution often sends the search in a direction different from that of a internal diversification
move. The new region is then more different from the ones already explored than is the case
during a normal sequential search. As a consequence, the following local search phases
are longer. Thus, cooperation makes for a more thorough exploration of the solution space
compared to the sequential search. This, obviously, requires more time.

The question than appears to be: For similar solution quality, is there any gain in com-
puting time using parallel implementations? For independent search, the correct answer
is No. This follows directly from the design of the method: control may be exerted only
once all threads have completed their search. Therefore, the total wall clock CPU time of
independent search equals the CPU time of the slower search process plus the time required
to collect the individual solutions and to select the best. (When, in the literature, one en-
counters claims of speed ups obtained using independent search, inevitably the method is
compared to multi-start sequential heuristics. But then, in reality, one compares the same
parallel method implemented on two different computing environments.)

For cooperative search, the answer is Yes. Several observations point towards this
conclusion. First, the column BEST PTS TIME in Table 6 displays the moment at which the
best solution of the parallel tabu search has been first encountered. This time is generally
significantly smaller than the total execution time. Second, the analysis of the evolution
of the best solution value among the solutions in the pool reveals that the cooperative par-
allel tabu search achieves very good quality solutions rapidly, significantly faster than the
sequential procedure.

This is clearly illustrated in figures 2 and 3 where each solution included in the pool is
represented by a symbol indicating the thread that produced it with coordinates (time of
entry in pool, solution value). The solution values obtained by the sequential procedure
are represented as well (the � symbol). To facilitate the comparisons, the sequential and
parallel strategies have been run on the same computers. It is then clear that compared to
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the sequential procedure (1) the same quality of solution has been obtained by the parallel
procedure in significantly less computing time and, (2) many solutions of better quality
are found much more rapidly. These observations hold for over 90% of the problems we
solved and, in fact, the potential time savings appear more important when problems become
larger in terms of number of design arcs and, especially, number of commodities. Significant
speedups could thus possibly be achieved using cooperative tabu search.

To take advantage of this property, one has to stop the parallel search sooner: not on a
number of iterations performed by each individual thread, but rather on a measure related
to the value of the best solution value and its rate of improvement. The general idea is to
stop the search as soon as the rate of improvement of the best solution “levels off”. We have
briefly examined a few stopping criteria based on the evolution of the best solution in the
pool. The results are encouraging. They also indicate, however, that stopping criteria might
be quite difficult to control and calibrate. Moreover, the impact of such stopping criteria
on the sequential method has to be correctly evaluated as well. Evidently, more research is
required in this area.

5. Conclusions

We have presented a parallel cooperative tabu search method for the fixed charge, capaci-
tated, multicommodity network design problem. The asynchronous parallel method makes
use of a pool of good solutions gradually built by the individual search threads. It is through
this device that individual threads have access to information sent out by the other threads
and communications are established. Various communication policies, as well as several
strategies to handle the exchanged information, have been introduced, analyzed, and com-
pared. The resulting parallel procedure displays excellent performances in terms of solution
quality and solution times.

The experiments we conducted show that parallel implementations find better solutions
than sequential ones. We have also showed that, when properly designed and implemented,
cooperative search outperforms independent search strategies. We believe this result to be
true for problems where each configuration of the solution space corresponds to a complex
problem, which constrains the number of total moves each individual search thread will
execute.

Among the many interesting research subjects that follow from this work, we would like
to point to the need to further study the behavior and properties of parallel cooperative
tabu search. Issues related to global memories and the global guidance of the search (to-
wards intensification and diversification moves in the space of the entire parallel search,
for example) are of particular interest. Of course, these issues are of equally relevance and
importance to all parallel metaheuristics and hybrids.
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