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Systems of many limit cycle oscillators are studied by using a phase description of the oscillation. 
Each oscillator interacts with all the other oscillators uniformly and is subject to external field. Two 
kinds of external fields are applied to the system: (1) periodic force and (2) random noises. Some 
effects of the external fields on the mutual entrainment are studied by analyses for steady macro
scopic rotation and also by numerical simulations. 

Large populations of coupled limit cycle oscillators are known to exhibit many 
interesting behaviors such as pattern formation and turbulent-like behavior.2

),4) 

Mutual synchronization is another type of important and peculiar behavior-I)-g) A 
simple mathematical model for studying the synchronization is given by a set of 
differential equations_3) 

(Model 0) (1) . 

where ¢i represents the phase of the i-th oscillator, and N the total number of the 
oscillators. The natural frequencies Wi are constant in time and they are distributed 
randomly_ The normalized number density of the oscillators having natural frequen
cy W is denoted as g(w). To simplify the analyses we treat the case that g(w) is 
symmetric about the mean value Wo_ For this model analytical expressions for 
various quantities ca:n be obtained by a mean field theory_3) An important quantity 
is the complex order parameter defined by j 

(J exp(ie) = 1~exp(i¢j), 

Equation (1) is rewritten by using (2) as 

¢i=Wi- K(J sin(¢i- e) 

(2) 

(3) 

which shows that each oscillator is subject to the mean field whose strength is K(J. If 
we assume that (J is time-independent, substitution of the solution of (3) into (2) yields 
a self-consistent equation for (J. It is known from the analysis of the self-consistent 
equation that there is a phase transition at a certain critical coupling strength Kc. 
The order parameter (J remains zero for K < Kc and becomes nonzero for K > Kc 
corresponding to the onset of macroscopic oscillation. Near and above the critical 
coupling strength (J is expressed as (Jcx(K - Kc)lI2, and e= Wot + eo. Then a macro
scopic number of oscillators are entrained to the collective oscillation. We extend 
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Model 0 to study the influence of some external fields upon the phase transition and 
the collective mutual entrainment. Two kinds of external fields are applied to the 
oscillators. One is an external periodic force with frequency near the mean natural 
frequency Wo and the other is random noises. 

A model in the presence of the external periodic force is given by4),5) 

(Modell) 
. K N • • 

¢i=Wi- N"ldsm(¢i-¢j)-b sm(¢i-wft) , (4) 

where Wf is the frequency of the periodic force and b is its strength. When K is zero, 
the oscillators are mutually independent and we have 

¢i=Wi-b sin(¢i-wft) 

or 

(5) 

where if;i=¢i-Wft. If IWi-Wfl<b, Eq. (5) has a stable stationary solution and 
therefore the i-th oscillator comes to have frequency Wf, or it is entrained to the 
external force. When b is zero and K is larger than Kc, a macroscopic number of 
oscillators are synchronized to the collective oscillation whose frequency is the mean 
natural frequencywo. When both band K are not zero, behaviors of the model would 
be determined by competition of the forced entrainment and the mutual entrainment. 

We first investigate a steadily rotating state of Model 1. The complex order 
parameter is assumed to rotate steadily at the frequency of the external periodic 
force. 

Equation (4) is rewritten with 6, ¢o and if;i=¢i-Wft as 

¢i=Wi-Wf-b'sin(if;i-if;o) , 

(6) 

(7) 

where b'=Jb2+ K 262+2K6b cos¢o and tanif;o=K6sin¢o/(b+ K6COS¢o). Here we 
assume that 6 and ¢o are constant in time. . Then we can derive a self-consistent 
equation for 6 and ¢o by using (6) and (7).9) The solution of (7) takes the form, 

,I, ,I, + . -1 Wi - Wf 
'j'i='j'O SIn b' 

(jjd+ if;o+ h(wd) (8) 

where Wi=J(Wi-WfY-b,2 and h(x) is a certain 27l"-periodic function of x. On the 
other hand, the order parameter 6 is expressed in terms of if;i as 

6 exp(i¢o)= 121C 
dif; n(if;) exp(iif;) 

= 1: dw g(w) 121C 
dif; n(if;; w)exp(iif;) , (9) 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/79/1/39/1855689 by guest on 20 August 2022



Cooperative Phenomena in Coupled Oscillator Systems 41 

where n(</J) is the normalized number density of the oscillators of phase </J, and n(</J; 
w) its further decomposition into different natural frequencies. The phase distribu
tion consists of the synchronized and desynchronized parts as n( </J) = ns( </J) + ndS( </J). 
These phase distributions are rewritten with the natural frequency distribution g(w) 
through the solution (8). 

ns( </J) = g(Wf + b'sin( </J - </Jo))b' cos( </J - </Jo) where \</J-</Jo\S:n/2, 

Substitution of (10) into (9) yields a self-consistent equation for (f and CPo in the form 

(f expi( CPo- </Jo)= b'{1"/2 d</J g(Wf+ b'sin</J)cos</J exp(i</J) + if} , 
-tr:12 

(11) 

where 

l tr:'2 cos</J(I-cos</J) ( ( b') ( b' )} 
f=o d</J sin3</JgWf+ sin</J -gwf-sin</J . (12) 

Note that the solution in (11) is a particular solution of Model 1 because it has been 
obtained on the assumption that (f and CPo are constant in time, or a steadily rotating 
solution needs to satisfy Eq. (11). 

When b is small enough, the periodic force may be treated as a perturbation on 
Model o. The a.c. susceptibility defined by X(wf)=1imb~o(f/b is explicitly obtained 
when the coupling strength is near the critical one, i.e., K~Kc=2/ng(wo). Then Eq. 
(11) is approximated by 

where 

(f cos(cpo- </Jo)=n/2 g(wf)b' , 

(fsin(cpo-</Jo)=h(Wf)b' , (13) 

(l4) 

The a.c. susceptibility and the phase shift CPo are expressed by the solution of (13) when 
Wf is close to Woo 

1 
X=-r~==========~~~~~======= 

n
2 

2( )(K K)2 16 H(WO)2( )2 ' -4 g Wo - c + 4 4( ) W f - Wo n g Wo 

(15) 

(16) 

When Wf is Wo, X is inversely proportional to Kc- K. This is analogous to the 
Curie-Weiss law for ferromagnets. As far as the susceptibility is concerned, our 
coupled-oscillator system has the same property near the critical point as in the usual 
equilibrium phase transitions. 

The above steadily rotating solution is not always realized. A computer simula-
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tion on Modell with N = 1000 was carried out with the Euler method to find a stable 
solution. The distribution g(w) was assumed to be a Gaussian centered about 0 and 
with variance w 2

• In our simulation K was set to 2 and Wf to 1 throughout, and band 
w were changed continuously. rhe initial condition chosen was uniform, i.e., ¢;(O) 
=0 for all i. 

Figure 1 is a phase diagram determined by the simulation on a b-w plane, which 
shows that there are two different phases. When b or w is large, the particular 
solution of the self-consistent equation is realized and then the population of the 
oscillators is separated into two groups; one group is composed of oscillators 
synchronized to the external periodic force and the other group is composed of 
desynchronized oscillators. We call it the forced-entrainment phase. When band w 
are small, the steadily rotating solution is not realized and then the order parameter 
(] comes to oscillate. We call it the mutual-entrainment phase. In the mutual
entrainment phase the population is separated into three groups. The third group is 
composed 'of oscillators which are mutually entrained. The mutual entrainment is 
realized at a series of different frequency ratios with nearly equal spacing. 

The coupling-modified frequency Wi is defined as wi=(¢;(T)-¢i(O»/T where T 
is 600 in our simulation. Figure 2 shows the relation of Wi to the natural frequency 
Wi. The occurrence of entrainment is reflected in this curve as a plateau where the 
coupling-modified frequency remains constant for some finite range of natural fre
quencies. When the parameters are set in the forced-entrainment phase, there is only 
one plateau at Wf. There are two possible types of phase transitions from the 
forced-entrainment phase to the mutual-entrainment phase. When b is small and w 
is decreased continuously, it is seen that at W=W c a small-width plateau appears at 
WI, apart from the one at Wf. As w is decreased further, the plateau at WI extends and 
other plateaus come out at Wn~nwI-(n-1)wf. These plateaus correspond to 
higher-harmonic mutual entrainment. This transition is considered a modification of 
the phase transition in Model 0 by a weak periodic force. When w is small and b is 
decreased continuously, a qualitative change occurs at b=bc such that the plateau at 
Wf starts to split into many plateaus to form a staircase. Their spacing increases 
from O. The corresponding transition line on the b-w plane starts from the point b 

b 

1.0 f..----__:,_ 

0,5 

05 
W 

c· b' .a 

1,0 

Fig. L Phase diagram in b-w plane with K=2.0 
and (Of=l.O and (00=0.0 for Model L 

=Wf and w=o where each limit cycle 
oscillator starts to be entrained to the 
periodic force. We may say, therefore, 
that the macroscopic oscillation, which 
would exist if the system is not subject to 
the periodic force, is entrained to the per
iodic force at the transition point. The 
two lines corresponding to the two types of 
phase transitions seem to cross at w ~ 0.7 
and b ~ 1.05. Details about the cross-over 
of these phase transitions are not known 
yet. 

In this way a stable state for Modell 
has been found by the computer simula-
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Fig. 2. Coupling-modified frequency cii as a function of natural frequency (J) for the five ,set up 

parameter values indicated in Fig. 1 with (a)~(e). 
(a) b=O.6, w=l.L (b) b=O.6, w=l.05. (c) b=O.6, w=O.7. (d) b=l.O, w=O.5. (e) b=l.04, w=O.5. 

tion. The particular solution of the self-consistent equation has been found to be the 
only stable state in the forced-entrainment phase. This solution may become unsta
ble and mutual entrainment starts, which brings about oscillation of the order param
eter. It is an important and future problem to seek for an equation of motion for (J 

which includes Eq. (11) as a stationary solution and explain the phase diagram 
theoretically. 

N ext we study another model in which some external random noises are present: 

(Model 2) (17) 

Here /;(t) are Gaussian white noises with properties 

/;(t) =0, /i(t)/it') =2D (jij(j(t - t') . (18) 

When all oscillators are identical, i.e., (Oi= (00, Model 2 is equivalent to ther
modynamic systems of classical XY spins and then the parameter D represents 
essentially the temperature of the spin systems. Random noises give rise to Brow
nian motion of phase difference between any two oscillators and therefore perfect 
entrainment is impossible. If the interactions are strong enough, however, a macro
scopic oscillation may appear even in the presence of both random noises and random 
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natural frequencies. 
Let us derive a self-consistent equation for Model 2. Since the complex order 

parameter is expected to rotate at the mean natural frequency, we put 

1~exp(i¢J=6 expi(wot+¢o). 

Equation (17) is rewritten with the use of (19) as 

¢ =w-K6 sin¢+ j;(t) , 

(19) 

(20) 

where w=w;-wo and ¢=¢;-wot-¢o. If 6 is constant in time, the Fokker-Planck 
equation for the probability distribution n(¢; w) is derived from the Langevin equa
tion (20), and we get 

an(¢; w) 
at (21) 

The stationary solution of (21) satisfying the periodic boundary condition n( ¢; w) 
= n( ¢ + 2;r; w) is given bylO) 

n(¢; w)=exp ( - K6+ w~+ K6cos¢ )n(O; w) 

1 
(e-2 7(W/D -1) 1'" e<-W<fJ-K(}COS<fJ)/D d¢ ). 

x 1+ 12 7( 0, . , 
o e<-W<fJ-K(}COS<fJ)/D d¢ 

(22) 

where n(O; w) is determined by the normalization condition 

1
2

7( 
o n(¢; w)d¢=l . (23) 

Substitution of (22) into (9) yields a self-consistent equation for 6. 

1= 127( 
6= _= dw g(w+ Wo) 0 d¢ n(¢; aJ)exp(i¢) . (24) 

Let us find critical coupling strength Kc and a small amplitude solution near Kc. 
As g(w+wo) is symmetric about w=O, the imaginary part on the right-hand side of 
(24) is always zero. The real part on the right-hand" side may be expanded in powers 
of K6/D as 

+0(( ~r)J. (25) 

The critical coupling strength as a function of D is determined from (25), and we 
obtain 

11= dw 
Kc(D) = 2 _= g(Dw + wo) w2 + 1 . (26) 
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As K is increased, a nontrivial solution branches off the trivial zero solution at K 
=Kc. Near and above the critical coupling strength (J is proportional to (K - Kc)1/2. 
The coupling-modified frequency w is similarly expanded in powers of K(J/D as 

w=W 1 K(J(w-wo) +O(K4(J4) 
2 (w- WO)2+ D2 D4 . (27) 

Although the oscillator frequencies come nearer the frequency Wo of the macroscopic 
oscillation, there are no oscillators perfectly entrained to the macroscopic oscillation. 

Figure 3 shows the critical curve (26) in the case that g(w) is a Gaussian distribu
tion centered about 0 and with variance w2

• A computer simulation based on Model 
2 with N=1000 was carried out with the Heun method and it was shown that the 
nontrivial solution of (25) is realized beyond the critical coupling strength. Figure 4 
shows the distribution, of the resultant frequencies w in the ordered state. When D 
is zero, a delta peak and strong intensity decrease of the background spectrum is seen 
in the vicinity of the delta peak.. When random noises are added, the delta peak 
broadens and the intensity depression disappears, that is, the mutual entrainment 
becomes less clear. Thus, the random noises turn out to make the critical coupling 

~ strength larger without giving any 
o qualitative change with respect to phase 

o 
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~ order 
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o 
o 
oT--'--,--,--,--r-,--,--, 
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transition. Macroscopic oscillation 
emerges' beyond the critical coupling 
strength, though there are no oscillators 
perfectly entrained to it. 

Fig. 3. Phase diagram for Model 2 in D/K-w/K 
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Fig. 4. Histogram of oscillator population as a function of the coupling-modified frequeIl£Y iii. 
(a) K=l.O, w=O.6, D=O.O. 
(b) K=l.02, w=O.6, D=O.Ol. 
(c) K=l.04, w=O.6, D=O.02. 
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