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We theoretically investigate the radiative dynamics of molecular aggregates with physical 
dimensions much smaller than an optical wavelength. The fluorescence decay rate of a one- 
dimensional aggregate consisting of Nelectronically coupled two-level molecules interacting 
with acoustic and optical lattice phonons is calculated. The linear dependence (superradiance) 
of the radiative decay rate on the aggregate size N is shown to be quenched by exciton-phonon 
coupling. An increase of aggregate size Neventually leads to a convergent, size independent 
decay rate, which is N * times faster than the monomer decay rate. The coherence size N * is 
generally a function of the exciton-phonon coupling strength, the phonon bandwidth, and the 
aggregate temperature. For low frequency phonons, a scaling law is obtained and an empirical 
relation for the temperature dependence N * - T- “3 is derived. 

I. INTRODUCTION 

The excited state dynamics of aggregated molecules is a 
subject of increasing interest. Molecular aggregates function 
in such diverse roles as sensitizers in color photography,’ 
and energy transport media in natural photosynthetic sys- 
tems.* Recently, the nonlinear optical properties of interact- 
ing molecules arranged in an aggregate have received con- 
siderable theoretical attention,3-5 in an attempt to appraise 
their value as potential nonlinear optical materials useful for 
opto-electronic devices. It is natural to interpret the optical 
response of molecular aggregates in terms of a characteristic 
coherence size. Molecules located within the coherence size 
are closely coupled and respond in phase to the external 
field. This may result in ultrafast radiative decay rates and 
enhanced optical nonlinearities. It is the possibility of main- 
taining a large coherence size which makes the studies of 
molecular aggregates particularly exciting. 

The radiative dynamics of J aggregates, formed by 
many types of dye molecules (e.g., pseudo-isocyanine dyes), 
have been extensively studied.6P7 For these systems, the con- 
cept of a coherence size was first advanced by Mobius and 
Kuhn’@) in analyzing the dependence of fluorescence 
quenching on the acceptor surface density for a system con- 
sisting of an acceptor monolayer on top of a J-aggregate 
monolayer. Additional experiments,6’b’ where the acceptor 
impurity was incorporated into the J-aggregate monolayer, 
provided further evidence. The coherence size was found to 
be inversely proportional to the temperature for tempera- 
tures exceeding about 20 K [coherence size = 3OOO/T( K) 1. 
deBoer and Wiersma’ have also found an approximate in- 
verse relationship between the size and the temperature 
above - 50 K. A similar size-dependent radiative decay rate 
has been observed from Wannier excitons in semiconductor 
microstructures, such as quantum dots and wells, and from 
charge transfer excitons in polysilanes.’ Itoh and co- 
workers’ have shown that spherical microcrystallites of 
CuCl embedded in a sodium chloride pellet radiate at a rate 
roughly proportional to the crystallite volume. The tempera- 
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ture dependence of the fluorescence lifetime of free excitons 
in quantum wells has been studied by Feldman et al.” and 
by Minami et al., ’ ’ where a nonactivated and approximately 
linear dependence was observed. A crude model for the tem- 
perature-dependent exciton coherence volume, determined 
by the strength of acoustic photon-exciton interaction, was 
used to rationalize that linear dependence. 

In this article we develop a microscopic theory for the 
coherence size which determines the cooperative radiative 
decay of molecular aggregates. Most earlier theories of ag- 
gregate spectroscopy deal exclusively with the effects of ag- 
gregation on the monomer vibronic spectrum and include 
only the high frequency intramolecular vibrations, which 
show up in the optical spectra.‘*-I6 The radiative decay is, 
however, primarily influenced by the low frequency inter- 
molecular vibrations or lattice photons, which have not re- 
ceived much theoretical attention. The coherence size for the 
radiative decay rate was calculated by Grad et al. I7 using a 
stochastic (infinite temperature) Haken-Strobl model. ** It 
was shown that superradiance is quenched by homogeneous 
dephasing. The variation of the coherence size from 
(R /aId (a = lattice constant, d = dimensionality ) for an 
infinite aggregate with no dephasing, to unity for large de- 
phasing was shown. Spano and Mukamel19 calculated the 
effect of static inhomogeneous broadening on the radiative 
lifetime of rigid aggregates, and showed that the coherence 
size is reduced to one when a/] V ] ) 1, where gis the width of 
the inhomogeneously broadened transition and fiVis the in- 
termolecular dipole-dipole coupling energy. In this paper, 
the coherence domain hypothesis is investigated by perform- 
ing numerical simulations of the radiation dynamics for a 
one-dimensional aggregate with acoustic and optical exci-’ 
ton-phonon coupling. Our approach is microscopic and pro- 
vides a finite temperature theory for phonon dephasing, an 
improvement over the popular and readily applicable Ha- 
ken-Strobl model,” which cannot adequately explain the 
increase in fluorescence lifetime with temperature.” We de- 
rive reduced equations of motion in k space for the Nexciton 
populations using a factorization procedure developed by 
Bogolyubov and Tyablikov.*’ It amounts to truncating the 
infinite hierarchy of equations for exciton-phonon operators 
by factorizing the expectation value of an exciton-photon 
product operator into the product of expectation values of 
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the exciton and the phonon parts. The same procedure has 
been used to calculate the absorption spectrum” (without 
the inclusion of superradiance) where factorization at the 
nth level corresponds to an nth-order perturbation treat- 
ment of the self-energy. Within this framework, we study the 
dependence of the fluorescence lifetime on the aggregate size 
N, the temperature, and the strength of the exciton-phonon 
coupling. 

In Sec.11 we present the model Hamiltonian including 
the electronic and nuclear degrees of freedom as well as the 
exciton-phonon coupling. In Sec. III we derive reduced 
equations of motion for the exciton populations and in Sec. 
IV we calculate the effects of phonon dephasing (acoustic 
and optical) and superradiance on the aggregate radiative 
rate for aggregates as large as N = 400. (Details of our calcu- 
lations are given in the appendices.) Section V compares our 
results with those using a strong collision model which in- 
cludes the Haken-Strobl model as a limiting case. Our con- 
clusions, which provide a qualitative interpretation to the 
recent studies in semiconductors and J aggregates, are sum- 
marized in Sec. VI. 

II. MODEL HAMILTONIAN 

The aggregate is modeled as a cyclic array of N coupled 
two-level molecules with optical transition frequency c+,.~+** 
The molecules interact via an oscillating electronic transi- 
tion dipole moment p between the ground state 18) and ex- 
cited state le). It is assumed that in the rigid lattice the dipole 
moments of all molecules are aligned and form an equilibri- 
um angle 8 ,* with the aggregate axis. The equilibrium near- 
est-neighbor distance is r,2. At equilibrium, the values of 0 
and r are at the minimum of the molecular rotation and 
displacement potential wells, respectively. We further as- 
sume that the aggregate size is much smaller than an optical 
wavelength, note that inhomogenious broadening, which is 
neglected here, may provide an additional important mecha- 
nism for controlling the coherence size.” 

In the rigid lattice, the coupling of the molecular transi- 
tion dipole moments via the oscillating dipole electric field 
leads to the familiar exciton eigenstates. The complete Ham- 
iltonian which includes the coupled two-level electronic 
states (excitons), the phonon field, and the interaction 
between the excitations and the phonons is written as 

H=H, +H, -i-H,,, (2.1) 

where 
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was motivated by the fact that the Stokes shift in the emis- 
sion spectra of many J aggregates is negligible.’ In the local- 
ized excited state basis set 1 n), which denotes the state with a 

single excitation at site n, the exciton coherence operator B i 

is given by 

B; = -$-f, exp(y (n - 1)) In)(Ol. (2.3) 

The state IO) is the ground state, in which all Nmolecules are 
unexcited. Note that He is not Hermitian because of the 
y(k) term; it is an effective Hamiltonian, derived from the 
complete matter-photon coupling Hamiltonian, and takes 
into account the radiative damping or superradiance of the 
k th exciton state. For a cyclic aggregate much smaller than 
an optical wavelength, we have*’ 

y(k) = NY&,, (2.4) 

for the k-dependent radiation rate. Here y is the spontaneous 
emission rate for an isolated monomer. Note that the k = 0 

(totally symmetric) state decays N times faster than a single 
molecule and that the remaining states do not radiate, a phe- 
nomenon known as subradiance. The exciton energy w(k) is 
given by 

w(k) = w,, - 2Vcos k = O,l,..., N- 1, (2.5) 

where the dipole-dipole energy between molecules m and n, 

- V,,, is 

-v 
Inn 

_ 3y (l-3COS2b) 

4 ( k,r,,,, 1 3 
(2.6) 

with k, = @g/c, and r,, = Ir,,, - rn 1 and V= V,, is the 
(negative of the) nearest-neighbor dipole-dipole coupling 
energy. In a J aggregate the absorption peak is red-shifted 
from the monomer peak; V is therefore a positive quantity, 
implying that cos* 19,~ > l/3. In all our calculations we as- 
sume the J-aggregate configuration, although an equivalent 
analysis for an H aggregate ( V< 0), where the optically se- 
lected exciton is at the top of the band, is simply performed 
by changing the sign of the Vin the equations of motion. 

N-l 

He = fi C w(k) + i 
k=O 

9 Bt,B,, 
I 

HP =fiT yz; n,+sbqs ++) 7 

(2.2a) 

Hep = ~*~~F,(k.q)B:,,Bkcb,, +bt,-q,,). (2.2~) 
, . 

The phonon Hamiltonian HP gives the energy R, (4) of 
the molecular vibrations when the system is in the electronic 
ground state. The subscripts refers to the phonon branch; a 
one-dimensional aggregate with one molecule per unit cell 
has a single acoustic phonon branch and a single optical 
phonon branch. The acoustic branch represents intermole- 
cular vibrations and is characterized by an energy 0, (q) 

which vanishes as q approaches zero. The optical branch 
represents molecular librations and exhibits a nonzero value 
of as (q = 0). Each branch contains N modes characterized 
by the wave vector q. In Sec. V we will consider the effect of 
each of these types of phonons separately on the exciton flu- 
orescence dynamics. 

(From here on, we set fi = 1, so that energy has units of 
s- ‘.) The aggregate Hamiltonian includes site-off diagonal 
exciton-phonon coupling, as opposed to site-diagonal cou- 

pling which may lead to exciton self-trapping. Our choice 

The exciton-phonon Hamiltonian describes exciton de- 
phasing and population transfer due to the scattering off 
phonons. In this work, we explore the effect of the exciton- 
phonon Hamiltonian which arises from the (linear) change 

in the dipole coupling energy Vwhen the molecules are dis- 
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placed or “twisted.“21 As is evident from Eq. (2.2~) the 
exciton number is conserved but the number of phonons is 
not. The coupling Fs (k,q) for a one-dimensional aggregate is 
defined as2’ 

K&z) = C i d(q) 

@t,(OW,(O)) =yLk,,, e, 4 i 

so that according to the definition Eq. (3.3), 

G(M) = a,,,. (3.5) 

In addition, all initial exciton coherences 

((Bl(O)B,.(O))(k#k’) are zero. The laser pulse thus 
prepares the system in the k = 0 exciton state. If we further 
assume that the transition dipole moment is independent of 
the nuclear coordinates, the initial phonon distribution is 
identical to the ground state thermal distribution. 

m=l,-1 I=1 

where ef (q) are the components of the unit polarization vec- 
tors of branch s, and I is the index for the general coordinate; 
r’; ’ =r, is the displacement of the mth molecule from its 

equilibrium value, and r’: 2= 8, is the angle which the mth 
transition dipole moment makes with the aggregate axis. I, 
are the mass coefficients corresponding to the translational 
(I = 1) or rotational (I = 2) motion. The subscript “0” indi- 
cates that the derivatives are evaluated at the equilibrium 
configuration. Finally we note that since Hep is Hermittian 
we have 

F,(kq) = Ff(k + q,N-- 4). 

III. REDUCED EQUATIONS OF MOTION 

In this section we derive, starting with the Hamiltonian 
in Eq. (2.2)) reduced equations of motion for the N exciton 
populations where the phonon variables have been eliminat- 
ed. These equations allow us to calculate the time-resolved 
exciton fluorescence. We assume that at t = 0 a short laser 
pulse coherently excites the k = 0 aggregate exciton, and are 
interested in the subsequent exciton radiation in the presence 
of phonons. We should mention that higher exciton density 
effects such as exciton-exciton annihilation are not account- 
ed for in our theory. These effects increase with the strength 
of the excitation source (the laser pulse energy for example) 
but are negligible in the weak excitation regime. 

When a sample of Mrandomly oriented aggregates each 
consisting of N molecules is initially excited by a short pulse 
of area BP, the intensity of the incoherent fluorescence emit- 
ted in the unit direction R is given byI 

IFI(R,t) = MN’s(R)G(O,t), (3.1) 

where the direction factor s(R) is 

2 3y 4-2(R~x)~ 
s(R)=+ s?T- [ 1 15 ’ 

(3.2) 

Here, G( k,t) is the normalized k th exciton population de- 
fined as 

G(k,t)=(4/NB;)(B:(t)B,(t)). (3.3) 

In Eq. (3.2)) x is a unit polarization vector of the linear- 
ly polarized exciting laser pulse. Usually, one measures the 
radiation emitted at right angles to the laser pulse propaga- 
tion axis z, along the R = y direction, in order to avoid detec- 
tion of unwanted scattered laser light. 

Immediately after laser pulse excitation, the exciton 
population isr9 

In order to describe the subsequent exciton fluorescence 
in the presence of phonons, one needs to calculate the time 
dependent k = 0 exciton population. To this end we use a 
procedure originally used by Bogolyubov and Tyablikov.” 
An infinite hierarchy of equations are derived by starting 
with the Heisenberg equation of motion for a material opera- 
tor A,, which has both exciton and phonon contributions: 

d%(t)) 
dt 

= i([HJ,]). 

In our case we are interested in A, = B 1 B, ,, B i B,. b,, 

B 1 B, I b d, B : B, I b 21 b i, etc., all of which must be known as a 

function of time in order to calculate B $ ( t) B,( t) and hence 
the exciton fluorescence. Application of Eq. (3.6) for 

A, = B LB, produces an equation with terms like 

@f;+q WB,(t)b,W) and Vi+, WBdt)b;W) 
appearing on the right-hand side. A second application 
of Eq. (3.6) for A, = Bk+q ’ (t)Bk (t)b,(t) or 

B if 9 (t) B, (t) b i (t) leads to an equation with source terms 

suchas (Bi,,,,. (t)Bk(t)bi(t)b4.(t)),containinganad- 
ditional phonon variable. Continuing in this fashion pro- 
duces an infinite set of coupled equations, a hierarchy, where 
the ith level (i = 1,2,...) represents equations of motion for 
operator expectation values consisting of a product of the 
exciton k, k ’ coherence operator (B 1 B, I ) and i - 1 phonon 
creation or annihilation operators. In order to reduce the 
number of equations to a manageable size, the expectation 
value of operators appearing in the source terms must be 
factorized, at some level i, into the product of the expectation 
value of exciton operator and the expectation value of 
phonon operators, thus forming a closed system of equa- 
tions. In this work we apply this procedure to the second 
level in the hierarchy (i = 2)) performing the factorization 
on the source terms involved in the equations of motion for 
operator expectation values like (B i + 4 ( t) B, ( t) b, ( t) ). 

The factorization approximations are the following: 

(Btk+q+q, (t)B,(t)bfv-,(t)b,,(t)) 

~(B:(t)B,(t))n,,6,-,,,, 

m+,+,+ (t)B,(t)b,_,(t)b~.(t)) 

z(B:(t)B,(t))(l +n,.)6,-.,p, 

N+q+< (f)Bk(f)b~_q(f)bf,(f)) 

= (B:(t)B,(t)b,_,(t)b,.(t))~O, 

(3.7a) 

(3.7b) 

(3.7c) 
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where we have assumed, in addition, that the phonon field is 
unperturbed by the presence of excited state molecules, and 
remains in thermal equilibrium-an excellent approxima- 
tion when the exciton density is low.*’ Here, n4 is the num- 
ber of phonons of wave vector q and at temperature T, 

n9 = {exp[hR(q)/kT] - 11-l. 
The second level equations can now be formally inte- 

grated and substituted into the first level. This results in the 
following closed set of N coupled equations for the exciton 
populations, which constitutes a generalized master equa- 
tion in k space:22 

dG(k,t) 
- = - NyS,, G( k,t) 

dt 

K,(k,q;t - t’)G(k,t’) 

+CS'K,(k,q;t-t')G(k+q,t'), (3.8) 
9 0 

where the integral kernels K, and K2 are given by 

VW)=~ IF(kq)12C(1 +n&os[n+ (k,q)T] 

+ n4 cos[R- (k,q)7]}e-‘Ny’2)[6k.0+S*+A017, 

(3.9a) 

K2(k,q;d=~lF(k,q,l”{(l + n,)cos[K (kqb-] 

+ n4 cos[fi, (k,q)7])e-(Ny’2)[6*.0+6k+4.01: 

(3.9b) 

and the exciton-phonon frequency difference is defined as: 

fl k (k,q) = w(k + q) - w(k) f Wq). 

According to Eq. (3.8), population which is initially 
confined to the k = 0 exciton state is redistributed over time 
among all other N - 1 (k #O) exciton populations due to 
the interaction with phonons. Simultaneously, the k = 0 ex- 

citon population diminishes due to superradiant emission, 
represented by the first term on the r.h.s. in Eq. (3.8). Let us 
define the total excited state population as 

N-l 

P,(t)= 1 G(k,t). 
k=O 

Using Eq. (3.8) and the 

&{ - K,(k,q,r) + K2(k,q,T)) = 0 we get 

property 

$ Pr(t) = - NyG(O,t). (3.10) 

The total excitonic population is affected only by superra- 
diance. Phonon scattering does not affect the decay of the 
total exciton population, since Hep conserves the total num- 
ber of excitons. If we now introduce the nth temporal mo- 
ment M,, of dP,(t)/dt as 

M,= - 
s 

‘t+,(t), (3.11) 
0 

then by integrating Eq. (3.10) and using the initial condition 
Eq. ( 3.5 ) we get M, = 1, independent of phonon dephasing. 
The unitary value of M, along with Eqs. (3.1) and (3.5) 
show that the integrated fluorescence, representing the total 
number of emitted photons, is proportional to the aggregate 

size N and is independent of temperature or exciton-phonon 

coupling strength. Higher moments M,, (n > 0) are affected 
by phonon scattering and reflect the change in the fluores- 
cence decay profile, the calculation of which is the subject of 
this paper. 

IV. THE TEMPERATURE-DEPENDENT COHERENCE 
SIZE 

In this section we calculate the fluorescence decay [ Eq. 
(3.1) ] from aggregates as large as N = 400 with exciton- 
phonon coupling, with particular attention given to the size 
and temperature dependence. This obviously requires a solu- 
tion to Eq. (3.8) which is described in Appendix A. In Fig. 1, 
we show the fluorescence signal calculated by this procedure 
for an aggregate of size N = 20 with exciton-acoustic 
phonon coupling. (kT = lOOR,, , where R,, is the acoustic 
phonon bandwidth [see Eq. (4.2) I). The rapid oscillations 
reflect the temporal memory of Eq. (3.8). In realistic sam- 
ples these oscillations will be partially or completely washed 
by inhomogeneous broadening in the transition frequencies 
or a distribution of aggregate sizes. In addition, the finite 
temporal resolution of any experimental measurement of 
fluorescence may eliminate the fast oscillations. Under such 
circumstances, only the coarse-grained fluorescence decay is 
measured and this is the quantity of physical interest. The 
smooth solid curve in Fig. 1 shows the coarse-grained tem- 
poral response, calculated by convoluting a Gaussian func- 
tion D(w) with a width of (T = 3ONy, with 
the oscillating fluorescence decay (see Appendix A). As 
can be seen the coarse-grained response is in general 
nonexponential. 

We have verified numerically that the timescale of the 
fast oscillations in the fluorescence decay is of the order of 
the polarization correlation time ( T,), which includes only 
the exciton-phonon scattering (and not the radiative com- 

Din 
v,O 
l-a” 

0 

0 1 2 3 4 5 

w 
FIG. 1. The rapidly oscillating curve is the normalized fluorescence decay 
from an aggregate of size N = 20 with acoustic phonons of frequency 
Cl,, = 0.01 V, exciton-phonon coupling strength F,, = 0.01 V, and 

kT= lOOfI,, , calculated by numerically solving Eqs. (3.8) using Fourier 

transform techniques. The smooth, solid curve results from smoothing the 
oscillating curve by using a Gaussian filter function, exp[ - (w/a)*] with 

D = 3ONy. The dashed curve is the coarse-grained solution [Eq. (B5) ]. 
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ponent). By restricting the analysis to the regime 
T, < (NY) - ’ it is then possible to derive the coarse-grained 
decay curve directly, under a time-local approximation, 
without first calculating the oscillating decay. The coarse- 
grained approximation (CGA) is described in Appendix B 
and results in an enormous saving in computer time. The 
dashed curve in Fig. 1 shows the decay calculated under the 
CGA. Note the excellent agreement with the smoothed 
“complete” solution (solid curve) which took roughly 1000 
times more computer time. 

We are now in a position to investigate the influence of 
optical and acoustic phonons on the radiative dynamics of a 
molecular aggregate. With one absorber per unit cell, Nopti- 
cal phonons correspond to the librational motion or twisting 
of the aggregate molecules about their equilibrium angle, 
6’, . Acoustic phonons correspond to longitudinal vibrations 
along the aggregate axis, where a neighboring aggregate is 
displaced from its equilibrium nearest-neighbor distance. In 

all calculations we assume T, 4 (NY) - ’ so that the CGA is 
justified. Even at zero temperature, this condition may hold 

when Faclop is sufficiently large, because of exciton scatter- 
ing off the zero-point phonon vibrations, or equivalently, 
because the k = 0 exciton state is no longer an eigenstate of 
the aggregate and the oscillator strength is distributed over 
many k # 0 levels. To describe the situation where T, is of the 
order of (NY) - ’ one must resort to the full numerical 
scheme to calculate the fluorescence. However, in the super- 

radiant limit T2 % (NY) - ‘, the aggregate radiates before the 
molecules have time to move, so that G( 0~) is simply given 
by exp[ - Nyt]. 

A. Acoustic phonons 

The form of the exciton-phonon coupling depends on 
the phonon branch s and mode q. For an acoustic phonon 
branch we have the following coupling2’ 

Fat (kg) 

fies Neff <N and is, in general, a function of aggregates size 
N, temperature T, exciton-photon coupling strength F,,, 

phonon bandwidth a,, , and exciton bandwidth 4 V. 

In Fig. 2 we show N,, vs N for aggregate with acoustic 
phonons (solid curves) for three values of the temperature, 
kT/&, = 1, 10, and 100. The photon bandwidth is 
R,, = 0.01 V and the exciton phonon coupling is 
F,, = 0.01 V. Neff is based on the fluorescence decay which is 
calculated numerically using the CGA. In the low tempera- 
ture region, the aggregate behaves superradiantly and the 
decay rate increases linearly as a function of N. Here 
N,, = N. At intermediate temperatures the decay rate levels 
off and remains constant as N increases. This allows the de- 
finition of a temperature-dependent cooperation number, 
N * ( T), as the asymptotic limit of N,, (N, 77 for large N. It 
represents the maximum coherence size attainable by an ag- 
gregate at a temperature T. (For brevity, the functional de- 
pendence of N * on the other quantities is not indicated.) 
This statement is, of course, restricted to cases where the 

CGA is applicable, or T2 & (NY) - ’ which generally breaks 
down for very large N as long us the aggregate still remains 
much smaller than an optical wavelength. For infinite size 
aggregates (which extend far beyond an optical wavelength) 
with no phonons Neff ( = N *) is equal to (R /a) in one di- 
mension’7*23(a) and (/z /u)~ in two dimensions,23’b’ and is 
not proportional to N as it is in the small aggregate limit. 
This fact modifies the inequality which justifies the CGA 
(see Sec. VI). The present work presents a microscopic cal- 
culation for the coherence size N *, a quantity alluded to 
several times in the literature in phenomenological discus- 
sions of dephasing and radiative decay in semiconductor mi- 
crostructures” as well as molecular aggregates.“8 

whereF,, = 3iV(P/r,,) andp2 =fi(21Q,,) -‘is&mean 

square amplitude of the zero point vibrations of a harmonic 
oscillator with mass Iand frequency R,, . For acoustic phon- 

ons the mode frequency is related to the wave vector via the 
dispersion relation: 

Clac (q) = fl,, sin g q . 
I I 

(4.2) 

Because the fluorescence decay is generally multiexpon- 
ential, there is an obvious ambiguity in the definition of the 
radiative decay rate. We have adapted the following oper- 
ational definition: the radiative rate is the inverse of the time 

rfl it takes for the aggregate to emit ( 1 - e - ‘) of its initial 
energy. ( rJ is defined through the equation 

NY ~-2 dt G(O,t) = 1 - l/e). In the superradiant limit, this 
is simply equal to Nr; when phonon interactions are impor- 
tant the rate is smaller and we can define an effective cooper- 
ation number N,, (N,T) to be the radiation rate as defined 
above divided by y. The effective cooperation number satis- 

0 
I I I I 

0 100 200 300 400 

N 

FIG. 2. The effective cooperation number NCR as a function of aggregate 

size for acoustic phonons (solid curves) with F,, = 0.01 V and 

R,, = 0.01 V and optical phonons (dashed curves) with the same param- 

eters. Acoustic (optical) curves from top to bottom correspond to 

kT/fL,o,, = 1 (3.16), 10 (IO),and 100 (lOO).Thelineardashedcurveis 

the superradiant limit, i.e.,N,, = N. The oscillations in the optical case are 

due to a resonance effect as discussed in the text. 
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As mentioned previously, the fluorescence decays are 
generally multiexponential. In Fig. 3 the normalized (natu- 
ral log of the) fluorescence intensity is shown as a function of 
time for N = 100 and for three temperatures 

WAL,,, = 1, 10, and 100). The solid (dashed) curves 
correspond to the acoustic (optical) phonon case. Note that 
as the temperature is increased the decays become slower; in 
the limit of very high temperature our numerical results re- 
cover the monomer decay rate (see Figs. 6, 7). We should 
point out that experiments by deBoer and Wiersma’@) on 
PIC J aggregates show a single exponential fluorescence de- 
cay rate, which decreases as the temperature is increased. 

Before considering a more general dependence of N,, on 
all pertinent quantities, we first describe a resonant effect 
which results when the acoustic phonon frequency R,, (q) 

closely matches the frequency difference between the k th 
exciton level and the k = 0 exciton level, w(k) - w( 0), 

when the momentum selection rule k = q is obeyed. In Fig. 
4 we show Ncff vs N for the same parameters as in Fig. 2 
except that &,/I’= 0.0622. When N = 205 and 410 there 
are pronounced dips, reflecting the condition 

Q,,(q= 1) =k[w(l) -dO)l, (4.3) 

where the integer k = 1 and 2 for the first and second dip, 

respectively. If we were to go out far enough we would ob- 
serve resonant dips corresponding to all k. The condition is 
easily derived by equating R,, (q) with o(k) - o(O), for 
q = k, which in the limit that for k 4 N, becomes 

which is the N) 1 limit of Eq. (4.3). From this last expres- 
sion we obtain 

NES z47TV/R,,, (4.4) 

where N,, is the aggregate size at the first dip and is, of 
course, taken to be the nearest integer value of the r.h.s. of 
Eq. (4.4). The reason for a dip instead of a peak is that a 
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FIG. 3. The fluorescencedecays for aggregates with acoustic (solid curves) 
and optical (dashed curves) exciton-phonon coupling with Fac,op 

= 0.01 v, RX,<,, = 0.01 V, and N = 100. Fastest to slowest decays corre- 

spond to temperatures kT/R,,,,, = 1, 10, and 100. Note that at the lowest 

temperature the decays are close to superradiant. 

0 100 200 300 400 

N 

FIG. 4. The effective cooperation number NeR as a function of aggregate 

size for acoustic phonons with F,, = 0.01 V and a,, = 4aV/205 

= 0.0622 V, using the coarse-grained solution [Eq. (B5) 1. The linear 
dashed curve is the superradiant limit, i.e., NeR = N. 

resonant or nearly resonant phonon can more effectively 
couple two exciton levels leading to a more efficient popula- 
tion redistribution away from the initially excited k = 0 

state, and hence a reduced radiation rate, closer to that of the 
monomer. Note that the curves corresponding to 
kT/Cl,, = 10 and 100 in Fig. 4 are, except for the dips, near- 
ly the same as the corresponding curves in Fig. 2. (In Fig. 2 
with R,, = 0.01 V, we get N,, = 1200.) This arises from a 
scaling relation which we will come to shortly. We therefore 
modify our definition of N * ( 7’) so as to neglect the resonant 
regions of Neff as a function of N. (Numerical results indi- 
cate that this region is much smaller than the plateau region 
for large N,,,. For small N,,, N,, is highly oscillating and 
N*(T) can be defined as the average Neff in the large N 
limit. ) 

In the course of our numerical investigation, we have 
found an important scaling relation for N,, in the acoustic 
phonon case. Whenever kT% R,, so that n4 z kT/R,, , and, 
in addition, when N # AN,, (where AN,,, denotes the reso- 
nance region), NeS depends on F,, , Q,, , T, and V through 

the dimensionless parameterp=F& kT/( V*Cl,, ), i.e., 

Neff = N,,[N,p], kT$f-L,,, N #AN,,,. (4.5) 

The scaling ratio of parameters on the r.h.s. of Eq. (4.5) also 
appear in Eq. (A2) as the prefactor to the T ( * ) (s:k,q) func- 
tion, which contains the resonance behavior. In Fig. 5 we 

plot log,, [FI&/V’] vs log,, [&/VI for kT/V= 1, 10, 
and 100. The curves were obtained by numerically searching 
for the value of F,,/V, given f&,/V, kT/V, and N = 100, 
which gives N,, = 10. The curves are therefore contour 
curves of constant Neff. They clearly show that for a given 

temperature, N,, = 10, when the ratio Ff,/(fi,, VI is con- 
stant. (This is evident because the slope of the log-log plot is 
equal to unity). In addition, an increase in temperature by a 

factor of 10 simply results in a downward vertical translation 

J. Chem. Phys., Vol. 94, No. ii,1 June 1991 
Downloaded 07 Mar 2001 to 128.151.176.185. Redistribution subject to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html



Spano, Kuklinski, and Mukamel: Cooperative radiative dynamics 

FIG. 5. All points on the curves correspond to N,, = 10. The three curves 

correspond to kT/V= 1, 10, and 100 from top to bottom. N = 100 in all 
calculations while F,, which gives NCR = 10 was searched numerically. 

of exactly one unit, meaning that the ratio 

[F:JV*] [kT/Yl is constant for NcK = 10. The deviation 
from linearity for R ac ~0.01 V occurs because N is ap- 
proaching the resonance region, where the scaling law is no 
longer valid. 

With the scaling law in hand we now investigate the 
functional dependence of N * on p. In Fig. 6, log,, [N,, ] is 
plotted against log,,(p) when I;=, = 0.01 V for N= 100, 
200, and 300. N * is equal to Nerr when N,, has converged, in 
this case when the curves for N = 200 and N = 300 coincide, 
which is when kT/fl,, is greater than approximately one. In 
this range, we therefore can view the graph as N * vs kT/R,, . 

Also when kT/f’&, > 10 we are in a region where the scaling 
law is valid. (a, was held fixed at 0.01 V, while the tempera- 
ture was varied, giving N, = 1200 and therefore in all cases 
N #ANN,, . ) We find, rather remarkably, that in this region 
the log-log plot is linear to an excellent approximation, with 
a slope of - 0.325. We thus have the empirical relation: 

N*(p) r2.16p- “3, lo5 > kT/R,, ) 1, N #AN,. 

(4.6) 

Note also from Fig. 6 that in the limit of very high tempera- 
tures, N,, approaches one, the monomer value. 

B. Optical phonons 

For an optical phonon, where only the nearest-neighbor 
dipole-dipole coupling is retained, the coupling with exci- 
tons takes the form:*l 

Nw) = Fop ..s[$ (k + q/2)]cos(; 4) (4.7) 

with Fop = 3?;IV(sin 20,,/( 1 - 3 cos* e12)) and v2 
=fi( 210,, ) - ’ is the mean square displacement of the zero- 
point angular vibrations at frequency !&, . For a dispersion- 
less optical phonon, the mode frequency does not depend on 
the wave vector: 

01 , , , I I I 

-6 -5 -4 -3 -2 -1 0 1 i ii 

l%(P) 

FIG. 6. log[ NC81 vs log[p], wherep = (F:,/V2)kT/R,,. For all points 

R,, = 0.01 V and F, = 0.01 V and the temperature is varied. When kT/ 

a,, ) 1, the scaling relation Eq. (4.6) is valid. The three curves correspond 

to N = 105 (bottom), 205 (middle), and305 (top). When the N = 205 and 
N = 305 curve coincide NrR = N *. Note the activated temperature depen- 

dence for N, is more pronounced for smaller size aggregates (because of 

the more discrete phonon band structure) and disappears for larger N. The 
slope of the linear portion is approximately - l/3. 

f-L, (4) = flop. (4.8) 

The dashed curves in Fig. 2 (b) correspond to N,, vs N 
for an aggregate with a dispersionless optical phonon at 
kT/R,, = 3.16, 10, and 100 with R,, = 0.01 V and 
Fop = 0.01 V. As with the acoustic phonon case, N,, initially 
increases linearly with aggregate size. This is the superra- 
diant regime, where Neff = N. Further increases in N result 
in an oscillation of NeK about a stable value, which we define 
as N*(T). The oscillations are due to resonant exciton- 
phonon coupling, and the k th resonant dip roughly corre- 
sponds to the condition w(k) - w(O) = i2,,p, i.e., when the 
phonon frequency is in resonance with the difference 
between the k th exciton and the k = 0 exciton. The values of 
N corresponding to this condition are 

N,,, = 2n-,/mk (4.9) 

when k< N. (Again, we take the closest integer value for 
N,.) Thus, the various dips appear at regular intervals. 
[When N,, is based on the l/e fluorescence time, the oscilla- 
tions appear exactly as predicted by EQ. (4.10) .] This reso- 
nance behavior is clearly seen in Fig. 2, and is qualitatively 
different from the acoustic phonon case. For equal values of 
R,, and R,,, comparison of Eq. (4.4) and Eq. (4.9) shows 
that the resonances occur much earlier in the optical phonon 
case. (When Lnac = Q,, = 0.01 V, we have N, = 1200 and 
N, = 63 for the acoustic and optical cases, respectively.) 
Also, the optical phonon resonances appear to vanish for 
sufficiently high temperature (making the definition of N * 
straightforward) while the acoustic phonon resonances 
persist. 

We have investigated a possible scaling relation for opti- 
cal phonons and have found that as long as kTgf&, and 
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fin,, < 0.01 V, Neff depends on the same scaled variable as the 
acoustic phonon case. In Fig. 7 we show log,,, [ Neff ] vs 
log,,(p) for N = 100, 200, and 300. (R,, was held at 

10 - 3V while the temperature was increased, so that the 
scaling relation is valid for high temperatures. ) The N = 200 
and N = 300 curves coincide for kT/0,, > 1, so that in this 
region Ncff = N *. Unlike the acoustic case, the log-log plot 
does not yield a linear relationship. One can appreciate an 
activated temperature dependence, where the effect of the 
optical phonon on the radiative decay rate is not “felt” until 
some threshold temperature, kT, ~0.2R,, which is essen- 
tially size independent for large N. This is due to the expon- 
entially activated dependence of the phonon number on the 
temperature, and the fact that the exciton-phonon coupling 
is proportional to this number. Beyond the threshold tem- 
perature, however, Figs. 4 and 6 overlap completely in the 
region from kT/R,, = 10 to about 1000, so that in this re- 

gion one can use the T - “3 power law [ Eq. (4.6) ] to de- 
scribe the effect of optical phonons on the aggregate radia- 

tive decay rate. Beyond the scaling regime, the T - 1’3 

relation breaks down. 

V. COMPARISON WITH STRONG COLLISION MODELS 

The present microscopic model of exciton-phonon cou- 
pling requires a numerical solution of the reduced equations 
of motion [ Eq. (3.8) J. A qualitative picture of the quench- 
ing of superradiance can be obtained by considering a simpli- 
fied but exactly soluble relaxation mode1.24*25 This can be 
obtained by making the following approximations to Eq. 
(3.8): 

( 1) We assume that the relaxation kernels have a short 
correlation time (Markovian limit) so that the temporal de- 

0 
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pendence of K, and K, can be approximated by delta func- 
tions. Equation (3.8) then reduces to an ordinary master 
equation. 

(2) We simplify the kernels by assuming a strong colli- 
sion (BGK) model whereK, and K2 are taken to be indepen- 
dent of q. We thus obtain the following master equation: 

dG(k,t) 
~ = - Ny6,, G( k,t) 

dt 

+ r CIf(k)GW,t) -f(k’)G(kt)l. 
k’ 

(5.1) 

Here I is a scattering rate and f( k) is a given equilibrium 

distribution of k states, with XfY:df( k) = 1. When y = 0, 
G(k,t) will relax at long times tof( k). The Haken-Strobl 
mode,” which assumes that the transition frequency of each 
molecule is undergoing independent and rapid, delta func- 
tion correlated fluctuations of magnitude I, is a special case 
of the present strong collision model*’ with f(k) = l/N. 
The fluorescence decay can be calculated analytically from 
Eq. (5.1) resulting in 

G(O,t) = l-Y-(O) cr+ - l-1 

(Y+-Ny-r)(y--y+) 
exp[ - y+t 1 

+ rfw cy- - l-1 
ty- - Ny- rwf - y- 1 

exp[ -r-t], 

(5.2) 

where y* are given by 

Ny+r y+ =- (5.3) 
2 

+$m+NyF44Nf(O)yr. 

Equation (5.2) has the following limiting behavior: 

G(W) 

l%(P) 

exp( -WI, r<Ny (5.4a) 

= [ 1 --f(0)]e-r’+f(O)e--/(o)Nyr, I’>Ny. (5.4b) i 

Equation (5.4a) shows that the fluorescence decay given by 
Eq. (5.2) agrees with the solution of Eq. (3.8) in the super- 
radiant limit I < Ny. In the fast dephasing limit [ Eq. (5.4b) ] 
the decay is biexponential. The timescale of the fast part of 
the decay [first term in Eq. (5.4b) ] corresponds to the po- 
larization correlation time ( T2) which can be averaged away 
as we have done under the CGA (a negligible amount of 

photons are radiated during I - ’ ). The resulting decay is 
then a single exponential decay with decay rate equal to 
f( 0) Ny, a result which agrees with Ref. 26. The temperature 
dependence is qualitatively similar to that obtained through 
the solution of Eq. (3.8); as the temperature increasesf(0) 
decreases and the lifetime therefore increases. However, Eq. 
(5.4b) does not show a size-independent coherence length 
N*. 

FIG. 7. log[N,,] vslog[p], wherep= (F&,/V2)kT/R,,. Forallpoints 

Q,, = 0.001 V and F,, = 0.01 V and the temperature is varied. For 

kT/fl, # 1, the scaling relation Eq. (4.6) is valid. The three curves corre- 

spond to N = 105 (bottom), 205 (middle), and 305 (top). When the 
N = 205 and N = 305 curves coincide NeR = N *. Note the activated tem- 

perature dependence for N,, persists for all sizes N. In the range from 

P= - 3 top = 0 has a slope of approximately - l/3. 

The quenching of superradiance induced by the Haken- 
Strobl model was studied in Ref. 17, where the first moment 
of the fluorescence decay or M, and its variations with the 

dephasing rate were calculated. (M, was denoted S - ’ in 
Ref. 17). Figure 8 of Ref. 17 shows that this first moment is 
highly sensitive to small (I < y) values of I. This sensitivity 
is due to the second term in Eq. (5.2). If we calculate the first 

moment (M,) in the superradiant regime (T@Vy) using 
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Eq. (5.2) with f(O) = l/N and Eq. (3.11) we get M, 
= (Ny) - ’ + ( 1 - l/N)y- ‘, where the first term origi- 
nates from the first term in Eq. (5.2) and likewise for the 
second term. This calculation implies that in the superra- 

diant regime and for N% 1 the average emission time is y - ’ 
which reflects a monomer decay rate. This arises because the 
second term in Eq. ( 5.2) has a coefficient of order I’* and a 
subradiant decay rate of order T/N. It has practically no 
amplitude but decays so slowly that its first moment can be 
very large, and in fact exceeds the superradiant average life- 
time (Ny) - ’ by a factor of N. In Ref. 17 it is shown that the 
second term actually contains a factor like I”/ 
( I’* + 0 [ y( kNu) ‘1 where Na is the aggregate length and k 

is the optical wave vector. This term now vanishes as I’ goes 
to zero; however, when I is of the order of 0 [ y( kNa) 2], the 
second term attains a value close to y- ‘. This explains the 

high sensitivity of S - ’ to F when kNa is very small (in our 
work with small aggregates we assume this quantity is zero). 
Therefore, the first momentum (44’ ) does not provide a use- 
ful measure for the characteristic decay time. This is what 
motivated us to define the characteristic decay time, 7p to be 
the time at which 1 - l/e of the total number of photons 
have been emitted. With this definition the second term in 
Eq. (5.2) would not contribute at all to 7,‘. 

VI. CONCLUSION 

We have theoretically investigated the radiation dynam- 
ics of molecular aggregates at finite temperature and have 
established the existence of a coherence size N *, which deter- 
mines the cooperative radiative dynamics of the entire aggre- 
gateofsize N, where N> N *. N * isaresult ofthecompetition 
between exciton-phonon scattering and superradiance and 
is calculated microscopically, based on a reduced equation of 
motion for the N exciton populations. A coarse-grained ap- 
proximation, in which rapid oscillations in the fluorescence 
decay are smoothed out was employed in order to simplify 
the numerics. Experimentally this is equivalent to a nonzero 
instrumental response time, since only the low frequency 
components of the fluorescence decay survive. The approxi- 
mation works best at sufficiently high temperatures or exci- 
ton-phonon coupling strengths, such that the dephasing 
time is much shorter than the superradiant decay time, 

T, ( (Ny) - ‘. The oscillations are then extremely fast on the 
timescale of the overall radiative decay and can easily be 
averaged away without affecting longer timescale dynamics. 

We have verified numerically that for large values of N 
the entire (normalized) fluorescence decay (not just N,, ) is 
independent on N. Since N * is derived under the coarse- 
grained approximation it is restricted to aggregates sizes 

which obey T, 4 (NY) - ‘, which puts an upper bound on the 
(small) aggregate size N at a given temperature T, above 
which our results are not applicable. Let us denote this upper 

bound as N,, = ( T,y) - ‘. We expect that the plateau behav- 
ior as seen in Fig. 2 (which defines N * ) will no longer hold 
when NZ N, . Certainly, when N$ N, the small aggregate 
will superradiate before any nuclear motion can occur, and 
therefore the linear behavior N,, = N will be recovered for 
very large aggregates. 

Time-resolved measurements such as fluorescence and 
absorption recovery in Jaggregates6*7V27-‘0 provide evidence 
for exciton superradiance, i.e., an enhanced radiative decay 
rate which scales linearly with the aggregate size. We should 
point out that most fluorescence lifetime measurements29*30 
for PIC aggregates vary greatly-from several picoseconds 
to about 1 ns-because the typically high excitation pulse 
energies used in each experiment caused the lifetime to be 
dominated by nonlinear exciton-excition annihilation. In 
the low intensity experiments in Ref. 7, exciton-exciton 
annihilation is absent and the decay reflects only superra- 
diant dynamics. The recent work of DeBoer and Wiersma, 
showed that aggregates of pseudo-isocyanine bromide (PIC- 
Br) radiate 50-100 times faster than the monomer at low 
temperature (1.5 K), with a quantum yield close to unity.’ 
Evidence of superradiant decay rates in Jaggregates in solu- 
tion and on surfaces was also given by Dorn and Muller.27 
Photon echo experiments by Wiersma et ~1.‘~~) have shown 
that T2 for PIC Br is approximately 10 ps (about an order of 
magnitude shorter than the superradiant fluorescence life- 

time) measured at 1.5 K. Using y- ’ = 3.7 ns gives 
N, = 370 at 1.5 K. For higher temperatures, however, T2 

decreases; at 100 K T,z 1 ps and N, is increased to 3700. 
The arguments just presented apply only for a small ag- 

gregate (Na gil), with superradiative decay rate equal to 
Ny. For extended samples with dimensions much greater 
than an optical wavelength the superradiative decay rate no 
longer increases linearly with N but converges to roughly 
(A /a) y [Ref. 23 (a) ] for a one-dimensional aggregate, and 
(il /a) 2y (Ref. 29) for a two-dimensional monolayer. There- 
fore, our results are strictly valid for N&l /a. Even so, we 
postulate that N * ( <N, ) derived numerically, can be valid 
for any size aggregate. Our reasoning is as follows. We know 
that N * for the small aggregate is valid as long as N< N,. 
Now, since the maximum superradiation rate for any size 
aggregate is (;1 /a) y and not Ny, then our results, which 
depend on the coarse grained approximation, are valid when 

7’2<[(A/a)yl --I is satisfied, which is always true if 
N, &il /a. In other words, the maximum superradiation rate 
can never reach the value N, y if this requires the sample to 
extend beyond an optical wavelength, and therefore, at suffi- 
ciently high temperature, pure phonon dephasing can domi- 
nate for any size aggregate. Now, when T,(T) 

Q [ (il /a)y] - ‘, we postulate that extended geometry effects 
can be ignored as long as N *a <A, and N * yis the convergent 
radiative rate for any size aggregate. This seems likely be- 
cause extended geometry effects are not felt over the correla- 
tion distance N *a. For PIC Br, we have a z 10 A, R ~6000 
A, and ~~((3.7 ns)-‘. Therefore T,(lS K) = 10 ps does 

not satisfy T2(T)<[(A/a)yl-’ and N*(1.5 K)ywould 
probably not represent the convergent decay rate for an infi- 
nitely long aggregate. However, at 100 K the inequality is 
satisfied and as long as N * < 600, N * ( 100 K) y should repre- 
sent the convergent decay rate for an infinitely long aggre- 
gate. We are currently investigating extended geometry ef- 
fects in greater detail, in order to prove our assertion. 

Finally some comments regarding the temperature de- 
pendence of N * are in order. We have shown theoretically 
that when low frequency optical or acoustic phonons are 
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responsible for the disruption of superradiance (in the scal- 

ing regime), N * - T - “3 over several orders of magnitude 

in kT/R,,,,, . However, when outside the scaling regime, 
i.e., s1,, > 0.1 V or Q,r > 0.01 V, the temperature depen- 
dence can be quite different. deBoer and Wiersma”“’ have 
measured an activated temperature dependence for Neff for 

PIC Br aggregates in a glass matrix, whereby Neff - T - ’ 

above a threshold temperature of 50 K. As mentioned ear- 
lier, we have managed to fit this dependence with a relatively 

high frequency optical phonon flop = 240 cm - ’ using our 
one-dimensional model,31 so that a linear temperature de- 
pendence is also consistent with our model. In addition Mo- 
bius and Kuhn,” by different methods (based on energy 
transfer rates instead of fluorescence lifetimes), have deter- 
mined an experimental cooperation length with the depen- 
dence N * = 3000/T for a J-aggregate monolayer. 
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APPENDIX A: NUMERICAL SOLUTION OF EQ. (3.8) 

Equation (3.8) is an integro-differential equation in 
time. The time derivative of the k th exciton population at 
time t depends on the temporal history of all exciton popula- 
tions. We have developed numerical schemes to solve Eq. 
(3.8) and have obtained the radiative decay for aggregates as 
large as N = 400. It proves convenient for computational 
purposes to solve Eq. (3.8) in the Laplace domain. A La- 
place transform on Eq. (3.8) leads to 

s&s) - G(0) = M(s)&s), (Al) 

where we have introduced a vector-matrix notation for sim- 
plification. Here, the k th exciton population is denoted 
[G(t) ] k = G( k?_f) and the Laplace transform of G( k,t) is 
represented as [G(s) ] k = G( k,s). The coupling is contained 
in the matrix M(s): 

r 
W(s) 1~’ = 

L 
- Ny4c.o -k NqTo IW,q)12{(l +n,)T+W,q) +n,T-(s;k,q)}]Skkr 

~lF(k,k’-k)l2I(l+nx,-x)T-(s;k,k’-k)+n,._,T+($k,k’-k)}](l--S*,.), t-42) 

where T ( * ’ (s;k,q) is defined as 

T’ * ‘(s;k,q) 

s + (NY/~) [a,,, + &+,o 1 
={s+ (Ny/2)[S,>, +S,+q,o])2+~z (kq)2 

(A3) 

and it follows from the definition of fi + (k,q) and Eq. (A3) 
that T + (k,q) = T - (k + q,N- q). 

The numerical procedure consists of evaluating the 
Fourier transform of G( k,t), which is equal to G( k,s = iw), 

for several thousand values of w, and performing a fast Four- 
ier transform back into the time domain. Numerical conver- 
gence was improved by calculating the symmetric function 
G,(k = 0,t) = B(t)G(k = 0,t) + 0( - t)G(k = 0, - t). It 
can be immediately shown that the respective Fourier trans- 
forms obey Gs(k=O,iw) =2Re[G(k=O,iw)]. The (in- 
verse) fast Fourier transform OLGA (k = 0,iw) converges fas- 
ter than a similar operation on G( k = 0,iw). In addition, we 
also performed calculations implementing a smoothing pro- 
cedure by multiplying the symmetric function ?;, (k = 0,iw) 

with, for example, a Gaussian function of the form 
D( w ) = exp [ - (w/o) 2] and transforming back to the time 
domain via the FFT. 

APPENDIX B: COARSE-GRAINED SOLUTION OF EQ. 
(3.8) (THE CGA) 

We show in this appendix that in order to obtain the 

coarse-grained fluorescence decay it is not necessary to first 

I 
calculate the complete rapidly oscillating response by the 
method of Appendix A and then perform a smoothing. 
When the polarization correlation time T2 satisfies 
T, < (Ny) - ’ the coarse-grained decay curve can be calcu- 
lated directly without first having to calculate the Fourier 
transform g(k,iw ). We define the coarse-grained response 
g(t) as the inverse Laplace transform of 

g(s) SD(S)&) = D(s) GO 
s - M(s) 

(Bl) 

where D(s) is a frequency filter function with D(0) = 1. If 
we adjust the bandwidth of D(s) to be much larger than the 
low frequency components of c(s) but much smaller than 
the high frequency components, then we can efficiently sepa- 
rate these two behaviors. This coarse-grained approximation 
(CGA) is justified when l/T, > bandwidth( D) $ Ny, and is 
therefore better satisfied at higher temperatures or for larger 
exciton-phonon coupling strengths. The low frequency part 
of e(s) is obtained by including poles in Eq. (4.4) arising 
only from small values of s. These are found by using the first 
order (ins) approximation of M(s) in Eq. (4.4)) obtained by 
expanding the coupling matrix i%(s) in a Taylor series about 
s = 0. 

M(s) = Mto + M’S + --* , U32) 

where 1wI,=M(O), and the matrix &lllr[d&I(s)/&](,=, is 
obtained by replacing T -i- (s;k,q) in Eq. (A2) by 

t ? (k,q) -6’T ’ (s;k,q)/ds and omitting the first (superra- 
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diant) term. t 1’ (k,q) is 

t? b&q) = 
fi, W12- [(NY/~)(&+~,, -t&o)]* 

[ [ (NY/~)(&+,o + &,o)]* + a, (kq)2]2 ’ 
(B3) 

Within this first order approximation, Eq. (Al ) becomes 

sNii(s) - N,ii(s) = G(O), (B4) 

where N = 1 - Ml1 and B is the identity matrix. By multiply- 
ing both sides by N - ‘, and diagonalizing P= - N - ’ MI, via 
P( diag) = VJ - ’ PIJ (the columns of IJ are the eigenvectors 
of P), we can write the solution to Eq. (B4) as 

[%(S)lk =,i*$ 
.u 

(B5) 

wherewkj= [U],j[(NIJ-‘G(0)]j.Thetimedomainflu- 
orescence decay (k = 0) from Eq. (B5) is simply the sum of 
N exponentials each with time constant l/pi, and weight 
woj. In Fig. 1 the dashed line corresponds to this solution. As 
is evident, it agrees very well with the smoothed solid flu- 
orescence decay. 

The coarse-grained solution retains all of the essential 
physical properties of the full solution. If we define the 
coarse-grained total exciton population as 

N-l 

Pr(t)=k~ok(t)lk7 

then the analogous equation to Eq. (3.11) holds for the 
coarse-grained solution as well: 

-$r) = - NyMt)l,=o. (I361 

If we define the corresponding temporal moments as 
m, = - Jh t “i,(t), then it is easy to show that 

m,=M,= 1 (B7) 

and 

m, = Ml. (B8) 

These relations follow from the fact that the nth temporal 
moment of a function F(t) is equal to - i”d “F(w)/dw” in 
Fourier space and the fact that g(s) and G(s) agree to first 
order in s = iw. Equation (B7) shows the quantum yield in 
the coarse-grained approximation remains independent of 
temperature and exciton-phonon coupling, while Eq. (B8) 
shows that the average or mean time of the decay is also 
identical. One property that is not common to both g(t) and 
G(t) is the initial condition. In the coarse-grained solution 
[g(t=O)],=, is not equal to unity as is [C4(t=O)]k=0. 

This is a necessary feature of the averaging process; in the 
smoothed (solid line) decay of Fig. 1 the signal does not start 
at unity either. However, in the coarse-grained approxima- 
tion the sum of the (normalized) exciton populations, pr (0) 

is still equal to unity at t = 0; a property which follows di- 
rectly from Eqs. ( B6) and (B7 ) . 

The numerical evaluation of [ g ( t = 0 ) ] k = o is consider- 
ably faster than [ G( t = 0) ] k = o. This is because only a few 
matrix manipulations are required to obtain the entire signal 
in the former case, while thousands of matrix manipulations 
are required to obtain the signal in the latter case (one ma- 
trix manipulation for each point). This saving of 103-lo4 in 
computer time also allows the investigation of much larger 
aggregate sizes. For example, with the Cray supercomputer 
an aggregate size of N = 60 takes about 15 min for a 
[ G ( t = 0) ] k = o calculation (using 8 192 values of s) , where- 
as less than a second to calculate [ g( t = 0) ] k = 0, making 
a low frequency response calculation for N- lo3 entirely 
feasible. 
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