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Cooperative Routing for Distributed Detection in
Large Sensor Networks

Youngchul Sung, Saswat Misra, Lang Tong, and Anthony Ephremides

Abstract— In this paper, the detection of a correlated Gaussian
field using a large multi-hop sensor network is investigated. A
cooperative routing strategy is proposed by introducing a new
link metric that characterizes the detection error exponent. De-
rived from the Chernoff information and Schweppe’s likelihood
recursion, this link metric captures the contribution of a given
link to the decay rate of error probability and has the form of
the capacity of a Gaussian channel with the sender transmitting
the innovation of its measurement. For one-dimensional Gauss-
Markov fields, the link metric can be represented explicitly as
a function of the link length. Cooperative routing is achieved
using the Kalman data aggregation and shortest path routing.
Numerical simulations show that cooperative routing can be
significantly more energy efficient than noncooperative routing
for the same detection performance.

Index Terms— Chernoff information, Cross-layer design, Dis-
tributed detection, Innovations process, Network routing

I. INTRODUCTION

W IRELESS sensor networks are often deployed to per-
form a specific set of tasks. Therefore, the design of

such a network should be optimized for these tasks. Consider,
for example, a network of distributed sensors for the detection
of certain events or phenomena. Sensors may have a limited
communications range, and their local detection may be un-
reliable. Thus, it is necessary to aggregate the data collected
from multiple sensors and send them to a fusion center where a
global decision can be made. The measurements at individual
sensors, however, are often spatially correlated, and delivering
all of this raw data to the fusion center may be both inefficient
(in utilization of the network’s resources) and unnecessary
(for accurate detection). It is in this context that cooperative
networking is especially appealing for sensor networks.

We consider the problem of cooperative routing for dis-
tributed detection of a correlated random signal field. We
assume that the network covers a large geographical area and
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Fig. 1. Routing for detection in a multi-hop wireless sensor network.

that sensor measurements need to be sent to a fusion center
through a multi-hop network as illustrated in Fig. 1. Two
modes of operation are commonly of interest. In clock-driven
applications, the fusion center initiates data collection in some
target area of the network or through random sampling of the
sensor field. In event-driven applications, on the other hand,
certain sensors are alarmed locally and send their data to the
fusion center. In both cases, additional information is collected
by the intermediary sensors along the chosen route, and the
problem is to choose an appropriate route that gives the best
detection performance under operating constraints.

Some illustrative scenarios will help to highlight two key
components of cooperative routing: (i) the need of a link
metric that connects detection performance with energy con-
sumption, and (ii) an optimal data aggregation scheme that
facilitates cooperation.

Suppose first that the fusion center decides to probe the
network, and that it has chosen a set of nodes, say those on
route R3 in Fig. 1, to gather data (an optimized algorithm to
select such a route is part of the problem addressed in this
paper). A noncooperative scheme would treat data along R3

as independently generated, and every sensor would deliver
its local data to the fusion center. The number of messages
transmitted grows roughly in the order O(n2) where n is the
number of nodes on the route. Can cooperative routing reduce
the required number of transmissions while maintaining the
same detection performance? This answer depends on our
ability to combine data measured at different locations and,
of course, the correlation structure of the measurements. To
this end, the role of optimal data aggregation is crucial.

Suppose next that sensor N0 in Fig. 1 is to initiate a report
to the fusion center, and that it compares two different routes,
R1 versus R2. Route R1 has more hops, and thus it gathers
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measurements from more sensors. But it is hardly obvious that
R1 leads to better detection performance. Nodes on R1 are
more closely spaced, and presumably take more correlated
measurements than those on R2. If sensor measurements
have strong spatial correlation, it is possible that data on R1

is less informative. Furthermore, having more nodes on the
route means more transmissions, which leads to higher energy
consumption. The tradeoff between performance and energy
makes route selection nontrivial. What we need is an analytical
characterization of performance and energy consumption, one
that leads to a link metric on which route selection is based.

A. Summary of Results and Organization

This paper focuses on two aspects of cooperative routing:
the definition of a link metric for cooperation and a method
of cooperative data aggregation. To gain insights into the
tradeoffs between performance and energy consumption, we
consider the problem of detecting a correlated Gaussian field
in Gaussian noise. Special attention is paid to the one-
dimensional Gauss-Markov field for which the Markovian
property makes optimal data aggregation simpler and more
efficient. We note that the Gaussian field assumption and the
Gauss-Markov correlation model are related to the practical
problem of detecting diffusive gas modeled as an Ornstein-
Uhlenbeck process [1].

In Section III, we propose a new link metric using the
Chernoff information which allows us to characterize detection
performance based on the number and the locations of sensors
along the route. Intuitively, Chernoff information measures the
efficiency with which data collection reduces error probability,
i.e., the higher the Chernoff information, the faster the error
probability decays as the number of measurements increases.
The Chernoff information, however, does not directly suggest
an implementation of optimal routing. Using Schweppe’s re-
cursive representation of the likelihood function [2], we show
that, for medium and high Signal-to-Noise Ratio (SNR), the
link metric that leads to the maximum Chernoff information
corresponds to the capacity of a Gaussian channel where the
sender transmits the innovation of its measurement to the
receiver. Thus, the proposed link metric suggests that it is
the innovations, not the raw data, that should be propagated
to the fusion center.

In Section IV, we show how the proposed link metric
leads to a strategy for optimal data aggregation through
cooperative transmission. Specifically, we consider the special
case when the signal correlation is described by a one-
dimensional Gauss-Markov process and show that optimal
data aggregation can be performed via a Kalman filter. The
proposed optimal aggregation scheme reduces the amount of
information exchange required at each node, and consumes
the same amount of energy for each node in the route.

In Section V, we use these results to propose an optimized
routing strategy. Since choosing a route to maximize Chernoff
information without any constraints leads to one that traverses
the entire network, we introduce energy consumption into
the routing problem. Because both the link metric and the
transmission energy are functions of the length of the link,
we are able to cast the routing problem as one of maximizing

accumulative link metrics subject to energy constraints. We
propose an efficient shortest path routing [3] implementation
of our new link metric and evaluate performance.

B. Related Work

The practical problem considered in this paper is one
of distributed detection in which sensors collect spatially
correlated information and deliver their data to a fusion center
for optimal detection. See [4]–[6] and references therein for
classical results. For large wireless sensor networks, issues of
imperfect transmission [7], [8], medium access control [9],
[11]–[13], and energy constraints [14], [15] have attracted
attention recently. The use of asymptotic techniques to charac-
terize performance for distributed detection has been presented
in the literature [10], [11], [13], [14], [16]; most assume
conditionally independent observations.

Routing, to our knowledge, has not been considered for
distributed detection. This is partly because the assumption of
conditional independence of observations trivializes the issues
of where to collect data and optimal data aggregation. Once
the independence assumption is removed, data collected along
different routes may result in different detection performance.
We note, however, that our focus is different from that of
classical distributed detection. We do not treat the problem
of local quantization at sensor level. We assume that sensors
deliver unquantized measurements to the fusion center, and
focus on the issue of where to collect data and how to deliver
data to the fusion center in an energy efficient fashion. The
recent results of Sung, Tong, and Poor [17] characterizing the
error exponent for the detection of Gauss-Markov processes
are related to this paper. The contribution here beyond [17]
is the derivation of a link metric for multi-hop sensor net-
works. The theme of cross-layer design to incorporate signal
processing performance measures into routing is outlined in
[18].

The literature on routing in wireless ad hoc networks is vast.
We focus on works which have similar design considerations
as our own, i.e., the definition of link metric and/or distributed
data aggregation. A common link metric for ad hoc networks
is the number of hops. Examples include the destination
sequenced distance vector (DSDV) [19], the dynamic source
routing (DSR) [20], and the temporally ordered routing algo-
rithm (TORA) [21]. To incorporate application performance
or data quality into routing in sensor network, many protocols
have been proposed. Examples include query-based data-
centric protocols [22], [23] and variants designed to increase
the energy efficiency and reliability of the network [24], [25].
Examples of cross-layer approaches combining routing with
performance in various layers can be found in [26]–[30]. In
[30], the authors investigated the effect of spatial correlation
between signal sources on routing and data compression via
the total energy consumption in the network to transfer overall
information to the gateway node. Energy-based routing has
been studied from various perspectives. For example, the
battery power of nodes and the necessary transmission power
between neighboring nodes are considered in [31]–[34].

Methods of data aggregation in sensor networks include
Directed Diffusion [22], Sensor Protocols for Information via
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Negotiation (SPIN) [35], Tiny AGreggation (TAG) [36], eScan
[37], and Power Efficient GAthering in Sensor Information
Systems (PEGASIS) [38]. In the latter, data is aggregated
and fused by each sensor en route in order to increase the
signal-to-noise ratio of the desired data. However, the routing
and aggregation mechanisms are not explicitly related to
application performance, as they are not designed for a par-
ticular application. In [39], the aggregation-induced tradeoff
between energy consumption and the delay of information
propagation is studied as a function of source-sink placements
and the density of the network. The effect of timing in data
aggregation algorithms was investigated in [40]. In addition,
several works have studied the use of a Kalman filter (or
its variants) to exploit the correlation of sensor readings for
improved data aggregation while minimizing communications
costs, e.g., see [41], [42] and the references therein.

II. SYSTEM MODEL

We specify in this section the sensor network and formulate
the detection process under the Bayesian framework. The
notations are standard: random variables are denoted by capital
letters (e.g., Y ) and their realizations by the corresponding
lower case (y). The expectation operator is denoted by E(·),
and Ej(·) denotes the expectation conditioned on an event Hj .
The notation X ∼ N (µ,Σ) means that X is a real-valued
Gaussian random vector with mean µ and covariance matrix
Σ. Finally, for a matrix A, A(i, j) is the (i, j) entry of A.

A. Sensors, Measurement Model, and Detection at the Fusion
Center

Consider a sensor network where each sensor knows its own
location. Sensors have a fixed transmission range, which im-
plies a connectivity graph, and necessitates multi-hop routing.
Suppose, without loss of generality, that the detection process
originates at a node N0 and that the fusion route traverses
nodes N0, N1, · · · , Nn−1 where Nn−1 (also denoted F ) is
the fusion center. Let R(N0, · · · , Nn−1) denote this route and
xi a two-dimensional vector containing the location of the ith
sensor along this route. Let ∆i � ‖xi − xi−1‖ denote the
Euclidean distance between sensors Ni and Ni−1. The only
structure we impose on a route is that each node be visited no
more than once. For example, Figure 2 depicts two possible
routes R(N0, · · · , Nn−1) from N0 to the fusion center for a
given topology.

Let hypothesis H1 denote the presence of the phenomenon
within the sensor network and H0 its absence. The observa-
tions along route R under each hypothesis are given by

H0 : Yi = Wi, i = 0, 1, · · · , n − 1,

H1 : Yi = Si + Wi, i = 0, 1, · · · , n − 1, (1)

where Yi is the observation at sensor i, and where the Si’s
are correlated Gaussian samples of the signal with Si ∼

N (0, σ2
S) and covariance matrix ΣS(i, j) = E1(SiSj). The

noise samples Wi are i.i.d. Gaussian with Wi ∼ N (0, σ2
W ).

The SNR of sensor measurements is

SNR =
σ2

S

σ2
W

.

The fusion center makes the detection based on collected
observations {Yi = yi}. The detector which minimizes the
probability of detection error for (1) is given by the likelihood
ratio detector

δB(y0, · · · , yn−1) =

{
H1, ln p1(y0,··· ,yn−1)

p0(y0,··· ,yn−1)
≥ τ

∆= ln π0
π1

,

H0, otherwise,

where pj(y0, · · · , yn−1), j = 0, 1, is the probability density
function of the jointly Gaussian random variables under Hj ,
and where πj is the prior probability of Hj .

B. Energy Consumption

It is necessary to specify an energy consumption model.
We assume that all real numbers processed by sensors (ob-
servations and auxiliary computation variables) are quantized
with sufficiently high precision to ignore quantization error.
We assume that the energy consumed in routing a (quantized)
real number from sensor Ni−1 to sensor Ni is

Ei = EP + ET ∆ν
i ,

where EP is the processing energy and ET ∆ν
i the trans-

mission energy, which is a function of the link length ∆i

according to a power-law. We assume that the attenuation
coefficient ν ≥ 1.

As examples, note that a naive noncooperative rout-
ing where measurements from all sensors on a route
R(N0, · · · , Nn−1) are delivered individually to the fusion
center consumes a total energy

Enc
R =

n−1∑
i=1

n−1∑
j=i

(
EP + ET ∆ν

j

)
,

which grows in the order of O(n2), whereas the proposed
cooperative routing strategy with Kalman aggregation (to be
presented in Section IV-B) will be seen to consume a total
energy

Ec
R =

n−1∑
i=0

αEP + βET ∆ν
j ,

where α ≥ 0 and β ≥ 0 are constants independent of n
and sensor locations that describe the relative processing and
transmission energy per observation needed by cooperative
routing relative to non-cooperative routing. Note that Ec

R
grows only in the order O(n).

III. LINK METRIC FOR COOPERATIVE ROUTING

In this section we derive a new link metric for the detection
of widespread phenomena in a large scale ad-hoc wireless
sensor network. First, we propose using Chernoff informa-
tion as a tractable metric which captures the probability of
detection error of a given route. Next, we use Schwappe’s
recursive representation of the likelihood function to express
the Chernoff information in a desirable form. From this, we
extract a link metric, seen to correspond to the capacity of the
Gaussian channel with the signal power given by the power of
the innovations process, which characterizes the contribution
of each link to detection performance.
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Fig. 2. Two examples of fusion routes R(N0, · · · , Nn−1).

A. Chernoff Information and Schweppe’s Recursion

Consider a fusion route R(N0, · · · , Nn−1) and define the
vector of observations along the route:

Yn
∆= [Y0, · · · , Yn−1]T . (2)

The distribution of Yn is given by

Yn ∼
{ N (0, σ2

W I) under H0,
N (0,ΣS + σ2

W I) under H1,

where I is the n × n identity matrix. The probability of
detection error is PE = π0PE|H0 +π1PE|H1 , where PE|Hj

is
probability of detection error conditioned on hypothesis Hj .
The Chernoff bound on PE is [43]

PE ≤ π1−s
0 πs

1e
µ(s), 0 ≤ s ≤ 1, (3)

where µ(s) is the cumulant generating function of the log-
likelihood ratio under H0, i.e.,

µ(s) = ln E0

{
e

s ln
p1(Y0,··· ,Yn−1)
p0(Y0,··· ,Yn−1)

}
, 0 ≤ s ≤ 1. (4)

The Chernoff information [44] is defined as the cumulant
generating function evaluated at the maximizing value of s,
i.e.,

C (p0, p1)
∆= sup

0≤s≤1
{−µ(s)}, (5)

which is nonnegative.
The conventional procedure for the calculation of Chernoff

information involves a quadratic form of the observation
vector (2) and the eigenvalues of ΣS [43, pp.89-90]. A
mathematically equivalent approach that provides insights into
the contribution of each link to PE of a route can be obtained
from the Schweppe’s recursive representation of the likelihood
function [2], which we describe next.

Decompose the log-likelihood as follows:

ln p1(y0, · · · , yi) =
ln p1(y0, · · · , yi−1) + ln p1(yi|y0, · · · , yi−1), 0 ≤ i ≤ n − 1.

Since the joint distribution of {Y0, · · · , Yi} is Gaussian, the
conditional distribution p1(yi|y0, · · · , yi−1) is also Gaussian
with mean E1{Yi|y0, · · · , yi−1} and variance denoted σ2

e,i.
The log-likelihood up to the ith observation along a route can
thus be expressed as

ln p1(y0, · · · , yi) = ln p1(y0, · · · , yi−1)−1
2

ln(2πσ2
e,i)−

1
2

ỹ2
i

σ2
e,i

,

(6)
where ỹi

∆= yi − ŷi|i−1 and ŷi|i−1
∆= E1{Yi|y0, · · · , yi−1}

is the minimum mean square error (MMSE) prediction of
Yi given {Y0, . . . , Yi−1}. Note that σ2

e,i = E1{Ỹ 2
i } is the

MMSE of the predictor and is not a function of the realization
y0, · · · , yi−1. The log-likelihood of the observations under
H1 is given by evaluating the recursion (6) explicitly for the
(n − 1)th term, yielding

ln p1(y0, · · · , yn−1) = −1
2

n−1∑
i=0

ln(2πσ2
e,i) −

1
2

n−1∑
i=0

ỹ2
i

σ2
e,i

. (7)

Now, we return to the definition of the Chernoff information
given in (4) and (5). Substituting the innovations representa-
tion (7) and standard product form for p0(y0, · · · , yn−1), we
get Eq. 8 (next page).

B. The Proposed Link Metric

We seek a link metric that captures the contribution of
a particular link to the overall PE of a route. To facilitate
the design of an implementable routing strategy, we seek a
metric that satisfies independence (i.e., that the contribution
of a given link be independent of past and future links) and
additivity. To arrive at such a representation we now make
three approximations, valid for large n and at high SNR, and
show that we are led to the capacity of the Gaussian channel,
with signal power given by the innovations power of the field
at the appropriate sensor, as a suitable link metric.

First, suppose that the number of hops in R is sufficiently
large. Then, 1

n

∑n−1
i=0 Y 2

i converges almost surely to its mean
of σ2

W under H0 by the Strong Law of Large Numbers
(SLLN). Hence, the last term in the argument of the expo-
nential function in (8) can be approximated by n

2 which does
not depend on the topology of the route. Therefore, for large
n we have Eq. 9 (next page).

Next consider the term involving Ỹi above. A straightfor-
ward argument using Chebyshev’s inequality [1] shows that

the term
eY 2

i

σ2
e,i

can be made arbitrarily small, with probability
arbitrarily close to 1, under H0 as the SNR is increased (recall
that σ2

e,i is the variance of Ỹ 2
i under H1). Therefore, the sum

involving Ỹi in (9) is negligible at high SNR and we have

µ(s) ≈ s

{
−

n−1∑
i=0

1
2

ln σ2
e,i +

n

2
(ln σ2

W + 1)

}
. (10)

Combining (3) and (10) yields

PE ≤ Bc ≈ π1−s
0 πs

1e
−s

jPn−1
i=0

„
1
2 ln

σ2
e,i

σ2
W

− 1
2

«ff
, (11)

where 0 ≤ s ≤ 1. Note that optimization over the variable s
is separable from optimization over the route topology (i.e.,
maximization of the sum in (11)). Second, since at high SNR
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µ(s) = ln E0

{
exp
[
s

(
−1

2

n−1∑
i=0

ln(2πσ2
e,i) −

1
2

n−1∑
i=0

Ỹ 2
i

σ2
e,i

+
n

2
ln(2πσ2

W ) +
1
2

n−1∑
i=0

Y 2
i

σ2
W

)]}
. (8)

µ(s) ≈ ln E0

{
exp
[
s

(
−1

2

n−1∑
i=0

ln(2πσ2
e,i) −

1
2

n−1∑
i=0

Ỹ 2
i

σ2
e,i

+
n

2
ln(2πσ2

W ) +
n

2

)]}
. (9)

σ2
e,i/σ2

W � 1, the Chernoff information (5) is attained at s =
1, and is approximately given by

C (p0, p1) ≈
n−1∑
i=0

(
1
2

ln
σ2

e,i

σ2
W

− 1
2

)
≈

n−1∑
i=0

1
2

ln
σ2

e,i

σ2
W

. (12)

Therefore, we have reduced (8) to a form in which the
contribution of each link to the PE of a route is explicit. In
particular, (12) reveals that the term

C̄i
∆=

1
2

ln
σ2

e,i

σ2
W

(13)

quantifies the contribution of the ith link to the PE of a route.
Next, note that

σ2
e,i = E1

[
Ỹ 2

i

]
= E1

[
(Yi − E1[Yi|Y0, . . . , Yi−1])

2
]

= E1

[
(Si + Wi − E1[Si|Y0, . . . , Yi−1])

2
]

= σ2
W + Pi|i−1,

(14)

where Pi|i−1
∆= E1{Si − E1[Si|Y0, . . . , Yi−1]}2 is interpreted

as the power of the signal innovation. Substituting (14) into
(13), we get

C̄i =
1
2

ln
(

1 +
Pi|i−1

σ2
W

)
, (15)

which is our proposed link metric. Note that the link metric
C̄i is additive in the sense that the Chernoff information
is monotonic in

∑
i C̄i. The link metric is not, in general,

independent from link to link. However, this issue will be
addressed further in the next Section.

The link metric defined in (15) has a well recognized form:
it is the capacity of a Gaussian channel with average power
Pi|i−1. While the connection between the Chernoff informa-
tion over a route and the capacity on a link is not obvious,
there are several intuitions that support the use of a link metric
in (15). The Schweppe’s recursion (6) already suggests that
the accumulation of likelihood should be made by propagating
the innovation variable Ỹi. We can then interpret (15) as the
amount of uncertainty resolved by collecting a sample from
node Ni, and the optimal route as the one that provides the
maximum reduction in uncertainty.

IV. COOPERATIVE ROUTING FOR THE DETECTION OF A

GAUSS-MARKOV SIGNAL FIELD

In the remainder of this paper we assume that the correlation
is described by the Gauss-Markov model on each route.
Focusing on this special case allows us to describe an optimal
cooperative data aggregation scheme in a simple manner,
and to explicitly evaluate the link metric (15) in terms of

the system parameters, which provides insights that would
not be available otherwise. Similar derivations are possible
under other correlation models (e.g., the general class of
autoregressive models), however, they will not be pursued
here.

A. The Gauss-Markov Field and State-Space Representation

We assume that for any open simple route R contained
in the sensor field, the signal along the route forms a one-
dimensional stationary Gauss-Markov process and the signal
dynamics are given by

dS(l)
dl

= −AS(l) + BU(l), 0 ≤ l ≤ |R|,
where |R| denotes the length of the route R, A ≥ 0 and B are
known constants, and where the initial condition is given by
S(0) which has Gaussian distribution N (0, σ2

S) with σ2
S =

B2

2A . The process noise U(l) is zero-mean white Gaussian
with unit variance which is independent of S(0). The above
assumption is a simplified version of the correlation structure
that may be encountered in practice, but it is reasonable for
a class of curves (e.g.,those approximating straight lines) that
are contained in a homogeneous Gauss-Markov random field.

Note that A represents the correlation strength (or “diffusion
rate”) of the signal field with respect to distance. A larger value
of A implies weaker correlation between two spatial signal
samples. A direct calculation reveals the correlation matrix of
the signal samples along the route R(N0, . . . , Nn−1) to be
given by

ΣS(i, j) = σ2
S exp

⎧⎨⎩−A

max(i,j)−1∑
k=min(i,j)

∆k

⎫⎬⎭ .

Note that ΣS is not generally Toeplitz since the spacing
between sensors is not generally uniform.

Under the assumed Gauss-Markov model, the dynamics of
signal sample Si at node Ni is described by the following
state-space model:

Si+1 = aiSi + Ui, i = 0, 1, · · · , n − 2,

ai = e−A∆i+1 , Ui ∼ N (0, σ2
S(1 − a2

i )),

where S0
∆= S(0).

B. Kalman Aggregation

We now describe an optimal data aggregation algorithm
that provides optimal detection performance while requiring
a fraction of the energy of sending raw data from all sensors
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TABLE I

KALMAN AGGREGATION (byi|i−1
∆
= E1[Yi|y0, y1, · · · , yi−1]).

Operation
Initialization at N0 by0|−1 = 0, P0|−1 = σ2

S , l−1 = 0eyi = yi − byi|i−1

Measurement Update σ2
e,i = Pi|i−1 + σ2

W

li = li−1 − 1
2

„
log(2πσ2

e,i) +
ey2

i

σ2
e,i

«
∆i+1 = ||xi+1 − xi||

Recursion Location Incorporation ai = e−A∆i+1

at Ni Qi = σ2
S(1 − a2

i )
Kp,i = (aiPi|i−1)/σ2

e,i
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Fig. 3. Information flow along a fusion route.

along the route. A schematic is shown in Fig 3 and the detailed
implementation in Table I.

From Schweppe’s recursion (6), we see that the log-
likelihood up to the ith sensor can be calculated recursively
based on information located at sensor Ni−1 and its own
measurement. The key variable that needs to be delivered from
Ni−1 to Ni is the predicted observation ŷi|i−1 by Ni−1 based
on measurements from all previous sensors in the route. The
communication cost for link i has three components, i.e. to
obtain the likelihood function at node i, three quantities have
to arrive at Ni from Ni−1:

1) The accumulated likelihood function li−1
∆=

ln p1(y0, · · · , yi−1).
2) The variance of innovation Pi|i−1. This quantity gives

the mean-square error of the prediction σ2
e,i = Pi|i−1 +

σ2
W and specifies the second term of (6).

3) The predicted measurement ŷi|i−1. With ŷi|i−1 and its
own measurement yi, prediction error can be generated
ỹi = yi − ŷi|i−1 at sensor Ni. Along with σ2

e,i, ỹi gives
the last term of (6).

If each node stores the relative distance to its nearest neighbor
(∆i), this information need not be transmitted.

It is important to point out that the transmission energy
used by a particular node in a route is a constant, regardless
of the node’s position in the route. This is in contrast to the
naive noncooperative scheme for which nodes closer to the
fusion center deliver successively more measurements to their
next neighbor, producing an accumulative (“snow ball”) effect
in the energy consumed by each sensor along a route. The
processing energy at sensor Ni is also constant under our
cooperative strategy. This can be seen from the operations
defined in (6).

C. Link Metric and Properties

The Gauss-Markov model enables us to make a key sim-
plification on the link metric (15), connecting the variance of
innovation to link length ∆i. From the Kalman recursion, the
power in the signal innovation is given by

Pi|i−1 =
σ2

W a2
i−1Pi−1|i−2

Pi−1|i−2 + σ2
W

+ Qi−1,

where Qi−1
∆= σ2

S(1 − e−2A∆i). Since Pi−1|i−2 de-
pends only on {∆1, · · · , ∆i−1}, the Kalman gain Ki−1 �

Pi−1|i−2

Pi−1|i−2+σ2
W

(0 ≤ Ki−1 ≤ 1) is a constant with respect to
∆i. Thus, the innovation variance at link i is given by

σ2
e,i = Pi|i−1 + σ2

W

= σ2
W a2

i−1

Pi−1|i−2

Pi−1|i−2 + σ2
W

+ Qi−1 + σ2
W ,

= σ2
S + σ2

W − (σ2
S − σ2

W Ki−1)e−2A∆i , (16)

where (16) is obtained by substituting ai−1
∆= e−A∆i . Thus,

for the special case of the Gauss-Markov model, the metric
C̄i can be evaluated explicitly, yielding

C̄i =
1
2

ln
{

SNR + 1 − (SNR − Ki−1)e−2A∆i
}

,

1 ≤ i ≤ n − 1, (17)

where the initial value C0 = 1
2 ln(1 + SNR).

As expected, (17) depends on previous links through the
Kalman gain. A good approximation that models the link
contributions as independent can be obtained when the field
is of weak or moderate correlation by substituting Ki−1 = 1
in (16). Such an approach will prove useful in an efficient
implementation of optimized routing (to be described in
Section V). Under this approximation, the link metric becomes

Ci � 1
2

ln
{

SNR + 1 − (SNR − 1)e−2A∆i
}

,

for 1 ≤ i ≤ n − 1, (18)

which is our proposed link metric for the special case of the
Gauss-Markov model.

By expressing the link metric Ci as a function of link length,
we are able to investigate the effect of sensor spacing on
detection performance. We now present properties of Ci as
a function of ∆i.
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Theorem 1: For SNR > 1, the link metric Ci has the
following properties:

(i) Ci is a strictly increasing function of ∆i,
(ii) Ci converges to 1

2 ln(1 + SNR) exponentially fast as
∆i → ∞, and

(iii) Ci is a strictly concave function of ∆i.
Proof: From (17) the convergence to 1

2 log(1 + SNR)
regardless of the value of Ki−1 and its rate are straightforward
since limx→∞

log c1−log(c1−c2e−x)
e−x = c2/c1 for c1 > c2 > 0.

The partial derivative of Ci with respect to ∆i is given by

∂Ci

∂∆i
=

A(SNR − Ki−1)e−2A∆i

SNR + 1 − (SNR − Ki−1)e−2A∆i
.

Since 0 ≤ Ki−1 ≤ 1, SNR > 1 implies ∂Ci

∂∆i
> 0 and the link

metric is a strict increasing function of ∆i. The second partial
derivative is given by

∂2Ci

∂∆2
i

=
−2A2(SNR + 1)(SNR − Ki−1)e−2A∆i

(SNR + 1 − (SNR − Ki−1)e−2A∆i)2
.

Therefore, for SNR > 1, ∂2Ci

∂2∆i
< 0 and the metric is a strictly

concave function of ∆i. �
Remark 1: The maximal information that a link can provide

is given by

Cmax � lim
∆i→∞

Ci =
1
2

ln(1 + SNR),

which is achieved in the limit as ∆i → ∞ (i.e., when the
sensors make independent observations). Even with a finite
∆i, we can achieve most of Cmax due to the exponential
convergence.

Figure 4(a) shows Ci as a function of the link length ∆i.
It is seen that the value of link metric increases with ∆i

and eventually converges. This is because as the distance
between two sensors increases, their observations approach
independence; further increases in ∆i are of diminishing
benefit.

When ∆i → 0, the information for the link converges
to 1

2 ln 2 > 0. As expected, the link information is positive
even as the inter-node spacing diminishes to zero. This is
because the additive noise is assumed independent from sensor
to sensor. However, we observe that the limiting value is
independent of σ2

W . This unintuitive result is likely due to
the series of approximations necessary to arrive at (18). As
another informative metric, we also study the link efficiency,
defined as the information per unit energy Ci/Ei. Suppose that
we place two sensors at distinct positions that are arbitrarily
close. We might expect the link efficiency of this scheme to
be large since no transmission energy is required (ET = 0).
However, this is not the case as long as the processing energy
EP is strictly positive. Figure 4(b) shows the link efficiency,
Ci

Ei
, as a function of the link length ∆i for several values of

EP when A = 1, SNR = 10 dB, ν = 2, and ET = 1. It is
seen that the information per unit energy is not maximized
as ∆i → 0. Rather, Ci

Ei
initially increases as ∆i increases,

reaches a maximum, and then decays to zero as ∆i further
increases.

V. SHORTEST PATH ROUTING

In this section we propose an efficient implementation of
Chernoff information-based routing (henceforth, referred to
as Chernoff routing) using the shortest path framework. It is
shown that our cooperative approach leads to better detection
performance for the same network energy consumption. The
performance figures included in the section have been repro-
duced from [45].

In shortest path routing [3], each link in the network is
assigned a link cost which quantifies the system resources that
are consumed when that link is used (relevant examples are
given below). Routes are determined as follows: suppose that
a detection process is initiated at node N0. Then N0 routes its
information to the fusion center using the “least cost” route,
where the cost of a route is simply the sum of its link costs. Let
γi,j be the cost assigned to link the from sensor i to sensor j
for all i and j in the network, and set γi,j = ∞ if no direct link
exists between nodes i and j (due to limited communications
range). Some examples of routing strategies and corresponding
link costs are (below, we consider (i, j) node pairs that are
capable of direct communications, i.e,. γi,j < ∞):

1. Minimum-Hops routing. Each link is assigned the same
cost. Thus

γi,j = ε, (19)

for all i, j and for some ε > 0. This strategy routes data
along the path which requires the least number of link
traversals from source to the fusion center.

2. Minimum-Energy routing. Each link is assigned the en-
ergy value that would be required to transmit from sensor
i to sensor j, i.e.,

γi,j = Ei,j (20)

where Ei,j and ∆i,j are, respectively, the necessary
transmission energy (see Section II-B) and the Euclidean
distance between arbitrary sensors i and j in the network.
This strategy routes information using the path which
requires the least total transmission energy from source
to the fusion center.

3. Chernoff routing. We now propose a link cost assignment
for Chernoff routing based on (18). We cannot apply
(18) directly as our link metric since this would result in
minimizing the accumulated sum

∑
i Ci of each route; the

opposite of what we desire. Similarly, we cannot simply
take γi,j to be a monotonically decreasing function of the
link metric (e.g., the negative of (18)), since this strategy
does not converge in the absence of a stopping constraint.
Thus, we use a metric which seeks to maximize the neg-
ative of (18), but with an energy constraint. Specifically,
let

γi,j = (Ei,j − λCi,j)+ε , (21)

where Ci,j is the link metric (18) between nodes i and j,
where λ ≥ 0 is a weighting factor between the detection
performance and energy constraint, and where

(x)+ε =
{

x if x > 0,
ε if x ≤ 0.

Note that minimum-energy routing corresponds to the
case that λ = 0, while min-hops routing corresponds to
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Fig. 5. The shortest path route from node N0 to the fusion center F under each three different routing strategies: (a) Minimum-Hops routing, (b) Minimum-
Energy routing, (c) Chernoff routing when A = 6 and λ = 0.01, and (d) Chernoff routing when A = 1.5 and λ = 0.03. Common parameters: SNR = 15
dB, ν = 2, N = 100, ET = 1, EP = 0, and π0 = 0.75.

the case λ → ∞. Although not required, ε > 0 could be
chosen to be an extremely small number in practice to

ensure the smooth behavior of the routing assignments
with respect to λ.
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A. Local Analysis

We now evaluate the performance of Chernoff routing
relative to the two conventional schemes described above. In
all simulations in this paper, we consider a circular network
of radius one. The locations of N sensors are then indepen-
dently and uniformly generated on the disk. Sensors with a
Euclidean distance of 0.4 are assumed to be capable of direct
communications, and the fusion center is always located at the
center of the disk.

We start by comparing the performance of each of the
routing strategies (19), (20), (21) for a fixed topology. Figure
5 shows one realization of the network topology and the
optimal route from a node N0 to the fusion center F for
the three routing schemes when N = 100 and SNR = 15
dB (other parameters are given in the caption). Note that
minimum-hops routing takes a few, long links to the fusion
center, whereas minimum-energy routing attempts to break
the route into as many small links as possible. On the other
hand, Chernoff routing traverses a large region of the network
before eventually arriving at the fusion center. Note that when
the field is more correlated (Figure 5(d)), Chernoff routing
traverses more links before collecting sufficient information
and arriving at the fusion center. In the cases of Chernoff
routing, λ was optimized for the given channel conditions.
Note that Chernoff routing requires knowledge of the SNR and
correlation parameter A whereas the two conventional routing
schemes do not.

In Figure 6, we plot the overall probability of detection
error PE for each of routing schemes when the detection
process originates at node N0. As a realistic model for the true
signal field correlation, we assume that the actual correlation
between two sensors is a function of their Euclidean distance
as summarized in the following assumption:

Assumption 1: The correlation between sensors Ni and Nj

in the route R is given by

ΣS(i, j) = σ2
S exp {−A ‖xi − xj‖} .

That is, while the Chernoff routing scheme is established
under the Gauss-Markov model, the error probability PE is
determined assuming that the actual signal correlation between

any two nodes i and j is given by the more realistic model of
Assumption 1. For each value of A we have optimized over λ
numerically. When A = 1 Chernoff routing provides approxi-
mately four orders of magnitude improvement in PE compared
to the other routing strategies. As expected, Chernoff routing
results in a significantly lower error floor in the limit of
i.i.d. sensor observations (A � 1) compared to the other
routing strategies. This is because, for i.i.d. observations, PE is
determined only by the number of sensor observations before
arriving at the fusion center, a metric for which Chernoff
routing dominates. What is not so clear at this stage is if
Chernoff routing remains the best-performing strategy when
performance is normalized by the amount of energy consumed
(clearly, Chernoff routing consumes more energy than the
other strategies; see previous topology figures). However it
will be seen in the next subsection that Chernoff routing also
maximizes the detection efficiency .

The proceeding analysis was for a fixed node. Next, we
consider performance averaged over the network topology.
In Figure 7, we plot the shortest path route from each
node to the fusion center for each of the routing strategies.
Clearly, minimum-hops routing results in a few, large, well-
directed hops to the fusion center, whereas minimum-energy
and Chernoff routing take smaller, scattered steps. The nodes
which lead to major topological differences between the latter
strategies are circled in the figure. Figure 7(d) is a plot of the
PE when N = 100, SNR = 15 dB, π0 = 0.75, λ = 0.01
for all A, and when the true signal correlation is given by
Assumption 1. Note that Chernoff routing provides about a
40-percent reduction in the PE compared to minimum-energy
routing.

B. Global Analysis

We now study global performance, i.e., detection perfor-
mance averaged over a large number of random network
topologies of fixed size. In Figure 8 we provide a compre-
hensive analysis of the routing characteristics when SNR =
15 dB and A = 0.5 (system parameters are given in the
figure caption). For each value of network size, we have
averaged over realizations of the network topology. Thus,
each of the curves in Figure 8 represents the fundamental
performance level of the network for a fixed value of the
SNR and correlation parameter A as network size N is
varied. Figure 8(a) plots the average number of hops from
all potential source nodes to the fusion center. As expected,
Minimum-hops routing requires the fewest hops. In Figure
8(b) it is seen that Chernoff routing accumulates the most
Chernoff information from all potential source nodes to the
fusion center, which is also expected. In Figure 8(c) we
plot the average energy consumed by each scheme. Note
that Chernoff routing consumes virtually the same amount
of energy as Minimum-Energy routing; this is a significant
fact since Chernoff routing will be shown to be provide better
PE and Detection Efficiency compared to minimum-energy
routing next. In Figure 8(d) we plot the Chernoff efficiency
(i.e., a measure of detection performance when normalized by
the energy consumed by a particular routing scheme). Note
that Chernoff routing provides the best “detection efficiency”
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Fig. 7. The shortest path route from each node to the fusion center F for three different routing strategies: (a) Minimum-hops routing, (b) Minimum-energy
routing, and (c) Chernoff routing (d) The detection error rate PE versus A for the depicted topologies averaged over all possible routes to the fusion center.
Parameters: A = 1.6, λ = 0.01, SNR = 15 dB, ν = 2, N = 100, ET = 1, and EP = 0.

across the entire range of network sizes tested. We plot the
probability of detection error PE averaged over all potential
source nodes in Figure 8(e). Note that Chernoff routing results
in better error performance than either of the other routing
strategies.

Finally, we consider the energy efficiency of the cooperative
data aggregation scheme of Section IV-B. In Figure 8(f),
we plot the ratio of the energy used by the noncooperative
routing strategy, in which energy consumption increases in
the order O(n2), to that used by cooperative routing, in
which energy consumption increases in the order O(n). Note
that the curves in Figure 8(f) mimic the average number of
hops curves depicted in 8(a). This is to be expected. As the
average number of hops in the network size increases, the
“energy penalty ratio”, as quantified above, increases, and
noncooperative routing performs increasingly poorly relative
to cooperative routing. It is seen that cooperative routing
provides large energy savings as the network increases, e.g.,
a savings by a factor of five for Chernoff based routing when
N = 100.

VI. CONCLUDING REMARKS

Cooperation means, literally, acting towards a common goal.
Such a notion is particularly relevant for sensor networks that
are designed not for individual nodes but for a common set of
objectives. This paper is an attempt to put classical distributed
detection in a multi-hop network setting, addressing directly
the detection of conditionally correlated phenomena through
route selection with energy constraints. We have presented an
approach to cooperative routing for distributed detection in
large sensor networks. From a network protocol perspective,
the contribution of this paper lies in the definition of a new
link metric that characterizes the overall network performance.

Cooperative routing for sensor networks covers a much
broader range of issues, of course, and we have left many
issues open for future investigation. Note that applying the
Chernoff information without a stopping constraint would
have made the shortest path algorithm nonconvergent, since
there is a tendency to go back and forth in the network
while forming a route. By including an energy constraint,
we stabilized the routing algorithm so that it yielded sensible
routes. But there is still a need to refine our metric and its
use. Medium access control has also been ignored completely.
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Fig. 8. Comprehensive performance analysis of the three routing schemes when SNR = 15 dB, A = 0.5, ν = 2, π0 = 0.75, and λ = 0.01 for three
different routing strategies: (a) Average no. of hops, (b) Accumulated Chernoff information, (c) Total energy consumed, and (d) Average Chernoff efficiency,
(e) Probability of detection error PE , and (f) Energy consumption of cooperative versus noncooperative routing.

While this is not unusual in designing routing strategies,
separating medium access control from routing may lead to
inefficiency. The problem of local quantization is excluded in
the paper. The difficulty here is obtaining an tractable model

on which a proper link metric can be derived.

We have not explicitly quantified the overhead cost needed
to establish and maintain shortest path routes in the application
portion of this paper, Section V. The networks that we
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consider are ad-hoc, but are assumed to have a fairly static
topology once deployed. Hence, this overhead can be roughly
approximated as a “one-time” deployment cost that is of
diminishing influence as the lifetime of the network increases.
However, if the network topology is rapidly time varying,
then constant route maintenance is required and shortest path
routing may not be a reasonable routing strategy. In this case,
other approaches to implementation may be needed. Of course,
the theoretical results of Section III would remain valid and
could potentially prove useful in deriving such an alternate
implementation.

We believe that the main contribution of this paper is the
mapping of the detection probability to a link metric (even
if imperfect), and that this represents a major advance in
the distributed detection literature in which correlated sources
must route their data to a central authority (such as a fusion
center). For contrast, consider the case of circuit switched net-
works, for which the lack of an effective mapping of blocking
probability to a link metric has resulted in a certain level of
chaos in the routing algorithms. Routing without a link metric
is a combinatorial optimization problem, whereas the existence
of link metric results in a shortest path implementation that
can be solved efficiently.
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