
Cooperative Situation Assessment in a Maritime Scenario

Alessandro Farinelli∗, Daniele Nardi†, Roberta Pigliacampo‡,

Mirco Rossi§, Giuseppe Paolo Settembre†

Abstract

In large-scale, complex domains such as space defense and security systems, situation as-

sessment and decision making are evolving from centralized models to high-level, net-centric

models. In this context, collaboration among the many actors involved in the situation as-

sessment process is critical in order to achieve a prompt reaction as needed in the operational

scenario.

In this paper, we propose a multi-agent based approach to situation assessment, where

agents cooperate by sharing local information to reach a common and coherent assessment of

situations. Specifically, we characterize situation assessment as a classification process based

on OWL ontology reasoning, and we provide a protocol for cooperative multi-agent situation

assessment, which allows the agents to achieve coherent high level conclusions. We validate

our approach in a real maritime surveillance scenario, where our prototype system effectively

supports the user in detecting and classifying potential threats; moreover, our distributed

solution performs comparably to a centralized method, while preserving independence of

decision makers and dramatically reducing the amount of communication required.

1 Introduction

In modern applications, decision making processes often require to coordinate several actors.

For example, in large-scale, complex domains like space explorations, disaster response, real-

time monitoring, defense and security systems, collaboration is critical in order to achieve a

prompt reaction to many unexpected situations that may happen. In particular, among the

∗A. Farinelli is with the CS Department, University of Verona, Italy.
†D. Nardi and G. P. Settembre are with the DIS Department, University “Sapienza” of Rome, Italy.
‡R. Pigliacampo is with SESM s.c.a.r.l. - a Finmeccanica company.
§M. Rossi is with SELEX S.I. - a Finmeccanica company.

1

several challenges, a current objective, from both a scientific and industrial perspective, is to

remove the dependency from a centralized decision entity, relying instead upon mechanisms

which allow for decision-making in a distributed way.

In this context, Situation Assessment [16] is the process that “dynamically attempts to

develop a description of current relationships among entities and events in the context of their

environment”. In a complex scenario, which deals with several actors and events, like the

above mentioned ones, Situation Assessment requires fusing information from different sources

to recognize high-level relationships and, moreover, provide a classification of the situation that

supports the detection of anomalies and threats.

While many approaches allow current systems to achieve effective performances on low level

data analysis (i.e. level 0 and 1 of the JDL model [27]), there is a strong need for techniques

that can process data at a higher level thus performing Situation Assessment. Many Situation

Assessment approaches have been proposed in the literature [22, 26, 5] but they usually propose

a centralized architecture that can not be easily adapted to decentralized settings such as the

ones we are interested here.

In contrast in this paper, we present a multi-agent approach to Situation Assessment. Such

solution is key whenever the application domain is endangered to become unmanageable for a

centralized decision making, due to the foreseeable increase of entities involved (e.g. maritime

surveillance, air traffic control [1]). In order to achieve this goal, it is necessary to devise

techniques which can convey pieces of information towards those destinations where they are

strategic for decision making. “The right information, in the right place, at the right time”.

Specifically, our approach provides the following innovative contributions: (1) We charac-

terize Situation Assessment as a classification process, based on each agent’s knowledge base

(KB) and reasoning capabilities; (2) we apply and adapt a coordination protocol for multi-agent

situation assessment, in order to achieve high level conclusions; (3) we present a validation of

the approach in a real case maritime surveillance scenario.

Our first contribution is the formalization of the problem by suitably defining a symbolic

representation of the domain that enables for the classification of the situations of interest.

More specifically, we build a representation of the domain and the occurring events (perceived

with noise) in OWL-DL [34], a well known standard for ontology representation (ontology web

2

language) and use the reasoning services provided by Description Logics (DL) [36], which allow

each agent for the classification of high level situations over a set of events.

Our second contribution is at the core of multi-agent Situation Assessment: enable the agents

assess obtained conclusions, sharing just the necessary amount of knowledge about the situa-

tion at hand. The proposed solution relies on a distributed algorithm for situation assessment

[49], which solves disagreements among agents, by using sequences of one to one interactions.

While, in [49], agents argue only about their interpretations of events, here we frame the dis-

tributed algorithm in the context of a OWL-DL knowledge bases, thus allowing for a greater

expressiveness and a standard representation for high level situations.

A validation in a real case context of maritime surveillance has been conducted in collab-

oration with Selex-SI [47], the system integrator house within the Finmeccanica group, which

started addressing a net-centric architecture for harbor protection in the early 2000s, and is

currently exploring multi-agent technologies in order to extend their system with more sophisti-

cated decision making. Experiments in the maritime scenario show that our approach requires a

smaller amount of knowledge to be exchanged among agents than other solutions that broadcast

each assertion, thus preserving locality and dramatically limiting communication requirements.

The paper is organized as follows. In Sec.2 we analyze approaches to Situation Assessment

currently present in literature. In Sec.3, we present our overall multi-agent approach to Situation

Assessment and focus on the knowledge base construction and the classification of situations

by a single agent; in Sec.4, we present our distributed algorithm for Situation Assessment,

first defining the interaction protocol and then the knowledge management required by the

assessment process; in Sec.5, we present the set of experiments performed in the context of

maritime surveillance; conclusions and future work are addressed in Sec.6.

2 Related Work

The development of new approaches for Situation Assessment has recently become a key issue

for the maritime environments, that represent our reference domain [18]. Specifically, such

novel approaches should be able to deal with the increasing complexity and dynamics of such

scenarios as well as the need of a good and reactive understanding of the situation at hand by

the human operators in high workload conditions.

3

In fact, classic approaches to maritime surveillance are usually based on a centralized archi-

tectures, and they mainly rely on human operators to understand complex relationships among

relevant entities (e.g., vessels that navigate in critical zones such as harbors). Specifically,

several works show how operator’s ability to recognize abnormal behaviors decreases with the

system complexity [13, 38] and how building a model of object behaviors may help simplifying

the access to relevant information [41]. These works generally focus on human-computer inter-

action issues, but highlight the importance of supporting the human operators with automatic

situation interpretation systems.

Few experimental frameworks try to exploit automatic systems to assess high-level con-

clusions, in particular malicious behaviors, using for example learning techniques [40, 3] or

clustering algorithms [25]. These approaches are particularly useful when only homogeneous

data are available for classification; whenever a significant amount of contextual information

should be used for classification, these techniques generally show their limits, and an infer-

ence process seems more appropriate. Contextual information are crucial to handle complex

environments, typical of practical applications. For example a system designer might want to

specify different methods to perform situation assessment with respect to different operational

conditions (e.g. if it is raining and perceptions are very noisy, take extra care before signaling

an alarm). Many works report the presence of large amounts of additional information taken

from the context, which are strategic to classify actual situation, but usually are not included

in any in-use system for situation understanding [37].

In this context, agent-based methods appear to be a promising approach to situation assess-

ment and several works exploit agent-based technology [6, 53, 46]. However, in these approaches,

agents are not used as effective actors in the process of situation assessment, but rather as a

modeling tools to simulate strategies that aim at preventing dangerous or harmful situation

(e.g., a small boat attacking a vessel).

Centralized situation assessment

Most of the “classical” approaches to situation assessment focus on building a high-level rep-

resentation of the world, by providing a formalization of situation, actions and events, and

by interpreting and contextualizing data with respect to the world model. However, most of

4

the time, they rely upon centralized architectures and cannot easily be adapted to distributed

ones. Moreover, when deployed in a real application, these approaches usually suffer from the

typical problems of a centralized architecture (single point of failure, massive communications,

scalability issues).

The work by Kokar and colleagues focuses on providing a formalization of Situation Aware-

ness [31, 32, 33, 22], placing the problem of reaching Situation Awareness in the third layer of

the JDL data fusion model as defined in [16]. The proposed architecture uses a knowledge based

agent, which is able to draw high level conclusions in the application domains. Such approach,

which inspired part of our work, is based on: i) the use of a domain ontology to represent the

relevant elements of the scenario, including interesting high level relationships; ii) the use of a

rule propagation system to populate instances of relations, whenever domain-specific conditions

are verified; iii) an explicit representation of time intervals, thus allowing the representation

of properties which may dynamically change their state. Similarly, we characterize events as

objects that build/enable situations and represent the agent model using OWL [34], the stan-

dard proposed by W3C for ontology description based on Description Logics inference. The

most distinguishing feature of our approach is that it deals with the the problem of different

assessment, that arises when situation management is concurrently executed by several agents.

Little and Rogova address the symbolic representation of relationships among entities in

the disaster management domain [26], focusing on the trade-off between the generality of the

representation and the possibility to include domain-specific characteristic. These two aspects

are critical when ontologies are used to reason over relationships among entities in a complex

scenario.

High level fusion is also motivated by the impossibility to capture non-real-time data (NRT)

inside standard techniques for low level data fusion. In fact, most of the time, NRT data are

simply assumed to be static, or their inclusion in the fusion process is left to human operators.

Sycara et al. advocate the use of a symbolic representation for contextual data to support

several high level processes, like force structure recognition, intent inference [52].

Capraro et al. use symbolic reasoning to refine perceptions at data level [5]: instead of

allowing for higher level conclusions, a priori knowledge related to the specific sensor attitude

is used to customize and tune the feature extraction process, thus reducing the effects of the

5

uncertainty of information sources. With respect to these approaches, our research will pur-

sue the goal of giving high level events a unique symbolic representation, and obtaining new

conclusions with logical reasoning, distributing the process over a team of agents.

Whenever symbolic reasoning needs to be used to obtain conclusions from sensors, the

system must explicitly deal with the uncertainty of information. Therefore, standard logic-based

frameworks have often been extended with uncertainty representation and features (e.g. [14, 2,

42]). Also OWL is provided with several probabilistic extensions [8, 17, 19, 23, 28]. In these

approaches, usually every assertion about individuals is given with a certain degree of certainty,

allowing the system to know the reliability of the inferred conclusions. In our approach, we deal

with uncertainty separately from situation management, assuming the information of the feature

extraction to be the best assessment currently available. This choice preserves the flexibility

of the current solutions allowing us to operate in a well known framework with a well defined

semantics. Moreover, we can use state of the art technologies [50, 15, 21] for reasoning and thus

focus our effort only on relevant aspects of situation understanding.

Assessment in distributed settings

The approaches developed to address situation assessment in the context of multi-agent systems

usually take advantage of the distributed architecture (no single point of failure, decentralized

computational load), but they are often restricted to low level fusion (e.g. [29, 54, 49, 52]),

and hardly usable for high-level understanding of the situation. Very limited attention has

been devoted to the problem of situation assessment in a distributed setting, where each agent

has the reasoning capability to classify the situation and act accordingly. Nonetheless, several

techniques appear in the literature, which try to decentralize part of the process, in order to

achieve some specific improvement. For example, several approaches (e.g., [30, 24]) decentralize

only the sensing process, but the situation assessment and decision making always takes place in

a single point of the system. Similarly, Museux et al.[35] propose a distributed fusion approach,

where semantics of information is considered; however, the distributed information sources only

perform the feature extraction process, while fusion still relies on a single system entity. The

main limitation of these approaches is that a high number of messages have to be exchanged,

in case many features are relevant to draw a conclusion, and the distributed entities are still

6

dependent from the central unity to make decisions. With respect to these approaches, we are

aiming at decentralizing also the situation assessment process.

For applications involving multi-robot platforms or sensor networks, information is fre-

quently integrated at data level using a distributed approach across the robots [29] or sensors

[54]. Specifically in multi-robot systems, robots are often forced to use a complex world model

and to cooperate in order to initiate a course of actions. Their on-board sensors and different

location in the environment, provide them with different perceptions and executing a complex

plan often involves task to be executed by several robots. Hence, in this settings coopera-

tive perception is often used to deal with perception limitation of the single robot [7, 43, 51].

The general idea is to exchange sensor readings and aggregate them using different filtering

techniques to reduce the uncertainty before deciding how to act. Other techniques explicitly

deal with the uncertainty when choosing a course of actions; for example COM-MTDPs [39].

However, such approaches often require to exchange large amounts of data among robots, since

typically, each robot attempts to maintain an accurate model of the complete state. On the

contrary, in practice, only a small part of the overall state might be relevant to its activities.

Some work explore this possibility [44], but current results are still limited to small number of

agents.

Finally, Buford et al. addresses distributed situation management by proposing a coupling

of agent platforms (AP) and P2P overlay networks which address interoperability and high

scalability requirements [4]. In order to share events and situations between peers, a two-phase

semantic discovery mechanism is supported: the protocol uses a Distributed Hash Table (DHT)

to discover an AP of interest, followed by sending a semantic query to the directory service on the

AP. However, the situation recognition process is still localized on each AP and performed by a

single agent (Situation Manager), which relies only on local information and event correlation to

create and update situations (instances of classes defined in some domain ontology) and notifies

each agent which has previously subscribed to situations of that category (mostly related to its

functions).

7

Figure 1: Description of a multi-agent situation assessment process.

3 Agent-Based Situation Assessment

In Fig.1, the main steps of a multi-agent approach to Situation Assessment are shown. Squares

represent the agents that take part to the process. Fires, emoticons and lightnings represent

dynamic events which are imperfectly perceived by agents.

In the first step of the process, denoted as “Perception and feature extraction”, distributed

sensing is performed, where each agent separately performs perception with his own sensors,

and extracts some relevant features from sensor readings. This part of the process includes also

data association (or object assessment).

The second part of the process, denoted as “Situation Classification”, consists in obtaining,

from a single agent perspective, a high-level assessment hypothesis of situations which are of

interest in the perceived scenario.

Each agent may estimate that several (relevant) situations are currently present in the

scenario1. Due to different agent’s perceptions, agents may have different assessment at the end

of this phase.

The third part of the process, denoted as “Multi-agent assessment”, consists in the agents

arguing, generally through message exchange, about their assessments, aiming at reaching an

agreement on each of their previous conclusions. At the end of this phase, the team as a whole

has somehow solved the conflicting assessments. In general, it is not necessary that each agent

knows the assessment of each situation, because it may not be interested in having information

1The presence of several situations in the agents’ balloon may be misleading for the reader who is familiar with
the term situation in formal logics, because having several situations would represent that an agent has several
alternative models for the KB. This is not the intended meaning: speaking in terms of formal logics, we may say
that we indicate with different terms independent conclusions extracted from the KB typically corresponding to
a single model (the global situation).

8

about certain situations at all.

The last part of the process, denoted as “Task assignment and execution”, involves planning

the best action, assigning tasks to the agents and executing them. Some parts of this phase

may again be performed in a distributed way.

The research presented in this paper focuses precisely on the two central parts of the process:

in the rest of this section, we address the first of them, namely the classification of the situations

from the standpoint of a single agent, as a basic tool supporting situation assessment. More

specifically, we first provide a formal characterization of the problem, then discuss the population

of the knowledge base, given the events perceived by the agent, and finally we present an example

of situation classification. The extension of the proposed approach in a multi-agent system is

discussed in the next section.

3.1 Problem formalization

We consider a certain number of observed entities pursuing some unknown private goals, and a

set of agents A1, ..., Am. Each agent has a world model, its own perceptions, it communicates

with the other agents, and takes part pro-actively in the classification process. The agent’s

world model is an ontology, which is a symbolic representation of the organization of concepts

and their relevant relationships into the domain (intensional knowledge, TBox); the TBox is

the same for all the agents, and constitutes a common language for communication.

The specific scenario where the agent is operating is represented by a set of assertions

(extensional knowledge, ABox), that are built based on the events perceived by the agent. We

use the term event to refer to any property/object that results from sensor interpretation and

corresponds to an assertion in the ABox. More specifically, we have to take into account that

each event can be perceived at different times (possibly by multiple agents). Thus, we need a

method for combining multiple, possibly uncertain observations into a belief about the event

under consideration. In this way, we handle the connection between a numeric representation

of uncertain perception and the symbolic information (facts) to be asserted in the extensional

portion of the knowledge base (ABox).

In the next subsection, we describe a simple solution to this problem, called event assessment,

that constitutes a building block of our approach to situation assessment.

9

In order to focus on the aspects of interest within the perceived events, we consider the set

of the relevant situation classes SCL = {S1, . . . , Sn} ∪ S⊤, in which each Si identifies a type

of situations, of interest with respect to the context. Basically, each relevant situation class Si

represents a group of semantically equivalent circumstances of the world (for the purpose of

Situation Assessment). A symbolic definition of each Si is given in terms of the type of events

which are observable in the environment. In the following, the situation classes are defined

in Description Logics (DL) [36]. With S⊤ we denote the most generic situation class, which

includes all possible situations. A situation class Si is more specific than Sj , iff every instance

of Si is also an instance of Sj . In DL, this is denoted by Si ⊑ Sj.

A situation instance si is an individual characterized by a set of events, which are actually

observed by an agent on the scenario. From the point of view of the agent’s knowledge, with

Kp(si ∈ Sj) we denote that an agent Ap knows that si ∈ Sj, which means that a set of events,

which characterize si as in the definition of a class Sj , are known to Ap: in DL, this simply

means that in Ap’s knowledge base, si is classified as an instance of Sj.

We can now provide a formal characterization of the Situation Assessment process.

Definition 1 We say that si is assessed as Si by an agent Ap iff

• Kp(si ∈ Si)

• ∄Sj s.t. Kp(si ∈ Sj) ∧ Sj ⊑ Si.

Thus, given the above formalization, Situation Assessment (SA) is the non-trivial assess-

ment of all the instances si. A classification of si as Si is non-trivial if Si 6= S⊤.

In our approach, this formalization has been realized through ontologies, written in the OWL

language, which is based on the Description Logics formalism (see [36]). A distinguishing feature

of our approach is that we classify the situations of interest as instances of the relevant situation

concepts, that are represented in a taxonomy of situations. An example TBox representing the

taxonomy of situations for maritime domain is shown in Fig.2. The proposed approach allows

to use the reasoning services provided by Description Logics: we can compute subsumption of

situations, as well as other relations of interest (e.g.distinct from, overlaps, covers, covered by,

equal, contains). Previous approaches [32] need to introduce a rule propagation engine to reason

on situations.

10

Figure 2: An example of situation taxonomy for maritime domain

3.2 Event assessment

In order to populate the agent’s ontology with data extracted from the agent’s sensor processing,

we have to explicitly deal with the uncertainty of event perception.

More specifically, given a set of perceptions that refer to the same property of the scenario,

we need to build the belief of the agent represented as an assertion in the ABox. There are

several techniques that can be applied to address this problem (see for example [16]); we chose

to rely on a simple Bayesian filter, since our focus is on the upper layers of the fusion process.

Obviously, more sophisticated techniques can be deployed, depending on the specific setting

addressed.

Each time a new sensor reading is provided, features are extracted about specific circum-

stances of interest, and they are abstracted as positive or negative observations of certain events

at specific time instances.

Algorithm 1 presents the pseudo-code executed by an agent, when a new observation is

received (directly from sensors or another agent). Each observation will be denoted, within the

code, with the following structure:

obs =< ag, event, value, time >

where

• ag = the ID of the agent who performed the observation

11

• event = event identification

• value = {true, false}, indicates whether event is confirmed or negated by this observation.

• time = the time which the observation refers to

. The Bayesian filter considers all the observations in the past2. When a reading referring to

a past time is obtained, the filter is reinitialized, and the belief recalculated, starting from the

time of the oldest available observation.

Notice that, we do not address the data association problem regarding observations. While

this problem must be solved somehow to allow agents to combine perceptions about events this

is outside the scope of the present paper and we rely on standard techniques to address this

problem [16].

Algorithm 1 integrateObservation

Input: an observation obs and its corresponding event
Output: update of agent’s list of observations and ABox

1: event Obs←getObs(event)
2: if obs /∈ event Obs then

3: event Obs← event Obs ∪ obs
4: belief ← evolve Filter(event Obs)
5: if belief > k1 then

6: ASSERT(event)
7: else

8: if (belief < 1− k1)∧ Concept(event) then
9: ASSERT(¬event)

10: else

11: REMOVE(event)
12: end if

13: end if

14: end if

Algorithm 1 allows each agent to know whether considering an event to be true, false or

unknown, given his available observations. Thus, in our approach, each ABox assertion is

“justified” by a list of observations, which can be retrieved at any time, if needed. The function

getObs retrieves from the agent’s memory the list of observations related to a certain assertion.

The function evolveFilter, computes the likelihood of an event (i.e., the belief) given the list

of observations, based on the Bayesian filter already used in [12]. The event is considered true

2Maintaining the history of observation clearly has a cost in terms of memory that grows with time. To limit
such cost, a valid time window T is used that goes from the current time tc back to tc − T . An appropriate time
window can be chosen by considering the evolution model of the environment.

12

and inserted in the agent’s knowledge base if the belief is greater than a threshold k1, while

the falsity of the event is asserted if the belief is less than 1 − k1 and the assertion refers to a

concept. In fact, we can rely on negation for concepts, but for role assertions we do not have

negation, and we can only represent lack of knowledge about the event.

The functions ASSERT/REMOVE are used to add/remove assertions from the agent’s

knowledge base (ABox). Through ASSERT inconsistent information can be introduced into

the agent’s KB; moreover, REMOVE would, in general, require to deal with the problem of

belief revision (see for example [9]). In our implementation, we simply check for ABox con-

sistency, and use heuristics to solve inconsistent sets of assertions, as typically done in most

knowledge based systems. This issue comes up also in the knowledge management operations

that are discussed in Subsection 4.2.

Algorithm 1 is executed when a new observation is acquired by an agent either through direct

perception or by the distributed assessment process described in the next sections. The result

is a consistent knowledge base, resulting from the beliefs supported by the new observation.

3.3 An example

The taxonomy that refers to our maritime domain has been illustrated in [48]. Each agent is

provided with a taxonomy of the relevant events of the domain, and one which includes the

definitions of the relevant situation classes. Below, we show a simple example taken from our

working domain.

We define the following concept names: FREEACCESSAREA is a free access sea area, LOCKEDAREA

is a lockout sea area, NONAVIGATIONAREA is a not navigable area, DANGEROUSAREA is a dangerous

area, UNKNOWNVESSEL is the set of unidentified vessels perceived in the scenario, ARMEDVESSEL

is the set of vessels carrying weapons on-board.

Moreover, Position is the property which relates a vessel with its position and hasObject

is the property which relates situation instances and objects that are involved in the situation.

We consider the following TBox assertions:

(1) Free access areas are disjoint from lockout areas

(2) Lockout areas are the union of not navigable and dangerous areas

13

(3) A vessel has a unique position

(4) SITUNKVESSEL are situations with at least one unidentified vessel

(5) SITLOCKAVESSEL are situations where a vessel is detected in a lockout zone

(6) SITUNKARMEDVESSEL are situations with vessels that are both unidentified and armed

Assertions (1),(2),(3) refer to a simple taxonomy of the scenario, while (4),(5),(6) are a sim-

ple taxonomy for situation classes. In Description Logics, the above sentences are represented

as follows:

(1) FREEACCESSAREA ≡ ¬LOCKEDAREA

(2) LOCKEDAREA ≡ NONAVIGATIONAREA ⊔ DANGEROUSAREA

(3) ⊤ ⊑≤ 1 Position

(4) SITUNKVESSEL ≡ ∃hasObject .UNKNOWNVESSEL

(5) SITLOCKAVESSEL ≡ ∃hasObject .∃Position .LOCKEDAREA

(6) SITUNKARMEDVESSEL ≡ ∃hasObject .UNKNOWNVESSEL ⊓ ARMEDVESSEL

In order to generate the correct number of situation instances, we identify a subset of events,

which trigger the generation of a new situation instance. Each situation class has at least one

triggering event. When a new triggering event is detected, a new situation instance si is created,

and asserted to belong to the most general situation class SITUATION, corresponding to S⊤ of our

formalization. Moreover, an assertion is generated establishing the relation hasObject between

the situation instance si and the event ei, since the situation instances are generated based on

the detection of events in different locations of the scenario.

The situation instances are then classified and assessed using standard DL inference ca-

pabilities, specifically realization, which returns the most specific concept an individual is an

instance of [36]. As a result, si will be classified as member of Sk, written Kp(si ∈ Sk) in our

formalization. The classification process is also explained in details in [48].

Let us consider for example the scenario where the agent receives enough new observations

that allow for the following assertions:

14

(7) p1 is a position in a free access zone

(8) a vessel v1 is detected in position p1

(9) vessel v1 is unidentified

The detection of an unidentified vessel, for example v1 is a triggering event. Such an event

can give rise to two assertions, the first one stating that v1 belongs to UNKNOWNVESSEL and the

second one specifying its position through the role Position. The corresponding agent’s ABox

is:

(7) FREEACCESSAREA(p1)

(8) Position(v1, p1)

(9) UNKNOWNVESSEL(v1)

Since the detection of an unidentified vessel is a triggering event, the following assertions are

added to the ABox:

(12) SITUATION(t)

(14) hasObject(t, v1)

By applying realization on the situation instance t we conclude that t is an instance of

class SITUNKVESSEL. In fact, t participates in relation hasObject with a concept of class

UNKNOWNVESSEL as the definition of SITUNKVESSEL requires; moreover, the agent is not able

to classify t as an instance of SITUNKARMEDVESSEL which would have been more specific than

SITUNKVESSEL. SITUNKVESSEL is therefore the best current available assessment.

4 Distributed situation assessment

In this section, we move to the scenario where multiple agents, deployed in the environment,

independently detect events and need to turn perceptions into knowledge, by making a suitable

assessment of the situation. The single agent approach that we have described in the previous

section needs to be generalized in several respects.

15

In particular, we need to establish a protocol that allows the agents to share classifications

of situations, as supported by their beliefs, in order to reach consensus about the situation

assessment. More specifically, our aim is to define a distributed process to classify situations,

that achieves the performance of a centralized one, while minimizing the information flow among

the agents. In Subsection 4.1 we present a protocol that allows to reach consensus on a specific

situation instance. Such a protocol relies on specific reasoning services that are described in

more detail in Subsection 4.2. In particular in this paper we extend the coordination protocol

proposed in [49], which allows for the distributed assessment of individual events.

It is worth emphasizing that in order to achieve our goal several problems, that are deeply

investigated in the literature, must be tackled. The novelty of our proposal is in putting together

an integrated framework by combining existing solutions, and introducing in some cases ad-hoc

solutions to manage the complexity.

4.1 Distributed Assessment Protocol

Since agents may reach different conclusions, due to their partial (and noisy) perceptions, a

coordination technique is needed, to be used by the agents in order to reach an agreement

about the situation classification.

The proposed solution is inspired to the Token Passing algorithm for task assignment [45]

which is the one that better fits our goals. In fact, it takes into account all our crucial require-

ments, guaranteeing good performance on dynamic unpredictable change in the environment

[11], the absence of conflicts in task assignment [10], and avoiding massive broadcast commu-

nication among the team members [12]. The token mechanism in our approach will be used as

a mean to allow arguing among different proposals and exchanging observations among agents,

whose overall goal is to pro-actively perform Situation Assessment. The main challenge is to

maintain a shared knowledge of the evolution of the situation, without relying on simple flooding

of updating messages, but exploiting the shared model of the world and the reasoning capability

of each agent, as in [54].

The key idea of the approach is that each agent will send its situation assessment proposals to

team mates, based on his current information on the world, receives challenges from disagreeing

agents, updates the situation estimate and reacts accordingly. The information that agents

16

exchange are the observations that they acquired and that they consider relevant to the current

classification proposal.

More in detail, when an agent is able to formulate locally a non-trivial situation assessment,

it creates a proposal for that conclusion. The proposal is then sent to a randomly chosen

team mate to start the assessment process. When an agent receives an assessment proposal,

it evaluates the proposal (evalArgs) and, if it agrees with such proposal (i.e., if its local

knowledge does not refute the proposal) it forwards the message on to some other agent. In case

the agent disagrees, it challenges the proposal, sending back the observations that would refute

it (getChallengingArgs). When an agent receives a challenge about a previously processed

proposal, it integrates the observations that would refute the proposal into its own beliefs and

reconsiders the classification. In case the additional observations do not cause a change in the

assessment, the agent sends to the challenger the list of observations (getSupportingArgs)

that are needed solve the conflict; vice-versa, if the agent changes its assessment, it sends the

proposal back, attaching relevant observations and asking again for agreement; the challenge

continues until it is solved, or the proposal destroyed. Once a sufficient number of agents agree

with the proposal, the assessment is completed.

In particular, when a agent receives a proposal message it executes the procedure OnMsgReceived

specified in Algorithm 2. The agent first checks whether its local observations agree with the

proposed assessment, say Px (line 2). If the agent agrees with the assessment Px, then it will

just forward the message randomly to another agent, increasing ♯agree (lines 3-6). If the agent

disagrees, status is changed to “CHALLENGE”. Observations relevant to justify the different

classification are inserted into obsList, and the agent sends the message back to the sender

agent, to search for a new agreement, that will take into account also its own observations

(lines 12-14). The function getChallengingArgs retrieves observations that are relevant to

challenge the proposal from the agent’s knowledge base and will be discussed in more details in

the next subsection.

The agent receiving a challenge integrates the observations in the message into its own

memory and reconsiders the choice of assessment. The integration gives rise to two alternatives:

(i) The additional observations did not sufficiently change the agent’s conclusions, to cause it

to believe that a different assessment is preferable; (ii) the agent now believes that a different

17

Algorithm 2 Algorithm executed by each agent

OnMsgReceived(msg)

1: IntegrateBeliefs(msg.obs)
2: agree← evalArgs(msg.prop)
3: if msg.status == PROPOSAL then

4: if agree then

5: msg.♯agree← msg.♯agree+ 1
6: if ♯ msg.agree < TTL then

7: send(msg,nextAgent())
8: else

9: instantiatePlan(msg.prop)
10: end if

11: else

12: msg.status← CHALLENGE
13: msg.obs←getChallengingArgs(msg.prop)
14: send(msg,msg.sender)
15: end if

16: else

17: /* msg.status == CHALLENGE */
18: if agree then

19: msg.status← PROPOSAL
20: msg.obs←getSupportingArgs(msg.prop,msg.obs)
21: send(msg,origMsg.nextAgent())
22: else

23: if origMsg.prevAgent() 6= null then
24: msg.obs←getChallengingArgs(msg.prop)
25: send(msg,origMsg.prevAgent())
26: else

27: destroy(msg)
28: end if

29: end if

30: end if

situation is the best assessment. In case (i), the agent clears the obsList, changes the status

back to “PROPOSAL”, and forwards it. (lines 18-21). The function getSupportingArgs

retrieves the list of events whose observations are needed by the challenger to be persuaded

by the assessment; its explanation is again deferred to the next subsection. In case (ii), the

agent attaches any additional observations to the message and sends it back to where it received

it (lines 22-25). If it was the agent that initiated the proposal, the classification proposal is

destroyed (line 27). Finally, an assessment is instantiated when the number of agreeing agents

with a proposed classification reaches a predefined threshold (TTL) (♯agree == TTL)(line 9)

Notice that since only contradicting observations are sent and only to the agent that dis-

agrees, this message format scales with all key environmental and team variables. Moreover, it

is possible to show (see [49]) that the protocol always terminates after a finite number of mes-

18

sage exchange, if the agents do not acquire further observations while executing the protocol,

and if the threshold on the number of agents that must agree on a proposal (TTL) does not

change during the protocol execution.

In general,the above termination property holds because when a challenge is resolved, agents

share all relevant information about events involved in that proposal. More in detail, as men-

tioned above, a challenge can be resolved in two ways: i) the proposing agent evaluates the

challenge and decides the proposal is still valid, it then attaches to the message the supporting

arguments in favor of the proposal and forwards it; since the knowledge base of this agent in-

cludes the information provided by the challenging agents, the two agents will share the same

relevant information about this proposal and, since all agents share the same intensional knowl-

edge (e.g the TBox), and the same Bayesian model for integration of new evidence, they will

necessarily arrive to the same conclusion; ii) the proposing agent after integrating observations

from the challenging agent, decides to cancel the proposal, in this case no further message will

be sent about this proposal.

4.2 Distributed Knowledge Assessment

In this subsection, we focus on the knowledge base management aspects related to the dis-

tributed assessment described in the previous section, where each agent has a knowledge base

representing his view on the scenario. Specifically, we focus on the operations denoted as

evalArgs, to check whether a given proposal is aligned with the knowledge base of an agent,

getChallengingArgs, to extract from the KB the knowledge that is challenging a proposal,

and getSupportingArgs to extract the knowledge to support a proposal.

The knowledge to support/challenge a proposal is given by a set of ABox assertions. We

adopt the term support set for this set of assertions, since its role is similar to the corresponding

logical notion. Therefore, the support/challenge of a proposal requires to identify a set of

assertions together with the evidence accumulated on the corresponding events. Consequently,

it is useful to explicitly introduce the representation of the association between assertions and

events, which is also at the basis of the process of event assessment, described in subsection 3.2.

We call arguments the elements of a support set and denote them as 〈C(i1), obsList〉 or

〈R(i1, i2), obsList〉, where C is a concept name, R is a role name, i1 and i2 are instance

19

names, obsList is a list of sensor feature observations. The intuitive meaning of an argument

〈C(i1), obsList〉 (〈R(i1, i2), obsList〉) is that C(i) (R(ii, i2)) is a valid assertion into an agent’s

KB, and it is supported by the observations in obsList. Moreover, when obsList = ∅, the argu-

ment indicates that the fact is unknown to the agent. The agent receiving a set of arguments

integrates the corresponding observations into its own beliefs, as explained in Sec.3.2.

We are now in the position to discuss the required KB operations.

evalArgs takes in input an assessment proposal, specifying that s is an instance of situation

Si, and outputs true if the assessment of s is Si, false otherwise.

The implementation of evalArgs is fully supported by the basic DL reasoning techniques

for classification and consistency checking. Notice that, in general there might be different sets

of arguments that lead to the same conclusion, however here we are only interested in checking

whether the agents agree on the proposal. On the other hand, there may be several reasons for

disagreement including a more general classification, a more specific and also an inconsistent

one. In any of those cases a challenge is generated with a support set in order to reach a full

agreement in the assessment Si of s.

In our example in Section 3, the agent knows that s is a situation with an unidentified vessel

and, therefore, he would make a different classification of s if he receives a proposal which states

that SITLOCKAVESSEL (s). In such a case, he must compute a support set of arguments to send

back to challenge the proposal. In our scenario, situations instances are typically characterized

by the location, and therefore we can assume that the association problem is solved for situation

instances. If this assumption is unfeasible it may still be possible to make associations, based

on the underlying ability to associate observations, but this step can be rather challenging.

getChallengingArgs takes in input an assessment proposal, specifying that s is an instance

of situation Si, and outputs a support set of arguments.

This function is executed whenever an agent receives an assessment proposal and EvalArgs

returns false. In these cases, the agent believes that the situation s is not an instance of Si but

of some other situation class Sj. The challenging arguments are thus the support set of the

classification Sj plus the support set of Si.

For example, if the agent receives SITLOCKAVESSEL(s), he must raise a challenge, since his as-

20

sessment is SITUNKVESSEL(s). The challenge should provide the arguments supporting the differ-

ent view. In this case we have: {〈UNKNOWNVESSEL(v1), obsListv1〉, 〈hasObject(s, v1), obsListv1〉}.

In the context of a complex DL ontology, retrieving the minimal support set can be rather

complex, and is currently outside the scope of implemented systems. There are, however,

specific proposals: for example Kalyanpur in [20] presents algorithms to extract the minimal set

of TBOX and ABox assertions, that support a given conclusion. We overcome this difficulty by

hard-coding the set of assertions that should be associated with each situation class, in order

to obtain the corresponding support set. In this way, the support set is built by finding the

instances of the assertions in the predefined support set in the agent ABox.

getSupportingArgs takes in input an assessment proposal (specifying that s is an instance

of situation Si) with a support set of arguments and outputs a new support set of arguments.

This function is executed by an agent, when receiving a challenge to a proposal and the related

set of arguments. The aim of getSupportingArgs is to retrieve the arguments that provide

further support for the current proposal. The proposal is again forwarded with the new support

set for the classification, to the challenger agent. The challenger agent, will now re-evaluate the

proposal integrating also the additional evidence provided an will now agree with the proposal3.

A couple of final notes are needed to clarify the overall method for distributed situation

assessment. First, proposals are generated whenever an event triggers the classification of an

instance of a relevant situation in the taxonomy. It is clearly possible that the same event

generates different or even, contradictory proposals. The proposed algorithm for cooperative

situation assessment relies on the fact that the accumulation of new evidence from other agents

will lead either to confirm a proposal or to reject it, thus resolving any potential conflict arising

from perception errors causing incorrect or insufficiently refined proposals. Second, the termi-

nation of the process is ensured when agreement between two agents is reached through two

message: from the current receiver agent (i.e. challenger) to the proposer agent and, if needed,

back to the current agent. This property is achieved by relying on the features of the integration

of new evidence in the Bayesian model and on the collection of arguments that are associated

with challenges and proposals. It turns out that directly computing the support set for the

3As mentioned before this is guaranteed by the fact that all agents share the same intensional knowledge and
the same Bayesian model for integration of new evidence

21

classification by using basic DL reasoning techniques may not be sufficient to ensure the above

property, and additional knowledge about the inability to make a classification must be taken

into account. While this issue is solved in our ad-hoc coding of the support sets, a general

solution would make the task of the ontology designer much easier.

5 Experiments and results in a seacoast surveillance scenario

This section reports experimental results of our approach evaluated in a seacoast surveillance

scenario.

The proposed approach to distributed situation assessment presented in Section 4 was ex-

tensively evaluated on an abstract simulation environment [49]. Such a simulator abstracts the

low level details of agent perceptions and focuses on coordination issues, thus allowing to run

experiments with large number of agents (up to 120), under different environmental conditions.

Results show that the approach achieves good performance, by selecting the correct plan for the

current situation and keeping a very low coordination overhead, in terms of number of message

and bytes per time unit. Specifically, the performance level is close to a centralized approach,

while reducing the coordination overhead by an order of magnitude. Moreover, the approach

was able to maintain good performance (close to the centralized benchmarking method) across

a wide experimental parameter settings, such as increasing perception noise, increasing world

size4 and increasing dynamism (rate of changes that happen in the world).

After evaluating the performances of our approach in a simulated environment, we validated

it in a real maritime surveillance application in collaboration with Selex-SI [47]. In the following

we report results of such a validation.

5.1 Seacoast Surveillance Experimental Setting

Our approach has been evaluated on a multi-agent platform for maritime surveillance in a real-

time scenario. Specifically, the multi-agent platform is a component of a general architecture

of a system for harbor protection (developed by Selex-SI), which acquires the perceptions used

in the situation assessment process from a set of heterogeneous sensors. In this context, agents

represent patrol-ships and command and control workstations, while perceptions are information

4Since we fix the number of agents this results in agents having less mutual observation of the same features

22

Figure 3: A splitting situation. Two boats (red circles) performed a split close to a surveillance
area (red arc) and one of them is directed to the critical point (in purple).

about vessels with an uncertain estimated position and a unique (possible incorrect) ID; other

inputs (such as vessel type or self-identification of the vessel) are available through database

access. On the output side, the software architecture provides a graphical interface, which shows

every assessed situation as a warning on a display, to allow for human decision making. The

multi-agent architecture can be run on a laptop with single core processor, with small sized

teams of cognitive agents (up to 5 members) and about 100 external entities moving. The

number of agents is limited by the amount of radar data received and of requests of reasoning

services over the ontologies.

With respect to the quality of the input data, the noise in the radar data can not be elimi-

nated, therefore it will be always present in our experiments. In order to evaluate the behavior

of our approach with different levels of sensor noise, we consider three different experimental

settings: we call “high quality perception” the setting where we consider only radars’ noise.

Then, we reduce the quality of the feature extraction process by an exponential decay fac-

tor, which increases observations’ noise in relation to the distance from the perceived event:

“medium quality perceptions” refers to a factor of 0.01, and “low quality perceptions” of 0.1.

We focus on various suspect operations to be detected, among which:

splitting: the maneuver of remaining hidden staying close to another vessel, then suddenly

move away directed to a critical area. (see Fig.3).

suspect approach: a suspect vessel approached by other (at least two) vessels. A suspect vessel

is a vessel whose identification is not known, which is located near the border of a patrolled

zone.

Other situation classes are present. For example, there are some partially specified situa-

23

Figure 4: Performances varying quality of perceptions.

tions, which are generalizations of the above two. During the detection process of high level

situation, agents may have a disagreement on different assertions, like the region were the vessel

first appeared, the average direction of the vessel (which is obtained reasoning also on past

perceptions) or the number of vehicles involved in the procedure.

5.2 Results

Our approach (referred as mas Policy) was compared to two different strategies. The first one,

centralized, represents an approach where the high level fusion process is performed by a specific

agent (which represents a command and control center) and patrol-ships which are distributed

in the sea area considered, are used only as information sources. The second benchmark policy,

share all ABox, represents the multi-agent solution, where agents execute the proposed algo-

rithm to reach agreements, solving their disagreements by attaching all assertions in the ABox.

high quality perc. medium quality perc. low quality perc.
assert. assert.shared assert. assert.shared assert. assert.shared

centralized 177 177 (100%) 673 673 (100%) 596 596 (100%)
shareAllABox 110 110 (100%) 151 151 (100%) 423 423 (100%)
mas Policy 110 12 (11%) 148 31 (21%) 439 123 (28%)

Table 1: Measuring information locality. The number of assertions and of shared assertions of
each agent is shown.

Figure 4 shows the quality of the overall team assessment, comparing the three policies,

under varying noise conditions. Specifically, the x axis reports the perception quality, while the

y-axis reports an indicator of performances prew (% of reward). prew uses a utility function

which gives rewards and costs to correct/wrong assessments and partially correct/wrong ones.

24

Figure 5: Communication costs of 3 different agent policies.

Then, prew = u∗

umax

, where u∗ is the utility that the team achieves through its classifications, and

umax is the maximum achievable utility, considering the set of classifications of the centralized

policy, in the “high quality” configuration, as ground truth (correct assessment). In this case,

the mas Policy and share All ABox are indistinguishable, because all the relevant observations

are shared in both policies.

These results highlight three aspects: first, the centralized approach does not get always the

best result, because it suffers from the quality of received observations. Second, the centralized

approach always out-performs the multi-agent policy, as expected. This happens because the

centralized approach has always instantaneous access to all available observations. Third, in

case of low level perceptions the quality of results of the multi-agent policy significantly de-

creases: in this case, the approach suffers from the fact that a small number of agents is used,

and loosing some observations may cause an incorrect classification. Increasing the density of

agents would improve performances, as it is shown in the evaluation of the distributed situation

assessment protocol [49]; also, exploiting the locality of information to forward proposals to

the best informed agents would enhance the performances with respect to the actual random

forwarding policy.

In addition, we evaluated communication costs, in the three different policies. Obviously, a

reduced communication is beneficial not simply in terms of traffic load reduction, but mainly

in terms of robustness to communication failures and security. We analyzed the amount of

bandwidth used, which is a better indicator of the costs than the number of messages, because

messages have a different size in the various policies, due to the possible presence (and the

number) of observations attached. We considered a fix size of 100 bytes for each observation.

Figure 5 shows these results: the x-axis reports the quality of observations, while the y-axis in-

25

dicates the bandwidth used, measured in bytes per second. We can observe that centralized has

severe bandwidth requirements, while the two multi-agent approaches significantly reduce the

amount of bandwidth used. The used bandwidth of the approaches with distributed fusion is

slightly influenced by the quality of perceptions, since the number of conflicts in the assessment

increases as perception quality decreases. Even for the worst case, with very noisy observations,

the policies with distributed fusion largely reduce (more than half) the amount of necessary

bandwidth. Moreover, comparing the share all ABox and the mas Policy approaches, the sec-

ond one further reduces (about one order of magnitude less than centralized) the bandwidth

used, because the minimal amount of events to be challenged is evaluated.

A major reason to compute and share minimal information among agents is to preserve

information locality. Maintaining information locality is a key aspect to reduce the amount of

computation each agent must perform, thus allowing to scale the systems to large number of

agents and observations typical of real applications. To evaluate this attribute, in Table 1 we

related it to the amount of ABox assertions which are shared among the agents. In particular,

we use the ratio between the number of assertions shared and the total amount of assertions

in the KB (both averaged among the agents). We count as ABox assertions, only those that

derive from observations (and not, for example, static facts). We consider an assertion to be

shared, whenever an observation related to that assertion is sent. Results are shown in the table,

where we may conclude that, with our policy, each agent shares less than 30% of its KB. When

assertions are not shared, they are either useless for current conclusions, or they are already

agreed upon (perhaps for different reasons) among the agents. Obviously, we see also that the

share all ABox and the centralized policy are worse with respect to locality, since they share

all the local assertions.

In conclusion, the experimental evaluation in the maritime scenario shows that the proposed

approach to distributed situation assessment achieves the design goal of keeping the information

at the right place, since the quality classifications are comparable to the centralized case, while

avoiding unnecessary communication.

26

6 Conclusions

The work presented in this paper addresses the key aspects of Situation Assessment in scenarios

where several actors have to monitor many events of interest. The target applications for the

above class of systems can be manifold, for example air traffic control, emergency operation

after a disaster, or maritime surveillance that is specifically taken here as a case study. More in

particular, our goal is to achieve a distributed solution to Situation Assessment, that overcomes

the limitations in terms of robustness, scalability and security of a centralized approach.

The approach presented in this paper is an important step forward. Specifically, the key

contributions of this work are: i) a general framework for situation assessment that exploits the

inferential capabilities of ontological representations; ii) a multi-agent approach to Situation

Assessment that, by sharing a minimal amount of knowledge using dialogues between agents,

achieves a classification of situations comparable with the centralized case, while substantially

reducing the communication; iii) a validation of our approach in a real case scenario of mar-

itime surveillance showing that the design goals of the distributed approach can be successfully

achieved.

Several aspects of the overall process could be improved. We are concerned specifically

on the agent interaction leading to high level assessment. For example, a future work in this

area will focus on the possibility to compute the set of justifications for each relevant situation

class, using results from belief revision theory [20]. Another possible direction to investigate is

whether an agent may solve also inconsistencies (and not only disagreements) in its own KB by

asking for an agreement to team mates, attaching its subset of inconsistent assertions.

Acknowledgment

The work has been carried out within the project ”Iniziativa Software” supported by Finmec-

canica and CINI. The authors would like to thank Luca Izzotti and Francesco Canini for their

support in the earlier stages of the project.

27

References

[1] Sesar definiton phase d1- air transport framework : The current situation. Technical report,

SESAR Consortium, 2006.

[2] Vivek Bharathan and John R. Josephson. An abductive framework for level one information

fusion. In Proceedings of the 9th International Conference on Information Fusion (IF-06),

pages 1–7, Florence, Italy, July 2006. IEEE.

[3] Neil A. Bomberger, Bradley J. Rhodes, Michael Seibert, and Allen M. Waxman. Associative

learning of vessel motion patterns for maritime situation awareness. In Proceedings of the

9th International Conference on Information Fusion (IF-06), pages 1–8, Florence, Italy,

July 2006. IEEE.

[4] John F. Buford, Gabriel Jakobson, and Lundy Lewis. Peer-to-peer coupled agent systems

for distributed situation management. Information Fusion, 11:233–242, 2010.

[5] Gerard T. Capraro, Alfonso Farina, Hugh Griffiths, and Michael C. Wicks. Knowledge-

based radar signal and data processing. IEEE Signal Processing Magazine, 23:18–29, Jan-

uary 2006.

[6] Thomas M. Cioppa, Thomas W. Lucas, and Susan M. Sanchez. Military applica-

tions of agent-based simulations. In Proceedings of the 36th Conference on Winter

Simulation(WSC-04), pages 171–180. Winter Simulation Conference, December 2004.

[7] Markus Dietl, Jens S. Gutmann, and Bernhard Nebel. Cooperative sensing in dynamic

environments. In Proceedings of the International Conference on Intelligent Robots and

Systems (IROS-01), pages 1706–1713, Maui, HI, USA, November 2001. IEEE.

[8] Zhongli Ding. Bayesowl: a Probabilistic Framework for Uncertainty in Semantic Web.

PhD thesis, University of Maryland at Baltimore County, Catonsville, MD, USA, 2005.

[9] T Eiter and G. Gottlob. On the complexity of propositional knowledge base revision,

updates and counterfactuals. Artificial Intelligence, 57:227–270, 1992.

28

[10] Alessandro Farinelli, Luca Iocchi, Daniele Nardi, and Vittorio Ziparo. Assignment of dy-

namically perceived tasks by token passing in multi-robot systems. Proceedings of the

IEEE, Special issue on Multi-Robot Systems, 94:1271 – 1288, 2006.

[11] Alessandro Farinelli, Luca Iocchi, Daniele Nardi, and Vittorio Amos Ziparo. Task assign-

ment with dynamic perception and constrained tasks in a multi-robot system. In Proceed-

ings of the IEEE International Conference on Robotics and Automation (ICRA-05), pages

1523–1528, Barcelona, Spain, April 2005. IEEE.

[12] Alessandro Farinelli, Daniele Nardi, Paul Scerri, and Alberto Ingenito. Dealing with per-

ception errors in multi-robot system coordination. In Proceedings of the 20th International

Joint Conference on Artificial Intelligence (IJCAI-07), pages 2091–2096. AAAI Press, Jan-

uary 2007.

[13] Sofia Giompapa, Alfonso Farina, Fulvio Gini, Antonio Graziano, and Riccardo Di Stefano.

A model for a human decision-maker in a command and control radar system: Surveil-

lance tracking of multiple targets. In Proceedings of the 9th International Conference on

Information Fusion (IF-06), pages 1–8, Florence, Italy, July 2006. IEEE.

[14] Eric Gregoire and Sbastien Konieczny. Logic-based approaches to information fusion. In-

formation Fusion, 7:1–156, March 2006.

[15] Volker Haarslev and Ralf Möller. Racer: A core inference engine for the semantic web.

In Proceedings of the 2nd International Workshop on Evaluation of Ontology-based Tools

(EON-03), located at the 2nd International Semantic Web Conference (ISWC-03), pages

27–36, Sanibel Island, FL, USA, October 2003. http://www.racer-systems.com/.

[16] David L. Hall and James Llinas. Handbook of Multisensor Data Fusion. CRC Press, 2001.

[17] Jochen Heinsohn. Probabilistic description logics. In Proceedings of the 10th Annual Con-

ference on Uncertainty in Artificial Intelligence (UAI-94), pages 311–318, San Francisco,

CA, USA, July 1994. Morgan Kaufmann.

[18] Michael N. Huhns. Re-architected it systems for the u.s. navy. In invited talk at In-

ternational Conference on Autonomous Agents and Multi-Agent Systems (AAMAS-09),

Budapest, Hungary, May 2009.

29

[19] Manfred Jaeger. Probabilistic reasoning in terminological logics. In Proceedings of the 4th

International Conference on Principles of Knowledge Representation an Reasoning (KR-

94), pages 305–316, Bonn, Germany, May 1994. Morgan Kaufmann.

[20] Aditya Kalyanpur. Debugging and Repair of OWL Ontologies. PhD thesis, University of

Maryland, College Park, MD, USA, 2006.

[21] Holger Knublauch, Ray W. Fergerson, Natalya F. Noy, and Mark A. Musen. The protégé

OWL plugin: an open development environment for semantic web applications. In Poceed-

ings of the International Semantic Web Conference (ISWC-04), volume 3298, pages 229–

243, Hiroshima, Japan, 2004. Springer.

[22] Mieczyslaw M. Kokar, Christopher J. Matheus, and Kenneth Baclawski. Ontology-based

situation awareness. Information Fusion, 10:83–98, 2009.

[23] Daphne Koller, Alon Levy, and Avi Pfeffer. P-classic: A tractable probabilistic description

logic. In Proceedings of the 14th National Conference on Artificial Intelligence(AAAI-97),

pages 390–397, Providence, RI, USA, July 1997. AAAI Press.

[24] Claire Laudy, Juliette Mattioli, and Nicolas Museux. Cognitive situation awareness for

information superiority. In IST Panel on Information Fusion for Command Support, pages

1–12, November 2005.

[25] Rikard Laxhammar. Anomaly detection for sea surveillance. In Proceedings of the 11th

International Conference on Information Fusion (IF-08), pages 1–8. ISIF, IEEE, June

2008.

[26] Eric G. Little and Galina L. Rogova. Designing ontologies for higher level fusion. Infor-

mation Fusion, 10(1):70–82, January 2009.

[27] James Llinas, Christopher L. Bowman, Galina Rogova, Alan N. Steinberg, Ed Waltz, and

Franklin E. White. Revisiting the jdl data fusion model ii. In Proceedings of the 7th

International Conference on Information Fusion (IF-04), pages 1218–1230, Stockholm,

Sweden, June 2004. International Society of Information Fusion.

[28] Thomas Lukasiewicz. Expressive probabilistic description logics. Artificial Intelligence,

172(6-7):852–883, 2008.

30

[29] Alexei Makarenko and Hugh F. Durrant-Whyte. Decentralized data fusion and control

algorithms in active sensor networks. In Proceedings of the 7th International Conference

on Information Fusion (IF-04), pages 479–486, Stockholm, Sweden, June 2004. ISIF.

[30] Fulvio Mastrogiovanni, Sgorbissa Antonio, and Renato Zaccaria. A distributed architec-

ture for symbolic data fusion. In Proceedings of the 20th International Joint Conference

on Artificial Intelligence (IJCAI-07), pages 2153–2158, Hyderabad, India, January 2007.

AAAI Press.

[31] Christopher J. Matheus, Kenneth Baclawski, and Mieczyslaw M. Kokar. Derivation of

ontological relations using formal methods in a situation awareness scenario. In Proceed-

ings of SPIE Conference on Multi-sensor, Multi-source Information Fusion: Architectures,

Algorithms, and Applications, pages 298–309, Orlando, FL, USA, April 2003. SPIE.

[32] Christopher J. Matheus, Mieczyslaw M. Kokar, and Kenneth Baclawski. A core ontology

for situation awareness. In Proceedings of the 6th International Conference on Information

Fusion (IF-03), pages 545–552, Cairns, Australia, July 2003. ISIF.

[33] Christopher J. Matheus, Mieczyslaw M. Kokar, Kenneth Baclawski, John Salerno, et al.

Lessons learned from developing sawa: A situation awareness assistant. In Proceedings of

the 8th International Conference on Information Fusion (IF-05, pages 1–9, Philadelphia,

PA, USA, July 2005. IEEE.

[34] Deborah L. McGuinness and Frank van Harmelen. OWL web ontology language overview.

World Wide Web Consortium, Recommendation http://www.w3.org/TR/owl-features/,

February 2004.

[35] Nicolas Museux, Juliette Mattioli, Claire Laudy, and Helene Soubaras. Complex event

processing approach for strategic intelligence. In Proceedings of the 9th International Con-

ference on Information Fusion (IF-06), pages 1–8, Florence, Italy, July 2006. IEEE.

[36] Daniele Nardi and Ronald J. Brachman. An introduction to description logics. In The

Description Logic Handbook: Theory, Implementation and Applications, pages 1–40. Cam-

bridge University Press, 2003.

31

[37] Maria Nilsson, Joeri van Laere, Tom Ziemke, and Johan Edlund. Extracting rules from

expert operators to support situation awareness in maritime surveillance. In Proceedings of

the 11th International Conference on Information Fusion (IF-08), pages 1–8. ISIF, IEEE,

June 2008.

[38] C. A. Ntuen and A. R. Watson. Workload prediction as a function of system complexity. In

Proceedings of the 3rd Symposium on Human Interaction with Complex Systems (HICS-96),

pages 96–100, Dayton, OH, USA, August 1996. IEEE Computer Society.

[39] David V. Pynadath and Milind Tambe. The communicative multiagent team decision prob-

lem:analyzing teamwork theories and models. Journal of Artificial Intelligence Research

(JAIR), 16:389–423, 2002.

[40] Branko Ristic, Barbara La Scala, Mark Morelande, and Neil Gordon. Statistical analysis of

motion patterns in ais data: Anomaly detection and motion prediction. In Proceedings of

the 11th International Conference on Information Fusion (IF-08), pages 1–7. ISIF, IEEE,

June 2008.

[41] Maria Riveiro, Goran Falkman, and Tom Ziemke. Improving maritime anomaly detection

and situation awareness through interactive visualization. In Proceedings of the 11th Inter-

national Conference on Information Fusion (IF-08), pages 47–54. ISIF, IEEE, June-July

2008. Best Student Paper Award.

[42] Galina L. Rogova, Peter D. Scott, and Carlos Lollett. Reasoning about situations in the

early post-disaster response environment. In Proceedings of the 9th International Confer-

ence on Information Fusion (IF-06), pages 1–8, Florence, Italy, July 2006. IEEE.

[43] Matt Rosencrantz, Geoffrey Gordon, and Sebastian Thrun. Decentralized sensor fusion with

distributed particle filters. In Proceedings of the Conference on Uncertainty in Artificial

Intelligence (UAI-03), pages 493–500, Acapulco, Mexico, August 2003. Morgan Kaufmann.

[44] Maayan Roth, Reid Simmons, and Manuela Veloso. Reasoning about joint beliefs for

execution-time communication decisions. In Proceedings of 4th International Conference

on Autonomous Agents and Multiagent Systems (AAMAS-05), pages 786 –793, Utrecht,

The Netherlands, July 2005. ACM.

32

[45] Paul Scerri, Alessandro Farinelli, Steven Okamoto, and Milind Tambe. Allocating tasks in

extreme teams. In Proceedings of 4th International Conference on Autonomous Agents and

Multiagent Systems (AAMAS-05), pages 727–734, Utrecht, The Netherlands, July 2005.

ACM.

[46] Robert C. Schrag, Takikawa Masami, Paul Goger, and James Eilbert. Performance eval-

uation for automated threat detection. Journal of Advances in Information Fusion, pages

77–98, December 2007.

[47] Giuseppe Paolo Settembre, Alessandro Farinelli, Daniele Nardi, Roberta Pigliacampo, and

Mirco Rossi. Solving disagreements in a multi-agent system performing situation assess-

ment. In Proceedings of the 12th International Conference on Information Fusion (IF-09),

pages 1–8, Seattle, WA, USA, July 2009. International Society of Information Fusion.

[48] Giuseppe Paolo Settembre, Roberta Pigliacampo, and Daniele Nardi. Agent approach to

situation assessment. In Filipe, Fred, and Sharp, editors, Proceedings of the 1st Interna-

tional Conference on Agents and Artifical Intelligence (ICAART-09), pages 287–290, Porto,

Portugal, January 2009. INSTICC Press.

[49] Giuseppe Paolo Settembre, Paul Scerri, Alessandro Farinelli, Katia Sycara, and Daniele

Nardi. A decentralized approach to cooperative situation assessment in multi-robot sys-

tems. In Proceedings of the International Conference on Autonomous Agents and Multi-

Agent Systems (AAMAS-08), pages 31–38, Estoril, Portugal, May 2008. International Foun-

dation for Autonomous Agents and Multiagent Systems.

[50] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and Yarden Katz.

Pellet: A practical owl-dl reasoner. Web Semantics: Science, Services and Agents on the

World Wide Web, 5:51–53, June 2007.

[51] Ashley W. Stroupe, Martin C. Martin, and Tucker Balch. Distributed sensor fusion for

object position estimation by multi-robot systems. In Proceedings of the International

Conference on Robotics and Automation (ICRA-01), volume 2, pages 1092–1098, Seoul,

Korea, May 2001. IEEE.

33

[52] Katia Sycara, Robin Glinton, Bin Yu, Joseph Andrew Giampapa, Sean R. Owens, Michael

Lewis, and Grindle LTC Charles. An integrated approach to high level information fusion.

Information Fusion, 10:25–50, January 2009.

[53] David J. Walton, Eugene P. Paulo, Christopher J. McCarthy, and Ravi Vaidyanathan.

Modeling force response to small boat attack against high value commercial ships. In

Proceedings of the 37th Conference on Winter simulation (WSC-05), pages 988–991. Winter

Simulation Conference, December 2005.

[54] Bin Yu, Paul Scerri, Katia Sycara, Yan Xu, and Michael Lewis. Scalable and reliable

data delivery in mobile ad hoc sensor networks. In Proceedings of the 5th International

Joint Conference on Autonomous Agents and Multi Agent Systems (AAMAS-06), pages

1071–1078, Hakodate, Japan, May 2006. ACM.

34

