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ABSTRACT This paper investigates cooperative spectrum sensing in multi-channel cognitive radio net-

works (CRNs) with energy harvesting. Our goal is two-fold: first, to determine the optimal sensing parame-

ters for effective management of the limited energy budget in order to maximize the achievable throughput,

and second, to exploit the benefits of a practical CRN towards improving the performance of the energy

constrained CRN. Two different scenarios are considered. In the first, the secondary user (SU) is assigned a

single radio frequency (RF) harvesting source, while in the second, the SU is assignedmultiple RF harvesting

sources and can opportunistically harvest from any of the sources. For these scenarios, the problem is

formulated as a stochastic optimal control systemwith infinite and continuous state and action spaces. This is

known to be computationally intractable and becomes even more complicated in a two-dimensional problem

such as considered. In order to reduce the computational complexity, a myopic optimization approach

is taken, and the problem is formulated into a mixed integer nonlinear problem (MINLP) to determine

the channel assignment, the sensing duration, the distribution of the sensing duration associated with the

assigned channels and the detection threshold under the constraint of energy causality and primary user (PU)

protection. A near-optimal solution is obtained to the MINLP based on the alternating convex optimization

technique. The simulation results obtained show that the considered work can improve the amount of energy

harvested and, by extension, the active probability of the SUs by exploiting the multi-channel benefits of

practical CRN for enhanced throughput.

INDEX TERMS Energy harvesting cognitive radio network (EH-CRN), cooperative spectrum sensing,

energy harvesting sources, primary user (PU), multi-channel, optimization problem.

I. INTRODUCTION

Recent development in energy harvesting [1]–[4] has initi-

ated research efforts towards exploiting the possibility of

alternative energy supply to the A.C rechargeable/replaceable

batteries in cognitive radios. This intends to jointly reduce

energy cost and deal with the problem of having to replace

batteries, promising a cognitive radio system with cheaper

and more convenient energy supply. In the RF energy

harvesting-based scheme, spectrum sensing and data trans-

mission activities of the SU can only occur with enough

harvested RF energy (a phenomenon referred to as energy

causality). The system is however a stochastic process in

The associate editor coordinating the review of this manuscript and
approving it for publication was Antonino Orsino.

terms of the secondary user energy state over time. The

energy level at the beginning of each frame depends on the

residual energy and the action taken in the previous frame.

The RF energy arrival is also intermittent and random, while

the magnitude of the electrical energy derived from the har-

vested RF may not always be sufficient to maximize through-

put. It is therefore imperative that the CRN is energy efficient

in terms of balancing the energy consumption during sensing

and transmission activities with the amount of energy har-

vested. In the conventional cognitive radio networks (which

can otherwise be referred to as unconstrained energy counter-

part), a sensing-throughput trade-off [5] exists, which hinges

on the sensing time and sensing accuracy. However, in the

context of energy harvesting CRN, the outcomes of the

sensing process (i.e. the sensing time and sensing accuracy)
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are energy constrained, making the energy harvesting-based

CRN (EH-CRN) a more complicated scenario.

A. RELATED WORKS

The effect of energy arrival rate on spectrum sensing and

access policy in EH-CRN is investigated in [6] and [7], where

the authors formulated the problem as a constrained partially

observable Markov decision process (POMDP). In partic-

ular, the studies in [6] identify the optimal sensing policy,

while [7] is an extension of [6] that determines the optimal

sensing policy and detection threshold that maximizes the

expected total throughput under energy causality and colli-

sion constraints. Chung et al. [8] investigated the relationship

between the optimal sensing duration and the corresponding

sensing threshold with the purpose of conserving energy

while the average throughput is maximized. In [9], Park and

Hong analyzed the theoretical upper bound on the maxi-

mum achievable throughput of the energy harvesting based

secondary user as a function of the energy arrival rate and

the temporal correlation of the primary traffic under an

energy causality and collision constraints. The fundamental

trade-off between spectrum sensing and the SU expected

throughput for a conventional energy unconstrained CRN

is studied in [10]. Inspired by [10], Yin et al. [11] focused

on the harvesting-sensing-throughput trade-off and the joint

optimization for save-ratio (i.e. the proportion of the frame

length expended on harvesting energy, denoted as ρ : 0 ≤
ρ < 1 ), sensing duration, sensing threshold and fusion rule

to maximize the expected throughput in the EH-CRN. The

work in [12] jointly optimizes energy harvesting and spec-

trum sensing in the EH-CRN subject to the constraints on the

energy causality, collision, and temporal correlation of prob-

ability of sensing the idle/occupied channel to maximize the

achievable throughput. In [13], Khoshabi Nobar et al. inves-

tigate the performance of an RF-powered green cognitive

radio network (RF-GCRN), where a central node, called a

power beacon (PB), harvests green energy from ambient

sources and wirelessly delivers random harvested energy

to cognitive users. Nevertheless, [6]–[9], [11]–[13] merely

address a non-cooperative spectrum sensing where a single

SU co-exits with only one PU on the channel.

Biswas et al. [14] however, investigated a sensing-

throughput optimization problem in EH-CRN based on

cooperative spectrum sensing among the participating SUs.

In particular, the authors focused on the trade-off between

sensing time and sum capacity of the SUs with respect to

transmission power and sensing time. In [15], Celik et al.

considered the design of a heterogeneous energy efficient and

energy harvesting cooperative spectrum sensing (EEH-CSS)

scheme subject to the fundamental EEH-CSS constraints. The

authors considered the heterogeneity of the SUs in terms

of the non-identical harvesting, sensing, and reporting char-

acteristics. The problem in [15] is formulated to determine

the optimal asymptotic active probability, sensing duration,

and detection threshold that maximize the achievable total

throughput. The study in [14] formulated the problem as a

mixed integer non-linear program (MINLP) with the objec-

tive to determine the access decision variables, the transmit

power, the optimal sensing time and the number of slot that

maximize the average throughput. In [16], Pratibha et al.

employ the finite-horizon POMDP model to derive the opti-

mal policy that can maximize the expected throughput while

satisfying the PU detection and the energy causality con-

straints. The study in [17] optimizes the optimal sensing time

that maximizes average throughput and the harvested energy.

In [18], for an overlay EH CRN, the authors aim to find

an optimal sensing time to maximize throughput of SU and

the harvested RF energy. Residual energy maximization is

explored with spectrum sensing and SU transmission in [19].

The critical issue in EH-CRN from the afore-mentioned

literature is that the RF energy arrival from the ambient RF is

random, while the magnitude of the electrical energy derived

from the harvested RF may not always be sufficient to max-

imize throughput. The works in [15] and [20] considered a

hybrid energy harvesting networkmodel where the secondary

user is capable of harvesting energy from both renewable

sources (e.g. solar) and ambient radio frequency signals.

However, the concern with this is that the application of such

conventional renewable energy could be limited in certain

environments, time and weather and, this could be critical in

applications where quality of service is of utmost concern.

In [21], the SU splits the channel into two sub-channel sets.

One for sensing the PU and the other for collecting the RF of

the PU signal. In the transmission slot, the harvested energy

is supplied to compensate the sensing energy loss in order

to guarantee the throughput. The problem is formulated to

determine the optimal sub-channel set, sensing time, and

transmission power that maximize the aggregate throughput,

harvested energy and the energy efficiency of the SU over all

the sub-channels. However, the details of the energy source

for data transmission is not mentioned. In [22], RF energy

could be harvested from the PU and the reporting SUs, and

the problem is formulated into a multi-objective optimiza-

tion (MOP) to optimize the spectrum sensing performance,

under the constraints of the harvested energy at SU and the

interference from SU on PU receiver. The afore-mentioned

works only investigate a single channel case, which is quite

simplistic for communication systems. Practical wireless

communication networks are inherently multi-user and mul-

tichannel with peculiar challenges and benefits.

The authors in [23]–[25] propose a multi-channel harvest-

ing schemes where an SU can sense the spectrum to deter-

mine the harvesting and communication geographical zones,

such that it can take a decision to harvest or transmit data

based on the zone it belongs to. An SU requiring to transmit

data would need to stay in at least one of harvesting zones

of active PUs, otherwise the SU will have no energy for

transmitting data. In [24] the problem is formulated to jointly

optimize the number of sensing samples and sensing thresh-

old in order tominimize the sensing time and hencemaximize

the harvested energy. Xu et al. [25] investigated the problem

to determine the optimal channel selection probability that
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maximizes the average throughput of SUs. In these papers,

cooperative spectrum sensing is not considered.

Optimal multi-channel cooperative spectrum sensing in

energy unconstrained CRN has been studied in [26], where

the authors formulated the problem to determine the optimal

sensing time in a slot and how the total sensing time can be

distributed to all channels. However, for energy harvesting

system, the sensing-throughput trade-off that naturally exits

in a conventional CRN is further complicated by energy

constraint. Nevertheless, inspired by [26], the work presented

in this paper focuses on finding the optimal cooperative spec-

trum sensing parameters in multi-channel cognitive radio net-

works with energy harvesting. In addition, the work presented

here also investigates a different network scenario from the

study in [26], in terms of the channel assignment to each

user. In what follows, the main contributions of this paper are

summarized.

B. MAIN CONTRIBUTIONS

1) Different from the studies on EH-CRNs, which focus

on single channel network model [14], [15], the work

presented in this paper considers the performance of

energy harvesting secondary users in a practical multi-

channel environment. In order to enhance the spectrum

sensing performance, the secondary networks (SN) is

modeled as overlapping clusters, where the number and

the candidate channels assigned to each user are not

necessarily equal. In addition, the heterogeneity of the

network is also considered in terms of sensing quality

of the cooperating secondary users.

2) The performance of the EH-CRNs in terms of

the achievable throughput has been reported to be

dependent on the energy arrival rate [6], [9]. This

paper shows that by exploiting the benefit of the

multi-channel scenario, the amount of energy harvested

can increase with increasing number of the assigned

channels to each SU. This improves the probability

that the SU is active and correspondingly improves

throughput. However, this is not without a cost, since

energy consumption also increases with the number of

channels sensed, revealing that there is an optimum

number of PU channels to SU which, maximizes the

energy efficiency of the EH-CRN.

3) With a goal to maximize the average throughput of the

energy harvesting based SUs, the problem is formu-

lated as a mixed integer non-linear optimization prob-

lem (MINLP) to jointly determine the optimal channel

assignment, sensing duration in each frame, distribu-

tion of the sensing duration among the assigned chan-

nels for every SUs, and the detection threshold of each

SU sensing each channel. This differs from [14], [15]

and [26], in that while [14] and [15] only considered

the problem in a single channel EH-CRN, the authors

in [26] investigated the problem in a conventional

(energy unconstrained) CRN, where a set of SUs are

made to sense the same group of PU channels.

II. SYSTEM MODEL

This section describes themodel and assumptions adopted for

the cooperative spectrum sensing in multichannel cognitive

radio networks with energy harvesting

A. COGNITIVE RADIO NETWORK MODEL

This paper considers a cooperative spectrum sensing in mul-

tichannel cognitive radio networks with energy harvesting

secondary users. The network comprises N SUs and M

PUs, both randomly deployed within Am2 area. The distance

between PUj and SUi is denoted as d
sp
i,j whereas the distance

between SUi and SUk (i 6= k) is d ssi,k . Both d
sp
i,j and d

ss
i,k are

random values, since the deployment of both PUs and SUs are

assumed random. The secondary users’ network includes a

central controller (CC) located within the transmission range

of the SUs. The CC gathers the individual SU parameters

such as the evaluated non-cooperative probability of miss-

detection, the channel list, and the co-ordinates of the SUs

locations. The CC is responsible for the frequency assignment

based on the received information from the SUs. Therefore,

the frequency assignment is done centrally, while coopera-

tive spectrum sensing for channel access is distributed since

SUs in each cluster cooperatively decide the status of each

channel.

The considered time slotted operation of active energy

harvesting based secondary users (EH-SUs) with heteroge-

neous SNR is illustrated in Figures 1a and 1b, in which

cluster formation (or channel assignment) precedes the

sensing-transmission/ harvesting frame. The frame length T

is divided into a sensing period with duration τs, the report-

ing/data fusion/broadcasting time of τr and the transmis-

sion/harvesting period of tT = T − τs − τr . During the

sensing phase, each SU executes local spectrum sensing of

the assigned K channels within period τs based on energy

detection method. The SUs then report the sensing results to

the corresponding cluster heads in each of the K clusters for

cooperative decision. Each SU is updated with the channel

status by the cluster heads through broadcast. It is assumed

that the secondary user network is scheduled to transmit on

time division multiple access (TDMA) protocol. Therefore,

the transmission period in each frame is further divided into

(data transmission) slots, and each SU i is allocated a slot ti,j
on its transmit channel j, which is equivalent to

ti,j = (T − τr − τs)

zj
, ∀i ∈ {1, 2, · · · zj}, (1)

where the parameter zj denotes the number of SUs assigned

to transmit on channel j.

Fig. 1a shows a scenario where each SU can opportunis-

tically transmit or harvest RF energy from the PU of the

transmit channel only. For instance, SU1 in the figure first

cooperate with other SUs in all the K clusters to sense the

PU channels in those K clusters. If the transmit channel is

determined idle H t
0, the SU would transmit its data in the

transmission slot S2 and then sleep in the remaining period.

However, if the transmit channel is busy H t
1, the SU harvest
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FIGURE 1. System model illustrating the frame structure of the
cooperative spectrum sensing activities in EH-CRNs. Cluster formation
precedes the sensing-transmission frame. Each frame is divided into z j

time slots (S1, S2, · · · Sz), where z is the number of SUs allocated on
channel j for opportunistic access: (a) single RF harvesting source
(b) multiple RF harvesting sources.

RF energy from the PU throughout the period. It is assumed

that channel status does not change within a frame. Fig. 1b

on the other hand illustrates the scenario where SU can

opportunistically harvest from multiple RF sources.

In Fig. 1b, after cooperative spectrum sensing to determine

the channel status, SU1 harvest RF energy from the transmit

channel (CH1) if the channel is busy H
1,t
1 . If the channel

is idle H
1,t
0 , the SU transmits on slot 2 of CH1 and then

harvest opportunistically from any of theK−1 (i.e. 2, · · · ,K )

channels for the remaining period. Fig. 2 illustrates the con-

sidered (overlapping) clusters, in which multiple channels

are assigned to each SU, while each PU can cooperatively

be sensed by multiple SUs. This is a case of many-to-many

combinatorial assignment.

Therefore, a cluster is made up of a group of SUs that

cooperate to sense a particular PU channel. In this case, an SU

can belong to multiple clusters. Hence, all the SUs in a cluster

may not necessarily share one channel for transmission in

every frame. Following the channel assignment at the begin-

ning of each frame, each SU selects one of the K assigned

channels randomly as a transmit channel. It is assumed that

FIGURE 2. Network model illustrating overlap clustering assignment.

the energy requirement for cluster formation is negligible in

comparison with the energy demand for spectrum sensing

and data transmission, since the bulk of the cluster forma-

tion/channel assignment work is performed by the central

controller.

B. PRIMARY NETWORK MODEL

A primary network (PN) with M narrow band spec-

trum (channels) is considered. The network equally com-

prises of M PUs that share these spectrum, such that each

PU is licensed to one channel. The primary user traffic on

each channel is modeled as a time homogeneous discrete

Markov process as assumed for example in [15]. There-

fore, the spectrum randomly alternates its states between

the channel being vacant and occupied. If Sj,t denotes the

spectrum occupancy state of channel j on slot t , then the

binary hypothesis of the channel status can be represented

as Sj,t ∈ {0(vacant), 1(busy)}. The steady state probabilities

of the channel being idle and busy are denoted as P(H0) and

P(H1).

C. COOPERATIVE SPECTRUM SENSING

Spectrum sensing is executed during the sensing phase. The

number of channels assigned to SU i (otherwise referred to

as channel list) is denoted as Ki, where Ki (1 ≤ Ki ≤ M ) is

the number of channels assigned to SU i. The channel list may

be different for different users. Each SU independently senses

the assigned channels sequentially within the sensing period

denoted by τs =
∑M

j=1 xi,jτi,j, ∀i = {1, . . . ,N }, where xi,j
is the assignment variable and τi,j denotes the sensing time

of SU i on channel j. The sensing results are then reported

to the corresponding head in each cluster through a dedi-

cated common control channel (CCC) based on time-slotted

scheme. Each cluster head makes a cooperative decision

about the channel status and updates the SUs through broad-

casts. Hence, SU i is updated with the cooperative sensing

decisions of the Ki assigned channels from the respective

cluster heads. Therefore, the work models a centralized chan-

nel assignment scheme for a distributed cooperative spectrum
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sensing. The secondary users only exchange their sensing

decisions with the cluster heads in the respective clusters for

the cluster-based cooperative spectrum sensing.

Assuming a complex value PSK modulated signal and

circularly symmetric complex Gaussian (CSCG) noise for

primary signal and additive noise in the wireless channel,

the probabilities of detection and false alarm as evaluated by

SU i on channel j can be expressed as

Pd,i,j = Q

(
(
εi,j

σ 2
w

− γ̄i,j − 1

)
√

τi,jfs

2γ̄i,j + 1

)

(2)

Pf ,i,j = Q

((
εi,j

σ 2
w

− 1

)
√

τi,jfs

)

(3)

where, εi,j, γ̄i,j, fs and σw denote the detection threshold of

SU i on channel j, the average SNR of channel j on SU i,

the sampling frequency and the noise variance respectively.

The probability of a miss-detection can be obtained from (2)

as

Pm,i,j = 1 − Pd,i,j (4)

The cooperative probability of detection and the cooperative

probability of false alarm as computed by each cluster head

for each channel based on OR decision fusion are evaluated

as

QD,j = 1 −
N
∏

i=1

(

1 − PId,i,j

)xi,j
, ∀j = {1, · · · ,M} (5)

QF,j = 1 −
N
∏

i=1

(

1 − PIf ,i,j

)xi,j
, ∀j = {1, · · · ,M} (6)

where PIm,i,j = Pm,i,j(1 − Pe) + (1 − Pm,i,j)Pe and P
I
f ,i,j =

Pf ,i,j(1 − Pe) + (1 − Pf ,i,j)Pe. The parameter Pe denotes

the probability of reporting error. The OR rule is adopted

as a decision fusion rule being the optimal rule to minimize

interference to the primary user.

D. ENERGY MODEL

It is assumed that the SU can only perform either spectrum

sensing followed by data transmission, or energy harvesting

at a time. Therefore, the charging process must stop while

the SU draws energy from the storage device to either sense

the spectrum or transmit the data in its queue. The power

consumption by each SU for spectrum sensing, cooperative

spectrum sensing overhead and data transmission activities

are denoted as ps, pr , and pt respectively. The energy state of

the SU storage facility (e.g. a super-capacitor) at the begin-

ning of the nth frame is denoted as ei,n. Hence, SU can-

not participate in the cooperative spectrum sensing when

ei,n < (psτs + prτr ).

It is assumed that secondary users harvest RF energy from

the transmitting primary users. Nevertheless, the model can

equally address a scenario where energy can be harvested

from other sources in addition to the primary user RF. The

maximum amount of energy that can be harvested in the nth

frame is expressed as:

eh,i,n = Pavail tT Pr(̺), (7)

where tT = (T − τs − τr ) is the maximum period available

for energy harvesting in each frame. The parameter P(̺)

denotes the probability that there is an harvested RF energy,

and Pavail = PR ηH/C represents the output of the secondary

user harvesting circuit, which is defined as the product of

the amount of received RF power PR at the SU and the

harvesting circuit efficiency ηH/C . The amount of harvested

RF energy by secondary users therefore, depends on the

magnitude of the received RF power, the harvesting circuit

efficiency, the harvesting duration and the probability that an

RF harvesting source is available.

The total energy consumption by SU i in the nth frame

denoted as ec,i,n can explicitly be expressed as

ec,i,n = psτs + prτr +
{

P(H0)(1 − QF,j)

+P(H1)(1 − QD,j)
}

× pt tT , (8)

where the first, second and third expression on the RHS of (8)

are the sensing energy, the reporting energy and transmission

energy respectively. Parameters P(H0) and P(H1) are the

probabilities that the transmit channel is vacant and occu-

pied with PU signal respectively. When the harvested and

consumed energy are both put into perspective, the residual

energy (state) at the beginning of the next (n+ 1)th frame for

an infinite energy storage capacity device can be updated as

ei,n+1 = max{0, [ei,n + eh,i,n − ec,i,n]} (9)

III. PROBLEM FORMULATION

In this section, two different scenarios are considered namely:

A) single harvesting source where the SU can harvest only

from the PU occupying the transmit channel, and B) multiple

RF harvesting source in which the SU can opportunistically

harvest from any of the PU in the assigned channels.

A. SINGLE RF ENERGY HARVESTING SOURCE

Under this scenario, the SU can only harvest from the elected

transmit channel when occupied with a primary user signal.

This model can also be used for EH-CRN with a single

dedicated RF energy harvesting source. The possible energy

states during the nth frame are as follows

1) The channel correctly detected to be busy with proba-

bility P(H1)QD,j. In this case, secondary user does not

transmit, but can harvest energy from the transmitting

primary user in the rest of the nth frame. Therefore,

the throughput is zero.

2) Channel correctly detected to be idle with probability

P(H0)(1−QF,j). The SU transmits in the nth frame for

a period of T−τr−τs
zj

and sleep for the rest of the frame.

Energy harvested is zero.

3) Channel incorrectly detected to be busy (false alarm)

with probability P(H0)QF,j. The SU’s opportunity to
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e
s,1
h,i,n = Pavail tTP(H1), ec,i,n = psτs + prτr : P(H1)QD,j

e
s,0
h,i,n = 0, ec,i,n = psτs + prτr + pt

(
tT

zj

)

: P(H0)(1 − QF,j)

e
s,0
h,i,n = 0, ec,i,n = psτs + prτr : P(H0)QF,j

e
s,1
h,i,n = 0, ec,i,n = psτs + prτr + pt

(
tT

zj

)

: P(H1)(1 − QD,j) (10)

esi,n+1 =









ei,n + e
s,1
h,i,n − psτs − prτr : P(H1)QD,j

ei,n − psτs − prτr , : P(H0)QF,j

ei,n − psτs − prτr − pt

(
tT
zj

)

: P(H0)(1−)QF,j) + P(H1)(1 − QD,j)

(11)

access the channel is lost. No energy is harvested and

the achievable throughput is also zero.

4) Channel incorrectly detected to be vacant (miss-

detection) with probability P(H1)(1 − QD,j). The SU

transmits in the nth frame, but the data interferes with

the primary user’s signal, and nothing is gained.

Therefore, under this scenario, the SU can harvest energy

on the transmit channel with probability P(H1)QD,j, transmit

data with probability P(H0)(1 − QF,j) + P(H1)(1 − QD,j),

or remain idle (neither harvesting RF nor transmitting) with

probability P(H0)QF,j. The amount of energy consumed and

energy harvested e
s,µ
h,i,n (where, µ ∈ {0, 1} denotes the chan-

nel’s idle and busy status respectively) in each state can be

expressed as in (10), as shown at the top of this page. While

an action is taken, the SU energy state in the next frame is

evaluated as (11), as shown at the top of this page. Therefore,

from (10) the amount of harvested energy in a single source

scenario can be expressed as

esh,i,n = Pavail · tT · P(̺s), (12)

where P(̺s) = P(H1).

B. MULTIPLE RF ENERGY HARVESTING SOURCES

This is particularly useful in a network where primary user

services may be inactive for a long period of time (e.g., digital

TV broadcasting), and the stored energy in the SUs would

more likely get depleted resulting in outages. The possible

states during the nth frame are:
1) The transmit channel correctly detected to be busy

with probabilityP(H1)QD,j. In this case, secondary user

does not transmit, but can harvest energy in the rest of

the nth frame. Therefore, the throughput is zero.

2) Transmit channel correctly detected to be idle with

probability P(H0)(1 − QF,j). The SU transmits in the

nth frame for a period ti,j (as defined in (1)) and can

then harvest from any of the Ki − 1 channels that is

found busy for the rest of the frame.

3) Transmit channel incorrectly detected to be busy (false

alarm) with probability P(H0)QF,j. The SU’s oppor-

tunity to access the channel is lost. The achievable

throughput is therefore zero, and no energy is

harvested.

4) Transmit channel incorrectly detected to be vacant

(miss-detection) with probability P(H1)(1−QD,j). The

SU transmits in the nth frame, but the data interferes

with the primary user’s signal, and nothing is gained.

However, energy can be harvested from any of the

Ki − 1 channels for the rest of the frame.

Therefore, different from the single harvesting source sce-

nario, the SU can opportunistically harvest energy in every

frame except when there is a false alarm on the transmit

channel. The amount of energy consumed and harvested in

each state can be expressed as in (13), as shown at the top

of the next page. When an action is taken, the SU energy

state in the next frame can similarly be expressed as (14), as

shown at the top of the next page. The parameter P(�1) is

the steady state probability that at least one of the remaining

Ki − 1 assigned channels would be occupied by PU and thus

be available for energy harvesting by the SU. This probability

follows a binomial distribution given as

Pr(�1) =
Ki−1
∑

j=1

(

Ki − 1

j

)

Pr(H1)
j(1 − Pr(H1))

Ki−1−j, (15)

where

(

Ki − 1

j

)

= (Ki − 1)!
(Ki − 1 − j)!j! . (16)

From (13), the amount of harvested energy in the multiple

harvesting sources scenario can be expressed as

emh,i,n = Pavail tT · P(̺m), (17)

where P(̺m) = min

(

1,

(

P(H1) + P(�1)
(
zj−1
zj

)
))

is the

probability of energy harvesting in amultiple source scenario.

At Ki = 1, the expression in (17) becomes emh,i,n = esh,i,n
since there is no event to choose from, making Pr(�1) = 0.

Therefore, the multichannel gain on the harvested energy (i.e.

the ratio of the harvested energy in a multiple harvesting

source to the harvested energy in a single harvesting source)
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e
m,1
h,i,n = Pavail · tTP(H1), ec,i,n = psτs + prτr : P(H1)QD,j

e
m,0
h,i,n = Pavail

(zj − 1)(tT )

zj
P(�1), ec,i,n = psτs + prτr + pt

(
tT

zj

)

: P(H0)(1 − QF,j)

e
m,0
h,i,n = 0, ec,i,n = psτs + prτr : P(H0)QF,j

e
m,1
h,i,n = Pavail

(zj − 1)(tT )

zj
P(�1), ec,i,n = psτs + prτr + pt

(
tT

zj

)

: P(H1)(1 − QD,j) (13)

emi,n+1=













ei,n + Pavail tT · P(H1) − psτs − prτr : P(H1)QD,j
ei,n − psτs − prτr , : P(H0)Qf ,j

ei,n + Pavail
(zj−1)(tT )

zj
P(�1)

− psτs − prτr − pt

(
tT
zj

)

: P(H0)(1 − QF,j) + P(H1)(1 − QD,j)

(14)

can be evaluated as

Gmh,i,n =
emh,i,n

esh,i,n
= P(̺m)

P(̺s)
, (18)

where the expression in (18) is upper bounded as P(H1)
−1.

In both cases considered in Sections III-A and III-B,

the EH-CRN results in a dynamic secondary user energy

state over time, and the energy level in the (n + 1)th frame

depends on the residual energy and the action taken during

the nth frame. The design strategy for the EH-CRN can thus

be formulated as a stochastic optimal control problem given

by π∗ = argmax
π

V π (S0), and the expected reward is defined

as [27]

V π (s0) = argmax
π

E

[ G
∑

r=1

δr−1R(sr , ar )

]

, (19)

where 0 < δ < 1 is a discount factor that trades off the

importance of the immediate and future reward. The target is

to determine the optimal policy π which specifies the optimal

action in the state and maximizes the long-term expected

reward. The policy π therefore, maps the SU energy state

at each frame to the possible action taken, while G repre-

sents the planning horizon. Therefore, (19) models a general

class of Markov decision processes (MDP), in which states

{s1, · · · sG} ∈ S refer to the SU energy states, and the action

{a1 · · · aG} ∈ A refers to the amount of energy to be used for

spectrum sensing and data transmission. The optimal value

functionV π
∗
of policyπ represents themaximum cumulative

function of rewards (i.e. V π
∗ ≥ V π ) which can be obtained

as a solution of the Bellman recursion, given by

Vn(S) = max
a∈A

E

[

R(s) + δ
∑

s′∈S
T (s, a, s′)Vn−1(s

′)

]

= max
a∈A

E

[
tT

T

{

(1 − QF,j)P(H0)C0,j

+ (1 − QD,j)P(H1)C1,j

+ δ
∑

s′∈S

(

P(H0)(1 − QF,j) + P(H1)(1 − QD,j)
)

×
(

ei,n − psτs − prτr − pt

(
tT

zj

)

+ βh,i,n

)

+P(H1)QD,j
(

ei,n + φh,i,n − psτs − prτr
)

+P(H0)QF,j
(

ei,n − psτs − prτr
)
}]

, (20)

The parameterφh,i,n represents the energy harvestedwhen the

transmit channel is correctly detected to be busy (as expressed

in both (10) and (13)). The parameter βh,i,n represents the

energy harvested from any of the Ki − 1 channels, which

is zero for Ki = 1, whereas T (s, a, s′) = Pr(s′|s, a) is

the transition function, which expresses the probability that

the SU energy state changes from s′ to s when action a is

taken.

However, the state and action space in (19) for EH-CRN are

continuous and infinite, making the solution computationally

intractable, more especially for the multi-user, multi-channel

case under consideration. Hence, in the subsequent section,

the impact of the current action on the future reward will be

ignored, and focus only on maximizing the expected imme-

diate reward in an optimal myopic strategy. This approxima-

tion method is also adopted in the works presented in [11]

and [15] among others.

IV. APPROXIMATE FORMULATION AND SOLUTION

Optimizing the original problem in (20) is a sequential deci-

sion making process which attempts to determine the imme-

diate and future rewards based on the possible actions taken.

However, this becomes very difficult due to the tight coupling

between the current action and the future reward. In this

section, the original stochastic optimal control problem is

approximated to a myopic policy such that the optimal policy

in (20) can be approximated as

Vn(S) ≈ R(xi,j, τs, τi,j, εj)

= (T − τs − τr )

T

{

(1 − QF,j)P(H0)C0,j

+ (1 − QD,j)P(H1)C1,j

}

, (21)
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where (21) is the immediate reward on channel j based on the

current action, the parameter C0,j = log2(1 + ξi,j) represents

the average capacity of the SU i on the idle channel j, and

C1,j = log2(1 + ξi,j
1+ξj ), denotes the capacity of the SU i

when there is collision with the primary user signal (with

SNR ξj) due to miss-detection. Since SUi can only select one

of the Ki channels randomly as a transmit channel, a mean

value of ξi,j = ξ̄ s and ξj = ξ̄p are assumed for SNR values

of SU and PU on the transmit channel. Hence, the average

capacity of the SU on the transmit channel without or with

the presence of PU signal can be expressed as C0 = log2(1+
ξ̄ s) and C1 = log2(1 + ξ̄ s

1+ξ̄p ) respectively. Different from
the solution to the problem in (20), this policy is essen-

tially a static approach. Existing studies have however shown

that myopic policy is close in performance to the optimal

policy [28]–[30].

The objective is to jointly determine the optimal channel

assignment (xi,j), the detection threshold (εi,j), the sensing

duration (τs), and the distribution of the sensing duration

among the assigned channels (τi,j). This is done with a goal

to maximize the average throughput of the secondary users.

The time taken by SU i to sense channel j, j ∈ {1, 2, ..,M}
is denoted by τi,j, i ∈ {1, 2, . . . ,N }, and both τs and τi,j
are continuous variables. The average normalized throughput

maximization per channel can thus be formulated as

Problem P1:

max
τs,{τi,j},{εi,j},{xi,j}

R(τs, τi,j, εi,j, xi,j)

= max
τs,{τi,j},{εi,j},{xi,j}

[
T − τs − τr

TM

×
M
∑

j=1

(

(1 − QF,j(τi,j, εi,j, xi,j))P(H0)C0,j

+ (1 − QD,j(τi,j, εi,j, xi,j))P(H1)C1,j

)]

,

(22)

subject to: QD,j(τi,j, εi,j, xi,j) ≥ β, (C1)

ec,i,n ≤ ēh,n, i ∈ {1, . . . ,N }, (C2)

0 ≤ τs ≤ (T − τr ), (C3)

M
∑

j=1

xi,jτi,j = τs, τi,j > 0, ∀i ∈ {1, . . . ,N },

(C4)

M
∑

j=1

xi,j ≤ Kmax , ∀i ∈ {1, . . . ,N }, (C5)

N
∑

j=1

xi,j ≤ nmax , ∀j ∈ {1, . . . ,M}, (C6)

xi,j ∈ {0, 1}, (C7)

where

ēc,i,n = psτs + prτr

+ T − τr − τs

M
pt

M
∑

j=1

(

P(H0)(1 − QF,j)

+ P(H1)(1 − QD,j)

)

.

In problem P1, the expression in (22) defines the objective

function. Constraint (C1) guarantees the protection of PU

against interference from SUs, while (C2) and (C3) ensure

that the energy causality and time causality are satisfied.

The constraints in (C2) and (C3) guarantee that the average

energy budget of the SU does not exceed its total available

energy and that the time budget does not exceed the frame

period respectively. Constraint (C4) ensures that the total time

spent by any SU in sensing the assigned channels Ki, (1 ≤
Ki ≤ M ) does not exceed the sensing duration τs in a frame.

In constraints (C5) and (C6), the number of PU channels

that can be assigned to any SU, and the number of SUs

that can be assigned to a single PU channel are limited to

a specified values. Constraint (C7) defines the assignment

variable type. From constraints (C5) and (C6), the assignment

problem defines an overlapping cluster scheme, where an

SU can belong to multiple clusters. Each cluster is however,

identified with a particular channel or frequency.

The problem in P1 is a mixed integer non-linear optimiza-

tion (MINLP) and non-convex jointly in xi,j, τs, τi,j, and εi,j.

The problem defines a more complicated scenario due to the

consideration for a practical overlapping clustered network

in the multi-channel scenario. High degree of coupling also

exists among the optimization variables, which makes direct

decomposition difficult. In order to solve it, the approach

of alternating convex optimization is adopted [31]. That is,

given a non-convex problem f (x) with variables (x1, . . . xn)

∈ R
n, while t1, . . . , tk ⊂ {1, . . . n} are index subsets with

tj ∈ {1, . . . , n}, and supposing the problem is convex in subset

of variables xi, i ∈ tj, then alternating convex optimization

method involves cycling through j, in each step optimizing

over variable xi while, i /∈ tj are fixed [32]. Hence, the proce-

dure alternates between determining the optimal assignment

xi,j with fixed τs, εi,j, and τi,j, and then, given xi,j, with fixed

εi,j and τi,j, optimize over τs. Finally, with given xi,j and τs
optimize over τi,j, and εi,j, and vice-versa iteratively until the

algorithm converges.

A. OPTIMAL CHANNEL ASSIGNMENT

With fixed values of τs, εi,j, and τi,j, problem P1 reduces

to a channel assignment problem. Furthermore, for a fixed

sensing budget in terms of the time-bandwidth product in

the energy detection-based sensing scheme, the sensing per-

formance is an increasing function of the received signal-to-

noise-ratio. Therefore, by taking SNR as an active parameter

for determining the optimal channel assignment, the first

expression in the RHS of the objective function in (22)

reduces to a constant term since the probability of false
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alarm (2) is independent of SNR. Moreover, in the overlay

CRN under consideration, the secondary users cannot have

a successful transmission when the channel is occupied with

the PU signal. Therefore, it is only reasonable to minimize

the second expression on the RHS of the objective function

in problem P1, (i.e. (1 − QD,j)P(H1)C1,j) in order to reduce

interference to PU signal and the energy consumption for

unsuccessful transmission. This is equivalent to

Problem P2:

max
χ

Z (xi,j, τs, τi,j, εi,j) = min
χ

M
∑

j=1

{

1 − QD,j(xi,j)
}

, (23)

subject to :
N
∑

i=1

xi,j ≤ nmax , j ∈ {1, 2, . . . ,M} , (C1)

M
∑

j=1

xi,j ≤ Kmax , i ∈ {1, 2, . . . ,N } , (C2)

xi,j ∈ {0, 1} . (C3)

The assignment matrix is represented by χ = {xi,j}M×N , that
is xi,j = 0 or 1 depending on whether SU i is assigned channel

j or not. The problem in (23) is a nonlinear integer program-

ming problem. However, by substituting (5) into (23), and

then using the identitiesmin(.) ≡ min loge(.) and loge
∏

(.) =
∑

loge(.), the objective function in (23) can be linearized,

such that problem P2 can otherwise be expressed as a linear

problem as follows

Problem P3:

max
χ

Z (χ, τs, τi,j, εi,j) = min
χ

M
∑

j=1

N
∑

i=1

xi,jloge

{

PIm,i,j|γi,j

}

(24)

subject to :
N
∑

i=1

xi,j ≤ nmax , j ∈ {1, 2, . . . ,M} , (C1)

M
∑

j=1

xi,j ≤ Kmax , i ∈ {1, 2, . . . ,N } , (C2)

xi,j ∈ {0, 1} , (C3)

where Pm,i,j|γi,j is the non-cooperative probability of miss-

detection based on outdated channel state information [33],

evaluated as

Pm,i,j|γi,j

≈ 1 − exp

(

−εi,j
2

−
γi,jρ

2
i,j

γ̄i,j(1 − ρ2i,j)

)

×
L
∑

k=0

{

γ̄i,j(1 − ρ2i,j)
}k

{

γ̄i,j(1 − ρ2i,j) + 1
}k+1

u+k−1
∑

q=0

1

q!
(εi,j

2

)q

× 1F1



−k, 1; −
γi,jρ

2
i,j

γ̄i,j(1 − ρ2i,j)
{

γ̄i,j(1−ρ2i,j) + 1
}



. (25)

The motivation for (25) is to compensate for the indepen-

dence of the PU activities and the effect of small scale

fading during the channel assignment. The parameter γi,j
represents the instantaneous SNR of PU j at SU i, and γ̄i,j
denotes the average SNR of PU j at SU i. The parameter

ρi,j = J0(2πF
max
d,i,jǫi,j) is the correlation coefficient between

the predicted channel response ĥi,j and the outdated channel

response hi,j (based on Jakes’ correlation model), J0(.) is

the Bessel function of the first kind and zeroth order, and

Fmaxd,i,j denotes the maximumDoppler shift. Therefore, ĥi,j and

hi,j represent the channel responses at time t + ǫi,j, and the

outdated channel response at t respectively.

Equation (25) is however, a generalized expression for the

probability of miss-detection in a practical channel. The case

where the SU might only have access to causal CSI (which

is equivalent to ǫi,j = 0) is already embedded. Since, as

ρ2i,j → 1, which happens when ǫi,j → 0 or in a properly

correlated channel, Pm,i,j|γi,j → 1 − Qu
(√

2γ̄i,j,
√
εi,j
)

[33].

On the other hand, as ρ2i,j → 0, i.e., with increasing ǫi,j, (25)

approaches

P̂m,i,j ≈ 1 −
L
∑

k=0

{

γ̄i,j
}k

{

γ̄i,j + 1
}k+1

exp
(εi,j

2

) u+k−1
∑

q=0

1

q!
(εi,j

2

)q

(26)

where P̂m,i,j is the average probability of miss-detection over

Rayleigh fading without CSI.

Problem P3 is thus a linear integer programming, that

describes a generalized assignment problem (GAP) with

overlapping clusters (since 1 ≤ Ki ≤ Kmax). By defining

another variable yj as the value of the cooperative probability

of miss-detection in each cluster, the linear integer problem

in problem P3 can then be written as follows

Problem P3B:

Z (χ, y)

= min
χ,yj

M
∑

j=1

yj (27)

subject to :
N
∑

i=1

xi,j ≤ nmax , j ∈ {1, 2, . . . ,M} (C1)

M
∑

j=1

xi,j ≤ K , i ∈ {1, 2, . . . ,N } (C2)

N
∑

i=1

xi,jψi,j = yj, j ∈ {1, 2, . . . ,M} (C3)

xi,j ∈ {0, 1} , yj ∈ ℜ (C4)

where,

ψi,j = loge{Pm,i,j|γi,j (1 − Pe) + (1 − Pm,i,j|γi,j )Pe}

If the equality constraint in (C3) of P3B is relaxed and

replaced by an inequality, then the problem in P3B can be
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written as P3C following some algebraic manipulations and

vectorization [36]

Problem P3C:

min
z

(0 CT )z (28)

subject to : (Aj 0)z ≤ nmax , j ∈ 1, . . . ,M (C1)

(Qi 0)z ≤ K , i ∈ 1, . . . ,N (C2)

(ψj Ci)z ≤ 0, j ∈ 1, . . . ,M (C3)

xi,j ∈ {0, 1} , yj ∈ ℜ (C4)

where z =
(

x

y

)

and Aj,Qi, and Ci represent the coefficient

of the assignment variables define as

A =
[

I
(1)
m , · · · , I (n)m 0m

]

Q =










1 · · · 1 0 · · · 0 0 · · · 0 0 · · · 0

0 · · · 0 1 · · · 1 0 · · · 0 0 · · · 0

0 · · · 0 0 · · · 0 · · · · · · 0 · · · 0 0 · · · 0
...
. . .

...
...
. . .

...
...
. . .

...
...
. . .

...

0 · · · 0 0 · · · 0 1 · · · 1 0 · · · 0










C =
[

ψI
(1)
m , · · · , ψI (n)m −Im

]

By concatenating the constraints (C1) - (C3) in problem

P3C in the form

P =




















A1 0
...

...

AM 0

Q1 0
...

...

QN 0

ψ1 C1

...
...

ψM CM




















, R =




















nmax
...

nmax
K
...

K

0
...

0




















the problem in P3C can simply be written as

Problem P3D:

min
z

c̄T y (29)

subject to : Pz ≤ R (C1)

xi,j ∈ {0, 1}, yj ∈ ℜ (C2)

where c̄T = (0 CT ).

The solution to problem P3D follows a similar pattern

as in [37], using the solver from the optimization toolbox

provided by MATLAB which is designed to solve a similar

mixed integer linear problem (MILP) formulated as [38].

min
x

f T x : A · x ≤ b, lb ≤ x ≤ ub

The vectors lb, ub, matrices A and corresponding vector b and

a set of indices integer constraints (intcon) were initialized.

Following initialization, the MILP solver is run to solve the

problem for vector x, where f (x) is the coefficient matrix

of the objective function, lb and ub are lower and upper

bounds respectively. Since this is an assignment problem,

x can only be binary, such that lb = 0, and ub = 1. The

solver (intlinprog) involves the following main steps [38]:

• Reducing the problem size using linear program pre-

processing.

• Solve an initial relaxed (non-integer) problem using lin-

ear programming (dual-simplex method). The objective

functions and constraints remain the same, but any inte-

ger constraints are removed.

• Perform mixed-integer program pre-processing to

tighten the linear programming relaxation of the

mixed-integer problem.

• Try ‘‘Cut GenerationâĂİ to further tighten the linear

programming relaxation of the mixed integer problem.

• Try to find integer-feasible solutions using heuristics

• Use a Branch and Bound (BnB) algorithm to search

systematically for the optimal solution. This solves lin-

ear programming relaxations with restricted ranges of

possible values of the integer variables. It attempts to

generate a sequence of updated bounds on the optimal

objective function value.

• The bud nodes continue to generate further nodes as

it analyzes and discards the ones that do not improve

the value of the objective function until it reaches an

incumbent solution such that the absolute gap tolerance

is 10−5.

B. OPTIMAL SENSING DURATION IN A FRAME

In the objective function of problem P1, τs only appears in
(T − τs − τr )/TM, but it is intertwined with τi,j by the constraint in

(C4), hence, direct decomposition cannot be achieved. In the

expression of the probability of detection and the probability

of false alarm in (2) and (3), both Pd,i,j and Pf ,i,j increase

monotonicallywith decreasing ε, but it is practically desirable

to have a high probability of detection but low probability of

false alarm. Hence, the objective function in problem P1 can

only achieve its maximumwhen constraint (C1) is at equality,

which can be satisfied when the probability of detection for

each user on channel j Pd,i,j = Pthd,j. The proof to verify

this is similar to that provided in [10]. The value of Pthd,j that

satisfies this constraint (based on the OR - fusion rule) can be

determined from (5) as

Pthd,j = 1 − exp

(

loge(1 − β)
∑N

i=1 xi,j

)

, ∀j ∈ {1, . . . ,M}, (30)

where β is the constraint on the cooperative probability of

detection QD,j. Therefore, (2) is equivalent to

εi,j =
√

2γi,j + 1

τi,jfs
Q−1(Pthd ) + γi,j + 1, (31)

and (3) can then be expressed in terms of Pthd as

Pf ,i,j = Q

(
√

(2γi,j + 1)Q−1
(

Pthd,j

)

+ γi,j
√

τi,jfs

)

. (32)
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Hence, the first constraint can be eliminated. Moreover, since

C0,j ≫ C1,j, and (1−QF,j) ≫ (1−QD,j) in general, the value

of the first expression in bracket on the RHS in (22) dominates

the average throughput. Furthermore, due to the consideration

for a network where the number of assigned channels to each

SU are not necessarily equal, there is a dependence of Ki on

the value of τi,j for each SU. Therefore, by substituting τi,j =
τ̄i,j := τs

Ki
, ∀i = {1, · · · ,N }, and Pd,i,j = Pthd,j, problem

P1 can be approximated as

Problem P4: with fixed τi,j and εi,j, given χi,j

max
τs

M
∑

j=1

R̄|(τi,j=τ̄i,j)= max
τs

Tt

TM

×
M
∑

j=1

N
∏

i=1

(1 − Pf ,i,j(τs/Ki,P
th
d,j))

xi,jP(H0)C0,j, (33)

subject to: es + Tt

M
pt

M
∑

j=1

{ N
∏

i=1

(1 − xi,jPf ,i,j)P(H0)

}

≤ ēh,

(C1)

0 ≤ τs ≤ (T − τr ), (C2)

where es = (psτs + prτr ) and Tt = (T − τr − τs).

The Gaussian Q-function expression in (29) can also be

written in terms of the complementary error function for ease

of mathematical analysis as

Pf ,i,j = 1√
2
erfc





√

2γi,j + 1 Q−1(Pthd,j) + γi,j

√
fsτs
Ki

2





(34)

Using the same approach as in Section IV-A, problem P4 can

be re-written in terms of logarithmic function as

max
τs

loge R̄|(τi,j=τ̄i,j)= max
τs

{

loge
Tt

TM
P(H0)C0

+
M
∑

j=1

N
∑

i=1

xi,j loge

(

1 − Pf ,i,j(τs/Ki,P
th
d,j)
)
}

, (35)

subject to: Es + Tt

M
pt

M
∑

j=1

{ N
∏

i=1

(1 − xi,jPf ,i,j)P(H0)

}

≤ ēh,

(C1)

0 ≤ τs ≤ (T − τr ). (C2)

Properties of Problem P4: In order to verify the convexity

or otherwise of problem P4, there is a need to show that the

objective function in (33) or (35) is concave in the range

0 ≤ τs ≤ (T − τr ). To satisfy this, the function should be

monotonically increasing for 0 ≤ τs ≤ τ
opt
s , and monotoni-

cally decreasing for τ
opt
s ≤ τs ≤ (T −τr ), such that R(τ opts ) is

the only maximal in the entire range. Therefore, the objective

function must satisfy three conditions as follows

1) The first order derivative must be positive at τs = 0,

i.e., R′(τs)|(τs=0) > 0

2) It must be negative at τs = T − τr , i.e.,

R′(τs)|(τs=T−τr ) < 0

3) The second order derivative must be negative, i.e.,

R′′(τs) < 0

Proof: The first two conditions together imply that there

must be a point in 0 ≤ τs ≤ T −τr that maximizes R(τs). The

first and the third conditions together infer thatR(τs) is strictly

increasing in the range 0 < τs < τ
opt
s , while the second

and the third conditions together indicate that R(τs) is strictly

decreasing in the range τ
opt
s < τs < T − τr . Therefore,

the three conditions together imply that R(τs) attains a global

maximum within the range 0 ≤ τs ≤ T − τr . The first

order derivative of the objective function can be expressed

as in (36), as shown at the top of the next page. For the

expression in (36) to be positive, the second expression on

the RHS must be less than the first expression. In which case,

it is necessary to show that (37), as shown at the top of the

next page is satisfied.

In (37), as τs approaches a value very close to zero (e.g.,

10−6), the first expression on the RHS can be approximated

to − 1
T−τr . Generally, exp(.) < 1 (for Pf ≤ 0.1) while,

the complementary error function erfc. ≤ 1. Therefore,
√

2π fsτs
Ki

≈ 2 (for the value of fs as selected in Table 1). Hence,

the second expression on the RHS takes a value close to fsγi,j,

which is obviously much greater than the first expression,

i.e., fsγi,j ≫ 1
T−τr . Therefore,

∂
∂τs
R(τs)|(τs≈0) > 0 in (36)

and the first condition is satisfied.

However, at τs very close to T − τr , the value of the

first expression in the RHS of (36) tends to negative infin-

ity (−∞), while the second expression approximates to

− fsγi,j
√
Ki

2π fs(T−τr ) . It is obvious that
fsγi,j

√
Ki

2π fs(T−τr ) < ∞, satisfying

the second condition that is, ∂
∂τs
R(τs)|(τs≈T−τr ) < 0.

The second order derivative of the objective function can

be expressed as (38), as shown at the top of the next page.

Following the same logic, it can easily be seen that the first

expression on the RHS of the second order derivative (38),

denoted as A is a positive value for all values of τs. The

denominator (numerator) of the second expression denoted as

B is negative (positive) for all values of τs (for the same reason

as stated earlier), making the second expression negative.

Both the numerator and denominator of the third expression

designated as C are positive. The fourth expression denoted

asD is negative since its denominator (numerator) is negative

(positive). Therefore, putting A,B,C andD together, the sec-

ond order derivative in (38) is a negative value for all values

of τs, that is,
∂2 R(τs)

∂τ 2s
< 0, satisfying the third condition. Fig-

ures 3a, 3b and 3c are the plots of the expressions in (33), (36)

and (38), illustrating the behavior of the objective function,

the first order derivative, the second order derivative respec-

tively. The characteristic of the plots shown also validates

the analysis that the objective function is concave, making

P4 strictly convex in the range 0 < τs < (T − τr ).

Therefore, R(τs) satisfied the three conditions that the

objective function is strictly (unimodal) concave with respect

to τs in the range 0 ≤ τs ≤ (T − τr ).
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∂

∂τs
R(τs) = 1

τr−T + τs
− 1

M

M
∑

j=1

N
∑

i=1

xi,j

fsγi,j exp



−
(

ϑ +
γi,j

√
fsτs
Ki

2

)2




(

erfc

(

ϑ +
γi,j

√
fsτs
Ki

2

)

− 2

)
√

2π fsτs
Ki

(36)

1

τr − T + τs
>

N
∑

i=1

xi,j

fsγi,j exp



−
(

ϑ +
γi,j

√
fsτs
Ki

2

)2




(

erfc

(

ϑ +
γi,j

√
fsτs
Ki

2

)

− 2

)
√

2π fsτs
Ki

(37)

∂2

∂τ 2s
R(τs) = − 1

(τr−T + τs)
2

︸ ︷︷ ︸

A

+ 1

M

M
∑

j=1

N
∑

i=1

xi,j

{

√
2fs

2γi,j exp



−
(

ϑ +
γi,j

√
fsτs
Ki

2

)2




8K 2
i

√
π










erfc




ϑ+

γi,j

√

fsτs
Ki

2






√
2

− 1










(fsτs)
Ki

3/2

︸ ︷︷ ︸

B

(38)

−

fsγ
2
i,j exp



−2

(

ϑ +
γi,j

√
fsτs
Ki

2

)2




8Kiπτs










erfc




ϑ+

γi,j

√

fsτs
Ki

2






√
2

− 1










2

︸ ︷︷ ︸

C

+

√
2fsγ

2
i,j exp



−
(

ϑ +
γi,j

√
fsτs
Ki

2

)2




(

ϑ +
γi,j

√
fsτs
Ki

2

)

8Ki
√
πτs










erfc




ϑ+

γi,j

√

fsτs
Ki

2






√
2

− 1










︸ ︷︷ ︸

D

}

,

ϑ =
√

2γi,j + 1Q−1(Pthd,j).

Having proved that the objective function in P4 is a uni-

modal function, which by extension can also show that the

first part of the constraint in (C1) of P4 is equally concave,

the optimization problem in P4 can easily be solved as a

convex problem. In order to do this, the problem is analyzed

under two scenarios as follows.

Case 1 (Optimal Solution With Unconstrained Energy):

Under this scenario, the operation of the energy harvested SU

is not limited by energy, and the SU can achieve maximum

average throughput. Figure 4a shows the characteristic of

the problem under energy unconstrained situation. In this

case, the solution to the problem can be obtained merely

through the sensing-throughput trade-off based on the objec-

tive function in (32) and the accompanied constraint in (C2).

The problem is strictly unimodal and there exists an optimal

solution τ ∗
s,o, which can be determined using Golden section

search method for a fixed τi,j, j ∈ {1, · · · ,Ki}, ∀i.
Case 2 (Optimal Solution With Energy Constrained): In

this case, the operation of the energy harvested SU is subject

to the energy causality constraint. Fig. 4b illustrates the char-

acteristic of the problem under energy constrained scenarios

with the feasibility regions shown shaded. From the figure,

the parameter ec,n|(τs = 0) =
∏N

i=1(1 − 0.5)xi,jptT , while

ec,n|(τs = T − τt ) = ps(T − τr ) + prτr . The intersection

of the energy consumption curve and the energy harvested

(i.e. when constraint (C1) is at equality) shows the possible

sensing time (τs,e) that could maximize the objective func-

tion in problem P4 while satisfying the energy causality.
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FIGURE 3. Plots of the objective function and the derivatives w.r.t. the
normalized sensing time in problem P4 illustrating its concavity:
(a) objective function, (b) the first order derivative, (c) second order
derivative.

However, sensing time should be a small percentage of the

total frame length (for sufficient data transmission time).

Therefore, the optimal sensing duration can be obtained using

Newton Raphson’s method for a fixed τi,j, j ∈ {1, · · · ,Ki}, ∀i
as

τ ∗
s,e : min

(

f (τs,e) = 0
)

,

subject to: 0 ≤ τs,e ≤ (T − τr ), (39)

where f (τs,e) is (C1) in problem P4 when the constraint is at

equality. Based on Newton-Raphson approach, the solution

to (32) can be determined as

τ k+1
s,e = τ ks,e ±

f (τ ks,e)

f ′(τ ks,e)
, (40)

where the parameter k denotes an iteration index and f ′(τ ks,e)
is the derivative of f (τ ks,e), which is also formulated as con-

FIGURE 4. Characteristic curve of the problem P4 illustrating the
feasibility regions for the energy constrained cognitive radio networks:
(a) the objective function, (b) the energy constraint, where

ec,n|(τs = 0) =
∏N

i=1(1 − 0.5)
xi,j pt T , and

ec,n|(τs = T − τt ) = ps(T − τr ) + pr τr .

straint (C1) in problem P4. The general solution to problem

P4 can therefore be expressed as τ
opt
s = min(τ ∗

s,o, τ
∗
s,e).

Both τ ∗
s,o and τ ∗

s,e are as earlier defined under case 1 (the

unconstrained energy region) and case 2 (constrained energy

region) respectively.

C. OPTIMAL SENSING PARAMETER PER CHANNEL

Given χ and τs, the optimal τi,j and εi,j that maximize the

objective function in problem P4 (with τi,j replacing τs/Ki)

becomes

Problem P5:

max
{τi,j},{εi,j}

M
∑

j=1

R(τi,j, εi,j)|(τs=τ∗
s ,χ=χ∗)

= max
{τi,j},{εi,j}

M
∑

j=1

xi,j loge(1 − Pf ,i,j(τi,j,P
th
d,j))P(H0)C0,j

∀i ∈ {1, . . . ,N }, (41)

subject to:

M
∑

j=1

xi,jτi,j = τs, i ∈ {1, . . . ,N }, (C1)

0 < τi,j ≤ τs, i ∈ {1, . . . ,N }. (C2)

However, since the problem in P5 is maximized with Pd,i,j =
Pthd,j, then the optimal detection threshold can be simply

obtained, given τ
opt
i,j , as

ε
opt
i,j =

√

2γi,j + 1

τ
opt
i,j fs

(

Pthd,j

)

+ γi,j + 1. (42)

The problem then reduces to a single variable optimization as

in
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M
∑

j=1

xi,j

fsγi,j exp

(

−
(
√

(2γi,j + 1) Q−1
(

Pthd,j

)

+ γi,j
√
fsτi,j

2

)2
)

(

erfc

(
√

(2γi,j + 1) Q−1
(

Pthd,j

)

+ γi,j
√
fsτi,j

2

)

− 2

)
√

2π fsτi,j

− λj = 0 (45)

M
∑

j=1

xi,jτi,j − τs = 0, ∀i ∈ {1, . . . ,N } (46)

Problem P6:

max
{τi,j}

M
∑

j=1

R(τi,j)|τs=τ∗
s

= max
{τi,j}

M
∑

j=1

xi,j loge(1 − Pf ,i,j(τi,j,P
th
d ))P(H0)C0,j

∀i ∈ {1, . . . ,N }, (43)

subject to:

M
∑

j=1

xi,jτi,j ≤ τs, i ∈ {1, . . . ,N }, (C1)

0 < τi,j ≤ τs, i ∈ {1, . . . ,N }. (C2)

Following the approach used in Section IV-B, it can be easily

verified that the objective function in problem P6 is a mono-

tonically increasing concave function in the range 0 ≤ τi,j ≤
τs since the first and the third conditions are also satisfied in

this case.

Using the Lagrangian multiplier approach, the Lagrangian

L(τ ,λ) of (39) is given by

L(τ ,λ) =
M
∑

j=1

xi,j loge

{[

1 − Pf ,i,j(τi,j,P
th
d )

]

×P(H0)C0,j

}

− λj

{ M
∑

j=1

xi,jτi,j − τs

}

,

∀i ∈ {1, . . . ,N }
subject to: 0 < τi,j ≤ τs, (44)

where τ = {τi,j}M×N is the channel sensing-time matrix, and

λ = {λj,∀i = {1, · · · ,N }} is the non-negative Lagrangian

multiplier associated with the channel sensing-time distribu-

tion for each secondary user. The Lagrangian dual function is

defined as g(λ) = max{τi,j} L(τ ,λ), and the dual problem as

minλ≥0 g(λ). The Lagrange dual variableλ can be obtained by

solving the corresponding optimization problem in P6 using

the following Karush-Kuhn-Tucker (KKT) conditions in (45)

and (46), as shown at the top of this page, whereby the

derivative of the Lagrangian with respect to the optimal and

the dual variables are each set to zero, and then obtain the

optimal variable as a function of the dual. It is however,

obvious that a closed form expression cannot be obtained

for the dual variable, hence, the need to determine both

the dual and primal variable iteratively using a sub-gradient

approach. Both the primal and Lagrangian dual variables are

iteratively updated as

τ t+1
i,j = τ ti,j + δτ , i = 1, · · · ,N , j = 1, · · · ,M (47)

λt+1
j = λtj + δλ, ∀i ∈ {1, · · · ,N } (48)

until convergence towards a feasible optimal solution

{τ∗,λ∗}. The parameters δτ and δλ denote step-sizes for the

primal and the dual variables respectively. Algorithm 1 gives

the summary of the solution method in Section IV

V. CONVERGENCE OF THE ALTERNATING

CONVEX OPTIMIZATION

The analysis of the convergence and optimality of the proce-

dure in Algorithm 1 is similar to that provided in [14], [39].

However, a brief explanation is given in this section. In the

context of the alternating convex optimization, the following

terms first need to be defined as given below [32].

Definition 1 (Marginally Optimum Coordinate): Let f be a

function of two variables constrained to be in the sets X ,Y

respectively. For any point y ∈ Y , it can be said that x̂ is

a marginally optimal coordinate with respect to y, i.e., x̂ ∈
mOPTf (y), if f (x̂, y) ≥ f (x, y) for all x ∈ X. Similarly for any

x ∈ X, it can be said that ŷ ∈ mOPTf (x) if ŷ is a marginally

optimal coordinate with respect to x.

Definition 2 (Bistable Point): Given a function f over

two variables constrained within the sets X ,Y respectively,

a point (x, y) ∈ X × Y is considered a bistable point if

y ∈ mOPTf (x) and x ∈ mOPTf (y) i.e., both coordinates are

marginally optimal with respect to each other.

Therefore, the optimum of the optimization problem must

be a bistable point, and the procedure must converge after it

has reached a bistable point. Although, the presented iterative

algorithm may converge to a possible local maximum point,

since the characteristic curve shown in Fig. 4 illustrates that

the EH-CRN problem could have more than one bistable

points, (one at τs close to zero, and the other at τs close to

(T−τr )). The bistable point to which the procedure converges
depends on where the procedure is initialized between 0 and

(T − τr ).

However, taking into consideration that the sensing time

must be a smaller fraction of the total frame length, the region

of attraction for this problem is a bistable point selected as

in (39). The objective function of the optimization problem in

P1 is monotonically nondecreasing at every iteration, since it

VOLUME 7, 2019 84797



A. A. Olawole et al.: Cooperative Spectrum Sensing in Multichannel CRNs

Algorithm 1 Joint Channel Assignment and Cooperative

Spectrum Sensing in Multichannel EH-CRN

1: procedure Channel Assignment and Sensing Parameter opti-

mization.

2: Input β, Kmax , nmax
3: for j = 1 : M do

4: for i = 1 : N do

5: Obtain the channel assignment χ =
(

xi,j
)

N×M ; giving

τs and τi,j by solving problem P3 in section IV-A

• Generate the matrix 3 =
(

pm,i,j
)

N×M at the CC

based on the reported non-cooperative probability

of miss-detection on all PUs from each SU. Here,

pm,i,j (25) is the non-cooperative probability of

miss-detection of PU j evaluated by SU i.

• Determine the channel assignment scheme / cluster

formation following the method in [36].

χ∗ ⇐ χ

6: Initialization δ ⇐ 0

7: Repeat

8: Solve for optimal sensing duration τ ∗
s with fixed τ̄i,j :=

τ ∗
s/Ki, giving χ∗ in problem P4, section IV-B

• Obtain τs,o from the objective function in P4 based

on a Golden Section search method (for uncon-

strained energy case).

• Determine τs,e from constraint C1 of problem

P4 using Newton-Raphson method (for constrained

energy case).

• τ ∗
s ⇐ min{τs,o, τs,e}

• τ
(δ+1)
s ⇐ τ ∗

s

Solve for the optimal sensing time τ ∗
i,j for every SU i

on channel j in problem P5 or P6, section IV-C: giving

χ∗
i,j and τ

δ
s :

• Determine τ ∗
i,j from problem P6 using Lagrangian

multiplier method.

• τ
(δ+1)
i,j ⇐ τ ∗

i,j

9: δ ⇐ (δ + 1)

10: until τ δs == τ δ−1
s , τ δi,j == τ δ−1

i,j

11: Determine the detection threshold ε∗
i,j from (42)

12: end for

13: end for

14: Output:χ∗, τ ∗
s , {τ ∗

i,j}, {ε∗i,j},
15: end procedure

can be concluded from Algorithm 1 that

R(τ δs , τ
δ
i,j, ε

δ
i,j) ≤ R

(

τ (δ+1)
s , τ δi,j, ε

δ
i,j

)

≤ R
(

τ (δ+1)
s , τ

(δ+1)
i,j , ε

(δ+1)
i,j

)

, ∀δ. (49)

Notwithstanding, the expression is upper bounded in the

extreme scenario with τ ∗
s = 0, and Qf ,j = 0

as E

{

T−τr
TM

∑M
j=1

(

P(H0)C0,j + (1 − β)P(H1)C1,j

)}

, which

indicates that it converges [21], [39]. In this particular case,

the value of the objective function remains unchanged after

a single iteration. Nevertheless, since the original problem

is jointly non-convex in the optimization variables and the

problem structure could have more than one bistable point,

the convergence could only be guarantee to reach a local

optimum.

VI. SIMULATION RESULTS

This section presents the simulation results of the energy

harvesting cognitive radio network. The channel assignment

is centrally implemented at the secondary user Base Sta-

tion (SBS) based on outdated CSI, while the spectrum sens-

ing and opportunistic energy harvesting are distributed. The

network consists of varying number of PU channels and SUs

randomly deployed in a 5km×5km square area. This becomes

necessary in order to evaluate the performance of the multi-

channel CRN under varying number of assigned PU channels

to each SU. The average number of assigned channels to each

SU is dependent on the ratio of SUs to PU channels in the

network [36]. For the simulations, the system parameters are

summarized in Table 1, which are drawn mainly from [6].

In addition, the following parameter values are used: L = 50,

u = 5, µ = 3, κ = 1.0 [40] and [41]. The parameters ǫi,j
and Fmaxi,j are chosen randomly as 0.001sec ≤ ǫi,j ≤ 10sec,

and 1 ≤ Fmaxd,i,j ≤ 7 respectively in order to obtain different

correlation factor ρi,j. The primary user’s transmit power PPU
and the noise power N0 are chosen as 50mW and −90dBm

respectively ( [40] and [41]), in agreement with standard

values, while the average SNR of PU j at SU i terminal (γ̄i,j)

is evaluated based on the inverse square law.

TABLE 1. System parameters.

A. PERFORMANCE OF CRN WITH SINGLE RF

HARVESTING SOURCE

Under this scenario, the values of N and M are set to 20 and

15 respectively. Therefore, based on this ratio, different num-

ber of PU channels are assigned to each SU across the net-

work. Each SU is required to sense the assigned channels

within the same sensing period τ
opt
s . However, the SU can

only harvest RF energy from one source, which might be

a dedicated RF source or its elect transmit channel. Results

show that optimal sensing period in a frame increases with
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FIGURE 5. Plot showing the variation of sensing duration in a frame τ
opt
s

with the harvested energy in the secondary user: N = 25, M = 15.

the amount of harvested energy in the energy constrained

region as shown in Fig. 5. The behavior of the plot in Fig.5

is similar to that obtained by Chung et al in [8] for a single

SU, single channel case. The results In Figs. 6a and 6b show

the optimal sensing time that maximizes average throughput

and the average throughput to consumption ratiowith increas-

ing sensing duration (harvested energy). Interestingly, these

results illustrate that there exists different optimal sensing

duration that maximizes these two metrics. Average through-

put to consumption ratio is seen to be maximized at a smaller

sensing time.

Fig. 7 shows the sensing time distribution among the chan-

nels assigned to each SU in an overlapping cluster scheme.

The figure only shows the first ten secondary users in the

network for clarity. The sensing time on each channel is

directly related to the magnitude of the received SNR of the

PUs at the terminals of the SU. Hence, the sensing time are

distributed such that its optimal pairing with the detection

threshold and SNR of each PU signal at the SUs’ terminal can

achieve the target probability of detection on each channel

(or cluster). As a result, channel with low SNR requires a

larger sensing time than the one with smaller SNR in order

to achieve the same sensing accuracy.

B. PERFORMANCE OF CRN WITH MULTIPLE RF

HARVESTING SOURCES

The performance of the CRNs with multiple PU harvesting

sources is hereby analyzed. Each SU is required to sense the

assigned channels and opportunistically harvest RF energy

from any of the assigned channels. Simulation result shows

that the amount of energy harvested increases with the RF

harvesting sources, and sensing time in a frame is equally

enhanced with increasing number of channel (or PU har-

vesting sources) assigned per SU as shown in Fig. 8. Very

importantly, Fig. 9 shows that average harvesting to con-

sumption energy ratio (otherwise refers to as active prob-

ability) can increase with increasing number of assigned

PU harvesting sources. The result in Fig. 10a presents the

relationship between the average achievable throughput and

FIGURE 6. Optimal sensing duration τ
opt
s /(T − τr ) for throughput and energy

efficiency: (a) average throughput (b) average throughput to consumption
ratio N = 25, M = 15.

FIGURE 7. Optimal sensing time of each secondary user on the assigned

PU channels τ
opt
i,j

: N = 25, M = 15.

the number of RF harvesting sources. It shows that there is

initial increase in the achievable throughput with increas-

ing number of harvesting sources, which is reversed after a

particular threshold. The logical explanation for this is that,
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FIGURE 8. Optimal sensing duration corresponding to the number of RF
harvesting sources Ki . Note that the SU can harvest RF from only one
busy channel in a frame: N = 30, M = 25, Pavail = 0.5Watts.

FIGURE 9. Active probability corresponding to the number of RF
harvesting sources Ki : N = 30, M = 25, Pavail = 0.5Watts.

increasing the number of RF harvesting sources enhances

the energy budget and allows for adequate sensing period

for better sensing accuracy. As sensing accuracy improves

in terms of reduced false alarm rate, average throughput

increases.

On the other hand, as the number of assigned RF harvest-

ing sources increases, more channels are sensed, leading to

increase in sensing time. As a result, the data transmission

time reduces resulting in reduced average throughput. There-

fore, a trade off exists between the number of RF sources

(available for spectrum sensing and opportunistic energy har-

vesting), and the average throughput, and an optimal number

of RF sources therefore exist, which maximizes the average

throughput. In the same vein in Fig. 10b, the amount of energy

consumption increases with the number of RF harvesting

sources, since this brings about an increase in both sensing

energy due to increased sensing time and data transmission

energy (courtesy of improved sensing accuracy). The fig-

ure shows that energy consumption is largest when through-

put is at its peak. On the other hand, as more channels are

sensed, increasing the sensing time, there is a continuous

increase in sensing energy but a decline in data transmission

energy due to the reduced data transmission time. The overall

effect is a reduction of energy consumption since the effect of

FIGURE 10. Performance of the energy harvesting cognitive radio
networks with multiple RF harvesting sources Ki : (a) average throughput
(b) average consumption and (c) average throughput to consumption
ratio: N = 30, M = 25, Pavail = 0.5Watts.

the loss of transmission energy is greater that the effect of the

gain in sensing energy. This accounts for the gradual decline

in energy consumption as shown in Fig. 10b.

Fig. 10c illustrates the relationship between average

throughput to consumption ratio, (which can otherwise be

referred to as energy efficiency) and the number of assigned

PU channels. This result shows that maximum numbers of

RF harvesting sources exist over which the energy effi-

ciency can bemaximized.Within this region, both throughput

and consumption increase at almost equal proportion with
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increasing number of RF harvesting sources. However, it can

be observed that throughput to consumption ratio is max-

imized at a lower number of RF sources than the average

throughput and consumption. While both average throughput

and consumption peak atK = 5, the ratio of average through-

put to consumption is maximum atK = 4. Nevertheless there

is a rapid decline in the average throughput and throughput to

consumption ratio at K = 5.

Comparing with the work presented in e.g. [8], the results

shown in Figs. 8, 9 and 10a provide insights into how

to practically achieve better performance in the EH-CRNs.

These results illustrate the performance gains that could be

achieved, and the losses that could be incurred in EH-CRNs

in terms of sensing time, the active probability of SUs and

the achievable throughput with increasing number of radio

frequency harvesting sources.

VII. CONCLUSION

The work presented in this paper has investigated an optimal

multichannel cooperative spectrum sensing in an energy har-

vesting based cognitive radio networks. This involves deter-

mining the total sensing time needed by any secondary user

in a frame and how to distribute the total sensing time among

all the assigned channels in cooperative hard decision spec-

trum sensing. The initial non-convex, mixed integer nonlinear

problem is transformed into a multiple convex optimization

problem, which is then solved using alternating convex opti-

mization technique. Simulation results obtained show that the

considered work can improve the active probability of the

SUs by exploiting themulti-channel benefit of practical CRN.

Nevertheless, an optimum number of PU energy harvest-

ing sources exits which maximizes the average achievable

throughput and average throughput to consumption ratio in

the energy harvesting based multi-channel cognitive radio

networks.

REFERENCES

[1] J. A. Paradiso and T. Starner, ‘‘Energy scavenging for mobile and wire-

less electronics,’’ IEEE Pervasive Comput., vol. 4, no. 1, pp. 18–27,

Jan./Mar. 2005. doi: 10.1109/MPRV.2005.9.

[2] A. Harb, ‘‘Energy harvesting: State-of-the-art,’’ Renew. Energy, vol. 36,

no. 10, pp. 2641–2654, 2011.

[3] I. Krikidis, S. Timotheou, S. Nikolaou, G. Zheng, D. W. K. Ng, and

R. Schober, ‘‘Simultaneous wireless information and power transfer in

modern communication systems,’’ IEEE Commun. Mag., vol. 52, no. 11,

pp. 104–110, Nov. 2014. doi: 10.1109/MCOM.2014.6957150.

[4] M.-L. Ku,W. Li, Y. Chen, and K. J. R. Liu, ‘‘Advances in energy harvesting

communications: Past, present, and future challenges,’’ IEEE Commun.

Surveys Tuts., vol. 18, no. 2, pp. 1384–1412, 2nd Quart. 2016. doi:

10.1109/COMST.2015.2497324.

[5] Y.-C. Liang, Y. Zeng, E. C. Y. Peh, and A. T. Hoang, ‘‘Sensing-

throughput tradeoff for cognitive radio networks,’’ IEEE Trans. Wireless

Commun., vol. 7, no. 4, pp. 1326–1337, Apr. 2008. doi:

10.1109/TWC.2008.060869.

[6] S. Park, H. Kim, and D. Hong, ‘‘Cognitive radio networks with energy

harvesting,’’ IEEETrans.Wireless Commun., vol. 12, no. 3, pp. 1386–1397,

Mar. 2013. doi: 10.1109/TWC.2013.012413.121009.

[7] S. Park and D. Hong, ‘‘Optimal spectrum access for energy harvesting

cognitive radio networks,’’ IEEE Trans. Wireless Commun., vol. 12, no. 12,

pp. 6166–6179, Dec. 2013. doi: 10.1109/TWC.2013.103113.130018.

[8] W. Chung, S. Park, S. Lim, and D. Hong, ‘‘Spectrum sensing opti-

mization for energy-harvesting cognitive radio systems,’’ IEEE Trans.

Wireless Commun., vol. 13, no. 5, pp. 2601–2613, May 2014. doi:

10.1109/TWC.2014.032514.130637.

[9] S. Park and D. Hong, ‘‘Achievable throughput of energy harvesting cog-

nitive radio networks,’’ IEEE Trans. Wireless Commun., vol. 13, no. 2,

pp. 1010–1022, Feb. 2014. doi: 10.1109/TWC.2013.121713.130820.

[10] Y. C. Liang, Y. Zeng, E. C. Y. Peh, and A. T. Hoang, ‘‘Sensing-throughput

tradeoff for cognitive radio networks,’’ IEEE Trans. Wireless Commun.,

vol. 7, no. 4, pp. 1326–1337, Apr. 2008.

[11] S. Yin, Z. Qu, and S. Li, ‘‘Achievable throughput optimization in energy

harvesting cognitive radio systems,’’ IEEE J. Sel. Areas Commun., vol. 33,

no. 3, pp. 407–422, Mar. 2015. doi: 10.1109/JSAC.2015.2391712.

[12] G. Han, J.-K. Zhang, and X. Mu, ‘‘Joint optimization of energy harvesting

and detection threshold for energy harvesting cognitive radio networks,’’

IEEE Access, vol. 4, pp. 7212–7222, 2016.

[13] S. K. Nobar, K. A. Mehr, and J. M. Niya, ‘‘RF-powered green cognitive

radio networks: Architecture and performance analysis,’’ IEEE Commun.

Lett., vol. 21, no. 2, pp. 296–299, Feb. 2016.

[14] S. Biswas, A. Shirazinia, and S. Dey, ‘‘Sensing throughput optimization

in cognitive fading multiple access channels with energy harvesting sec-

ondary transmitters,’’ in Proc. 24th Eur. Signal Process. Conf. (EUSIPCO),

Aug. 2016, pp. 577–581. doi: 10.1109/EUSIPCO.2016.7760314.

[15] A. Celik, A. Alsharoa, and A. El Kamal, ‘‘Hybrid energy harvesting-based

cooperative spectrum sensing and access in heterogeneous cognitive radio

networks,’’ IEEE Trans. Cogn. Commun. Netw., vol. 3, no. 1, pp. 37–48,

Mar. 2017. doi: 10.1109/TCCN.2017.2653185.

[16] Pratibha andK.H. Li andK. C. Teh, ‘‘Dynamic cooperative sensing–access

policy for energy-harvesting cognitive radio systems,’’ IEEE Trans. Veh.

Technol., vol. 65, no. 12, pp. 10137–10141, Dec. 2016.

[17] A. Bhowmick, S. D. Roy, and S. Kundu, ‘‘Throughput of a cognitive

radio network with energy-harvesting based on primary user signal,’’ IEEE

Wireless Commun. Lett., vol. 5, no. 2, pp. 136–139, Apr. 2016.

[18] A. Banerjee, S. P. Maity, and R. K. Das, ‘‘On throughput maximization

in cooperative cognitive radio networks with eavesdropping,’’ IEEE Com-

mun. Lett., vol. 23, no. 1, pp. 120–123, Jan. 2019.

[19] A. Banerjee and S. P. Maity, ‘‘On residual energy maximization in cogni-

tive relay networks with eavesdropping,’’ IEEE Syst. J., to be published.

[20] A. Bhowmick, K. Yadav, and S. D. Roy, ‘‘Throughput of an energy

harvesting cognitive radio network based on prediction of primary user,’’

IEEE Trans. Veh. Technol., vol. 66, no. 9, pp. 8119–8128, Sep. 2017.

[21] X. Liu, F. Li, and Z. Na, ‘‘Optimal resource allocation in simultaneous

cooperative spectrum sensing and energy harvesting for multichannel cog-

nitive radio,’’ IEEE Access, vol. 5, pp. 3801–3812, 2017.

[22] Y. Gao, H. He, Z. Deng, and X. Zhang, ‘‘Cognitive radio network with

energy-harvesting based on primary and secondary user signals,’’ IEEE

Access, vol. 6, pp. 9081–9090, 2018.

[23] Y. Yao, C. Yin, X. Song, and N. C. Beaulieu, ‘‘Increasing throughput in

energy-based opportunistic spectrum access energy harvesting cognitive

radio networks,’’ J. Commun. Netw., vol. 18, no. 3, pp. 340–350, Jun. 2016.

[24] A. Alsharoa, N. M. Neihart, S. W. Kim, and A. El Kamal, ‘‘Multi-band

RF energy and spectrum harvesting in cognitive radio networks,’’ in Proc.

IEEE Int. Conf. Commun. (ICC), May 2018, pp. 1–6.

[25] M. Xu, M. Jin, Q. Guo, and Y. Li, ‘‘Multichannel selection for cognitive

radio networks with RF energy harvesting,’’ IEEEWireless Commun. Lett.,

vol. 7, no. 2, pp. 178–181, Apr. 2018.

[26] R. Fan and H. Jiang, ‘‘Optimal multi-channel cooperative sensing in

cognitive radio networks,’’ IEEE Trans. Wireless Commun., vol. 9, no. 3,

pp. 1128–1138, Mar. 2010. doi: 10.1109/TWC.2010.03.090467.

[27] M. L. Puterman,MarkovDecision Processes: Discrete Stochastic Dynamic

Programming, 1st ed. Hoboken, NJ, USA: Wiley, 2005.

[28] S. H. A. Ahmad, M. Liu, T. Javidi, Q. Zhao, and B. Krishnamachari,

‘‘Optimality of myopic sensing in multichannel opportunistic access,’’

IEEE Trans. Inf. Theory, vol. 55, no. 9, pp. 4040–4050, Sep. 2009.

[29] K. Wang, L. Chen, K. A. Agha, and Q. Liu, ‘‘On optimality of myopic

policy in opportunistic spectrum access: The case of sensing multiple

channels and accessing one channel,’’ IEEEWireless Commun. Lett., vol. 1,

no. 5, pp. 452–455, Oct. 2012.

[30] K. Wang, L. Chen, and Q. Liu, ‘‘On optimality of myopic policy for

opportunistic access with nonidentical channels and imperfect sensing,’’

IEEE Trans. Veh. Technol., vol. 63, no. 5, pp. 2478–2483, Jun. 2014.

[31] A. Beck, ‘‘On the convergence of alternating minimization with applica-

tions to iteratively reweighted least squares and decomposition schemes,’’

SIAM J. Optim., vol. 25, no. 1, pp. 185–209, 2015.

VOLUME 7, 2019 84801

http://dx.doi.org/10.1109/MPRV.2005.9
http://dx.doi.org/10.1109/MCOM.2014.6957150
http://dx.doi.org/10.1109/COMST.2015.2497324
http://dx.doi.org/10.1109/TWC.2008.060869
http://dx.doi.org/10.1109/TWC.2013.012413.121009
http://dx.doi.org/10.1109/TWC.2013.103113.130018
http://dx.doi.org/10.1109/TWC.2014.032514.130637
http://dx.doi.org/10.1109/TWC.2013.121713.130820
http://dx.doi.org/10.1109/JSAC.2015.2391712
http://dx.doi.org/10.1109/EUSIPCO.2016.7760314
http://dx.doi.org/10.1109/TCCN.2017.2653185
http://dx.doi.org/10.1109/TWC.2010.03.090467


A. A. Olawole et al.: Cooperative Spectrum Sensing in Multichannel CRNs

[32] P. Jain and P. Kar, ‘‘Non-convex optimization for machine learning,’’

Found. Trends Mach. Learn., vol. 10, nos. 3–4, pp. 142–336, 2017. doi:

10.1561/2200000058.

[33] A. A. Alkheir and H. T. Mouftah, ‘‘An improved energy detector using

outdated channel state information,’’ IEEE Commun. Lett., vol. 19, no. 7,

pp. 1237–1240, Jul. 2015.

[34] G. M. Dillard, ‘‘Recursive computation of the generalized Q function,’’

IEEE Trans. Aerosp. Electron. Syst., vol. AES-9, no. 4, pp. 614–615,

Jul. 1973.

[35] W. Zhang, R. K. Mallik, and K. B. Letaief, ‘‘Optimization of cooperative

spectrum sensingwith energy detection in cognitive radio networks,’’ IEEE

Trans. Wireless Commun., vol. 8, no. 12, pp. 5761–5766, Dec. 2009.

[36] A. A. Olawole, F. Takawira, and O. O. Oyerinde, ‘‘Channel assignment

scheme in clustered multi-channel cognitive radio networks with outdated

CSI over Rayleigh fading channels,’’ Int. J. Commun. Syst., vol. 31, no. 14,

Jul. 2018.

[37] A. Bander and E. Waleed, ‘‘Resource management for cognitive IoT

systems with RF energy harvesting in smart cities,’’ IEEE Access, to be

published. doi: 10.1109/ACCESS.2018.2874134.

[38] MATLAB—Optimization Toolbox Users’ Guide, The MathWorks, Natick,

MA, USA, 2018.

[39] E. C. Y. Peh, Y.-C. Liang, Y. L. Guan, and Y. Zeng, ‘‘Optimization of

cooperative sensing in cognitive radio networks: A sensing-throughput

tradeoff view,’’ IEEE Trans. Veh. Technol., vol. 58, no. 9, pp. 5294–5299,

Nov. 2009.

[40] W. Wang, B. Kasiri, J. Cai, and A. S. Alfa, ‘‘Channel assignment

schemes for cooperative spectrum sensing in multi-channel cognitive

radio networks,’’ Wireless Commun. Mobile Comput., vol. 15, no. 10,

pp. 1471–1484, 2013.

[41] W. Saad, Z. Han, T. Basar, M. Debbah, and A. Hjørungnes, ‘‘Coalition

formation games for collaborative spectrum sensing,’’ IEEE Trans. Veh.

Technol., vol. 60, no. 1, pp. 276–297, Jan. 2011.

AKINBODE A. OLAWOLE received the B.Sc.

(Hons.) and M.Sc. degrees in electronic and elec-

trical engineering from Obafemi Awolowo Uni-

versity, Ile-Ife, Nigeria, and the Ph.D. degree in

electrical engineering from the School of Elec-

trical and Information Engineering, University of

the Witwatersrand, Johannesburg, South Africa.

He has held appointment with the Nigerian Tele-

vision Authority (NTA), Nigeria, and has been a

Member of Academic Staff of Obafemi Awolowo

University, since 2007 till date though currently on leave in pursuance of his

Ph.D. with the University of the Witwatersrand. His area of current research

includes cognitive radio networks and resource management for wireless and

mobile networks.

FAMBIRAI TAKAWIRA received the B.Sc.

degree (Hons.) in electrical and electronic engi-

neering from The University of Manchester,

Manchester, U.K., in 1981, and the Ph.D. degree

from Cambridge University, Cambridge, U.K.,

in 1984. After 19 years at the University of

KwaZulu-Natal (UKZN), Durban, South Africa,

in 2012, he joined the University of the Witwa-

tersrand at Johannesburg, Johannesburg, South

Africa. At UKZN, he held various academic posi-

tions, including that of the Head of the School of Electrical, Electronic,

and Computer Engineering and, just before his departure, the Dean of the

Faculty of Engineering. He has also held appointments at the University of

Zimbabwe, Harare, Zimbabwe; the University of California at San Diego,

San Diego, CA, USA; British Telecom Research Laboratories; and the

National University of Singapore, Singapore. His research interests include

wireless communication systems and networks. He is a Past Editor of the

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS. He has served on several

conferences organizing committees. He served as the Communications

Society Director of the Europe, Middle East, and Africa region, from

2012 to 2013.

OLUTAYO O. OYERINDE received the Ph.D.

degree in electronic engineering from the Uni-

versity of Kwazulu-Natal, Durban, South Africa,

in 2011. He has been with the School of Elec-

trical and Information Engineering, University of

the Witwatersrand at Johannesburg, South Africa,

since 2013, where he is currently a Senior Lec-

turer. His current research interests include wire-

less communications with specific interests in 5G

and beyond 5G technologies, including OFDM

systems, NOMA systems, massive MIMO, mmWave massive MIMO, chan-

nels estimation, multiuser detection, and other signal processing techniques

for wireless communication systems. He is an National Research Founda-

tion (NRF) rated scientist, a Registered Professional Engineer (Pr.Eng.) with

the Engineering Council of South Africa (ECSA), a Registered Engineer

(R.Eng) with COREN, a Senior Member of Institute of Electrical and

Electronics Engineer (SMIEEE), and a Corporate Member of NSE amongst

others. He is an Editorial Board Member of the International Journal of

Sensors, Wireless Communications and Control.

84802 VOLUME 7, 2019

http://dx.doi.org/10.1561/2200000058
http://dx.doi.org/10.1109/ACCESS.2018.2874134

	INTRODUCTION
	RELATED WORKS
	MAIN CONTRIBUTIONS

	SYSTEM MODEL
	COGNITIVE RADIO NETWORK MODEL
	PRIMARY NETWORK MODEL
	COOPERATIVE SPECTRUM SENSING
	ENERGY MODEL

	PROBLEM FORMULATION
	SINGLE RF ENERGY HARVESTING SOURCE
	MULTIPLE RF ENERGY HARVESTING SOURCES

	APPROXIMATE FORMULATION AND SOLUTION
	OPTIMAL CHANNEL ASSIGNMENT
	OPTIMAL SENSING DURATION IN A FRAME
	OPTIMAL SENSING PARAMETER PER CHANNEL

	CONVERGENCE OF THE ALTERNATING CONVEX OPTIMIZATION
	SIMULATION RESULTS
	PERFORMANCE OF CRN WITH SINGLE RF HARVESTING SOURCE
	PERFORMANCE OF CRN WITH MULTIPLE RF HARVESTING SOURCES

	CONCLUSION
	REFERENCES
	Biographies
	AKINBODE A. OLAWOLE
	FAMBIRAI TAKAWIRA
	OLUTAYO O. OYERINDE


