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Abstract

Smart phones and tablet computers have greatly boosted the demand for
services via wireless access points, keeping constant pressure on the network
providers to deliver vast amounts of data over the wireless infrastructure.
To enlarge coverage and enhance throughput, relaying has been adopted in
the new generation of wireless communication systems, such as in the Long-
Term Evolution Advanced standard, and will continue to play an important
role in the next generation wireless infrastructure. Depending on functional-
ity, relaying can be characterizing into three main categories: amplify-and-
forward (AF), compression-and-forward (CF), and decode-and-forward (DF).
In this thesis, we investigate different cooperative strategies in wireless net-
works when relaying is in use.

We first investigate the capacity outer and inner bounds for a wireless
multicast relay network where two sources, connected by error-free backhaul,
multicast to two destinations with the help of a full-duplex relay node. For
high-rate backhaul scenarios, we find the exact cut-set bound of the capacity
region by extending the proof of the converse for the Gaussian relay channel.
For low-rate backhaul scenarios, we present two genie-aided outer bounds by
extending the previous proof and introducing two lemmas on conditional (co-
)variance. Our inner bounds are derived from various cooperative strategies
by combining DF/CF/AF relaying with network coding schemes. We also ex-
tend the noisy network coding scheme and the short-message noisy network
coding approach to correlated sources. For low-rate backhaul, we propose
a new coding scheme, partial-decode-and-forward based linear network cod-
ing. We derive the achievable rate regions for these schemes and measure
the performance in term of achievable rates over Gaussian channels. By nu-
merical investigation we observe significant gains over benchmark schemes
and demonstrate that the gap between upper and lower bounds is in general
not large. We also show that for high-rate backhaul, the cut-set bound can
be achieved when the signal-to-noise ratios lie in the sphere defined by the
source-relay and relay-destination channel gains.

For wireless networks with independent noise, we propose a simple frame-
work to get capacity outer and inner bounds based on the “one-shot” bounding
models. We first extend the models for two-user broadcast channels to many-
user scenarios and then establish the gap between upper and lower bounding
models. For networks with coupled links, we propose a channel decoupling
method which can decompose the network into overlapping multiple-access
channels and broadcast channels. We then apply the one-shot models and
create an upper bounding network with only bit-pipe connections. When de-
veloping the lower bounding network, we propose a two-step update of these
models for each coupled broadcast and multiple-access channels. We demon-
strate by some examples that the resulting upper bound is in general very
good and the gap between the upper and lower bounds is usually not large.

For relay-aided downlink scenarios, we propose a cooperation scheme by
cancelling interference at the transmitter. It is indeed a symbol-by-symbol
approach to one-dimension dirty paper coding (DPC). For finite-alphabet
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signaling and interference, we derive the optimal (in terms of maximum mu-
tual information) modulator under a given power constraint. A sub-optimal
modulator is also proposed by formulating an optimization problem that
maximizes the minimum distance of the signal constellation, and this non-
convex optimization problem is approximately solved by semi-definite relax-
ation. Bit-level simulation shows that the optimal and sub-optimal modu-
lators can achieve significant gains over the Tomlinson-Harashima precoder
(THP) benchmark and over non-DPC reference schemes, especially when the
power of the interference is larger than the power of the noise.
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Chapter 1

Introduction

In this chapter we will first briefly describe the motivation behind the work pre-
sented in this thesis and discuss situations in practice where the results can be
applied. We will also present a review of the recent technical progress in related
fields. We aim to provide a general understanding of the practical problems this
thesis intends to solve, why they are important, and how it will be possible to
benefit from these research results in the future. The outline of this thesis with
a summary of the main contributions will be presented at the end of this chapter
together with a list of notation that will be frequently used in this thesis.

1.1 Motivation

The society we are now living in becomes more and more connected by and depen-
dent on the wireless communication infrastructure. The mobile phone is nowadays
not only a telephone, but also a convenient and almost1 all-time-available access
point to our social networks, public services, and even some consumer products.
Currently in Sweden, people can easily declare tax, report sickness/parental leave,
buy bus/train tickets, pay parking fee, and access many other services via the tradi-
tional short message service (SMS). Smart phones and tablet computers equipped
with greatly enhanced functionality and explosively growing number of small soft-
ware (so called application) have dramatically improved both the quality and quan-
tity of services accessible via wireless connections. For example, customers of the
Skandinaviska Enskilda Banken (SEB) in Stockholm can now check the waiting time
in nearby SEB branches so that they can plan their journey while walking down
the street. Such location based services and products, as well as personalized enter-
tainment contents and user generated multimedia materials, have become more and
more popular among smart phone users, and all of them require data transmission
to and/or from access points via wireless connection. The demand for services via

1The vision of “anytime, anywhere” connection depends very much on the stability and ro-
bustness of the wireless communication infrastructure.

1
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Figure 1.1. In current wireless communication systems, interference signals are
deliberately suppressed by transmission via non-overlapping wireless channels, e.g.,
at different time/frequency-band/direction. Access points or base stations connected
via backhaul (fiber or microwave) exchange controlling messages to coordinate the
resource allocation which facilitates interference suppression.

wireless access points has been and will continue to be the main drive that keeps
constant pressure on the wireless network providers to deliver vast amount of data
over the wireless infrastructure, which in turn requires a more efficient usage of the
valuable resources, namely radio bandwidth (i.e., spectrum) and energy.

Due to the broadcast nature of wireless transmission, signals dedicated to one
user will be overheard by its neighbors. When users do not cooperate, as is usu-
ally the case in current systems, such overheard signals degrade the quality of the
desired signal and therefore are treated as interference. Ever since the birth of
wireless communication about one hundred years ago, numerous research efforts
have been devoted to formulate a virtual point-to-point connection between source
and destination nodes by suppressing the interference. As illustrated in Figure 1.1,
interference signals originating from parallel transmission in the neighborhood can
be deliberately suppressed by scheduling such parallel transmission at different
time slots, frequency bands, spacial direction, or with different (preferably orthog-
onal) digital sequences. The spectrum and energy efficiency of such point-to-point
wireless connection has been constantly improved via new innovations in antenna
design, signal processing, and modulation and coding design. As the throughput
of the point-to-point wireless connection is approaching its theoretical limit, it be-
comes harder and harder to meet the ever growing data rate requirement by further
improving the spectrum and energy efficiency.

To overcome such difficulties, the broadcast nature of wireless transmission has
to be taken into consideration during the design and innovation of wireless com-
munication techniques. The overheard signal, although appears destructive to one
user, might be helpful for another user nearby if the two users are allowed to co-
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Figure 1.2. In future wireless communication systems, cooperation among trans-
mitters and/or among receivers will be widely adopted with the assistance of dedi-
cated relay nodes.

operate. When users can cooperate, the destructive interference signal becomes a
valuable resource and therefore can be utilized to assist the decoding of desired
signals, leading to higher energy efficiency. Besides, cooperation allows parallel
transmission over the same channel and hence has the potential to greatly increase
the spectrum efficiency. Such communication scheme is named cooperative commu-
nication to differentiate from the traditional point-to-point communication scheme.
The cooperation can be carried out among source nodes, among destinations, and
with aid from dedicated relay nodes, as illustrated in Figure 1.2. The cooperation
among wireless access points (base stations) can be realized via the widely deployed
backhaul connection, either fiber or microwave, and the cooperation among user
terminals can be achieved via device-to-device communication channels. Although
dedicated relay nodes, known as repeaters, have been introduced to assist long
distance wireless transmission around one hundred years ago shortly after the in-
vention of triode vacuum tube, relays with more advanced functionality were not
considered for commercial deployment until several years ago. Dedicated relay
nodes have been adopted in the next generation wireless communication systems,
such as in the Long-Term Evolution Advanced (LTE-Advanced) standard, which
are expected to come into commercial deployment within a few years. Relay nodes
with advanced functionality will continue to play an important role in the future
communication systems.

The results present in this thesis will provide better understanding of various
cooperative communication strategies that are proposed/investigated in our re-
search work, by quantifying their theoretical performance limits and highlighting
the principles and insights which will guide the design and implementation of future
cooperative communication systems.
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1.2 Background and Problem Formulation

In this thesis, we investigate different cooperative communication strategies in wire-
less networks when relaying is in use. We focus on the fundamental limits of these
cooperation schemes to gain insights on the design and implementation of such
cooperation schemes in future wireless communication systems.

1.2.1 A Brief Review of Related Work

In this section we provide a brief review of previous work that relates to the main
building blocks in our proposed schemes, namely relaying, network coding, and
source cooperation. The related work of cancelling interference at transmitter will
be presented in Chapter 7.

Relaying Techniques

Relaying-based cooperative communication techniques have the potential to boost
both the communication range and data rate. A full understanding of such systems,
even for the original three-node relay network [vdM71], is however not yet available.
In the last 30 years, numerous research efforts have been devoted to the relay net-
works. Capacity bounds and various cooperative strategies for three-node relaying
networks (source-relay-sink, or two cooperative sources and one sink) have been
studied in [CE79], where two fundamental relaying schemes, decode-and-forward
(DF) and compress-and-forward (CF), are formally introduced and characterized
and capacity results have been established for degraded and reversely degraded relay
channels. Upper and lower bounds on the outage capacity for the three-node relay
channel in fading have been studied in [HMZ05]. Various encoding schemes have
been investigated for multiple-access relay channels (MARC) [KGG05, KvW00] in-
volving multiple sources and a single destination, and for broadcast relay channels
(BRC) [KGG05, LK07] where a single source transmits messages to multiple des-
tinations. Three decoding protocols, namely forward decoding [CE79], backward
decoding [Car82], and sliding-window decoding [Wil82], have been summarized and
extended to multiple-source or multiple-relay scenarios in [KGG05]. Recent re-
sults on capacity bounds for multiple-source multiple-destination relay networks,
[SE07, GSG+09, GSG+10, AH09, TY11, ZY11] and references therein, have pro-
vided valuable insight into the benefits of cooperative relaying, either half-duplex
(a relay that cannot transmit and receive simultaneously) or full-duplex (can sup-
port simultaneous reception and transmission), and demonstrated various tools to
bound the capacity region.

Network Coding

The concept of network coding, which essentially means to combine multiple mes-
sages together, was first formally introduced and characterized in [ACLY00]. A
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Figure 1.3. Illustration of the main ingredient of network coding: information
flows (message blocks) can be mixed into one without increasing the size as contrast
to the commodity flow.

simple illustration of the main idea behind network coding can be found in Fig-
ure 1.3. Unlike commodity flow where an operation at any intermittent node can
not affect the volume of the flow that passes through, the information flow can ac-
tually be combined efficiently. It has been proved in [ACLY00] that network coding
can achieve the max-flow min-cut bound in single-source multicast networks. It is
further proved in [LYC03] that linear coding is sufficient to achieve the optimality of
network coding in the single-source multicast setup. An algebraic approach [KM03]
has been introduced into the network coding framework which greatly simplifies the
analysis of data network capacity. Necessary and sufficient conditions for the fea-
sibility of given transmission tasks over a given network has been established in
the case that the network only permits linear coding. A distributed random linear
network coding approach has been introduced in [HMK+06] for general multicast
networks and shown to be robust to network changes or link failures.

As different messages mix up at the relay node by nature in wireless networks,
various network coding approaches can be introduced at the relay to boost system
capacity. For instance, as demonstrated in [KRH+08], one may first receive indi-
vidual messages separately, combine them and then transmit based on knowledge
overheard from neighboring transmission. One can also schedule the parallel trans-
mission carefully such that the overheard signals can be used directly for network
coding, as demonstrated in [KGK07, KMG+07] where amplify-and-forward (AF)
relaying has been utilized. Such a scheme, coined as analog network coding (ANC),
has been proven to be asymptotically optimal [MGM12] in multihop relay networks.
Apart from AF relaying, more advanced relaying functionality can be utilized to
carry out NC operation directly based on the received signal. For example, when
quantization is performed by the relay, a quantize-map-and-forward (QMF) scheme
has been proposed in [ADT11] for unicast networks. With symbol-by-symbol scalar
quantization, QMF has been proved to be approximately optimal (within a constant
gap to the cut-set bound). The principle of noisy network coding (NNC) [LKEC11],
which can be regarded as an extension of QMF with vector quantization, can be eas-
ily extended to multiple-source and/or multiple-relay networks. In [WNPS10] joint
NC and physical layer coding is performed via lattice coding for the bi-directional
relay channel. Linear network coding and lattice codes with decode-and-forward
relaying are investigated in [GSG+10]. One may also decode a linear combination of
the transmitted messages directly from the mixed signal and forward the combina-
tion itself together with the corresponding coefficients, as demonstrated in [NG11]



6 CHAPTER 1. INTRODUCTION

under the name of compute-and-forward where structure codes are utilized such
that the linear combination of messages is still a valid message.

Source Cooperation

Apart from introducing dedicated relay nodes to help the transmission, one can also
utilize cooperative strategies among sources [Wil83, DMT06, MYK07, NJGM07,
BLW08, SGP+09] and/or among destinations [LTW04, NJGM07, SGP+09] with
the help of orthogonal conferencing channels. Willems [Wil83] introduced source-
conferencing for the discrete memoryless multiple-access channel (DM-MAC) and
characterized the capacity region. Bross et. al [BLW08] extended the coding scheme
to the Gaussian setting and proposed a new converse. Coding schemes and capac-
ity regions for the compound MAC with conferencing encoders have been studied
in [MYK07, SGP+09]. Interference channels with unidirectional conferencing en-
coders are investigated in [DMT06, MYK07]. Capacity bounds within a constant
gap for interference channels with limited source cooperation have been character-
ized in [WT11] for out-of-band source-conferencing and in [PV11] for in-band co-
operation channels. Diversity gains by source cooperation in fading channels with
full/partial channel state information (CSI) have been studied in [SEA03a, SEA03b,
LTW04, HM06, NJGM07]. The trade-off between sharing message and local CSI
among source nodes through finite-rate backhaul has been studied in [Ray06, WBBJ11,
ZG11].

1.2.2 Problem Formulation

Capacity Bounds for Multiple Multicast Relay Networks

We focus on a relay-aided two-source two-destination multicast network with back-
haul support, as shown in Figure 1.4. Source nodes S1 and S2 multicast their
individual messageW1 at rate R1 and W2 at rate R2, respectively, to both destina-
tions D1 and D2, with the help of a relay R. The nodes S1, S2, and R use the same
channel resource (i.e. co-channel transmission) and transmitted signals mix at all
the receiving terminals and are subjected to Gaussian noise. In addition, the source
nodes S1 and S2 are connected by orthogonal limited-rate error-free conferencing
links (corresponding to the presence of a backhaul) with capacities C12 and C21,
respectively.

The model in Figure 1.4 is generic and interesting since it is a combination of
relaying, MARC, BRC, source cooperation, and network coding. It covers a class of
different building blocks and can be extended to more general networks, by tuning
the channel gains gij and C12, C21 within the range [0,∞). It can be applied,
for example, to cellular downlink scenarios where two base stations, connected
through the (fiber or microwave) backhaul, multicast multimedia content to two
mobile terminals, one in each cell, with the help of a dedicated relay deployed at
the common cell boundary. Since the base stations are connected through the (fiber
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Figure 1.4. Source nodes S1 and S2, connected with orthogonal and error-free
backhaul (with rate C12 and C12 bits per channel use), multicast information W1

at rate R1 and W2 at rate R2 respectively to both destinations D1 and D2 through
Gaussian channels, with aid from a full-duplex relay R.

or microwave) backhaul, more general network coding schemes can be used at the
relay to cooperate with the sources’ transmission.

We are interested in the maximum achievable rates supported by such systems.
The meaning of “achievable” can be explained as follows: given a rate pair (R1, R2),
when S1 transmits at rate R1 and S2 transmits at rate R2 using a cooperative
transmission strategy, if it is possible that the destination nodes D1 and D2 can
decode the messages with an error probability that can be made arbitrarily small,
then we say that the rate pair (R1, R2) is achievable. An achievable rate region
of a cooperative strategy is defined to be the set of all the achievable rate pairs
supported by the strategy. The capacity region of a system is defined as the union
of all the achievable rate regions, and therefore it has the following two properties:
all the rate pairs inside the region are achievable, and no rate pair outside the region
is achievable.

We aim at evaluating the theoretical limits of the capacity region for the system
shown in Figure 1.4. We will propose various cooperative strategies where source
cooperation and network coding are designed jointly with the relaying. The achiev-
able rate regions of the corresponding strategies will be characterized and serve as
the inner bounds of the capacity region. We will also setup outer bounds for the
capacity region.

Cooperation by Cancelling Interference at Transmitter

The bounds on capacity are in general established by coding over an infinite number
of dimensions. To obtain an understanding of what one can achieve in small (or a
single) dimensions of signals and at low complexity, we consider a communication
network where the base station transmits information symbols ω1 and ω2 to user
1 and user 2, respectively, with the aid of a half-duplex relay. As illustrated in
Figure 1.5, the relay is dedicated to assist user 1 (the weaker/more distant user)
whose direct link with the source fails. The base station transmits x1 (signal for ω1)
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x1(ω1)

x2=X(ω2, z)
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Relay
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station relay user 2

Tx ω1

Tx ω2

Rx yr
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/

Rx y

Figure 1.5. The base station transmits ω1 to user 1 during time slot t1 and ω2 to
user 2 during time slot t2. The relaying signal z=f(yr) dedicated for user 1 appears
as “interference” for user 2. With non-causal knowledge of z, the base station can
design a DPC modulator x2 = X(ω2, z) given the information symbol ω2 and the
interference z.

during time slot t1 and x2 (signal for ω2) during t2. The relay listens to the base
station during t1 and transmits z = f(yr) during t2, where yr is the received signal
at the relay during t1 and f(·) is a relay mapping function. The relaying signal z,
which is useful for user 1, appears as interference for user 2. Assuming that the
relaying function f(·) is known at the base station and that the source-relay link is
good, the “interference” z will be known non-causally at the base station with high
probability, effectively resulting in the Costa problem (also known as dirty paper
coding after [Cos83]). We will propose a symbol-by-symbol scheme for cancelling
the interference known at the transmitter in the relay-aided downlink channel.

1.3 Thesis Outline and Contributions

Chapter 2 will first introduce the system model of the work and provide justifica-
tions for the assumptions made, followed by a brief description of fundamental tools
that will serve as cornerstones for our design and analysis of cooperative commu-
nication strategies. For wireless multiple multicast relay networks with backhaul
support between source nodes, Chapter 3 focuses on the cut-set bound based ca-
pacity outer bounds, and Chapter 4 describes various cooperative NC strategies
based on a DF relay. Chapter 5 investigates cooperative strategies when relay with
compression or amplification functionality is utilized. Chapter 6 proposes general
bounding models that can construct in an efficient way noiseless bounding networks
for noisy networks with independent noise. A one dimensional low complexity co-
operation scheme by cancelling interference at transmitter in a relay aided downlink
broadcast channel is presented in Chapter 7. Chapter 8 concludes this thesis.
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1.3.1 Capacity Outer Bounds for Multicast Relay Networks

Chapter 3 investigates capacity outer bounds for the wireless multicast relay net-
work with backhaul between source nodes, as shown in Figure 1.4. For the scenario
when the source nodes can fully cooperate, i.e., with high-rate backhaul (C12≥R1,
C21≥R2), we presented the exact cut-set bound by extending the proof of the con-
verse for the Gaussian relay channel as stated in [CE79]. For low-rate backhaul
(0≤C12<R1, 0≤C21<R2), we present two genie-aided outer bounds by extending
the previous proof and introducing two lemmas on conditional (co-)variance.

The results on outer bounds have been published in the following papers:

[DXS11a] J. Du, M. Xiao, and M. Skoglund, “Capacity bounds for backhaul-
supported wireless multicast relay networks with cross-links,” in Proceed-
ings IEEE International Conference on Communications (ICC), Jun.
2011.

[DXS11b] J. Du, M. Xiao, and M. Skoglund, “Cooperative strategies for relay-
aided multi-cell wireless networks with backhaul,” IEEE Transactions
on Communications, vol. 59, pp. 2502–2514, Sep. 2011.

[DXSM] J. Du, M. Xiao, M. Skoglund, and M. Médard, “Wireless multicast relay
networks with limited-rate source-conferencing,” IEEE Journal on Se-
lected Areas in Communications, special issue on Theories and Methods
for Advanced Wireless Relays. To appear.

1.3.2 Capacity Inner Bounds by Cooperative Relaying
Strategies

Chapter 4 investigates DF relaying based cooperative strategies based on different
network coding schemes, namely, finite field network coding, linear network coding,
lattice coding. We derive the achievable rate regions for these schemes and show
that for high-rate backhaul, the cut-set bound can be achieved when the signal-
to-noise ratios lie in the sphere defined by the source-relay and relay-destination
channel gains. For low-rate backhaul scenarios, we propose a new coding scheme,
partial-decode-and-forward based linear network coding, which is essentially a hy-
brid scheme utilizing rate-splitting and messages exchange at the source nodes,
partial decoding and linear network coding at the relay, and joint decoding at each
destination.

Chapter 5 focuses on non-decoding relaying based cooperation schemes. We
extend the noisy network coding (NNC) scheme to the scenario with partial source
cooperation. We also demonstrate that by using short-message NNC (SNNC) with
rate splitting, message exchange via backhaul, and superposition coding at source
nodes, SNNC can achieve a strictly larger rate region than NNC with compression
forwarding, as long as the destination nodes in SNNC scheme have the option
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to treat relaying signals from relay nodes as noise. A low-complexity alternative
scheme, AF based ANC, is also investigated and shown to benefit greatly from
message exchange via backhaul and can even outperform NNC when the coherent
combining gain is dominant.

Significant parts of this work have already been published in [DXS11b, DXSM],
and in the following two papers:

[DXS10b] J. Du, M. Xiao, and M. Skoglund, “Cooperative strategies for relay-
aided multi-cell wireless networks with backhaul,” in Proceedings IEEE
Information Theory Workshop (ITW), Aug. 2010.

[DXSS12] J. Du, M. Xiao, M. Skoglund, and S. Shamai (Shitz), “Short-message
noisy network coding with partial source cooperation,” in Proceedings
IEEE Information Theory Workshop (ITW), Sep. 2012.

1.3.3 General Bounding Models for Networks with Independent
Noise

In Chapter 6 we propose a simple framework to get capacity outer and inner
bounds for wireless networks with independent noise. We first extend the “one-
shot” bounding tools proposed in [CME11] for the two-user broadcast channel to
many-user scenarios and then establish the gap between upper and lower bound-
ing models. For networks with coupled multiple-access and broadcast channels,
we propose a channel decoupling method which can decompose the network into
overlapping multiple-access channels and broadcast channels. We then apply the
one-shot upper bounding blocks and create an upper bounding network with only
bit-pipe connections, on which the cut-set bound can be easily calculated. This
will serve as a natural upper bound for the original network. When developing the
lower bounding network, we propose an update of these lower bounding models for
each coupled broadcast and multiple-access channels. We demonstrate by some ex-
amples that the resulting upper bound is in general very good and the gap between
the upper and lower bounds is usually not large.

1.3.4 Cooperation by Cancelling Interference at Transmitter

In Chapter 7 we propose a practical symbol-by-symbol scheme for cancellation of
interference known at the transmitter in a relay-aided downlink channel. For finite-
alphabet signaling and interference, we derive the optimal (in terms of maximum
mutual information) modulator under a given power constraint. A sub-optimal
modulator is also proposed by formulating an optimization problem that maxi-
mizes the minimum distance of the signal constellation, and this non-convex opti-
mization problem is approximately solved by semi-definite relaxation. For the case
of binary signaling with binary interference, we obtain a closed-form solution for
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the sub-optimal modulator, which only suffers little performance degradation com-
pared to the optimal modulator in the region of interest. For more general signal
constellations and more general interference distributions, we propose an optimized
Tomlinson-Harashima precoder (THP), which uniformly outperforms conventional
THP with heuristic parameters.

Majority of the contents have been published in the following papers:

[DLS06] J. Du, E. G. Larsson, and M. Skoglund, “Costa precoding in one di-
mension,” in Proceedings IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), May 2006.

[DLXS11] J. Du, E. G. Larsson, M. Xiao, and M. Skoglund, “Optimal symbol-
by-symbol Costa precoding for a relay-aided downlink channel,” IEEE
Transactions on Communications, vol. 59, pp. 2274–2284, Aug. 2011.

1.3.5 Contributions Outside the Thesis

We propose in [DXS10a] several capacity outer bounds for the wireless multicast
relay network as shown in Figure 1.4 but without cross-links. The results presented
in [DXS10a] have been overtaken by the new results presented in [DXS11b] and are
therefore not included in this thesis. In [DS09] we have proposed a novel preamble-
based channel estimation method for the OFDM/OQAM multi-carrier system based
on the structure of self-interference. In [DXWC12] we have proposed blind channel
estimation methods for multiple-antenna isotropic orthogonal transform algorithm
(IOTA) based multi-carrier systems. The contribution in [DS09, DXWC12] is not
inline with the rest material presented in this thesis and therefore not included.

[DS09] J. Du and S. Signell, “Novel preamble-based channel estimation for
OFDM/OQAM systems,” in Proceedings IEEE International Confer-
ence on Communications (ICC), Jun. 2009.

[DXS10a] J. Du, M. Xiao, and M. Skoglund, “Capacity bounds for relay-aided
wireless multiple multicast with backhaul,” in Proceedings Interna-
tional Conference on Wireless Communications and Signal Processing
(WCSP), Oct. 2010.

[DXWC12] J. Du, P. Xiao, J. Wu, and Q. Chen, “Design of isotropic orthogo-
nal transform algorithm-based multicarrier systems with blind chan-
nel estimation,” IET Communications, 2012, accepted for publication.
DOI: 10.1049/iet-com.2012.0029
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1.4 Notation and Acronyms

Notation

X Real-valued random variable
x A realization of the random variable X
X The set of alphabet (or the support set2) of X
|X | Cardinality of a set X
X(n) A vector of length n whose elements are realizations of X
p(x) Probability density/mass function of X
p(x, y) Joint probability density/mass function of (X,Y )
p(x|y) Conditional probability density/mass function of X given Y
H(X) Entropy of X with a discrete alphabet
H(X,Y ) Joint entropy of X and Y
H(X |Y ) Conditional entropy of X given Y
h(X) Differential entropy of X with a continuous-valued alphabet
I(X ;Y ) Mutual information between X and Y
I(X ;Y |Z) Conditional mutual information between X and Y given Z
E[X ] Expected value of X
E[X |Y ] Conditional expectation of X given Y
Var(X) Variance of X

Var(X |Y ) Conditional variance of X given Y
Cov(X,Y ) Co-variance between X and Y

Cov(X,Y |Z) Conditional co-variance of X and Y given Z
X-Y -Z Markov chain, i.e., p(xz|y) = p(x|y)p(z|y)
log(·) Logarithm operator of base 2, unless stated otherwise
N (µ, σ2) Gaussian distribution with mean µ and variance σ2

C(x) Gaussian capacity function with C(x) = max{ 1
2 log(1+x), 0}

Re{·} Take the real part of a complex number
|a| Absolute value of a number a
∑n
i=1 Summation of items from index i = 1 up to i = n

∏n
i=1 Product of items from index i = 1 up to i = n
N ! Factorial of the integer N
(·)∗ Complex conjugate of a complex number/vector/matrix
(·)T Matrix/vector transpose
a Vector a (bold small letter)
A Matrix A (bold capital letter)

Tr(A) Trace of matrix A
|A| Determinate of matrix A

diag(A) A vector generated by the diagonal elements of matrix A
diag(a) A diagonal matrix generated from vector a

2Strictly speaking, the support set is normally a subset of the alphabet set due to the possi-
ble existence of dummy elements (with probability 0), which will not contribute to information
quantity and therefore can be neglected.
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Acronyms

AF Amplify-and-forward
ANC Analog network coding
AWGN Additive white Gaussian noise
BC Broadcast channel
BER Bit error rate
bpcu Bit per channel use
BPSK Binary phase shift keying
BRC Broadcast relay channel
CF Compress-and-forward
CSI Channel state information
CSIT Channel state information at transmitter
DF Decode-and-forward
DPC Dirty paper coding
FNC Finite-field network coding
IC Interference channel
IEEE Institute of electrical and electronics engineers
IFRC Interference relay channel
i.i.d Independent and identically distributed
LNC Linear network coding
LTE Long-term evolution
MAC Multiple-access channel
MAP Maximum a posteriori
MARC Multiple-access relay channel
MIMO Multiple-input multiple-output
ML Maximum likelihood
MMSE Minimum mean square error
M-QAM M-ary quadrature amplitude modulation
NBF Network coding based beamforming
NC Network coding
NNC Noisy network coding
OFDM Orthogonal frequency division multiplexing
pDF Partial-decode-and-forward
pdf Probability density function
pmf Probability mass function
QCQP Quadratically-constrained quadratic program
QMF Quantize-map-and-forward
SDR Semi-definite relaxation
SINR Signal to interference plus noise ratio
SNNC Short-message noisy network coding
SNR Signal to noise ratio
THP Tomlinson-Harashima precoder/precoding (THP)
WLAN Wireless local area network





Chapter 2

System Model and Fundamental
Tools

In this chapter, we will present the system model and justifications for some as-
sumptions associated with the model, as well as some principal definitions. We will
also present a brief description of fundamental tools in cooperative communication.
The description aims to provide a brief yet clear introduction of the main build-
ing blocks and highlight the intuition behind, rather than a thorough and rigorous
technical review. We refer to [CT06, EK11] for more rigorous treatment of basic
definitions and concepts.

2.1 System Model and Justifications

2.1.1 System Model

As stated in Chapter 1, we focus on wireless communication scenarios where the
transmitted signal can be received by nodes located in nearby areas (i.e., broad-
cast channel), and the received signal at one node is normally composed of inputs
from neighboring transmitting nodes (i.e., multiple-access channel). Each receiving
node suffers from an independent additive white Gaussian noise (AWGN) and each
transmitting node has an average power constraint1.

More specifically, the system shown in Figure 1.4 can be described as follows

Y
(n)

1 = g11X
(n)
1 + g21X

(n)
2 +gr1X

(n)
r + Z

(n)
1 ,

Y
(n)

2 = g12X
(n)
1 + g22X

(n)
2 +gr2X

(n)
r + Z

(n)
2 ,

Y (n)
r = g1rX

(n)
1 + g2rX

(n)
2 +Z(n)

r ,

(2.1)

1There are works that consider peak power constraints, which may lead to different results
and conclusions when applied to our framework. We will only focus on average power constraints
in this thesis.
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where gik≥0, i, k=1, 2, r are the individual channel gains, X
(n)
i , Y

(n)
i , Z

(n)
i , i=1, 2, r

are n-dimensional vectors for the transmitted signals, received signals, and addi-
tive noise, respectively. All the transmitted signals are subject to average power
constraints, i.e.,

1

n

n
∑

k=1

X2
i,k ≤ Pi, for i=1, 2, r. (2.2)

The system shown in Figure 1.5 can be described as follows

yr,t1 = x1 + nr,

yt1 = x1 + n1, (2.3)

z = f(yr,t1),

yt2 = x2 + z + n,

where x1, x2, and z are also subject to average power constraints.
Note that the channel coefficients in (2.1) and (2.3) are assumed to be posi-

tive scalars, even though the wireless channel is normally both time and frequency
dispersive. Therefore (2.1) and (2.3) implicitly assume perfect channel state in-
formation at transmitter (CSIT) and simultaneous perfect synchronization at all
receivers. This assumption, although widely adopted in information-theoretic work
without sufficient justification, is optimistic in practice. Therefore, the results we
obtain based on the above assumptions will in general serve as upper bounds on any
practical performance, and can be directly extended in a similar way as in [HMZ05]
to scenarios where constructive (co-phase) addition is not available.

In the following, we will present some practical schemes that to some extent can
justify the above assumptions.

2.1.2 Justification for Perfect Synchronization

The wireless channel is far more complex than a positive scalar coefficient as in-
dicated in (2.1). As the radio wave propagates in the air, it is reflected by build-
ings and the ground, diffused by small particles, and impeded by large obstacles,
which create multiple copies of the original waveform experiencing different time-
delay/phase-distortion/amplitude-attenuation.

Simultaneous perfect time synchronization at all receiving nodes seems un-
realistic at the first glance due to the different wave propagation delays among
transmitter-receiver pairs [ZMM08]. However, it can actually be realized under the
framework of orthogonal frequency division multiplexing (OFDM) system which
is the cornerstone of the 4th generation (4G) wireless communication systems. In
OFDM systems, multi-path signal components with different delays will be trans-
lated into a single complex-valued channel coefficient in the frequency domain as
long as the length of the cyclic-prefix (CP) is larger than the maximum delay spread.
As each transmitted signal will contribute an additive component to the complex-
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valued coefficient, its phase can be compensated before transmission as long as the
phase of each complex component can be accurately estimated.

Although perfect phase synchronization (thus constructive addition) might be
realized at one receiving node, it is impossible to realize simultaneous perfect phase
alignment at multiple receiving nodes due to the random phase shift caused by
independent reflection and diffusion. Therefore a trade-off among different receiving
nodes with respect to phase alignment has to be sought after to maximize the
expected system benefit (to be specified by the designer). We will demonstrate this
trade-off based on the system described by (2.1).

Let hik = aike
jφik , i, k = 1, 2, r be the additive complex-valued channel compo-

nent in the frequency domain from transmitting node i to receiving node k, with
aik ≥ 0 be the amplitude and φik be the phase, and we assume that hik is known
perfectly at transmitting node i. Let θi be the phase compensation to be carried
out by node i, then the complex-valued channel coefficient in frequency domain at
receiving node D1 can be written as

H1 = ejθ1h11 + ejθ2h21 + ejθrhr1

= a11e
j(θ1+φ11) + a21e

j(θ2+φ21) + ar1e
j(θr+φr1). (2.4)

Similarly, we have

H2 = a12e
j(θ1+φ12) + a22e

j(θ2+φ22) + ar2e
j(θr+φr2), (2.5)

Hr = a1re
j(θ1+φ1r) + a2re

j(θ2+φ2r). (2.6)

Simultaneous perfect phase alignment shall require the following equations (mod
2π is omitted for brevity) to hold simultaneously

θ1 + φ11 = θ2 + φ21, θ1 + φ11 = θr + φr1,

θ1 + φ12 = θ2 + φ22, θ1 + φ12 = θr + φr2,

θ1 + φ1r = θ2 + φ2r .

Since φik are independent, the above equations are overdetermined and therefore
have no solution, i.e., simultaneous perfect phase alignment at all receiving nodes
cannot be achieved. However, one can still perform phase compensation and achieve
imperfect phase alignment. One can find a trade-off among the receiving nodes with
respect to (θ1, θ2, θr) as follows

(θ1, θ2, θr) = arg max f(H1, H2, Hr), (2.7)

where f(H1, H2, Hr) is the utility function representing the expected system benefit
specified by the system designer. For example, one may set

f(H1, H2, Hr) = λ1|H1|2 + λ2|H2|2 + λr|Hr|2,
where λi, i = 1, 2, r are the weighting coefficients. How to determine the utility
function based on the performance metrics is interesting but out of the scope of
this thesis, and therefore we will assume the utility function is determined and the
optimization problem (2.7) can be efficiently solved.
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2.1.3 Justification for Perfect CSIT

The perfect CSIT assumption for a point-to-point communication link can be jus-
tified in the case of time-division duplexing (TDD) transmission by channel reci-
procity. Assuming perfect channel estimation during the receiving stage, the chan-
nel state information during the transmitting stage can be well predicted as long
as the time interval between reception and transmission stages is not large, and the
channel state does not vary fast. For multiple-terminal communication networks,
however, it is not that straightforward. Below we will demonstrate the proposed
scheme2 based on the system described by (2.1) as follows.

1. Each of the reception nodes (D1, D2, and R) broadcasts a training sequence
for channel estimation, one by one in a predetermined order, and each of
the transmission nodes (S1, S2, and R) estimates the corresponding channel
coefficients in the frequency domain.

Note that, after step 1, S1 has a good prediction of the additive complex-
valued channel components h11, h12, and h1r based on the property of channel
reciprocity. Similarly, S2 knows h21, h22, and h2r, and R knows hr1 and hr2.

2. After determining the optimal phase compensation (θ1, θ2, θr) by solving the
optimization problem (2.7), S1 compensates the phase and transmits ejθ1X1

and S2 transmits ejθ2X2. It is similar for the transmission at R.

3. Signals mix up at the receiving nodes in an approximately coherent manner,
and the connection between gik in (2.1) and hik in (2.4)–(2.6) can be set as

gik = Re

{

ejθihik
H∗k
|Hk|

}

,

where Re{·} takes the real part, H∗k is the complex conjugate of Hk and |Hk|
is its absolute value.

2.1.4 Justification for Full-Duplex Relaying

Note that (2.3) assumes half-duplex relaying while (2.1) assumes full-duplex relay-
ing with a block delay, which can be justified by equipping the relay node with two
radio frequency (RF) front-ends with a shared cache memory. The signal received
by one RF front-end will be processed and then saved to the shared cache memory;
in the next block the saved information will be read and processed and then sent
out via the other RF front-end. Here we assume that the self-interference, i.e. the
signal transmission from transmit RF front-end to the receive RF front-end, can be
perfectly cancelled since the transmitted signal by the relay is perfectly known by
the relay node itself. The effective channel between the transmit RF front-end to

2This scheme is the result of an interesting discussion with Peter Larsson.
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the receive RF front-end can be well estimated via training sequences. One example
of full-duplex communication implementation can be found in [ADSS12] where one
extra transmit RF front-end is used to assist the self-interference cancellation at
the receive RF front-end.

2.2 Principal Definitions

2.2.1 Channel Coding, Achievable Rate, and Capacity

A point-to-point channel can be modeled/defined by a conditional probability dis-
tribution p(y|x) with channel input X ∈ X and channel output Y ∈ Y, where X
and Y are the input and output alphabet sets consisting of discrete- or continuous-
valued elements. A communication task through such a point-to-point channel is
to convey some messageW by transmitting a sequence of elements selected from X
through the channel, such that after receiving an output sequence, one can guess a
message Ŵ that is most likely to be the one transmitted. If the guess is correct, i.e.
Ŵ =W , then we can declare that the communication task is successful, otherwise
we declare an error. In the following we will define some important concepts related
to point-to-point communication.

Definition 2.1. Channel Coding Scheme
A channel coding scheme is based on a codebook and the associated encoder and
decoder.
A codebook is a set of sequences {x(n)} with cardinality3 2nR, and each sequence in
the set is associated with a unique index out of {1, 2, . . . , 2nR}. The set of sequences
and their associated indices are known at both the encoder and the decoder before
the transmission.
An encoder f(·) will select a sequence X(n) from the codebook based on the message
W to be transmitted.
A decoder g(·) will select a message Ŵ based on the channel output sequence Y (n).

Definition 2.2. Achievable Rate
For a message W ∈ {1, 2, . . . , 2nR} to be transmitted via the channel using the
coding scheme defined in Definition 2.1, if the probability of error can be made
arbitrarily small when n is sufficiently large, we say that communication at rate
nR
n = R bits per channel use (bpcu) is achievable. The rate R is called an achievable

rate for the coding scheme through the channel.

Definition 2.3. Capacity
The capacity of a point-to-point channel is the supremum of all the achievable rates
that can be realized by any possible coding scheme.

3For a real-valued R, 2nR in general is not necessarily an integer, which leads to a notation
⌈2nR⌉ to ensure the cardinality to be an integer. Here we simply treat 2nR as an integer to
simplify the notation.
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Similarly, for multiple terminal communication which involves more than one
input and/or output alphabet, we can define the coding scheme (also referred to
cooperative strategy since it includes interaction among multiple encoding/decoding
nodes), the achievable rate region, and the capacity region.

2.2.2 Entropy and Mutual Information

Following the notation in [CT06], we will introduce the most important quantities
which will frequently appear in the rest of this thesis.

Definition 2.4. Entropy
For a discrete random variable X ∈ X with probability mass function (pmf) p(x),
the entropy of X is defined as

H(X) = −
∑

x

p(x) log(p(x)).

Unless otherwise stated, the base of the logarithm operator log(·) is set to 2 and
therefore the resulting information is measured in bits.

Definition 2.5. Conditional Entropy
For discrete random variables X ∈ X and Y ∈ Y with joint pmf p(x, y), the condi-
tional entropy of X given Y

H(X |Y ) =
∑

y

p(y)H(X |y) =
∑

y

p(y)

(

−
∑

x

p(x|y) log(p(x|y))
)

= −
∑

x,y

p(x, y) log(p(x|y)),

where p(x|y) is the conditional probability of X = x given observation Y = y,
p(y) is the marginal distribution of p(x, y), and H(X |y) is the entropy of X given
observation Y = y.

Definition 2.6. Joint Entropy
For discrete random variables X ∈ X and Y ∈ Y with joint pmf p(x, y), the joint
entropy of X and Y is defined as

H(X,Y ) = −
∑

x,y

p(x, y) log(p(x, y)).

From the observer’s point of view, H(X) is the amount of uncertainty (i.e.
information unknown to the observer) contained in X , and H(X |Y ) is the amount
of uncertainty left in X after observing Y . The difference between H(X) and
H(X |Y ) is the information of X obtained by observing Y , and this quantity is
defined as the mutual information between X and Y .
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H(X) H(Y )

H(X,Y )

I(X ;Y )H(X |Y ) H(Y |X)

Figure 2.1. Relationship between entropy and mutual information. The two circles
correspond to entropy H(X) and H(Y ), the mutual information I(X; Y ) corresponds
to the intersection, and the joint entropy H(X, Y ) corresponds to the union.

Definition 2.7. Mutual Information
For discrete random variables X ∈ X and Y ∈ Y with joint pmf p(x, y), the mutual
information between X and Y is defined as

I(X ;Y ) = H(X)−H(X |Y ) =
∑

x,y

p(x, y) log(p(x|y))−
∑

x,y

p(x, y) log(p(x))

=
∑

x,y

p(x, y) log

(

p(x, y)

p(x)p(y)

)

.

It is straightforward to verify the following relationship (which is also demon-
strated by the famous diagram shown in Figure 2.1)

I(X ;Y ) = H(X)−H(X |Y ) = H(Y )−H(Y |X) = H(X) +H(Y )−H(X,Y ).

Similarly, for continuous-valued random variables, we can define differential
entropy, joint/conditional differential entropy, and mutual information by replacing
the summation with integration and the pmf with corresponding probability density
functions (pdf), e.g.,

h(X) = −
∫

p(x)>0

p(x) log(p(x))dx, (2.8)

I(X ;Y ) =

∫∫

p(x,y)>0

p(x, y) log

(

p(x, y)

p(x)p(y)

)

dxdy.

2.2.3 Cut-set Bound

As shown in Figure 2.2, given a network consisting of m nodes with the channel
transition probability p(y1, . . . , ym|x1, . . . , xm), where Xi and Yi are the transmit-
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X1

Y1

Xi

Xi Yi

Yi

Xj

Yj

Xm Ym

p(y1, . . . , ym|x1, . . . , xm)

ScS

Figure 2.2. On the left is a network consisting of m nodes with the channel
transition probability p(y1, . . . , ym|x1, . . . , xm), where Xi and Yi are the transmitted
signal and the received signal by node i, respectively. A cut (S, Sc) that separates
the source-destination pair (i, j) is illustrated on the right.

ted signal and the received signal by node i, respectively, we can define various
communication tasks over this network. Denoting R(i→j) as the rate of informa-
tion transportation from node i to node j, we are interested in the achievable rate
region that can be supported by the network. We can partition the set of nodes
T = {1, 2, . . . ,m} into two disjoint sets, S and its complement Sc, i.e. S ∩ Sc = ∅
and S ∪ Sc = T , where S contains some source nodes and Sc contains correspond-
ing destination nodes. Such a partition (S, Sc) is called a cut of the network with
respect to the corresponding source-destination pairs, as illustrated in Figure 2.2.

By the cut-set theorem [CT06], the accumulated maximum achievable rate from
the source nodes contained in S to any of the destinations contained in Sc can be
no larger than the minimum of the conditional mutual information flows across all
possible cuts (S, Sc), maximized over a joint distribution for the transmit signals. A
formal description can be found in [CT06, p.589] and cited below for completeness.

Theorem 2.1. Denoting X(S) = {Xi : i ∈ S}, if {R(i→j)} are achievable, there
exists p(x1, . . . , xm) such that

∑

i∈S,j∈Sc

R(i→j) ≤ I(X(S);Y (Sc)|X(Sc))

for all S ⊂ {1, 2, . . . ,m}.
This outer bound is called the cut-set bound, and it has a simple interpretation.

The information flow from S to Sc can be no larger than the rate supported by the
multiple-input multiple-output (MIMO) channel defined by the cut, i.e., when all
the transmitting nodes in S can cooperate and all the receiving nodes in Sc can also
cooperate. The cut-set bound is tight in most of the scenarios4 where the capacity
is known, and therefore will be utilized in our work when constructing capacity
upper/outer bounds.

4The cut-set bound is reported not tight in several scenarios, for example, in [TY11] for a
Gaussian interference relay channel where an upper bound tighter than the cut-set bound has
been established.
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In Theorem 2.1 we assume that all messages with corresponding rate R(i→j) are
independent. For multicast transmission where the same message is transmitted
to multiple destinations, we will denote R(i→D) as the multicast rate from node i
to all the receivers in the set D. Then for all j ∈ D, we should replace R(i→j) by
R(i→D) when constructing the cut-set bound.

2.3 Fundamental Tools

In this section we will introduce some fundamental tools that serve as cornerstones
for the cooperative strategies developed in this thesis.

2.3.1 Typical Sequence and Joint Typicality

A sequence x(n) of length n is said to be a typical sequence with respect to a
predefined pmf/pdf p(x) if its empirical distribution p̃(x) is within a predefined
distance from the true distribution p(x). Therefore in the definition related to
typicality, it is the set of elements rather than the order in a sequence that matters.

A formal definition of typical sequence used in this thesis is listed below.

Definition 2.8. Typical Sequence (ǫ-typicality)
A sequence x(n) is a typical sequence with respect to a pmf/pdf p(x) and a positive
constant ǫ if

∣

∣

∣

∣

− 1

n
log
(

p(x(n))
)

−H(X)

∣

∣

∣

∣

< ǫ, (2.9)

where p(x(n)) is the probability of the sequence x(n) and H(X) (or h(X)) is the
(differential) entropy of X.

Note that the empirical entropy − 1
n log

(

p(x(n))
)

converges in probability to

the true entropy H(X) (or h(X)) as n goes to infinity if all the elements of x(n)

are independently and identically distributed according to p(x). There are differ-
ent ways to measure the distance between two distributions, which leads to a few
variations of the definition of typical sequences [Kra07], normally known as letter-
typicality, where the empirical distribution of elements in a sequence is within a
constant gap (either additive or multiplicative) from the true distribution. The Def-
inition 2.8 is also referred as entropy-typicality in contrast to letter-typicality. For
continuous-valued random variables, only entropy-typicality applies. For discrete
random variables, both definitions are useful and letter-typicality normally gives
stronger results. In the rest of this thesis, we will not differentiate these definitions
unless stated otherwise.

Denoting T
(n)
ǫ (X) as the set of all typical sequences of length n with respect to

distribution p(x) and ǫ, then we can conclude from (2.9) that for any x(n) ∈ T (n)
ǫ (X)

we have p(x(n)) ≈ 2−nH(X), or more precisely,

2−n(H(X)+ǫ) < p(x(n)) < 2−n(H(X)−ǫ), for all x(n) ∈ T (n)
ǫ (X).
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Y 2

YX

2 X

31

:
.

Figure 2.3. A source-relay-destination (S-R-D) network with source node broad-
casting X1 and relay nodes transmitting X2. Relay receives Y2 and the destination
receives Y3, with the channel transition probability p(y2, y3|x1, x2).

Definition 2.9. Jointly Typical Sequences
A pair of sequences (x(n), y(n)) are jointly typical with respect to a pmf/pdf p(x, y)

and a positive constant ǫ, i.e. (x(n), y(n)) ∈ T (n)
ǫ (XY ), if

∣

∣

∣

∣

− 1

n
log
(

p(x(n))
)

−H(X)

∣

∣

∣

∣

< ǫ,

∣

∣

∣

∣

− 1

n
log
(

p(y(n))
)

−H(Y )

∣

∣

∣

∣

< ǫ,

∣

∣

∣

∣

− 1

n
log
(

p(x(n), p(y(n))
)

−H(X,Y )

∣

∣

∣

∣

< ǫ.

Therefore (x(n), y(n)) ∈ T (n)
ǫ (XY ) implies x(n) ∈ T (n)

ǫ (X) and y(n) ∈ T (n)
ǫ (Y ).

Joint typicality will be frequently used throughout this thesis as a key com-
ponent in designing encoding and decoding schemes, where code books are gener-
ated randomly in a memoryless fashion: we create a codebook consisting of 2nR

randomly and independently generated codewords {x(n)}, each of length n, ac-
cording to the distribution

∏n
i=1 p(xi). We assign a codeword x(n) to a message

W ∈ {1, 2, . . . , 2nR} uniformly at random, and associate them via an encoding
function x(n)(W ), omitting their explicit relationship where appropriate.

2.3.2 Relaying

Two fundamental relaying schemes, decode-and-forward (DF) and compress-and-
forward (CF), are first introduced and characterized in [CE79] for the classical
source-relay-destination (S-R-D) network as shown in Figure 2.3. In both DF and
CF schemes, block Markov encoding is used: message W is evenly divided into
B blocks W1, . . . ,WB, each with nR bits, and the transmission is completed over
B + 1 blocks, where the transmission in each block (except for the first or the last
block) only depends on the current and some previous message blocks. As each
transmission is over n channel uses, the overall rate is BnR

(B+1)n bits per channel use,

which converges to R when B goes to infinity.
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Table 2.1. Illustration of the encoding and decoding process for decode-and-forward
(DF) relaying in the S-R-D network. W0 = WB+1 = 1 by convention.

t = 1 2 · · · B + 1

S TX X
(n)
1,1 (W1,W0) X

(n)
1,2 (W2,W1) · · · X

(n)
1,B+1(WB+1,WB)

R RX W1 W2 · · · /

R TX X
(n)
2,1 (W0) X

(n)
2,2 (W1) · · · X

(n)
2,B+1(WB)

D RX / W1 · · · WB

Decode-and-Forward (DF) Relaying

When DF relaying is utilized, the source-relay link quality is assumed to be better
than the source-destination link quality and therefore successful decoding of the
transmitted message can be realized at the relay node. Then the transmission at the
relay node will cooperate with the source’s transmission to help the decoding at the
destination node. DF was first proposed in [CE79] where block Markov encoding,
superposition coding, and Slepian–Wolf binning [SW73] are used simultaneously for
source-relay cooperation and forward successive decoding is performed at both the
relay and the destination nodes. DF relaying can also be realized by block Markov
encoding and superposition coding without binning, if the destination performs
backward decoding [Car82] or sliding-window decoding [Wil82] instead. We will
explain the DF scheme by the latter approach with backward decoding. A more
thorough review of the DF relaying techniques can be found in [KGG05].

The random codebooks are generated as follows. Fix a distribution p(x1, x2).

For each block t = 1, . . . , B + 1, we generate a codebook {x(n)
2,t } consisting of 2nR

codewords generated independently according to p(x2) and assign the coding index
uniformly at random as we previously defined at the end of Section 2.3.1. For each

codeword x
(n)
2,t (u), u ∈ {1, . . . , 2nR}, we generate independently 2nR codewords

{x(n)
1,t (v, u) : v = 1, . . . , 2nR}, with the ith element of x

(n)
1,t (v, u) generated according

to p(x1|x2,t,i(u)), where x2,t,i(u) is the ith element of x
(n)
2,t (u).

The encoding and decoding process is illustrated in Table 2.1. During block t,

the source transmits X
(n)
1,t (Wt,Wt−1) where W0 = WB+1 = 1 by convention (i.e.,

no information). Assuming Wt−1 has been successfully decoded at the relay node

after block t−1,Wt can be reliably recovered from Y
(n)

2,t , which is a noisy version of

X
(n)
1,t (Wt,Wt−1), if the information rate R is no larger than the mutual information

supported by the source-relay link, i.e.,

R < I(X1;Y2).

During block t + 1, relay will transmit X
(n)
2,t+1(Wt). Decoding at the destination

is carried out when all the transmission has been finished (backward decoding):

After block B + 1, the received signal Y
(n)

3,B+1 only depends on X
(n)
1,B+1(1,WB) and
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Table 2.2. Illustration of the encoding and decoding process for compress-and-
forward (CF) relaying in the S-R-D network. s1 = 1 by convention.

t = 1 2 · · · B B + 1

S TX X
(n)
1,1 (W1) X

(n)
1,2 (W2) · · · X

(n)
1,B(WB) X

(n)
1,B+1(1)

R TX X
(n)
2,1 (s1) X

(n)
2,2 (s2) · · · X

(n)
2,B(sB) X

(n)
2,B+1(sB+1)

R RX Ŷ
(n)

2,1 (z1|s1) Ŷ
(n)

2,2 (z2|s2) · · · Ŷ
(n)

2,B (zB|sB) /

binning s2 = h(z1) s3 = h(z2) · · · sB+1 = h(zB) /
D RX / s2 : z1 : W1 · · · sB : zB−1 :WB−1 sB+1 : zB :WB

X
(n)
2,B+1(WB), and therefore successful decoding of WB can be realized if

R < I(X1X2;Y3).

Then we can advance the decoding process for WB−1, WB−2, . . ., W1 sequentially
as long as the above rate constraint is held. The achievable rate for DF relaying is
therefore

R < max
p(x1,x2)

min{I(X1;Y2), I(X1X2;Y3)}, (2.10)

where the maximization is taken over all possible distributions p(x1, x2).

Compress-and-Forward (CF) Relaying

The standard compress-and-forward (CF) relaying strategy [CE79] provides the
destination node(s) with a noisy yet structured observation (compression) of the
received signal at the relay node via the use of an independent codebook. For

each block t, we generate independently two random codebooks {x(n)
1,t } of size 2nR

according to p(x1) and {x(n)
2,t } of size 2nR2 according to p(x2). For each codeword

x
(n)
2,t (v), v = 1, . . . , 2nR2 , we generate 2nR

′

2 codewords {ŷ(n)
2,t (w|v) : w = 1, . . . , 2nR

′

2},
with the ith element of ŷ

(n)
2,t (w|v) generated according to p(ŷ2|x2,t,i(v)).

The encoding and decoding process of the CF strategy is illustrated in Table 2.2.

During block t, the source transmits X
(n)
1,t (Wt) and the relay transmits X

(n)
2,t (st),

where st ∈ {1, . . . , 2nR2} is the bin index determined at the end of block t − 1,
with s1 = 1 by convention. The relay performs compression based on Wyner–Ziv
binning [WZ76]: upon receiving Y2,t, the relay will find an index zt ∈ {1, . . . , 2nR

′

2}
such that (Ŷ

(n)
2,t (zt|st), Y (n)

2,t , X
(n)
2,t (st)) are jointly typical, and this happens with

high probability if
R′2 > I(Y2; Ŷ2|X2);

zt is then used to find the bin index via st+1 = h(zt) where h(·) is a deterministic
many-to-one mapping function indicates the binning process. The destination per-
forms block-by-block forward successive decoding. It first determines the bin index
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st ∈ {1, . . . , 2nR2} such that (X
(n)
2,t (st), Y

(n)
3,t ) are jointly typical, and this can be

done reliably if
R2 < I(X2;Y3).

The destination then determines zt−1 via binning: it tries to find zt−1 ∈ {1, . . . , 2nR
′

2}
such that (Ŷ

(n)
2,t−1(zt−1|st−1), Y

(n)
3,t−1, X

(n)
2,t−1(st−1)) are jointly typical and st = h(zt−1),

and this happens with high probability if

R′2 < I(Ŷ2;Y3|X2) +R2.

The above decoding via binning process can also be interpreted like this: the bin
index st provides a blurred description of the possible compression index zt−1 ∈
{z : h(z) = st}, and its previous observation Y

(n)
3,t−1 and relay’s transmission

X
(n)
2,t−1(st−1) help to resolve the residual ambiguity about zt−1.

Based on Ŷ
(n)

2,t−1(zt−1|st−1) and Y
(n)

3,t−1, the destination finally decodes the mes-

sageWt−1 reliably via joint typicality decoding, i.e., find Wt−1 ∈ {1, . . . , 2nR} such

that (X
(n)
1,t−1(Wt−1), Ŷ

(n)
2,t−1(zt−1|st−1), Y

(n)
3,t−1, X

(n)
2,t−1(st−1)) are jointly typical, if

R < I(X1;Y3Ŷ2|X2).

After cancelling intermediate variables R2 and R′2, the rate achieved by CF in the
classical 3-node S-R-D relay network can be written as [CE79]

R < max I(X1;Y3Ŷ2|X2)

subject to
I(Y2; Ŷ2|X2Y3) ≤ I(X2;Y3),

where the maximization is over all distributions that can be factorized as

p(x1)p(x2)p(ŷ2|y2, x2)p(y2, y3|x1, x2).

The achievable rate of CF can be written in another equivalent format [EMZ06],

R < max min[I(X1;Y3Ŷ2|X2), I(X1X2;Y3)− I(Y2; Ŷ2|X1X2Y3)]. (2.11)

2.3.3 Network Coding

The concept of network coding (NC) was first formally introduced and characterized
in the seminal paper [ACLY00] where multiple messages are combined into a new
message at intermediate nodes and forwarded. One option of such combination is
to employ linear operations over finite fields. Given k messages (packets in data
network) each of length L bits5, the linear operation can be carried out over finite
field GF(2q), where q is a positive integer. For each message, we group q consecutive

5We can append zeros at the end of shorter messages to ensure the same length.
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bits together and treat them as a symbol in GF(2q), and the resulting vector of
symbols will be utilized for encoding. Denote vi, i = 1, . . . , k as the vectors of
symbols, and gi as the coefficient taken from GF(2q) for vi, then the network
coded vector can be written as

u =

k
∑

i=1

givi,

where the summation is carried out in GF(2q). For the case q = 1, the summation
is simply the XOR operation. The resulting vector u is then translated back to a
vector of bits (NC coded message) and forwarded together with the combination
coefficients [g1, . . . , gk]. The overhead of transmitting the NC coefficients is negligi-
ble if the length of each message is much larger than the number of messages to be
transmitted, i.e., L≫ k, which is very common in data networks when considering
the size of a packet and the small group of packets that are transmitted together.

The destination nodes, upon receiving sufficient number of linearly independent
combinations of the transmitted messages, can recover the original messages by in-
verting the coefficient matrix. These coefficients can be deliberately chosen to min-
imize the number of received NC messages for successful decoding, but such design
becomes prohibitively difficult when the size of the network becomes large. Fortu-
nately, as suggested in [HMK+06], if these coefficients are determined in a random
and distributed fashion, successful decoding can be realized with high probability
if the field size 2q is sufficiently large.

In wireless communications where signals from neighboring transmitters are
combined together at the receiver by nature, network coding can also be done in the
analog domain, i.e., directly based on the received signal. Since the mapping from
multiple messages onto one message of the same length implicitly requires compres-
sion, coding with structures has to be used when transmitting individual messages.
For example, nested lattice codes can be used for this purpose [WNPS10]. Such
compression can also be done in an implicit manner. For example, the received sig-
nal at intermediate nodes can be quantized and then re-encoded [ADT11, LKEC11]
or simply be scaled [KGK07] before forwarding to subsequent nodes.

2.4 Summary

In this chapter, we have presented the system models and provided justifications for
the assumptions on perfect synchronization, perfect CSIT, and full-duplex relaying.
We have also presented some principal definitions that will be frequently used in
this thesis. We have also briefly reviewed some fundamental tools namely, the joint
typicality, relaying, and network coding, that will serve as cornerstone in subsequent
chapters when discussing cooperative strategies.



Chapter 3

Capacity Outer Bounds

In this chapter, we investigate capacity outer bounds for the wireless multicast relay
network shown in Figure 1.4, where two sources simultaneously multicast to two
destinations with the help of a shared full-duplex relay node. The two sources and
the relay use the same channel resource (i.e. co-channel transmission). Further-
more, we assume that the two source nodes are connected by orthogonal error-free
conferencing links. As illustrated in Chapter 1, in connection to Figure 1.1, such a
connection can be realized for example by utilizing the existing fiber or microwave
backhaul that connects the base stations in a cellular networks. Obviously, if a
connection exists between the base stations, it will be possible to use it to improve
performance. This will be illustrated in quantitative terms here and subsequently
in Chapters 4 and 5.

As shown in Figure 1.4, we assume that all the individual channel gains gij≥0,
i, j=1, 2, r are time-invariant and known to every node in the network. The scenario
of only local/partial CSI, requiring a trade-off between message and CSI exchange
as demonstrated in [ZG11, Ray06, WBBJ11], is left to future work. Given an av-
erage transmit power constraint Pi, fixed channel gain gij , and noise power Nj,
we can characterize the transmission link by only its signal-to-noise ratio (SNR)
γij=Pig

2
ij/Nj, as illustrated in Figure 3.1, without distinguishing the origin of var-

ious SNR contributors. The system shown in Figure 3.1 can be modelled as follows

Y
(n)

1 =
√
γ11X

(n)
1 +

√
γ21X

(n)
2 +

√
γr1X

(n)
r + Z

(n)
1 ,

Y
(n)

2 =
√
γ12X

(n)
1 +

√
γ22X

(n)
2 +

√
γr2X

(n)
r + Z

(n)
2 ,

Y (n)
r =

√
γ1rX

(n)
1 +

√
γ2rX

(n)
2 +Z(n)

r ,

(3.1)

where the noise components Zi,k, i=1, 2, r and k=1, ..., n are i.i.d. Gaussian with

zero-mean unit-variance, and all the transmitted signalsX
(n)
i are subject to average

unit-power constraints, i.e.,

1

n

n
∑

k=1

X2
i,k ≤ 1. (3.2)

29
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Figure 3.1. Two source nodes S1 and S2, connected with orthogonal and error-free
backhaul (with rate C12 and C12 bits per channel use), multicast information W1

at rate R1 and W2 at rate R2 respectively to both destinations D1 and D2 through
Gaussian channels, with aid from a full-duplex relay R. γij≥0, i, j=1, 2, r are the
effective link SNR.

3.1 Cut-set Bounds

Proposition 3.1. The cut-set bound for the multicast network in Figure 3.1 can
be characterized by

Ccut-set =
⋃

p(x1,x2,xr)

{

(R1, R2) : R1 ≥ 0, R2 ≥ 0, (3.3)

R1 ≤ C12 +
1

n
min
d∈{1,2}

{

I(X
(n)
1 ;Y

(n)
d Y

(n)
r |X(n)

2 X
(n)
r X

(n)
s ),

I(X
(n)
1 X

(n)
r ;Y

(n)
d |X

(n)
2 X

(n)
s )

}

+ ǫn,

R2 ≤ C21 +
1

n
min
d∈{1,2}

{

I(X
(n)
2 ;Y

(n)
d Y

(n)
r |X(n)

1 X
(n)
r X

(n)
s ),

I(X
(n)
2 X

(n)
r ;Y

(n)
d |X

(n)
1 X

(n)
s )

}

+ ǫn,

R1 +R2 ≤
1

n
min
d∈{1,2}

{

I(X
(n)
1 X

(n)
2 ;Y

(n)
d Y

(n)
r |X(n)

r ),

I(X
(n)
1 X

(n)
2 X

(n)
r ;Y

(n)
d )

}

+ ǫn,

R1 +R2 ≤ C12 + C21 +
1

n
min
d∈{1,2}

{

I(X
(n)
1 X

(n)
2 ;Y

(n)
d Y

(n)
r |X(n)

r X
(n)
s ),

I(X
(n)
1 X

(n)
2 X

(n)
r ;Y

(n)
d |X(n)

s )
}

+ ǫn

}

,

where X
(n)
s represent symbols transmitted via the conferencing links, X

(n)
1 , X

(n)
2

and X
(n)
r are subject to the average power constraint (3.2), ǫn→0 as n→∞, and
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the joint probability is partitioned as

∏

p(xs, xr)p(x1|xs, xr)p(x2|xs, xr)p(yr|x1, x2)p(y1|x1, x2, xr)p(y2|x1, x2, xr).

Note that the rate constraints in (3.3) are for multicast transmission and there-
fore the minimization is also taken over all the destination nodes.

Proof. By Theorem 2.1, the maximum achievable rate from the source nodes to any
of the destinations can be no larger than the minimum of the (conditional) mutual
information flows across all possible cuts, maximized over a joint distribution for the
transmitted signals. We can therefore apply Theorem 2.1 directly to the multicast
network in Figure 3.1 and evaluate all the possible cuts. By taking into account
the power constraint [Wil83] and the potential correlation between X1, X2 and Xr,
we can get (3.3).

For the multicast relay network with high-rate backhaul, we find the exact cut-
set bound of the capacity region by extending the proof of the converse developed by
Cover and El Gamal [CE79] for the Gaussian relay channel. For low-rate backhaul
scenarios, we present two genie-aided outer bounds by extending the previous proof
and introducing two lemmas on conditional (co-)variance.

3.2 Exact Cut-set Bounds for High-rate Backhaul

Define a rate region (R1, R2) such that R1 ≥ 0, R2 ≥ 0, and

R1 +R2 ≤ C0 = sup
0≤α1,α2,ρ≤1

min
{

(3.4)

C
(

(γ11+γ1r)α1+(1−ρ2)α1α2(
√
γ11γ2r−√γ21γ1r)

2

+(γ21+γ2r)α2 + 2ρ
√
α1α2(

√
γ11γ21+

√
γ1rγ2r)

)

,

C
(

(γ12+γ1r)α1+(1−ρ2)α1α2(
√
γ12γ2r−√γ22γ1r)

2

+(γ22+γ2r)α2 + 2ρ
√
α1α2(

√
γ12γ22+

√
γ1rγ2r)

)

,

C
(

γ11 + γ21 + γr1 + 2
√

ᾱ1γ11γr1 + 2
√

ᾱ2γ21γr1

+2(ρ
√
α1α2 +

√
ᾱ1ᾱ2)

√
γ11γ21

)

,

C
(

γ12 + γ22 + γr2 + 2
√

ᾱ1γ12γr2 + 2
√

ᾱ2γ22γr2

+2(ρ
√
α1α2 +

√
ᾱ1ᾱ2)

√
γ12γ22

)}

,

where ᾱ1=1−α1, ᾱ2=1−α2, and C(·) is the Gaussian capacity function defined as

C(x) = max

{

1

2
log(1+x), 0

}

.
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Figure 3.2. The capacity with high-rate backhaul is bounded by the cut-set bound
based on the four cuts shown in the figure.

By extending the proof of the converse developed by Cover and El Gamal [CE79]
for the Gaussian relay channel, we have characterized the exact cut-set bound for
a multicast relay network supported by a high-rate backhaul (i.e., C12≥R1 and
C21≥R2) as follows.

Theorem 3.1. For a high-rate backhaul (i.e., C12≥R1 and C21≥R2), the cut-set
bound Ccut-set in Proposition 3.1 equals to C0.

3.2.1 Proof of the Exact Cut-set Bound Ccut-set

By Theorem 2.1, the maximum achievable sum rate from the source nodes to any
of the destinations can be no larger than the minimum of the mutual information
flows across all possible cuts, maximized over a joint distribution for the trans-
mitted signals. For a high-rate backhaul (i.e., C12≥R1 and C21≥R2), some of the
constraints in (3.3) become redundant and the expression for the upper bound can
be reduced to

R1 +R2 ≤ Ccut-set = sup
p(x1,x2,xr)

min

{

(3.5)

1

n
I(X

(n)
1 , X

(n)
2 ;Y

(n)
1 , Y

(n)
r |X(n)

r ),
1

n
I(X

(n)
1 , X

(n)
2 , X

(n)
r ;Y

(n)
1 ),

1

n
I(X

(n)
1 , X

(n)
2 ;Y

(n)
2 , Y

(n)
r |X(n)

r ),
1

n
I(X

(n)
1 , X

(n)
2 , X

(n)
r ;Y

(n)
2 )

}

+ ǫn,

where ǫn→0 as n→∞, X
(n)
1 , X

(n)
2 and X

(n)
r are potentially correlated. Note that

for a high-rate backhaul, only the cut-set bound derived based on four cuts between
the two sources and each of the sink are active, as shown in Figure 3.2.

As suggested in [EK10, chp. 17], to find the exact cut-set bound Ccut-set, we will
first find an upper bound Cupp ≥ Ccut-set based on the technique used in [CE79], and
then find a lower bound Ccut-set, G ≤ Ccut-set by restricting the source distribution
to Gaussian, and finally by showing that Ccut-set, G = Cupp we can find the exact
cut-set bound Ccut-set = Cupp = Ccut-set, G.
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The Upper Bound Cupp

Following the conventional notation for the differential entropy as defined in (2.8),
the mutual information corresponding to cut 2 can be written as

I(X
(n)
1 , X

(n)
2 , X

(n)
r ;Y

(n)
1 ) = h(Y

(n)
1 )− h(Y (n)

1 |X(n)
1 , X

(n)
2 , X

(n)
r )

= h(Y
(n)

1 )− h(Z(n)
1 ) = h(Y

(n)
1 )− n

2
log(2πe).

(3.6)

From the maximum entropy lemma [CT06], we get

h(Y
(n)

1 ) ≤
n
∑

i=1

h(Y1,i) ≤
n
∑

i=1

1

2
log(2πeVar[Y1,i]), (3.7)

where the second equality is achieved when Y1,i is Gaussian distributed. Hence

1

n
I(X

(n)
1 , X

(n)
2 , X

(n)
r ;Y

(n)
1 ) ≤ 1

n

n
∑

i=1

1

2
log(Var[Y1,i])

≤ 1

2
log(

1

n

n
∑

i=1

Var[Y1,i]),

(3.8)

where the last steps follow from Jensen’s inequality, with

Var[Y1,i] = 1 + Var[
√
γ11X1,i +

√
γ21X2,i +

√
γr1Xr,i]. (3.9)

According to the law of total variance, for two random variables X and Y on
the same probability space, and if the variance of X is finite, then

Var[X ] = E(Var[X |Y ]) + Var[E(X |Y )].

We can therefore rewrite (3.9) as

Var[Y1,i] = 1 + Var[E(
√
γ11X1,i +

√
γ21X2,i +

√
γr1Xr,i|Xr,i)] (3.10)

+ E(Var[
√
γ11X1,i +

√
γ21X2,i +

√
γr1Xr,i|Xr,i])

= 1 + Var[
√
γ11E(X1,i|Xr,i) +

√
γ21E(X2,i|Xr,i) +

√
γr1Xr,i],

+ E(Var[
√
γ11X1,i +

√
γ21X2,i|Xr,i])

where

E(Var[
√
γ11X1,i +

√
γ21X2,i|Xr,i]) (3.11)

= E(γ11Var[X1,i|Xr,i] + γ21Var[X2,i|Xr,i] + 2
√
γ11γ21Cov(X1,i, X2,i|Xr,i))

= γ11E(Var[X1,i|Xr,i]) + γ21E(Var[X2,i|Xr,i]) + 2
√
γ11γ21E(Cov(X1,i, X2,i|Xr,i)),
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and

Var[
√
γ11E(X1,i|Xr,i) +

√
γ21E(X2,i|Xr,i) +

√
γr1Xr,i]

≤E[(
√
γ11E[X1,i|Xr,i] +

√
γ21E[X2,i|Xr,i] +

√
γr1Xr,i)

2]

=γ11E(E2[X1,i|Xr,i]) + 2
√
γ11γr1E(Xr,iE[X1,i|Xr,i]) (3.12)

+ γ21E(E2[X2,i|Xr,i]) + 2
√
γ21γr1E(Xr,iE[X2,i|Xr,i])

+ γr1E(X2
r,i) + 2

√
γ11γ21E(E[X1,i|Xr,i]E[X2,i|Xr,i]).

As in [CE79], define

ᾱ1 =
1

n

n
∑

i=1

E[E2(X1,i|Xr,i)], α1 ∈ [0, 1], (3.13)

then we have

1

n

n
∑

i=1

E[Var(X1,i|Xr,i)] =
1

n

n
∑

i=1

E[E(X2
1,i|Xr,i)− E2(X1,i|Xr,i)]

=
1

n

n
∑

i=1

(E[X2
1,i]− E[E2(X1,i|Xr,i)])

=
1

n

n
∑

i=1

E[X2
1,i]−

1

n

n
∑

i=1

E[E2(X1,i|Xr,i)] (3.14)

≤ α1,

where the inequality comes from (3.2). Similarly we have

ᾱ2 =
1

n

n
∑

i=1

E[E2(X2,i|Xr,i)], (3.15)

1

n

n
∑

i=1

E[Var(X2,i|Xr,i)] ≤ α2,

where α2 ∈ [0, 1]. On the other hand, as

Cov(X1,i, X2,i|Xr,i) = φi

√

Var(X1,i|Xr,i)Var(X2,i|Xr,i),

where |φi| ≤ 1 is the correlation coefficient, we have

1

n

n
∑

i=1

E[Cov(X1,i, X2,i|Xr,i)]

≤

√

√

√

√

1

n

n
∑

i=1

φiE[Var(X1,i|Xr,i)]
1

n

n
∑

i=1

φiE[Var(X2,i|Xr,i)]

≤ √α1α2, (3.16)
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where the first inequality is due to the Cauchy–Schwarz inequality and the last step
is given by (3.14) and (3.15). Given that |φi| ≤ 1, we can introduce an auxiliary
variable 0 ≤ ρ ≤ 1 such that

1

n

n
∑

i=1

E[Cov(X1,i, X2,i|Xr,i)] = ρ
√
α1α2. (3.17)

Also, using the Cauchy–Schwarz inequality we get

1

n

n
∑

i=1

E(Xr,iE[X1,i|Xr,i])

≤

√

√

√

√

1

n

n
∑

i=1

E[X2
r,i]

1

n

n
∑

i=1

E(E2[X1,i|Xr,i]) ≤
√
ᾱ1, (3.18)

1

n

n
∑

i=1

E(Xr,iE[X2,i|Xr,i]) ≤
√
ᾱ2, (3.19)

1

n

n
∑

i=1

E(E[X1,i|Xr,i]E[X2,i|Xr,i]) ≤
√
ᾱ1ᾱ2. (3.20)

Now, substituting (3.10)–(3.20) into (3.8), and applying the same approach also
to cut 4, we get

1

n
I(X

(n)
1 , X

(n)
2 , X

(n)
r ;Y

(n)
1 ) ≤ C(γ11 + γ21 + γr1 + 2

√

ᾱ1γ11γr1 + 2
√

ᾱ2γ21γr1

+2(ρ
√
α1α2 +

√
ᾱ1ᾱ2)

√
γ11γ21

)

, (3.21)

1

n
I(X

(n)
1 , X

(n)
2 , X

(n)
r ;Y

(n)
2 ) ≤ C(γ12 + γ22 + γr2 + 2

√

ᾱ1γ12γr2 + 2
√

ᾱ2γ22γr2

+2(ρ
√
α1α2 +

√
ᾱ1ᾱ2)

√
γ12γ22

)

. (3.22)

For cut 1 we have

I(X
(n)
1 , X

(n)
2 ;Y

(n)
1 , Y

(n)
r |X(n)

r )

= h(Y
(n)

1 , Y
(n)
r |X(n)

r )− h(Y (n)
1 , Y

(n)
r |X(n)

1 , X
(n)
2 , X

(n)
r )

= h(Y
(n)

1 , Y
(n)
r |X(n)

r )− h(Y (n)
1 |X(n)

1 , X
(n)
2 , X

(n)
r )− h(Y (n)

r |X(n)
1 , X

(n)
2 , X

(n)
r )

= h(Y
(n)

1 , Y
(n)
r |X(n)

r )− h(Z(n)
1 )− h(Z(n)

r )

= h(Y
(n)

1 , Y
(n)
r |X(n)

r )− n log(2πe)

≤ 1

2

n
∑

i=1

log
(

(2πe)2|Ki|
)

− n log(2πe)

=
1

2

n
∑

i=1

log (|Ki|) ,

(3.23)
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where the second equality in (3.23) comes from the fact that Y
(n)

1 and Y
(n)
r are inde-

pendent given (X
(n)
1 , X

(n)
2 , X

(n)
r ) and the inequality is due to the maximum entropy

lemma [CT06], with equality achieved by jointly Gaussian distributed (Y1,i, Yr,i)
with conditional covariance matrices Ki, which are defined by

Ki =

[

E(Var[Y1,i|Xr,i]) E[Cov(Y1,i, Yr,i|Xr,i)]
E[Cov(Y1,i, Yr,i|Xr,i)] E(Var[Yr,i|Xr,i])

]

.

Obviously, the covariance matricesKi are positive semi-definite. Since the function
log |K| is concave [CT98], we can thus bound the throughput of cut 1 from (3.23)
as follows

1

n
I(X

(n)
1 ,X

(n)
2 ;Y

(n)
1 , Y

(n)
r |X(n)

r ) (3.24)

≤ 1

2
log
(∣

∣

1
n

∑n
i=1Ki

∣

∣

)

=
1

2
log
(

1
n

∑n
i=1E(Var[Y1,i|Xr,i]) 1

n

∑n
j=1E(Var[Yr,j |Xr,j])

−
(

1
n

∑n
i=1E[Cov(Y1,i, Yr,i|Xr,i)]

)2
)

.

Furthermore, since

E(Var[Y1,i|Xr,i]) =1 +E(Var[
√
γ11X1,i +

√
γ21X2,i|Xr,i]),

E(Var[Yr,i|Xr,i]) =1 +E(Var[
√
γ1rX1,i +

√
γ2rX2,i|Xr,i]),

E[Cov(Y1,i, Yr,i|Xr,i)] =
√
γ11γ1rE(Var[X1,i|Xr,i]) +

√
γ21γ2rE(Var[X2,i|Xr,i])

+ (
√
γ11γ2r +

√
γ21γ1r)E[Cov(X1,i, X2,i|Xr,i)],

by combining with (3.11) and (3.14)–(3.17), we can conclude that

1

n
I(X

(n)
1 , X

(n)
2 ;Y

(n)
1 , Y

(n)
r |X(n)

r ) (3.25)

≤ C
(

(γ11 + γ1r)α1 + (1−ρ2)α1α2(
√
γ11γ2r−√γ21γ1r)

2

+(γ21 + γ2r)α2 + 2ρ
√
α1α2(

√
γ11γ21 +

√
γ1rγ2r)) .

Similarly, we can bound the throughput of cut 3 as follows

1

n
I(X

(n)
1 , X

(n)
2 ;Y

(n)
2 , Y

(n)
r |X(n)

r ) (3.26)

≤ C
(

(γ12 + γ1r)α1 + (1−ρ2)α1α2(
√
γ12γ2r−√γ22γ1r)

2

+(γ22 + γ2r)α2 + 2ρ
√
α1α2(

√
γ12γ22 +

√
γ1rγ2r)) .

By substituting (3.21) (3.22) (3.25) (3.26) into (3.5) and letting n→∞, compar-
ing the resulting region to (3.4) we can conclude that

Ccut-set ≤ Cupp = C0.
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The Lower Bound Ccut-set, G

By restricting p(x1, x2, xr) in (3.5) to be Gaussian, we can partition X
(n)
1 , X

(n)
2

and X
(n)
r as follows

X(n)
r = U (n), (3.27a)

X
(n)
1 =

√

(1− ρ)α1S
(n)
1 +

√
ρα1V

(n) +
√

(1− α1)U (n), (3.27b)

X
(n)
2 =

√

(1− ρ)α2S
(n)
2 +

√
ρα2V

(n) +
√

(1− α2)U (n), (3.27c)

where S
(n)
1 , S

(n)
2 , V

(n), U (n) are n-dimensional independent Gaussian random vec-
tors with zero-mean and unit-variance. Auxiliary variables 0≤α1, α2, ρ≤1 are in-

troduced to represent the potential correlation among X
(n)
1 , X

(n)
2 and X

(n)
r due to

cooperation. by substituting (3.27) into (3.1), we can derive from (3.5) that

Ccut-set ≥ Ccut-set, G = sup
0≤α1,α2,ρ≤1

min
1

2n

n
∑

i=1

{ (3.28)

log(Var[Y1,i]), log(Var[Y2,i]), log (|K1,i|) , log (|K2,i|)}+ ǫn,

where ǫn→0 as n→∞, and for i = 1, ..., n, we have

Var[Y1,i] = 1 + ρ̄α1γ11 + ρ̄α2γ21 + ρ(
√
α1γ11 +

√
α2γ21)2

+ (
√

ᾱ1γ11 +
√

ᾱ2γ21 +
√
γr1)2,

Var[Y2,i] = 1 + ρ̄α1γ12 + ρ̄α2γ22 + ρ(
√
α1γ12 +

√
α2γ22)2

+ (
√

ᾱ1γ12 +
√

ᾱ2γ22 +
√
γr2)2, (3.29)

|K1,i| = (1 + ρ̄α1γ11 + ρ̄α2γ21 + ρ(
√
α1γ11 +

√
α2γ21)2)

× (1 + ρ̄α1γ1r + ρ̄α2γ2r + ρ(
√
α1γ1r +

√
α2γ2r)

2)

−(
√
γ11γ1rα1 +

√
γ21γ2rα2 + (

√
γ11γ2r +

√
γ21γ1r)ρ

√
α1α2)2,

|K2,i| = (1 + ρ̄α1γ12 + ρ̄α2γ22 + ρ(
√
α1γ12 +

√
α2γ22)2)

× (1 + ρ̄α1γ1r + ρ̄α2γ2r + ρ(
√
α1γ1r +

√
α2γ2r)

2)

−(
√
γ12γ1rα1 +

√
γ22γ2rα2 + (

√
γ12γ2r +

√
γ22γ1r)ρ

√
α1α2)2.

By substituting (3.29) into (3.28), and letting n→∞, comparing the resulting region
to (3.4) we can conclude that

Ccut-set ≥ Ccut-set, G = C0.

Recall that Ccut-set, G ≤ Ccut-set ≤ Cupp, we can finally conclude that Ccut-set =
C0, i.e., Theorem 3.1 holds.
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3.3 Genie-aided Cut-set Bounds for Low-rate Backhaul

By extending the proof of the converse developed by Cover and El Gamal [CE79]
for the Gaussian relay channel, we have characterized the exact cut-set bound
for high-rate backhaul (i.e., C12≥R1 and C21≥R2) in Section 3.2.1. However, it
is difficult to directly apply that result to the low-rate backhaul scenarios (i.e.,
C12<R1 and C21<R2) since the transmitted signal at the relay is only partially
known to both source nodes owing to the limited-rate conferencing links. Instead,
we introduce a genie which tells the two source nodes what exactly the relay is going

to transmit, i.e., X
(n)
r is known at S1 and S2 non-causally. Therefore X

(n)
r needs

not to be transmitted via the conferencing links, i.e., the conferencing symbols X
(n)
s

are independent of X
(n)
r , which indicates that p(xr , xs)=p(xr)p(xs) is sufficient for

the probability partition in Proposition 3.1. Since X
(n)
1 is potentially correlated to

X
(n)
r and X

(n)
s , we can introduce two independent auxiliary variables α1, ρ1 ∈ [0, 1]

to indicate the dependence of X
(n)
1 on X

(n)
r (via ᾱ1=1−α1) and on X

(n)
s (via ρ1α1).

Similarly, α2, ρ2 ∈ [0, 1] are introduced for X
(n)
2 . Following similar procedures as

in [DXS11b, DXS11a], we can bound all the mutual information terms in (3.3) and
obtain the following outer bound.

Proposition 3.2. The cut-set bound Ccut-set in Proposition 3.1 can be outer bounded
by

Cupp1 =
⋃

0≤α1,α2,ρ1,ρ2≤1

{

(R1, R2) : R1 ≥ 0, R2 ≥ 0, (3.30)

R1 ≤ C12 + min
d∈{1,2}

{

C ((γ1d + γ1r)ρ̄1α1) , C
(

γ1d(ρ̄1α1 + ᾱ1) + γrd + 2
√

γ1dγrdᾱ1

)}

,

R2 ≤ C21 + min
d∈{1,2}

{

C ((γ2d + γ2r)ρ̄2α2) , C
(

γ2d(ρ̄2α2 + ᾱ2) + γrd + 2
√

γ2dγrdᾱ2

)}

,

R1 +R2 ≤ min
d∈{1,2}

{

C((γ1d + γ1r)α1 + (
√
γ1dγ2r−√γ2dγ1r)2α1α2(1−λ2

dρ1ρ2)

+ (γ2d + γ2r)α2 + 2(
√
γ1dγ2d +

√
γ1rγ2r)λd

√
ρ1ρ2α1α2),

C(γ1d + γ2d + γrd + 2
√

ᾱ1γ1dγrd + 2
√

ᾱ2γ2dγrd

+2
√
γ1dγ2d(

√
ρ1ρ2α1α2 +

√
ᾱ1ᾱ2))

}

,

R1 +R2 ≤ C12 + C21 + min
d∈{1,2}

{

C ((γ1d + γ1r)ρ̄1α1 + (γ2d + γ2r)ρ̄2α2

+(
√
γ1dγ2r−√γ2dγ1r)2ρ̄1ρ̄2α1α2

)

,

C
(

γ1d(ᾱ1 + ρ̄1α1) + γ2d(ᾱ2 + ρ̄2α2) + γrd

+2
√

γ1dγ2dᾱ1ᾱ2 + 2
√

γ1dγrdᾱ1 + 2
√

γ2dγrdᾱ2

)}}

,

where ᾱ1=1−α1, ᾱ2=1−α2, ρ̄1=1−ρ1, ρ̄2=1−ρ2, λ1 = λ2 = 1 if α1α2ρ1ρ2 = 0 and
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otherwise

λd = min

{

1,

√
γ1dγ2d +

√
γ1rγ2r

(
√
γ1dγ2r−√γ2dγ1r)2√ρ1ρ2α1α2

}

, d ∈ {1, 2}.

Proof. The proof can be found in Appendix 3.5.A.

3.3.1 Alternative Outer Bound Cupp4

By introducing ρ1, ρ2 independently, we have

1

n

n
∑

i=1

E[Cov(X1,i, X2,i|Xr,i)] ≤
√
ρ1ρ2α1α2

as stated in (3.40), which leads to a loose outer bound (when λ1<1 or λ2<1) on
the sum rate. If we instead first introduce ρ ∈ [0, 1] such that

1

n

n
∑

i=1

E[Cov(X1,i, X2,i|Xr,i)] = ρ
√
α1α2

to get a tighter outer bound on the sum rate, then ρ1 and ρ2 become correlated.
Therefore, we may first define ρ and ρ1 independently to get Cupp2 which is tighter
on the sum rate but looser on R2, and then define ρ and ρ2 independently to get
Cupp3 which is tighter on the sum rate but looser on R1, and finally obtain the
outer bound Cupp4 by intersection of Cupp2 and Cupp3.

Proposition 3.3. The cut-set bound Ccut-set in Proposition 3.1 is outer bounded
by

Cupp2 =
⋃

0≤α1,α2,ρ,ρ1≤1

{

(R1, R2) : R1 ≥ 0, R2 ≥ 0, (3.31)

R1 ≤ C12 + min
d∈{1,2}

{

C ((γ1d + γ1r)ρ̄1α1) , C(γ1d(ρ̄1α1 + ᾱ1) + γrd + 2
√

γ1dγrdᾱ1)
}

,

R2 ≤ C21 + min
d∈{1,2}

{

C
(

(γ2d + γ2r)(1−ρ2/ρ1)α2

)

,

C(γ2d((1−ρ2/ρ1)α2 + ᾱ2) + γrd + 2
√
γ2dγrdᾱ2)

}

,

R1 +R2 ≤ min
d∈{1,2}

{

C((γ1d + γ1r)α1 + (
√
γ1dγ2r−√γ2dγ1r)2α1α2(1−ρ2)

+ (γ2d + γ2r)α2 + 2(
√
γ1dγ2d +

√
γ1rγ2r)ρ

√
α1α2),

C(γ1d + γ2d + γrd + 2
√

ᾱ1γ1dγrd + 2
√

ᾱ2γ2dγrd

+2
√
γ1dγ2d(ρ

√
α1α2 +

√
ᾱ1ᾱ2))

}

,
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R1 +R2 ≤ C12 + C21 + min
d∈{1,2}

{

C((γ1d + γ1r)ρ̄1α1 + (γ2d + γ2r)(1−ρ2/ρ1)α2

+ (
√
γ1dγ2r−√γ2dγ1r)2α1α2ρ̄1(1−ρ2/ρ1)),

C(γ1d(ᾱ1 + ρ̄1α1) + γ2d(ᾱ2 + (1−ρ2/ρ1)α2) + γrd

+2
√

γ1dγ2dᾱ1ᾱ2 + 2
√

γ1dγrdᾱ1 + 2
√

γ2dγrdᾱ2)
}}

,

with ᾱ1=1−α1, ᾱ2=1−α2, ρ̄1=1−ρ1, ρ2 ≤ ρ1, and ρ2/ρ1 = 0 for ρ = ρ1 = 0.

Proof. The proof can be found in Appendix 3.5.B.

Proposition 3.4. Ccut-set can be outer bounded by Cupp4 = Cupp2 ∩ Cupp3, where
Cupp3 is obtained directly from (3.31) by the variable substitution (ρ2/ρ1 is treated
as a single variable) as follows: ρ2/ρ1 ⇔ ρ2, 1 − ρ2/ρ1 ⇔ ρ̄2, ρ1 ⇔ ρ2/ρ2, ρ̄1 ⇔
1− ρ2/ρ2.

Proof. It is sufficient to prove Ccut-set ⊆ Cupp3 by following the same procedure as
in Appendix 3.5.B except introducing ρ2 (instead of ρ1) such that

ρ̄2α2 =
1

n

n
∑

i=1

E[Var(X2,i|Xr,iXs,i)].

The supremum operation is over 0≤α1, α2, ρ, ρ2≤1 accordingly with ρ2≤ρ2.

3.4 Summary

In this chapter, we have considered a relay-aided two-source two-sink wireless mul-
ticast network with a backhaul link between the source nodes. For the multicast
relay network with high-rate backhaul, we find the exact cut-set bound on the ca-
pacity region by extending the proof of the converse developed by Cover and El
Gamal [CE79] for the Gaussian relay channel. For low-rate backhaul scenarios, we
have provided two genie-aided outer bounds by introducing two new lemmas on
conditional (co-)variance.

Note that although the original proof of the converse developed by Cover and
El Gamal [CE79] and its extensions developed in this chapter seem to be in a stan-
dard and uniform format, there are indeed some important tricks behind. In their
original proof, Cover and El Gamal exploit many standard equalities and inequal-
ities in information theory, such as the Fano’s inequality, the Jensen’s inequality,
the Cauchy-Schwarz inequality, the maximum entropy lemma, and the chain rule.
There are two important tools in their proof that are crucial but less addressed:
the average power constraint on transmitted signals and the introduction of aux-
iliary random variables to bound the conditional variance for correlated sources.
The former is crucial in translating the averaging operation into a single-letter con-
straint, and the latter is crucial to ensure that the averaging operation formulated
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in a “proper” way to make the former translation possible. Here by “proper” we
intend to highlight the fact that it is a kind of art to decide when and where to
introduce such auxiliary random variables, since only “properly” chosen auxiliary
random variables will lead to a nice result.

In our extensions, we start with a simpler network in [DXS11b] where no-cross
links exists. We introduce a new random variable to bound the conditional co-
variance as in (3.16) and (3.17), and we also utilize the concavity of the function
log(| · |) with respect to a positive semi-definite matrix as in (3.24). When there
are cross links as in our work [DXS11a], the received signals at destinations have
three correlated components which makes the previous approach impossible to ap-
ply here. To overcome this difficulty, we introduce in the early stage the law of
total variance which decomposes the dependence and therefore help us to translate
(3.9) into (3.10), after which the previous approach can be applied. When the
two source nodes are only partially correlated, as in our work [DXSM], we have to
first introduce a genie to remove the ambiguity about the relaying signal at source
nodes, and then introduce the law of total covariance and develop ourselves two
lemma which can be interpreted as the law of total conditional variance and the
law of total conditional covariance. And depends on which auxiliary random vari-
ables are introduced, we have developed three different upper bounds, with one
complementing another.

Although we have successfully extended this bounding method and managed to
have good upper bounds, all the tricks mentioned above may hinder their appli-
cation to more general and more complex networks in searching for a good upper
bound.

3.5 Appendix

3.5.A Proof of the Outer Bound Cupp1

We first present two lemmas that will be used in our proof.

Lemma 3.1. For random variables X,Y, Z on the same probability space, each
with finite variance, Y and Z are independent, we have

E[Var(X |Y )] = E[Var(X |Y, Z)] +E[Var(E[X |Z]|Y )].

Proof.

E[Var(X |Y )]− E[Var(X |Y, Z)] = E(E2[X |Y, Z])− E(E2[X |Y ])

(a)
= E(T 2)− E(E2[T |Y ])

= E[Var(T |Y )]

= E[Var(E[X |Y, Z]|Y )]

(b)
= E[Var(E[X |Z]|Y )],
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where (a) comes from variable substitution T=E[X |Y, Z] and the fact that

E[T |Y ]=E(E[X |Y, Z]|Y )=E[X |Y ],

and (b) is due to the fact that

Var(E[X |Y=y, Z]|Y=y) = Var(E[X |Z]|Y=y).

Lemma 3.2. For random variables X,Y, Z, U on the same probability space, each
with finite variance, Z and U are independent, and X − (Z,U) − Y is a Markov
chain, then

E[Cov(X,Y |Z)] = E[Cov(E[X |U ], E[Y |U ]|Z)].

Proof.

E[Cov(X,Y |Z)] = E(XY )− E(E[X |Z]E[Y |Z])

= E(E[XY |Z,U ])−E(E(E[X |Z,U ]|Z)E(E[Y |Z,U ]|Z))

(c)
= E[Cov(E[X |Z,U ], E[Y |Z,U ]|Z)]

(d)
= E[Cov(E[X |U ], E[Y |U ]|Z)],

where (c) is due to Markovicity and (d) comes from

Cov(E[X |z, U ], E[Y |z, U ]|z)=Cov(E[X |U ], E[Y |U ]|z).

Now we are ready to prove Proposition 3.2. Note that

1

n

n
∑

i=1

E[E2(X1,i|Xr,i)] ≤
1

n

n
∑

i=1

E[E(X2
1,i|Xr,i)] =

1

n

n
∑

i=1

E[X2
1,i] ≤ 1,

we introduce an auxiliary variable α1 ∈ [0, 1] as in [CE79, DXS11b, DXS11a] such
that

ᾱ1 = 1− α1 =
1

n

n
∑

i=1

E[E2(X1,i|Xr,i)]. (3.32)

It is easy to show that

1

n

n
∑

i=1

E[Var(X1,i|Xr,i)] =
1

n

n
∑

i=1

E[X2
1,i]−

1

n

n
∑

i=1

E[E2(X1,i|Xr,i)] ≤ α1, (3.33)

where the inequality comes from the power constraint (3.2).
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With the help of the genie, we have X1 − (Xr, Xs) −X2 with Xr independent
of Xs. By Lemma 3.1 and the fact that

E[Var(X1|XrXs)]≤E[Var(X1|Xr)],

we define ρ1∈[0, 1] with ρ̄1=1−ρ1 such that

1

n

n
∑

i=1

E[Var(X1,i|Xr,iXs,i)] = ρ̄1α1,

1

n

n
∑

i=1

E[Var(E[X1,i|Xs,i]|Xr,i)] ≤ ρ1α1.

(3.34)

Similarly, we can define α2, ρ2 ∈ [0, 1] with ᾱ2=1−α2, ρ̄2=1−ρ2 such that

1

n

n
∑

i=1

E[E2(X2,i|Xr,i)] = ᾱ2,

1

n

n
∑

i=1

E[Var(X2,i|Xr,i)] ≤ α2,

(3.35)

and

1

n

n
∑

i=1

E[Var(X2,i|Xr,iXs,i)] = ρ̄2α2,

1

n

n
∑

i=1

EVar(E[X2,i|Xs,i]|Xr,i) ≤ ρ2α2.

(3.36)

Since Cov(X,Y ) ≤
√

Var(X)Var(Y ), we have

1

n

n
∑

i=1

Cov[E(X1,i|Xr,i), E(X2,i|Xr,i)]

≤ 1

n

n
∑

i=1

√

Var[E(X1,i|Xr,i)]Var[E(X2,i|Xr,i)]

≤

√

√

√

√

1

n

n
∑

i=1

Var[E(X1,i|Xr,i)]
1

n

n
∑

i=1

Var[E(X2,i|Xr,i)]

≤
√
ᾱ1ᾱ2, (3.37)

where the second inequality is by the Cauchy–Schwarz inequality, and the last in-
equality is due to Var(X) ≤ E(X2) with substitution of (3.32) and (3.35). Applying
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the same procedure, we can further obtain

1

n

n
∑

i=1

Cov(X1,i, Xr,i) =
1

n

n
∑

i=1

Cov(E[X1,i|Xr,i], Xr,i) ≤
√
ᾱ1, (3.38)

1

n

n
∑

i=1

Cov(X2,i, Xr,i) =
1

n

n
∑

i=1

Cov(E[X2,i|Xr,i], Xr,i) ≤
√
ᾱ2, (3.39)

1

n

n
∑

i=1

E[Cov(X1,i, X2,i|Xr,i)]

=
1

n

n
∑

i=1

E[Cov(E(X1,i|Xs,i), E(X2,i|Xs,i)|Xr,i)]

≤ 1

n

n
∑

i=1

√

E[Var(E[X1,i|Xs,i]|Xr,i)]E[Var(E[X2,i|Xs,i]|Xr,i)]

≤ √ρ1ρ2α1α2, (3.40)

where the equality in (3.40) is due to Lemma 3.2.
By the Law of total covariance [Gus10], we have

Cov(X,Y ) = E[Cov(X,Y |Z)] + Cov(E[X |Z], E[Y |Z]),

which, combined with (3.40) and (3.37), leads to

1

n

n
∑

i=1

Cov(X1,i, X2,i) ≤
√
ρ1ρ2α1α2 +

√
ᾱ1ᾱ2. (3.41)

Similar to (3.40), we can obtain by Lemma 3.2 that

1

n

n
∑

i=1

E[Cov(X1,i, X2,i|Xs,i)] (3.42)

=
1

n

n
∑

i=1

E[Cov(E(X1,i|Xr,i), E(X2,i|Xr,i)|Xs,i)]

≤ 1

n

n
∑

i=1

√

E[Var(E(X1,i|Xr,i)|Xs,i)]E[Var(E(X2,i|Xr,i)|Xs,i)]

≤ 1

n

n
∑

i=1

√

E(E2(X1,i|Xr,i))E(E2(X2,i|Xr,i))

≤
√
ᾱ1ᾱ2,

where the second inequality comes from

E[Var(X |Z)] = E(X2)− E(E2(X |Z)) ≤ E(X2). (3.43)



3.5. APPENDIX 45

By Lemma 3.1 and (3.43), we can obtain

1

n

n
∑

i=1

E[Var(X1,i|Xs,i)] (3.44)

=
1

n

n
∑

i=1

E[Var(X1,i|Xr,i, Xs,i)] +E[Var(E[X1,i|Xr,i]|Xs,i)]

≤ 1

n

n
∑

i=1

E[Var(X1,i|Xr,i, Xs,i)] +
1

n

n
∑

i=1

E(E2[X1,i|Xr,i])

≤ ρ̄1α1 + ᾱ1,

and

1

n

n
∑

i=1

E[Var(X2,i|Xs,i)] ≤ ρ̄2α2 + ᾱ2. (3.45)

By symmetry, we only need to bound the following six mutual information
constraints in (3.3) (the rest can be bounded using the same method):

I(X
(n)
1 X

(n)
2 ;Y

(n)
1 Y

(n)
r |X(n)

r ), I(X
(n)
1 X

(n)
2 X

(n)
r ;Y

(n)
1 |X(n)

s ),

I(X
(n)
1 X

(n)
r ;Y

(n)
1 |X(n)

2 X
(n)
s ), I(X

(n)
1 X

(n)
2 X

(n)
r ;Y

(n)
1 ),

I(X
(n)
1 X

(n)
2 ;Y

(n)
1 Y

(n)
r |X(n)

r X
(n)
s ), I(X

(n)
1 ;Y

(n)
1 Y

(n)
r |X(n)

2 X
(n)
r X

(n)
s ).

Since

Var[Y1,i] = 1 + γ11Var[X1,i] + γ21Var[X2,i] + γr1Var[Xr,i] + 2
√
γ11γ21Cov(X1,i, X2,i)

+ 2
√
γ11γr1Cov(X1,i, Xr,i) + 2

√
γ21γr1Cov(X2,i, Xr,i),

we can apply (3.38), (3.39), (3.41) and obtain

1

n
I(X

(n)
1 X

(n)
2 X

(n)
r ;Y

(n)
1 ) =

1

n
h(Y

(n)
1 )− 1

2
log(2πe) (3.46)

≤ 1

2
log(

1

n

n
∑

i=1

Var[Y1,i])

≤ C(γ11 + γ21 + γr1 + 2
√

ᾱ1γ11γr1 + 2
√

ᾱ2γ21γr1

+ 2
√
γ11γ21(

√
ρ1ρ2α1α2 +

√
ᾱ1ᾱ2)),

with the first inequality obtained as follows

1

n
h(Y

(n)
1 ) ≤ 1

n

n
∑

i=1

h(Y1,i) ≤
1

2n

n
∑

i=1

log(2πeVar[Y1,i]) ≤
1

2
log(

2πe

n

n
∑

i=1

Var[Y1,i]),
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where the second inequality is due to the maximum entropy lemma [CT06] and the
last step follows from Jensen’s inequality. Similarly, by the fact that

Cov(X1, Xr) = E[Cov(X1, Xr|Xs)] + Cov(E(X1|Xs), E(Xr))

= E[Cov(X1, Xr|Xs)],

and

E[Var(Y1,i|Xs,i)] = 1 + γr1Var(Xr,i) + 2
√
γ11γ21E[Cov(X1,i, X2,i|Xs,i)]

+ γ11E[Var(X1,i|Xs,i)] + 2
√
γ11γr1E[Cov(X1,i, Xr,i|Xs,i)]

+ γ21E[Var(X2,i|Xs,i)] + 2
√
γ21γr1E[Cov(X2,i, Xr,i|Xs,i)],

we can obtain

1

n
I(X

(n)
1 X

(n)
2 X

(n)
r ;Y

(n)
1 |X(n)

s ) =
1

n
h(Y

(n)
1 |X(n)

s )− 1

2
log(2πe) (3.47)

≤ 1

2
log(

1

n

n
∑

i=1

EVar[Y1,i|Xs,i])

≤ C (γ11(ᾱ1 + ρ̄1α1) + γ21(ᾱ2 + ρ̄2α2) + γr1

+2
√

γ11γ21ᾱ1ᾱ2 + 2
√

γ11γr1ᾱ1 + 2
√

γ21γr1ᾱ2

)

.

Similarly we can obtain

E[Var(Y1,i|X2,iXs,i)]

= 1 +E[Var(
√
γ11X1,i +

√
γr1Xr,i|X2,iXs,i)]

= 1 +E[Var(
√
γ11X1,i +

√
γr1Xr,i|Xr,iX2,iXs,i)]

+ E[Var(E(
√
γ11X1,i +

√
γr1Xr,i|Xr,i)|X2,iXs,i)]

≤ 1 + γ11(E[Var(X1,i|Xr,iXs,i)] +E[E2(X1,i|Xr,i)])
+ γr1E(X2

r,i) + 2
√
γ11γr1E(Xr,iE(X1,i|Xr,i)),

where the second equality is due to Lemma 3.1 and the inequality is from (3.43).
After applying the Cauchy–Schwarz inequality and power constraints, we can obtain

1

n
I(X

(n)
1 X

(n)
r ;Y

(n)
1 |X(n)

2 X
(n)
s ) ≤ 1

2
log

(

1

n

n
∑

i=1

EVar[Y1,i|X2iXs,i]

)

≤ C(γ11(ρ̄1α1 + ᾱ1) + γr1 + 2
√

γ11γr1ᾱ1).
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Let Ai be the conditional covariance matrix of (Y1,i, Yr,i) given Xr,i, then

∣

∣

∣

∣

∣

1

n

n
∑

i=1

Ai

∣

∣

∣

∣

∣

=1 + (γ11 + γ1r)
1

n

n
∑

i=1

E[Var(X1,i|Xr,i)] +
(γ21 + γ2r)

n

n
∑

i=1

E[Var(X2,i|Xr,i)]

+ (
√
γ11γ2r −

√
γ21γ1r)

2

(

1

n

n
∑

i=1

E[Var(X1,i|Xr,i)]
)





1

n

n
∑

j=1

E[Var(X2,j |Xr,j)]





+ 2(
√
γ11γ21 +

√
γ1rγ2r)

1

n

n
∑

i=1

E[Cov(X1,i, X2,i|Xr,i)]

− (
√
γ11γ2r−√γ21γ1r)

2

(

1

n

n
∑

i=1

E[Cov(X1,i, X2,i|Xr,i)]
)2

≤1 + (γ11 + γ1r)α1 + 2(
√
γ11γ21 +

√
γ1rγ2r)λ1

√
ρ1ρ2α1α2

+ (γ21 + γ2r)α2 + (
√
γ11γ2r−√γ21γ1r)

2α1α2(1−λ2
1ρ1ρ2),

where λ1 ∈ [0, 1] is a maximization parameter defined by

λ1 = min

{

1,

√
γ11γ21 +

√
γ1rγ2r

(
√
γ11γ2r −√γ21γ1r)2√ρ1ρ2α1α2

}

,

with λ1 = 1 if α1α2ρ1ρ2 = 0.
We can therefore bound the following mutual information terms

1

n
I(X

(n)
1 X

(n)
2 ;Y

(n)
1 Y

(n)
r |X(n)

r ) ≤ 1

2
log

(∣

∣

∣

∣

∣

1

n

n
∑

i=1

Ai

∣

∣

∣

∣

∣

)

(3.48)

≤ C
(

(γ11 + γ1r)α1 + (
√
γ11γ2r−√γ21γ1r)

2α1α2(1−λ2
1ρ1ρ2)

+ (γ21 + γ2r)α2 + 2(
√
γ11γ21 +

√
γ1rγ2r)λ1

√
ρ1ρ2α1α2).

Similarly, let Bi and Ci be the conditional covariance matrix of (Y1,i, Yr,i) given
(Xr,i, Xs,i) and given (X2,i, Xr,i, Xs,i), respectively, we have

∣

∣

∣

∣

∣

1

n

n
∑

i=1

Bi

∣

∣

∣

∣

∣

= 1 + (γ11 + γ1r)
1

n

n
∑

i=1

E[Var(X1,i|Xr,iXs,i)] +
(γ21 + γ2r)

n

n
∑

i=1

E[Var(X2,i|Xr,iXs,i)]

+ (
√
γ11γ2r −

√
γ21γ1r)

2 1

n

n
∑

i=1

E[Var(X1,i|Xr,iXs,i)]
1

n

n
∑

j=1

E[Var(X2,j |Xr,jXs,j)],
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and
∣

∣

∣

∣

∣

1

n

n
∑

i=1

Ci

∣

∣

∣

∣

∣

=1 + (γ11 + γ1r)
1

n

n
∑

i=1

E[Var(X1,i|Xr,iXs,i)].

We can therefore bound the following terms

1

n
I(X

(n)
1 X

(n)
2 ;Y

(n)
1 Y

(n)
r |X(n)

r X
(n)
s ) ≤ 1

2
log

(∣
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∣

∣

∣

1

n

n
∑

i=1

Bi

∣

∣

∣

∣

∣

)

(3.49)

≤ C((γ11 + γ1r)ρ̄1α1 + (γ21+γ2r)ρ̄2α2 + (
√
γ11γ2r −

√
γ21γ1r)

2ρ̄1ρ̄2α1α2),

1

n
I(X

(n)
1 ;Y

(n)
1 Y

(n)
r |X(n)

2 X
(n)
r X

(n)
s ) ≤ 1

2
log

(∣

∣

∣

∣

∣

1

n

n
∑

i=1

Ci

∣

∣

∣

∣

∣

)

≤ C ((γ11 + γ1r)ρ̄1α1) . (3.50)

Using the similar procedures as we demonstrated above, we may bound the
remaining inequalities in (3.3), and combining all the results and let n→∞, we
obtain (3.30).

3.5.B Proof of the Outer Bound Cupp2

As in Appendix 3.5.A, we first introduce auxiliary random variables α1, α2, ρ1 ∈
[0, 1] such that

ᾱ1 =
1

n

n
∑

i=1

E[E2(X1,i|Xr,i)],

ᾱ2 =
1

n

n
∑

i=1

E[E2(X2,i|Xr,i)],

ρ̄1α1 =
1

n

n
∑

i=1

E[Var(X1,i|Xr,iXs,i)],

we can thus obtain (3.33)–(3.35), (3.37)–(3.39) and (3.42) as in Appendix 3.5.A.
Since

1

n

n
∑

i=1

E[Cov(X1,i, X2,i|Xr,i)]

≤

√

√

√

√

1

n

n
∑

i=1

E[Var(X1,i|Xr,i)]
1

n

n
∑

j=1

E[Var(X2,j |Xr,j)]

≤ √α1α2,
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we can introduce an auxiliary variable ρ ∈ [0, 1] such that

1

n

n
∑

i=1

E[Cov(X1,i, X2,i|Xr,i)] = ρ
√
α1α2. (3.51)

On the other hand, we can obtain from (3.40) that

1

n

n
∑

i=1

E[Cov(X1,i, X2,i|Xr,i)]

≤

√

√

√

√

1

n

n
∑

i=1

E[Var(E(X1,i|Xs,i)|Xr,i)]×
1

n

n
∑

i=1

E[Var(E(X2,i|Xs,i)|Xr,i)],

which leads to the following observations

α1ρ
2 ≤ 1

n

n
∑

i=1

E[Var(E(X1,i|Xs,i)|Xr,i)] ≤ ρ1α1, (3.52)

α2ρ
2/ρ1 ≤

1

n

n
∑

i=1

E[Var(E(X2,i|Xs,i)|Xr,i)] ≤ α2, (3.53)

1

n

n
∑

i=1

E[Var(X2,i|Xr,iXs,i)] ≤ (1− ρ2/ρ1)α2, (3.54)

where ρ2/ρ1 = 0 when ρ = ρ1 = 0.
Now, by following the same procedure as in Appendix 3.5.A, replacing ρ2 by

ρ2/ρ1, and bounding

∣

∣

∣

∣

∣

1

n

n
∑

i=1

Ai

∣

∣

∣

∣

∣

≤ 1 + (
√
γ11γ2r −

√
γ21γ1r)

2α1α2(1− ρ2) + (γ11 + γ1r)α1

+ (γ21 + γ2r)α2 + 2(
√
γ11γ21 +

√
γ1rγ2r)ρ

√
α1α2,

we can obtain (3.31).





Chapter 4

Decoding Based Cooperation
Schemes

We investigate cooperative network coding strategies for relay-aided two-source two-
destination wireless relay networks with a backhaul connection between the source
nodes, whose outer bounds have already been investigated in Chapter 3. We study
cooperative strategies based on different network coding schemes, namely, finite
field and linear network coding, and lattice coding. We measure the performance in
terms of achievable rates over Gaussian channels and observe significant gains over
benchmark schemes. We also propose a new coding scheme, partial-decode-and-
forward based linear network coding, which is essentially a hybrid scheme utilizing
rate-splitting and messages exchange at the source nodes, partial decoding and
linear network coding at the relay, and joint decoding at each destination. We derive
achievable rate regions for these schemes and show that for high-rate backhaul,
the cut-set bound can be achieved by network coding based beamforming when
the signal-to-noise ratios lie in the sphere defined by the source-relay and relay-
destination channel gains.

4.1 Cooperative Schemes with Full Source Cooperation

Similar to [CE79, HMZ05, KGG05, SE07], the source Si, i = 1, 2, divides its mes-
sages Wi into B blocks Wi,1, . . . ,Wi,B with nRi bits each. The transmission is
completed over B + 1 blocks. In the first block the two sources exchange Wi,1
over the backhaul and also broadcast their own messages over the relay chan-
nels. In block t, source Si exchanges Wi,t through the backhaul and broadcasts

its codeword X
(n)
i,t , which is a function of (Wi,t,W1,t−1,W2,t−1), over the channels;

in block B + 1 a codeword only depends on Wi,B is broadcasted. As each block is
transmitted over n channel uses, and assuming the backhaul is used for free, the
overall rate is BnRi

(B+1)n bits per channel use, which converges to Ri when B goes

to infinity. Three decoding protocols, namely forward decoding [CE79], backward

51
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Figure 4.1. Two source nodes S1 and S2, connected with backhaul, multicast
information W1 and W2 respectively to both destinations D1 and D2, with aid from
a full-duplex relay node R.

decoding [Car82], and sliding-window decoding [Wil82], have been summarized and
extended to multiple-source or multiple-relay scenarios in [KGG05]. We imple-
ment these protocols at relay/destination nodes depending on the cooperative NC
strategy under consideration. Unless otherwise stated, random coding is used for
encoding and joint-typicality is used for decoding. Each codeword is generated ran-
domly in a memoryless fashion [CT06]: for transmitting messages in {W}, each of
nR bits, we create a codebook consisting of 2nR randomly and independently gen-
erated sequences {U (n)}, each of length n, according to the distribution Πni=1p(ui).
We assign a codeword U (n) to each messageW and associate them via an encoding
function U (n)(W ), omitting the explicit relation where convenient.

To simplify our analysis, we first consider the symmetric channel gain scenario
without cross channels between S1 andD2, or S2 andD1, as illustrated in Figure 4.1.
In this setup, we will provide several cooperative network coding schemes and com-
pare their performance to the cut-set outer bound and a time-sharing benchmark.
We then extend the coding schemes to more general channel setups with cross-link
in Chapter 4.1.8.

Following the notation defined in (2.1), the system in Figure 4.1 can be modelled
as

Y
(n)

1 = X
(n)
1 + bX(n)

r + Z
(n)
1 ,

Y
(n)

2 = X
(n)
2 + bX(n)

r + Z
(n)
2 , (4.1)

Y (n)
r = aX

(n)
1 + aX

(n)
2 + Z(n)

r ,

where X
(n)
i , Y

(n)
i , Z

(n)
i , i=1, 2, r are n-dimensional vectors for the transmitted

signals, received signals, and additive noise, respectively. a ≥ 0 is the normalized
channel gain for the source-relay links and b ≥ 0 for the relay-destination links.
The transmitted signals are subject to individual average power constraints as in
(2.2). While, in general, the signal from Si would be heard also at Dj , j 6= i, our
assumption can be motivated for example in scenarios where the cross links are
too weak, or are technically suppressed. In any case we consider any contribution
directly from Si at Dj (j 6= i) not to be useful and therefore part of the noise.
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Table 4.1. Illustration of the encoding and decoding process for DF+FNC, with
Wr,t = W1,t−1 ⊕W2,t−1, Wr,1 = 1, and B = 3.

t = 1 | 2 | 3 | 4
Backhaul W1,1⇔W2,1|W1,2⇔W2,2 |W1,3⇔W2,3 | /
S1 transmits (W1,1, 1) |(W1,2,Wr,2)|(W1,3,Wr,3)|(1,Wr,4)
S2 transmits (W2,1, 1) |(W2,2,Wr,2)|(W2,3,Wr,3)|(1,Wr,4)
R transmits 1 | Wr,2 | Wr,3 | Wr,4
R decodes W1,1,W2,1 | W1,2,W2,2 | W1,3,W2,3 | /
D1 decodes W1,1 | W1,2,Wr,2 | W1,3,Wr,3 | Wr,4

recovers by ⊕ / | W2,1 | W2,2 | W2,3

4.1.1 Finite-field Network Coding (DF+FNC)

At the end of block t−1, the relay decodes (W1,t−1,W2,t−1) jointly from its received

signal Y
(n)
r,t−1 and then creates a new message Wr,t = W1,t−1 ⊕ W2,t−1 (bit-wise

GF(2) addition). If the lengths of W1,t−1 and W2,t−1 are not equal, i.e., R1 6=
R2, we can append zeros at the end of the shorter message. During block t, R
transmits Wr,t using an independent random codebook {U (n)} of size 2nR (where
R = max(R1, R2)),

X
(n)
r,t =

√

PrU
(n)(Wr,t). (4.2)

S1 and S2, on the other hand, transmit their information via independent random

codebooks {V (n)
1 } of size 2nR1 and {V (n)

2 } of size 2nR2 , respectively. Since W1,t−1

and W2,t−1 have been exchanged via the backhaul in block t − 1, S1 and S2 also
know Wr,t. Therefore, to exploit the possibility of coherent combining gain S1 and
S2 can coordinate their transmission with R as follows,

X
(n)
1,t =

√

α1P1V
(n)

1 (W1,t) +
√

(1− α1)P1U
(n)(Wr,t),

X
(n)
2,t =

√

α2P2V
(n)

2 (W2,t) +
√

(1− α2)P2U
(n)(Wr,t),

(4.3)

where 0 ≤ α1, α2 ≤ 1 are power allocation parameters. The received signals are
therefore

Y
(n)

1,t =
√
α1P1V

(n)
1 +(

√

(1− α1)P1+b
√
Pr)U

(n) + Z
(n)
1,t ,

Y
(n)

2,t =
√
α2P2V

(n)
2 +(

√

(1− α2)P2+b
√
Pr)U

(n) + Z
(n)
2,t , (4.4)

Y
(n)
r,t =a

[√
α1P1V

(n)
1 +

√
α2P2V

(n)
2 +(

√

(1−α1)P1+
√

(1−α2)P2)U (n)
]

+ Z
(n)
r,t .

Forward decoding is implemented at both the relay and the two destination
nodes: assuming W1,t−1 has been successfully decoded by D1, at the end of block

t, D1 recovers (W1,t,Wr,t) jointly from Y
(n)

1,t , and then retrieves W2,t−1 = Wr,t ⊕
W1,t−1. This approach is also used by D2. The relay R decodes jointly (W1,t,W2,t)

from Y
(n)
r,t by first cancelling out U (n). The encoding/decoding process is illustrated

in Table 4.1.
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Proposition 4.1. The achievable rate region for DF+FNC is the union over all
(R1, R2) satisfying R1 ≥ 0, R2 ≥ 0, and

R1 < min
{

C(a2α1P1), C(α1P1), C((
√

(1−α2)P2+b
√
Pr)

2)
}

,

R2 < min
{

C(a2α2P2), C(α2P2), C((
√

(1−α1)P1+b
√
Pr)

2)
}

, (4.5)

R1+R2 < min
{

C(a2α1P1+a2α2P2), C
(

P1+b2Pr+2b
√

(1−α1)P1Pr

)

,

C
(

P2+b2Pr+2b
√

(1−α2)P2Pr

)}

,

where the union is taken over 0 ≤ α1, α2 ≤ 1.

The constraint on R1 corresponds to the condition thatW1 needs to be decoded
reliably at R and D1, and that the NC messageWr be decoded at D2, and similarly
for R2 and R1 +R2. Note that our scheme is similar to the strategy in [GSG+10]:
D1 recoversW1 from the direct link andWr from the R–D1 link, and then retrieves
W2 from Wr based on the previous observation ofW1. However there are two main
differences: finite-field NC rather than lattice coding is used; both source nodes
know Wr thanks to the backhaul and therefore they cooperate with R to get a
coherent combining gain.

Proof. The achievable rate regions derived for MARC in [KvW00, KGG05] involving
multiple sources and a full-duplex DF relay can be directly applied here. Observing

that X
(n)
r is fully determined by U (n) as stated by (4.2), the rate regions defined

by [KvW00, (5)] and [KGG05, (24) and (25)] can be translated to the FNC strategy
as follows

nR1<min{I(X(n)
1 ;Y

(n)
r |U (n)X

(n)
2 ), I(X

(n)
1 ;Y

(n)
1 |U (n)), I(X

(n)
r ;Y

(n)
2 |V (n)

2 )},
nR2<min{I(X(n)

2 ;Y
(n)
r |U (n)X

(n)
1 ), I(X

(n)
2 ;Y

(n)
2 |U (n)), I(X

(n)
r ;Y

(n)
1 |V (n)

1 )}, (4.6)

n(R1+R2) < min{I(X(n)
1 X

(n)
2 ;Y

(n)
r |U (n)), I(X

(n)
1 X

(n)
r ;Y

(n)
1 ), I(X

(n)
2 X

(n)
r ;Y

(n)
2 )},

where U, V1, V2 are auxiliary random variables and the joint probability factorizes
as follows

p(v1, v2, u, x1, x2, xr)=p(x1, v1|u)p(x2, v2|u)p(xr, u).
For the constraints on R1 in (4.6), the first term corresponds to successful decoding

ofW1 at R given that the relaying signal X
(n)
r has been cancelled out and S2 is not

transmitting. The second term refers to the decoding of W1 at D1 given correctly
decodedWr . The last term indicates the successful decoding ofWr (henceW1 after
NC decoding) at D2 given correctly decoded W2. It is similar for R2 and R1 +R2.

Since X1−U−X2 form a Markov chain, following similar arguments as in the
proof of Lemma 3 in [BLW08], one can show that there exist joint Gaussian vari-

ables (X
(n)
1 , X

(n)
2 , U

(n)) that achieve the largest rate region defined in (4.6). By
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choosing U, V1, V2 in (4.2) and (4.3) as i.i.d. zero-mean unit-variance Gaussian ran-
dom variables, we can see that (X1, Xr, X2) is a zero-mean jointly Gaussian tuple
satisfying the power constraint and X1 − Xr(U) − X2 form a Markov chain. By
substituting (4.4) into (4.6), one can get (4.5) straightforwardly.

For the symmetric scenario with P1 = P2 = Pr = P and R1 = R2 = R, the
symmetric rate R achieved by DF+FNC can be obtained straightforwardly from
(4.5) by setting α1 = α2 = α as follows

R< max
0≤α≤1

min

{

C(αP ),
1

2
C(2a2Pα),

1

2
C((1+b2+2b

√
1−α)P )

}

. (4.7)

Without the backhaul, S1 and S2 cannot know/estimate Wr and therefore can-
not cooperate with R, i.e. α1 = α2 = 1. Hence, no coherent combining gain can
be achieved.

Remark 4.1. FNC induces extra rate penalty in asymmetric channel setups: the
rate carried by U (n) should be the the maximum of the two individual rates, but at
the same time it should be supported by the weakest relay-destination link, which
results in the following constraint,

max(R1, R2) < min(I(Xr;Y1|V1), I(Xr;Y2|V2)).

4.1.2 Linear Network Coding (DF+LNC)

When LNC is used in the signal domain, R essentially performs superposition
coding. The scheme presented here is a natural extension of the one in Theorem 1
of [SE07] which is designed for transmitting both private and common messages
via the interference relay channel (IFRC). In our case, only common messages are
transmitted (i.e., multicast). Unlike in [SE07] where each source can only cooperate

with node R regarding its own message in X
(n)
r , here the two source nodes can

cooperate to transmit both messages thanks to the backhaul. We first generate two

independent random codebooks {U (n)
1 } of size 2nR1 and {U (n)

2 } of size 2nR2 . At
the end of block t − 1, R decodes (W1,t−1,W2,t−1) and then picks up codewords

U
(n)
1 (W1,t−1) and U

(n)
2 (W2,t−1) from the two codebooks respectively, and transmits

the superposition of these in block t with power allocation parameter 0 ≤ αr ≤ 1

X
(n)
r,t =

√

αrPrU
(n)
1 (W1,t−1) +

√

(1−αr)PrU (n)
2 (W2,t−1).

For each codeword U
(n)
1 (W1,t−1), we generate an independent codebook {V (n)

1 }
of size 2nR1 , and then use this codebook to encode the new messageW1,t. We denote

the selected codeword for W1,t given W1,t−1 as V
(n)

1 (W1,t,W1,t−1). Similarly we

choose V
(n)

2 (W2,t,W2,t−1) forW2,t. With power allocation parameters 0 ≤ α′i, α′′i ≤
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1, i = 1, 2 to cooperate with R, the transmitted signals at S1 and S2 are therefore

X
(n)
1,t =

√

α′1P1U
(n)
1 +

√

α′′1P1U
(n)
2 +

√

(1−α′1−α′′1 )P1V
(n)

1 ,

X
(n)
2,t =

√

α′2P2U
(n)
2 +

√

α′′2P2U
(n)
1 +

√

(1−α′2−α′′2 )P2V
(n)

2 ,

respectively. The received signals at the destinations and the relay are

Y
(n)

1 =
√

(1−α′1−α′′1 )P1V
(n)

1 +(
√

α′1P1+b
√
αrPr)U

(n)
1

+(
√

α′′1P1+b
√

(1−αr)Pr)U (n)
2 + Z

(n)
1 ,

Y
(n)

2 =
√

(1−α′2−α′′2 )P2V
(n)

2 +(
√

α′′2P2+b
√
αrPr)U

(n)
1 (4.8)

+(
√

α′2P2+b
√

(1−αr)Pr)U (n)
2 + Z

(n)
2 ,

Y (n)
r = a

[

√

(1−α′1−α′′1 )P1V
(n)

1 +
√

(1−α′2−α′′2 )P2V
(n)

2 +(
√

α′1P1+
√

α′′2P2)U
(n)
1

+(
√

α′′1P1 +
√

α′2P2)U
(n)
2

]

+ Z(n)
r ,

respectively. Decoding follows directly from [SE07]: the relay performs successive
decoding and the destinations use backward decoding. R decodes (W1,t,W2,t) reli-

ably from Y
(n)
r,t at the end of block t. D1 and D2 start decoding when transmission

is finished. In block B + 1 no new message is transmitted and the received signal
at D1 (D2) only depends on (W1,B ,W2,B). After decoding (W1,B ,W2,B) success-

fully, onlyW1,B−1 ( W2,B−1) is unknown in Y
(n)

1,B (Y
(n)

2,B ), and we repeat this process
backwards until all messages are recovered.

Proposition 4.2. The achievable rate region for DF+LNC is the union of (R1, R2)
with R1 ≥ 0, R2 ≥ 0, and

R1 < min
{

C(a2P1(1− α′1 − α′′1 )),

C
(

(1−α′′1 )P1 + b2αrPr + 2b
√

α′1αrP1Pr

)

,

C
(

α′′2P2 + b2αrPr + 2b
√

α′′2αrP2Pr

)}

,

R2 < min
{

C(a2P2(1− α′2 − α′′2 )),

C
(

(1−α′′2 )P2+b2(1−αr)Pr+2b
√

α′2(1−αr)P2Pr

)

, (4.9)

C
(

α′′1P1 + b2(1−αr)Pr + 2b
√

α′′1 (1−αr)P1Pr

)}

,

R1+R2<min
{

C(a2(1−α′1−α′′1 )P1+a2(1−α′2−α′′2)P2),

C
(

P1+b2Pr+2b
√
P1Pr

[

√

α′1αr +
√

α′′1 (1−αr)
])

,

C
(

P2+b2Pr+2b
√
P2Pr

[

√

α′′2αr+
√

α′2(1−αr)
])}

,
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where the union is taken over all 0 ≤ αr, α′1, α′′1 , α′2, α′′2 ≤ 1, with α′1 + α′′1 ≤ 1 and
α′2 + α′′2 ≤ 1.

The constraint on R1 refers to the condition that W1 needs to be decoded
successfully at R, D1, and D2, respectively, and similarly for R2 and R1 +R2.

Proof. By Theorem 1 of [SE07], R can decode (W1,t,W2,t) reliably if n is large, its
past detection is correct, and

nR1 < I(X
(n)
1 ;Y (n)

r |U (n)
1 U

(n)
2 X

(n)
2 X

(n)
r ), (4.10a)

nR2 < I(X
(n)
2 ;Y (n)

r |U (n)
1 U

(n)
2 X

(n)
1 X

(n)
r ), (4.10b)

n(R1 +R2) < I(X
(n)
1 X

(n)
2 ;Y (n)

r |U (n)
1 U

(n)
2 X

(n)
r ), (4.10c)

where U1, U2 are auxiliary random variables and the joint probability factorizes as
follows

p(u1, u2, x1, x2, xr) = p(x1, u1)p(x2, u2)p(xr|u1, u2).

For i = 1, 2, Di can decode Wi,t−1 reliably if n is large, its previously detection of
Wi,t is correct, and

nR1 < min
{

I(X
(n)
1 X

(n)
r ;Y

(n)
1 |U (n)

2 ), I(X(n)
r ;Y

(n)
2 |U (n)

2 X
(n)
2 )

}

,

nR2 < min
{

I(X
(n)
2 X

(n)
r ;Y

(n)
2 |U (n)

1 ), I(X(n)
r ;Y

(n)
1 |U (n)

1 X
(n)
1 )

}

, (4.11)

n(R1+R2) < min
{

I(X
(n)
1 X

(n)
r ;Y

(n)
1 ), I(X

(n)
2 X

(n)
r ;Y

(n)
2 )

}

.

By choosing U1, U2, V1, V2 i.i.d. zero-mean unit-variance Gaussian random vari-
ables and applying them in (4.10) and (4.11), we obtain the rate region as defined
in (4.9).

For the symmetric scenario, following from (4.9) directly by setting α′1 = α′2 =
α′, α′′1 = α′′2 = α′′, and αr = 1

2 , the following equal rate constraints apply

R< max
α′≥0, α′′≥0
α′+α′′≤1

min

{

C
((

α′′ +
1

2
b2 + b

√
2α′′

)

P

)

, C
((

1− α′′ + 1

2
b2 + b

√
2α′
)

P

)

,

1

2
C
(

2a2P (1−α′−α′′)
)

,
1

2
C
(

(1+b2+b
√

2α′+b
√

2α′′)P
)

}

. (4.12)

Without backhaul, Xr would only be partially known by the source nodes, i.e.,
α′′1 = α′′2 = 0.
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4.1.3 Physical Layer Network Coding by Lattice Coding

In contrast to Sec. 4.1.1 where R first decodes (W1,W2) and then encodes into a

joint NC message Wr, the relay can decode the NC message directly from Y
(n)
r

by using lattice encoding at the sources and lattice decoding at the relay, as in
[GSG+10, WNPS10] where only the case of symmetric powers is considered. We
propose a protocol based on superposition of a lattice code and a random code to
be able to handle the case of non-symmetric powers. Without loss of generality, we
assume that P1≤P2 (hence R1≤R2 due to symmetric channel setups). S2 splits its
messageW2,t into two parts [W ′2,t,W

′′
2,t], whereW ′2,t has the same length asW1,t. S1

encodesW1,t based on a nested lattice code [EZ04], and we denote the corresponding

transmitted codeword by V
(n)

1 (W1,t). S2 encodesW ′2,t using the same nested lattice

code as S1, denoting the corresponding codeword by V
(n)

2 (W ′2,t), and encodes W ′′2,t

using a random codebook {V (n)
3 } of size 2n(R2−R1). Note that codewords V

(n)
1 and

V
(n)

2 are independent even though they are generated by the same nested lattice
code, since the dither vectors used at S1 and S2 are independent [GSG+10, EZ04].
The relay, after decoding W ′′2,t−1 via a single-user joint-typicality decoder and the
NC messageW1,t−1⊕W ′2,t−1 using a lattice decoder, encodes all these new messages

by using an independent random codebook {U (n)} of size 2nR2 ,

X
(n)
r,t =

√

PrU
(n)(W1,t−1 ⊕W ′2,t−1,W

′′
2,t−1).

Since W1,t−1 and W2,t−1 are known both at S1 and S2 thanks to the backhaul,
U (n)(W1,t−1 ⊕W ′2,t−1,W

′′
2,t−1) is also known. Therefore S1 and S2 cooperate with

R as follows

X
(n)
1,t =

√
δV

(n)
1 (W1,t) +

√

P1 − δU (n), (4.13)

X
(n)
2,t =

√
δV

(n)
2 (W ′2,t) +

√
ǫV

(n)
3 (W ′′2,t) +

√

P2−δ−ǫU (n),

where 0 ≤ δ ≤ P1 and 0 ≤ ǫ ≤ P2− δ are the power1 allocated to transmit the new
messages. The corresponding received signals at the relay and destinations are

Y
(n)
r,t = a

√
δ
(

V
(n)

1 +V
(n)

2

)

+ a
√
ǫV

(n)
3 + a

(

√

P1−δ+
√
P2−δ−ǫ

)

U (n) + Z
(n)
r,t ,

Y
(n)

1,t =
√
δV

(n)
1 +

(

√

P1−δ + b
√

Pr

)

U (n) + Z
(n)
1,t , (4.14)

Y
(n)

2,t =
√
δV

(n)
2 +

√
ǫV

(n)
3 +

(

√

P2−δ−ǫ+b
√
Pr

)

U (n) + Z
(n)
2,t ,

respectively. D1 performs successive forward decoding: at the end of block t, D1

decodes (W1,t−1⊕W ′2,t−1,W
′′
2,t−1) from Y

(n)
1,t by joint typicality and recoversW ′2,t−1

by using W1,t−1 which has been recovered successfully from block t−1; after can-
celling out U (n) the new information W1,t can be decoded. This approach is also
used by D2.

1Multiplicative rather than additive power allocation factors are used here to ensure that the
lattice codewords arrive at the relay node with the same power.
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Proposition 4.3. Using lattice coding, an achievable rate region is given by the
union of (R1, R2), where R1 ≥ 0, R2 ≥ 0, and

R1 < min

{

C
(

−1

2
+ a2δ

)

, C(δ)

}

,

R2 < min

{

C
(

−1

2
+ a2δ +

a2ǫ

2

)

, C(δ + ǫ)

}

,

R1 +R2 < min
{

C
(

P1 + b2Pr + 2b
√

Pr(P1 − δ)
)

, (4.15)

C
(

P2 + b2Pr + 2b
√

Pr(P2−δ−ǫ)
)}

,

with the union taken over 0 ≤ δ ≤ P1 and 0 ≤ ǫ ≤ P2 − δ.
The first term in R1 (R2) refers to the decoding constraint at R for the nested

lattice code [EZ04].

Proof. After cancelling out U (n) from Y
(n)
r,t , the relay can reliably decode W ′′2,t (by

using a Gaussian codebook) if

R2 −R1 <
1

2
log

(

1 +
a2ǫ

1 + 2a2δ

)

.

Then R can further cancel out V
(n)

3 and use the remaining signal to decode the NC
message by using lattice decoding [EZ04, WNPS10] if

R1 <
1

2
log

(

1

2
+ a2δ

)

.

Therefore decoding at R will introduce the following constraints:

R1 < C
(

−1

2
+ a2δ

)

, (4.16)

R2 <
1

2
log

((

1

2
+ a2δ

)(

1 +
a2ǫ

1 + 2a2δ

))

= C
(

−1

2
+ a2δ +

a2ǫ

2

)

.

D1 and D2 can successfully decode W1,t and W2,t = [W ′2,t,W
′′
2,t], respectively, if

R1 <
1

2
log(1 + δ),

R2 <
1

2
log(1 + δ + ǫ). (4.17)

By using successive decoding at both D1 and D2, the following constraints apply

R1 +R2 <
1

2
log(1 + δ) +

1

2
log

(

1 +
(
√
P1 − δ + b

√
Pr)

2

1 + δ

)

, (4.18)

R1 +R2 <
1

2
log(1 + δ + ǫ) +

1

2
log

(

1 +
(
√
P2 − δ − ǫ+ b

√
Pr)

2

1 + δ + ǫ

)

.
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Combining (4.16), (4.17), and (4.18) together we can obtain (4.15).

By setting ǫ = 0 and δ = Pα in (4.19), we can obtain the following achievable
rate for the symmetric scenario

R < max
0≤α≤1

min

{

C(αP ), C
(

−1

2
+ a2Pα

)

,
1

2
C
((

1 + b2 + 2b
√

1− α
)

P
)

}

. (4.19)

Without backhaul, the NC message would not be known at the sources, i.e.,
δ = P1 and ǫ = P2 − P1.

4.1.4 Network Coding Based Beamforming (DF+NBF)

To further exploit the available coherent combining (beam-forming) gain [CE79,
HMZ05, KGG05] at the sinks, we propose a new strategy that performs network
coding at both S1 and S2 but not at the relay (decreasing the complexity at R).
We refer to this scheme as network coding based beamforming (NBF) since the
signals transmitted at S1, S2 and R are formed in a beam-forming fashion. NBF
requires B+2 blocks2 in total: (W1,t−1,W2,t−1) are exchanged via the backhaul
during block t−1; in block t the network coded message Wt = f(W1,t−1,W2,t−1)
is transmitted by both S1 and S2; Wt is transmitted by R in block t+1. Note
that the network coding operation Wt = f(W1,t−1,W2,t−1) at both source nodes
is indeed symbolic rather than operational, since the operator f(·, ·) incurs no rate
loss and does not explicitly specify how the two messages are combined together.
There are many options for this network coding operator f(·, ·). For example, it
can be superposition encoding, or double-index encoding, or simply appending one
message after the other. Note that these options will make no difference under the
encoding and decoding schemes stated below for the current network setup, but
we would like to keep f(·, ·) in general format since NBF scheme can be applied to
more general channel setups and be equipped with more general encoding/decoding
methods, which might result in different achievable rate regions for different network
coding operations.

The relay transmits Wt−1 using a random codebook {U (n)} of size 2n(R1+R2).
For each codeword U (n)(Wt−1), we generate an independent random codebook
{V (n)} of size 2n(R1+R2), and then use it to encode the new message Wt. We
denote the selected codeword for Wt given Wt−1 as V (n)(Wt,Wt−1). At block t,
the transmitted signals are

X
(n)
r,t =

√

PrU
(n)(Wt−1), (4.20)

X
(n)
1,t =

√

α1P1V
(n)(Wt,Wt−1) +

√

(1−α1)P1U
(n)(Wt−1),

X
(n)
2,t =

√

α2P2V
(n)(Wt,Wt−1) +

√

(1−α2)P2U
(n)(Wt−1),

2The first block only includes message exchange via backhaul but no signal transmission in
the wireless channel. Therefore the power consumption in NBF scheme is the same as in other
schemes as we assume no cost for message exchange via backhaul.
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where 0 ≤ α1, α2 ≤ 1 are power allocation parameters. The corresponding received
signals3 are

Y
(n)

1,t =
√

α1P1V
(n) + (b

√

Pr+
√

(1−α1)P1)U (n) + Z
(n)
1,t ,

Y
(n)

2,t =
√

α2P2V
(n) + (b

√

Pr+
√

(1−α2)P2)U (n) + Z
(n)
2,t , (4.21)

Y
(n)
r,t =a

(

√

α1P1+
√
α2P2

)

V (n)+a
(

√

(1−α1)P1+
√

(1−α2)P2

)

U (n)+Z
(n)
r,t .

The decoding process is similar as in the other cooperative strategies: the relay
performs forward decoding and the destinations utilize backward decoding.

Proposition 4.4. The achievable rate region for NBF is defined by the union of
(R1, R2) satisfying R1 ≥ 0, R2 ≥ 0, and

R1 +R2 < min
{

C
(

P1 + b2Pr + 2b
√

(1− α1)P1Pr

)

,

C
(

P2 + b2Pr + 2b
√

(1 − α2)P2Pr

)

, (4.22)

C
(

a2
(

α1P1 + α2P2 + 2
√

α1α2P1P2

))}

,

with the union taken over the power allocation parameters 0 ≤ α1, α2 ≤ 1.

The terms in (4.22) indicate the constraints at D1, D2, and R, respectively.

Proof. Since S1 and S2 transmit the same NC message Wt, the achievable sum
rate can be split arbitrarily between them. Therefore in the NBF strategy only the
constraints for the sum rate matter. Following similar arguments as in Sec. 4.1.1,
the sum rate constraint in (4.6) still holds here, i.e.,

n(R1+R2) < min{I(X(n)
1 X

(n)
2 ;Y

(n)
r |U (n)), I(X

(n)
1 X

(n)
r ;Y

(n)
1 ), I(X

(n)
2 X

(n)
r ;Y

(n)
2 )}.

By applying successive decoding to Y
(n)
r,t and backward decoding to Y

(n)
1,t and Y

(n)
2,t ,

the jointly Gaussian distributed random variables (V (n), U (n)) will translate the
above rate constraints into (4.22).

For the symmetric scenario, the achievable rate can be obtained from (4.22) by
setting α1 = α2 = α as follows

R < max
0≤α≤1

min

{

1

2
C(4a2Pα),

1

2
C
((

1 + b2 + 2b
√

1−α
)

P
)

}

. (4.23)

Without the backhaul, this strategy is impossible.

Remark 4.2. Compared to the lattice coding based scheme in Sec. 4.1.3, DF+NBF
enjoys coherent combining gain at the relay but at the same time suffers from the
decoding constraint at the relay node. Therefore these two schemes will complement
each other in different channel setups.

3Beamforming is implicitly performed here to ensure coherent addition of codewords/signals
at relay and destinations, as stated in Section 2.1.
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4.1.5 Benchmark: Time Sharing Relay

In contrast to the orthogonal scheme described in [SE07] for the case of the IFRC,
S1 and S2 here cooperate with R to convey both messages. We first generate two

independent random codebooks {U (n)
1 } of size 2nR1 and {U (n)

2 } of size 2nR2 that

will be used by R to help S1 and S2, respectively. For each codeword in {U (n)
2 },

we generate an independent random codebook {V (n)
1 } of size 2nR1 , and then use

it to encode the new message at S1. Similarly, we generate a random codebook

{V (n)
2 } of size 2nR2 for each codeword in {U (n)

1 }. During block t, W1,t and W2,t

are exchanged via the backhaul, and the transmission during block t is divided into
two parts. During the first part of block t, the transmitted signals are

X
(n)
r,t1 =

√

PrU
(n)
2 (W2,t−1),

X
(n)
2,t1

= 0,

X
(n)
1,t1

=

√

α1P1

β
V

(n)
1 (W1,t,W2,t−1) +

√

P1(1− α1)

β
U

(n)
2 (W2,t−1),

where 0 ≤ α1 ≤ 1 is the power allocation parameter and 0 ≤ β ≤ 1 is the time

sharing parameter. Transmission power P1

β is used in X
(n)
1,t1

to meet the power
constraint. The received signals are

Y
(n)

2,t1
= bX

(n)
r,t1 + Z

(n)
2,t1

= b
√

PrU
(n)
2 + Z

(n)
2,t1
,

Y
(n)
r,t1 = a

√

α1P1

β
V

(n)
1 + a

√

P1(1− α1)

β
U

(n)
2 + Z

(n)
r,t1 , (4.24)

Y
(n)

1,t1
=

√

α1P1

β
V

(n)
1 +

(
√

P1(1− α1)

β
+ b
√

Pr

)

U
(n)
2 + Z

(n)
1,t1
.

The relay decodes W1,t given W2,t−1 and then encodes it to U
(n)
1 (W1,t). During

the remaining part of block t, the transmitted signals are

X
(n)
r,t2 =

√

PrU
(n)
1 (W1,t),

X
(n)
1,t2

= 0,

X
(n)
2,t2

=

√

α2P2

1− β V
(n)

2 (W2,t,W1,t) +

√

P2(1− α2)

1− β U
(n)
1 (W1,t).
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The corresponding received signals are

Y
(n)

1,t2
= bX

(n)
r,t2 + Z

(n)
1,t2

= b
√

PrU
(n)
1 + Z

(n)
1,t2
,

Y
(n)
r,t2 = a

√

α2P2

1− βV
(n)

2 + a

√

P2(1 − α2)

1− β U
(n)
1 + Z

(n)
2,t2
, (4.25)

Y
(n)

2,t2
=

√

α2P2

1− β V
(n)

2 +

(
√

(1− α2)P2

1− β + b
√

Pr

)

U
(n)
1 + Z

(n)
2,t2
.

At the end of block t,R decodesW2,t givenW1,t, andD1 can retrieve (W1,t,W2,t−1)
reliably using sliding-window decoding based on the received signals during block
t. Similarly, after the first part of block t+ 1, D2 can decode (W2,t,W1,t) reliably
based on signals received from the first part of block t + 1 and the second part of
block t.

Following the same method as in Sec. 4.1.2, by applying Gaussian random vari-
ables and noting the dependence stated in (4.24) and (4.25), the achievable rate
region for this time sharing strategy can be defined by the union of (R1, R2) satis-
fying R1 ≥ 0, R2 ≥ 0, and

R1 < min

{

βC
(

α1a
2P1

β

)

, βC
(

α1P1

β

)

+ (1− β)C(b2Pr),

(1− β)C
(

b2Pr +
P2

1− β + 2b

√

(1− α2)P2Pr
1− β

)}

,

R2 < min

{

(1− β)C
(

α2a
2P2

1− β

)

, (1− β)C
(

α2P2

1− β

)

+ βC(b2Pr),

βC
(

b2Pr +
P1

β
+ 2b

√

P1Pr(1− α1)

β

)}

, (4.26)

R1 +R2 < min

{

(1− β)C(b2Pr) + βC
(

b2Pr +
P1

β
+ 2b

√

P1Pr(1− α1)

β

)

,

βC(b2Pr) + (1− β)C
(

b2Pr +
P2

1− β + 2b

√

P2Pr(1− α2)

1− β

)}

,

with the union taken over all 0 ≤ α1, α2 ≤ 1 and the time sharing parameter
0 ≤ β ≤ 1.

Constraints in R1 (R2) correspond to the condition of successful decoding of
W1 (W2) at R, D1 (D2), and D2 (D1), respectively. Constraints in R1 + R2 refer
to successful decoding at D1 and D2.

By setting α1 = α2 = α and β = 1/2, (4.26) can be translated into the sym-
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metric rate constraint

R < max
0≤α≤1

min

{

1

2
C
(

P
(

2 + b2 + 2b
√

2− 2α
))

,
1

2
C
(

(2α+ b2 + 2αb2P )P
)

,

1

2
C(2a2Pα),

1

4

[

C(b2P ) + C
((

2 + b2 + 2b
√

2− 2α
)

P
)]

}

. (4.27)

Without backhaul, sources can only encode over their own messages. Therefore
we have α1 = α2 = 1 and the first term in (4.27) reduces to 1

2C(b2P ).

4.1.6 Capacity Achieving Special Case

The cut-set bound defined in (3.4) can be applied to the symmetric channel setup
by setting γ11 = γ22 = P , γ1r = γ2r = Pa2, γr1 = γr2 = Pb2, and γ12 = γ21 = 0
(i.e., no cross links), resulting in the following constraint (after setting α = α1 = α2

due to channel symmetry)

R < sup
0≤α,ρ≤1

min

{

1

2
C
(

P
(

1 + b2 + 2b
√

1− α
))

, (4.28)

1

2
C
(

P [(1 + 2a2)α+ 2a2ρα+ a2(1− ρ2)α2P ]
)

}

.

Proposition 4.5. In the symmetric scenario where R1 = R2 = R, DF+NBF
can achieve the cut-set bound, i.e. (4.23) and (4.28) are equivalent, if and only if
(a2, b2, P ) satisfy the following two constraints simultaneously,







4a2 > max{2, 1 + b2},
0 < P ≤ 8a2(2a2 − 1)

2a2(1 + b2)− b2 +
√

(4a2 − b2)(4a2 − 1)b2
.

(4.29)

Proof. The proof can be found in Appendix 4.4.A.

Proposition 4.5 states that there exists a large set of different source-relay chan-
nel gains and relay-destination channel gains, where the cut-set bound can be
achieved by the DF+NBF strategy if the normalized (σ2 = 1) transmit power con-
straint P is no larger than an upper bound defined in (4.29), as shown in Figure 4.2.
Therefore we can claim that even for non-degraded Gaussian relay channels, the
capacity region for the system defined in Figure 4.1 can be known for the scenarios
defined by Proposition 4.5.

An intuitive interpretation of Proposition 4.5 is that (4.29) ensures the successful
decoding at the relay node R. In this scenario, the NBF achievable rate (4.23) and
the cut-set bound (4.28) have the same active constraint on the MAC at D1 and
D2, and therefore leads to tight capacity bounds. The upper bound on P in (4.29)
is to make sure that, given a2 and α, the second term (the constraint at R) in
cut-set bound (4.28) cannot be increased by reducing ρ (otherwise we can increase
(4.28) simply by decreasing α and ρ).
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Figure 4.2. Upper bound for the normalized transmit power constraint P/σ2 given
different source-relay and relay-destination channel gains. Contour plots of the upper
bound are shown at the bottom.

4.1.7 Numerical Results

In this section we illustrate numerically the achievable rate regions and the achiev-
able rates R in symmetric setups for FNC, LNC, Lattice code, and NBF strategies,
and compare them to time-sharing benchmark and the cut-set bound.

Achievable Rate Regions

In Figure 4.3, we plot the achievable rate regions for a scenario where the source
S1 has transmit power P1/σ

2=10dB, S2 has a power budget P2/σ
2=5dB, R has

transmit power constraint Pr/σ
2=5dB, the source-relay channel gain a2=5dB, and

the relay-destination channel gain b2=5dB. Note that the NBF scheme actually
achieves the cut-set bound in this setup, see Sec. 4.1.6 for a formal proof in the
symmetric scenarios. The curves for FNC and Lattice code coincide each other as
decoding at relay is not a constraint due to strong source-relay channels.

Symmetric Achievable Rates

In Figure 4.4 we investigate the impact of the source-relay link quality a2 on
the achievable rates for different cooperative strategies, with fixed transmit power
P/σ2=5dB and relay-destination channel gain b2=0dB. Rate gains of network cod-
ing are significant in a large range of a2 values. Note that when the source-relay
link quality is comparable to the source-destination link, i.e., when a2 is around
0dB, the lattice coding strategy is preferred over LNC or FNC due to the relaxed
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decoding constraint at the relay node. The gain by using backhaul, as illustrated
in the sub-figure, is significant for all schemes for a2 larger than 0dB.

In Figure 4.5, we investigate the impact of the relay-destination link quality
b2 on the achievable rates for different cooperative strategies, with fixed transmit
power P/σ2=5dB and source-relay channel gain a2=10dB (upper) and a2=5dB
(lower). With backhaul, substantial rate gains can be achieved by performing LNC
or NBF compared to the time sharing relay. Significant gains can be achieved by
utilizing the backhaul in the case of a poor relay-destination link (small b2).

Comparison of NBF with Lattice Coding

As discussed in Remark 4.2, NBF and lattice coding based cooperation schemes
complement each other in different channel setups. As illustrated in Figure 4.6, we
compared their performance at a fixed transmit power P/σ2=7dB but with varying
source-relay and relay-destination channel qualities. The relative rate gain of NBF
compared with lattice coding given different P/σ2 is shown in the contour plots.
NBF outperforms lattice coding uniformly in low SNR regions (P/σ2≤5dB) and in
medium SNR regions (5<P/σ2<20dB) with relatively strong source-relay gain a2.
For high SNR regions (P/σ2>20dB), lattice coding outperforms NBF for most of
channel conditions.

In general, network coding based beamforming (NBF) strategies give the best
performance, and the gap between the cut-set bound and the NBF achievable rate
is not large. In high SNR regions, however, the lattice code based strategy is
preferred. FNC, which only performs modulo-2 addition in the finite field, suffers
limited performance loss in most of the cases. Further, and more importantly, we
show significant rate gains compared to the scenarios without backhaul in various
channel conditions.

4.1.8 Extension to General Channel Setups with Cross Links

With a high-rate backhaul the extension to non-symmetric channel gains is straight-
forward: labelling the channel gains by gij as in (2.1) and substituting them into
the previous analysis where appropriate we will get the achievable rate regions and
the cut-set bound in the general case. However, the results for the symmetric sce-
nario where R1 = R2 = R have to be modified since setting α1 = α2 may no longer
be the optimal solution.

The extension to the case with cross links (i.e., g12 > 0 and g21 > 0) is also
straightforward: replacing the channel model (4.1) with (2.1), formulating the
mutual information constraints induced by decoding at destination d ∈ {D1,D2}
as I(X1X2Xr;Yd| · · · ), and translating the rate constraints into C(·) expressions.
However, it is not a good idea to apply such extension to the DF+FNC scheme
since the signal from the cross-link will then be simply treated as noise. Therefore
we should redesign DF+FNC to make better use of the cross links.
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As discussed in Remark 4.1, FNC induces extra rate penalty in asymmetric
channel setups: the XOR operation appends zeros to the shorter message which is a
waste of spectrum efficiency, and the achievable rate is constrained by the weakest
relay-destination link quality. By utilizing a double-index codebook U(W1,W2)
instead of U(W1 ⊕W2), the former penalty can be avoided and the latter can be
reduced by backward decoding.

We first generate a random codebook {U (n)} of size 2n(R1+R2) and label the
codewords as U (n)(s, t), with s ∈ {1, ..., 2nR1} and t ∈ {1, ..., 2nR2}. At the
end of block t − 1, R decodes (W1,t−1,W2,t−1) and then transmits the code-
word U (n)(W1,t−1,W2,t−1). For each codeword U (n)(W1,t−1,W2,t−1), we gener-

ate a random codebook {V (n)
1 } of size 2nR1 , and then use this codebook to

encode the new message W1,t. We denote the selected codeword for W1,t as

V
(n)

1 (W1,t,W1,t−1,W2,t−1). Similarly we generate {V (n)
2 } of size 2nR2 and choose

V
(n)

2 (W2,t,W1,t−1,W2,t−1) forW2,t. With power allocation parameters 0 ≤ α1, α2 ≤
1 to cooperate with R, the transmitted signals at block t are therefore

X
(n)
1,t =

√

α1P1V
(n)

1 (W1,t,W1,t−1,W2,t−1) +
√

(1 − α1)P1U
(n)(W1,t−1,W2,t−1),

X
(n)
2,t =

√

α2P2V
(n)

2 (W2,t,W1,t−1,W2,t−1) +
√

(1 − α2)P2U
(n)(W1,t−1,W2,t−1),

X
(n)
r,t =

√

PrU
(n)(W1,t−1,W2,t−1). (4.30)

The relay performs forward decoding and the destinations use backward decoding.

At the end of block t, the relay decodes (W1,t,W2,t) reliably from Y
(n)
r,t and then

selects the new codeword U (n)(W1,t,W2,t) to be transmitted in next block. D1 and
D2 start decoding after transmission in block B + 1 has finished. In block B + 1,
no new message is transmitted and the received signal at D1 (D2) only depends on
(W1,B,W2,B). After decoding (W1,B ,W2,B) successfully, only W1,B−1 ( W2,B−1) is

unknown in Y
(n)

1,B (Y
(n)

2,B ), and we repeat this process backwards until all messages
are recovered. Following a similar method as in Proposition 4.2, the achievable rate
region can be characterized as follows

R1 < min{I(X1;Yr|X2Xr), I(X1X2Xr;Y1|V2), I(X1X2Xr;Y2|V2)},
R2 < min{I(X2;Yr|X1Xr), I(X1X2Xr;Y1|V1), I(X1X2Xr;Y2|V1)}, (4.31)

R1 +R2 < min{I(X1X2;Yr|Xr), I(X1X2Xr;Y1), I(X1X2Xr;Y2)},

which can be easily translated into C(·) expressions by substituting (4.30) into it
and choosing (U, V1, V2) to be Gaussian.

Note that the above scheme can be regarded as an extension of the DF+LNC
scheme with the superposition encoding at the relay being replaced by the double-
index encoding. A further extension is to combine the double-index encoding with
block Markov encoding, which is exactly what we have done in DF+NBF. Therefore
we will concentrate on NBF (rather than FNC or LNC) in the rest of this thesis
for full source cooperation in general channel setups. The numerical results of
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DF+NBF in general channel setups will be postponed to next chapter when CF/AF
results are ready for comparison.

4.2 Cooperative Scheme with Partial Source Cooperation

To gain deeper understanding of source cooperation in a more realistic setting
and demonstrate the benefit of combining source cooperation with relaying, in this
section we focus on the low-rate backhaul scenario (0≤C12<R1, 0≤C21<R2).

As demonstrated in Sec. 4.1.7, the network coding based beamforming (NBF)
strategy gives the best performance in general as it can greatly benefit from a
coherent combining gain. In low-rate backhaul scenario, we can still enjoy such
benefit by rate-splitting [Car78, RU96] and message exchange via backhaul. On
the other hand, linear network coding (LNC) based scheme outperforms finite-
field network coding (FNC) and time-sharing (TD) based schemes. Therefore in
the following we only consider LNC as the combining method at the relay node.
The lattice coding based scheme, which can beat NBF when decoding at relay
becomes problematic, is non-trivial to be extended to the scenario with partial
source cooperation. We will instead relax the decoding constraint at the relay node
by allowing partial decoding at relay.

We first partition each source message into two parts W1=[W1c, W1p] and
W2=[W2c, W2p], and then divide all the four messages evenly into B blocks W1c,t,
W1p,t, W2c,t, W2p,t, each with nR1c, nR1p, nR2c, nR2p, bits, respectively. The
transmission is completed in B+2 blocks4, each with n channel uses. During block
t−1, the sources exchange (W1c,t,W2c,t) over the conferencing links at rateR1c≤C12

and R2c≤C21, respectively, to formulate a common message Wc,t=[W1c,t,W2c,t];
during block t, S1 broadcasts [Wc,t,W1p,t] and S2 broadcasts [Wc,t,W2p,t] over the
channel in cooperation with the relay’s transmission.

4.2.1 Partial-Decode-and-Forward Relaying with Linear
Network Coding (pDF+LNC)

Unlike the cooperative strategies with DF relaying proposed in [DXS11b], R here
only needs to decode and forward some or all of the messages (W1p,t,W2p,t,Wc,t) de-
pending on the channel quality, owning to the existence of cross-links. We propose
a hybrid coding scheme termed partial-decode-and-forward based linear network
coding (pDF+LNC). It essentially performs rate-splitting at the source nodes to
exchange messages, partial decoding and LNC at the relay to reduce the rate con-
straints and superpose the decoded messages, and joint decoding at the destinations
to enlarge the rate region. The codebook generation and encoding/decoding pro-
cess are a natural extension of Theorem 1 of [SE07]. Given i.i.d. random variables

V1p, V2p, Vc∼N (0, 1), we first generate independent codebooks {V (n)
1p }, {V

(n)
2p }, and

4The first block (t = 0) involves only message exchanging via error-free backhaul but no
transmission over the relay channel.
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Table 4.2. Illustration of the encoding/decoding process for pDF+LNC with
Wc,t = [W1c,t,W2c,t] for B = 2 and full decoding at the relay.

t = | 0 | 1 | 2 | 3
Backhaul|W1c,1⇔W2c,1|W1c,2⇔W2c,2| / | /
S1 TX | / | W1p,1,Wc,1 |W1p,1,W1p,2,Wc,1,Wc,2| W1p,2,Wc,2
S2 TX | / | W2p,1,Wc,1 |W2p,1,W2p,2,Wc,1,Wc,2| W2p,2,Wc,2
R RX | / |W1,1,W2,1 →| W1,2,W2,2 → | /
R TX | / | / | W1p,1,W2p,1,Wc,1 |W1p,2,W2p,2,Wc,2
D RX | / | / | W1,1,W2,1 | ←W1,2,W2,2

{V (n)
c }, each of size 2nR1p , 2nR2p , and 2nRc , respectively. Then, for each index

k∈{1, ..., 2nR1p}, we generate independently 2nR1p codewords X
(n)
1p using distribu-

tion
∏

p(x1p|v1p(k)), and label the codewords asX
(n)
1p (n, k), where n∈{1, ..., 2nR1p}.

We generate X
(n)
2p and X

(n)
c in a similar way. At block t, S1 transmits [Wc,t,W1p,t]

and S2 transmits [Wc,t,W2p,t] in cooperation with the relay’s transmission as follows

X
(n)
r,t =

√

α′rV
(n)

1p (W1p,t−1) +
√

α′′rV
(n)

2p (W2p,t−1) +
√

1− α′r − α′′rV (n)
c (Wc,t−1),

X
(n)
1,t =

√
α1X

(n)
1p (W1p,t,W1p,t−1) +

√
α2X

(n)
c (Wc,t,Wc,t−1) +

√
α3V

(n)
1p +

√
α4V

(n)
c ,

X
(n)
2,t =

√
α5X

(n)
2p (W2p,t,W2p,t−1) +

√
α6X

(n)
c (Wc,t,Wc,t−1) +

√
α7V

(n)
2p +

√
α8V

(n)
c ,

(4.32)

where 0 ≤ α′r, α′′r , α1, α2, α3, α4, α5, α6, α7, α8 ≤ 1 are power allocation parameters
with α1 + α2 + α3 + α4 = 1 and α5 + α6 + α7 + α8 = 1.

The encoding/decoding process when R decodes all messages with B = 3 is il-
lustrated in Table 4.2. R recovers (W1p,t,W2p,t,Wc,t) jointly at the end of block t by

forward decoding [CE79] based on Y
(n)
r,t after cancelling out (W1p,t−1,W2p,t−1,Wc,t−1).

The destinations carry out backward decoding [Car82]: the received signal Y
(n)

1,B+1

(Y
(n)

2,B+1) only depends on (W1p,B ,W2p,B,Wc,B), which can be retrieved by a joint

typicality decoder; then we can proceed to Y
(n)

1,B (Y
(n)

2,B ) and repeat this process
backwards until all messages are recovered.

Proposition 4.6. Define T = {1p, 2p, c}, TQ ⊆ T and TQ 6= ∅, the achievable rate
region for pDF+LNC is the union of all (R1, R2) satisfying R1 ≥ 0, R2 ≥ 0, and



































R1 = R1p +R1c,
R2 = R2p +R2c,
Rc = R1c +R2c,
0 ≤ R1c ≤ C12, 0 ≤ R2c ≤ C21, R1p ≥ 0, R2p ≥ 0,
R(S ⊆ T ) < min

d∈{1,2}
I(X(S)Xr;Yd|X(Sc)V (Sc)),

R(SQ ⊆ TQ) < I(X(SQ);Yr |X(ScQ)V (TQ)),

(4.33)
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where R(S) =
∑

k∈S Rk, S
c (ScQ) is the complementary subset of S (SQ) with

S ∪ Sc = T (SQ ∪ ScQ = TQ), and the union is taken over all the power allocation
parameters, and over all possible rate constraints (R1p, R2p, Rc) that are determined
by the corresponding partial-DF cooperation strategies indicated by TQ. Interme-
diate variables R1p, R2p, Rc, R1c and R2c can be easily removed by performing
Fourier-Motzkin elimination.

Proof. Proof outline.
There are 7 different partial decoding options at the relay, namely, decoding only

W1p,t,W2p,t,Wc,t, (W1p,t,W2p,t), (W1p,t,Wc,t), (W2p,t,Wc,t), or (W1p,t,W2p,t,Wc,t),
resulting in 7 different rate constraints (R1p, R2p, Rc). We therefore introduce an
auxiliary random variableQ to indicate different partial DF strategies and any com-
binations of them by arbitrary time-sharing. If the relay decodes (W1p,t,W2p,t,Wc,t)
(i.e., TQ = T ), by performing forward decoding [CE79] at the relay and backward
decoding [Car82] at destinations, we can get from Theorem 1 of [SE07] that

R(S ⊆ T ) < min{I(X(S);Yr|X(Sc)Xr), (4.34)

I(X(S)Xr;Y1|X(Sc)V (Sc)),

I(X(S)Xr;Y2|X(Sc)V (Sc))},

with variables defined as in (4.32) and (3.1). By enforcing p(x1p|v1p), p(x2p|v2p),
and p(xc|vc) to be normal distributions, and applying the fact that V1p, V2p, Vc∼N (0, 1)
into (4.32), all the mutual information constraints in (4.34) can be translated into
corresponding C(·) expressions

R1p = min

{

C(α1γ1r), min
d∈{1,2}

C(α1γ1d + (
√
α3γ1d +

√

α′rγrd)
2)

}

,

R2p = min

{

C(ρ1γ2r), min
d∈{1,2}

C(ρ1γ2d + (
√
ρ3γ2d +

√

α′′rγrd)
2)

}

,

Rc = min
{

C((√α2γ1r +
√
ρ2γ2r)

2),

min
d∈{1,2}

C((√α2γ1d +
√
ρ2γ2d)

2 + (
√

ᾱrγrd +
√
α4γ1d +

√
ρ4γ2d)

2)

}

,

R1p +R2p = min
{

C(α1γ1r + ρ1γ2r),

min
d∈{1,2}

C(α1γ1d + ρ1γ2d + (
√
α3γ1d +

√

α′rγrd)
2 + (

√
ρ3γ2d +

√

α′′rγrd)
2)

}

,

R1p +Rc = min
{

C(α1γ1r) + (
√
α2γ1r +

√
ρ2γ2r)

2),

min
d∈{1,2}

C(α1γ1d + (
√
α3γ1d +

√

α′rγrd)
2 + (

√
α2γ1d +

√
ρ2γ2d)

2

+(
√

ᾱrγrd +
√
α4γ1d +

√
ρ4γ2d)

2)
}

,
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and

R2p +Rc = min
{

C((ρ1γ2r +
√
α2γ1r +

√
ρ2γ2r)

2),

min
d∈{1,2}

C(ρ1γ2d + (
√
ρ3γ2d +

√

α′′rγrd)
2 + (

√
α2γ1d +

√
ρ2γ2d)

2

+(
√

ᾱrγrd +
√
α4γ1d +

√
ρ4γ2d)

2)
}

,

R1p +R2p +Rc = min
{

C(γ1r(α1 + α2) + γ2r(ρ1 + ρ2) + 2
√
α2ρ2γ1rγ2r),

min
d∈{1,2}

C(γ1d + γ2d + γrd + 2
√
γ1dγ2d(

√
α2ρ2 +

√
α4ρ4)

+2
√
γ1dγrd(

√

α3α′r +
√
α4ᾱr) + 2

√
γ2dγrd(

√

ρ3α′′r +
√

ρ4ᾱr))
}

.

By performing Fourier-Motzkin elimination we can straightforwardly translate the
above expressions into the corresponding rate region of (R1, R2) for TQ = T .

If the relay only decodes Wc,t (TQ = {c}), we have

R(S ⊆ T ) < min
d∈{1,2}

I(X(S)Xr;Yd|X(Sc)V (Sc)), (4.35)

Rc < I(Xc;Yr|Vc),

with variables defined as in (4.32) and (3.1) but with α′r = α′′r = α3 = α7 = 0. The
case when the relay only decodes W1p,t (for TQ = {1p}) or W2p,t (for TQ = {2p})
is handled similarly.

If the relay decodesW1p,t, X2p,t but notWc,t (for TQ = {1p, 2p}), we can obtain

R(S ⊆ T ) < min
d∈{1,2}

I(X(S)Xr;Yd|X(Sc)V (Sc)), (4.36)

R1p < I(X1p;Yr|X2pV1pV2p),

R2p < I(X2p;Yr|X1pV1pV2p),

R1p +R2p < I(X1pX2p;Yr|V1pV2p),

with variables defined as in (4.32) and (3.1) but with α′r+α′′r = 1 and α4 = α8 = 0.
It is similar for scenarios when the relay does not decode W1p,t (for TQ = {2p, c})
or W2p,t (for TQ = {1p, c}).

For other values of Q, different partial DF strategies are used in a time-sharing
fashion. The achievable rate region in (4.33) is therefore the union of all the different
regions resulting from different partial decoding strategies.

The pDF+LNC strategy requires a smart relay which can adopt a proper en-
coding/decoding scheme depending on the effective link SNR γ, in addition to a
powerful joint typicality decoder. Based on the design metric (e.g. maximizing
the sum rate) and the values of γi,j , the same optimization process can be carried
out at both the relay and source nodes, resulting in an operation point (R1, R2)
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on the boundary of the achievable rate region together with a group of operat-
ing parameters (Q,R1p, R2p, R1c, R2c, α

′
r, α
′′
r , α1, α2, α3, α4, α5, α6, α7, α8). Ideally

such optimization process can be carried out on the fly to adaptively update the
operating parameters. For practical implementation however, we need to form a
lookup table for R which contains (Q,R1p, R2p, R1c, R2c, α

′
r, α
′′
r ) and is indexed by

quantized link SNR γ̃ij , i, j = 1, 2, r. The lookup tables for S1 and S2 are created in
a similar way. Note that the quantization should satisfy γ̃ ≤ γ to avoid link outage
and hence results in a loss of spectrum efficiency. If the quantization resolution is
properly selected, the complexity of implementing a lookup table can be marginal
compared to the joint typicality decoder equipped by the DF relay.

4.3 Summary

In this chapter we have investigated DF relaying based cooperative strategies with
different NC schemes, namely, finite field network coding, linear network coding,
lattice coding. For high-rate backhaul, we have shown that the cut-set bound
can be achieved by network coding based beamforming when the signal-to-noise
ratios lie in the sphere defined by the source-relay and relay-destination channel
gains. In general, the network coding based beamforming strategy gives the best
performance. In high SNR regions, however, the lattice code based strategy is
preferred. FNC, which only performs modulo-2 addition in the finite field, suffers
limited performance loss in most of the cases. Further, and more importantly, we
have shown significant rate gains compared to the scenarios without backhaul in
various channel conditions. For low-rate backhaul scenarios, we propose a new
coding scheme, partial-decode-and-forward based linear network coding, which is
essentially a hybrid scheme utilizing rate-splitting and messages conferencing at
the source nodes, partial decoding and linear network coding at the relay, and joint
decoding at each destination.

4.4 Appendix

4.4.A Proof of the Capacity Achieving Case

From (4.23) and (4.28) we can capture the effective power gain as follows

gNBF = max
0≤α≤1

min
{

4a2α, 1 + b2 + 2b
√

1− α
}

, (4.37)

gcut-set = sup
0≤α,ρ≤1

min
{

1 + b2 + 2b
√

1− α, α+ a2(2α+ 2αρ+ (1− ρ2)α2P )
}

.

(4.38)

From (4.37) it is straightforward to shown that

gNBF =

{

4a2, if 4a2 ≤ 1 + b2;
1 + b2 + 2b

√
1− α∗, otherwise,

(4.39)
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where a∗ ∈ [0, 1] satisfies 4a2α∗ = 1+b2+2b
√

1− α∗. For the second part of (4.38),
we have

max
0≤α,ρ≤1

α+ a2(2α+ 2αρ+ (1− ρ2)α2P )

= max
0≤α,ρ≤1

α+ a2(2α+ α2P + 1/P − P (1/P − αρ)2)

=

{

1 + a2(2 + P + 1
P ), if P>1, [by setting α=1, ρ= 1

P ]
1 + 4a2, if P≤1, [by setting α = ρ = 1]

(4.40)

By combining (4.38) and (4.40) one can easily conclude that

gcut-set =







1 + 4a2, if 4a2 ≤ b2 and P ≤ 1;
> 1 + 4a2, if 4a2 ≤ b2 and P > 1;
1 + b2 + 2b

√
1− α∗, otherwise;

(4.41)

where 0 ≤ α∗ ≤ 1 satisfies the equality

1 + b2 + 2b
√

1− α∗ = α∗ + a2(2α∗ + 2α∗ρ+ (1− ρ2)(α∗)2P ).

From (4.41) it clearly follows that gcut-set>4a2 for the scenarios when 4a2≤1 + b2.
Therefore gNBF = gcut-set is possible only if 4a2>1 + b2, i.e., there should exist two
variables 0 ≤ α∗, ρ ≤ 1 such that

4a2α∗ =1 + b2 + 2b
√

1− α∗, (4.42a)

4a2α∗ =α∗ + a2(2α∗ + 2α∗ρ+ (1− ρ2)(α∗)2P ). (4.42b)

By subtracting 1 + b2 from both sides of (4.42a) and then taking square, we have

16a4(α∗)2 − α∗(8a2 + 8a2b2 − 4b2) + (1− b2)2 = 0,

which has only one true root for (4.42a) (must satisfy 4a2α∗ > 1 + b2)

α∗ =
2a2(1 + b2)− b2 +

√

(4a2 − b2)(4a2 − a)b2
8a4

. (4.43)

From (4.42b) we get

ρα∗ = 1/P +
√

α∗/(a2P ) + (α∗ − 1/P )2,

or

ρα∗ = 1/P −
√

α∗/(a2P ) + (α∗ − 1/P )2.

Since 0 ≤ ρα∗ ≤ α∗, the first root is obviously a false root and therefore omitted.
To make the second root satisfy the constraint, we must have

0 ≤ 1/P −
√

α∗/(a2P ) + (α∗ − 1/P )2 ≤ α∗.
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The second inequality is self-evident, and the first inequality requires

a2 > 1/2 and α∗ ≤ 1

P

(

2− 1

a2

)

. (4.44)

We therefore conclude from (4.43) and (4.44), given 4a2 > 1 + b2 and P > 0, that
(4.42) holds if and only if 4a2 > 2 and

2a2(1 + b2)− b2 +
√

(4a2 − b2)(4a2 − a)b2
8a4

≤ 1

P

(

2− 1

a2

)

.

Combined with the finding that gNBF = gcut-set is impossible for 4a2 ≤ 1 + b2, we
can conclude that gNBF = gcut-set, i.e. (4.23) and (4.28) are identical, if and only if
(a2, b2, P ) satisfies (4.29).





Chapter 5

Compression/Amplification Based
Cooperation Schemes

In this Chapter we extend noisy network coding to use source cooperation with the
help of the theory of network equivalence. We show that when partial cooperation
between source nodes is possible, short-message noisy network coding with message
exchange can achieve a strictly larger rate region than noisy network coding. A
low-complexity alternative scheme, analog network coding based on amplify-and-
forward relaying, is also investigated and shown to benefit greatly from the help of
the backhaul and it can even outperform noisy network coding when the coherent
combining gain is dominant.

5.1 Noisy Network Coding (NNC)

The standard compress-and-forward (CF) relaying strategy [CE79] provides the
destination node(s) with a noisy yet structured observation (compression) of its
received signal via the use of an independent codebook. When CF relaying is used,
the source performs block Markov encoding and transmits an independent short
message in each time slot via random coding. The relay performs compression
based on Wyner–Ziv binning and the destination performs block-by-block forward
successive decoding (first decoding the bin index and then the message). The use
of Wyner–Ziv binning at the relay makes it nontrivial to extend CF to multiple
relays [KGG05].

The quantize-map-and-forward (QMF) protocol proposed in [ADT11], which
utilizes symbol-by-symbol scalar quantization at the relay and joint decoding at
the destination, has been proved to be approximately optimal (within a constant
gap to the cut-set bound) for unicast layered networks with multiple relays, and for
non-layered unicast networks via time extension. The noisy network coding (NNC)
protocol [LKEC11] can be regarded as an extension of QMF. NNC, which performs
repetition coding at source nodes, compression without using Wyner–Ziv binning

79
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(vector quantization) at relays, and simultaneous joint message and compression
index decoding at destinations, can be easily extended to multiple-source and/or
multiple-relay scenarios. Contrary to CF where one large message is first partitioned
into many blocks and then transmitted, NNC encodes the large message directly
and transmits over all the time slots, each with an independent codebook. After all
the transmissions are completed, the destination decodes the large message and all
the compression indices jointly. NNC has been shown in [LKEC11] to recover the
rate region achieved by CF in the classical 3-node relay model, and outperform CF
in the two-way relay channel, the interference relay channel, and the multiple-relay
channel discussed in [KGG05].

The basic principle of NNC, as described in [LKEC11], is to convey a “super
message” N times, each time using an independent codebook and letting N→∞,
before the destination(s) can successfully decode the message. Given the orthogonal
(i.e., out-of-band) conferencing bit-pipes between source nodes, cooperation in NNC
can be realized in the following two ways: compression forwarding or message
exchange. Since compression forwarding in NNC is realized by noisy transmission
(relaying) among source/relay nodes, it is not clear how it can be implemented via
the noiseless backhaul. On the other hand, since NNC with message exchange will
require the common message to be identified in the first block already such that the
repetition coding can start with, it requires a N→∞ times higher backhaul rate to
exchange the super message. How to optimally utilize the rate-limited backhaul in
NNC is interesting but yet to be determined.

5.1.1 NNC with Message Exchange via Backhaul

To avoid excessive delay incurred by super message exchange via backhaul, NNC
with message exchange can be done in a segment-by-segment fashion1: partition the
total message blocks into K segments, each with B blocks; during the first segment
NNC is used without cooperation but the backhaul is used to exchange messages to
be transmitted in segment 2; in segment m>1 the common message exchanged via
backhaul in segment m − 1 is transmitted together with private messages at each
source node using superposition encoding. This however requires long memories
and long encoding delay that grows with n× B, where n is codeword length (i.e.,
the number of channel uses in each transmission).

On the other hand, as stated in [LKEC11], the achievable rate of NNC with
finite B and sufficiently long codeword length (n → ∞) for the classical 3-node
relay network shown in Figure 2.3 can be characterized by

RB <
B − 1

B
R∞ −

I(Ŷ2;Y2|X2)

B
, (5.1)

1The cooperation for NNC will be done over message blocks within the same segment and no
cooperation across segments.
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where

R∞= min{I(X1;Y3Ŷ2|X2), I(X1X2;Y3)− I(Y2; Ŷ2|X1X2Y3)} (5.2)

is the rate of NNC when B → ∞. Therefore NNC with segment-wise cooperation
can achieve rate RB for all the K segments except for the first one where no
cooperation is done (hence a lower rate than RB). As the cooperation block number
B cannot be very large due to memory constraint, NNC with cooperation will still
incur a rate loss.

5.1.2 NNC with Compression Forwarding via Backhaul

At transmission block t = 1, ..., B, source node S1 forwards a compression

X
(n)
s1,t = f1(W1, X

t−1
s1 , X

t−1
s2 )

via backhaul to S2 at rate C12 bits per channel use and S2 forwards

X
(n)
s2,t = f2(W2, X

t−1
s2 , X

t−1
s1 )

to S1, where

Xt−1
s1 = [X

(n)
s1,1, ..., X

(n)
s1,t−1]

and f1(·) and f2(·) are some compression functions. At block t+ 1, S1 broadcasts

X
(n)
1,t+1 which is determined based on W1 and X

(n)
s2,t. With compression forwarding

through the backhaul, the source nodes essentially behave as a relay node to help
the delivery of each other’s messages, which fits well into the framework of NNC
and therefore only some slight modification on the encoding/decoding process is
needed for the extension.

Although there are many different ways to design the compression functions,
the optimal way is yet to be determined based on the available backhaul capac-
ity, channel settings, and message delivery requirement. One way to design the
compression functions is to mimic a noisy observation of each other’s signal and
such noise observation is conveyed via the backhaul and then used to generate a
compression index as in the normal NNC strategy, as presented in the following.

According to the theory of network equivalence [KEM11], the capacity of a
network is unchanged if any independent2, memoryless, point-to-point channel in
this network is replaced by a noiseless bit-pipe with throughput equal to the re-
moved channel’s capacity. Since the conferencing bit-pipes between two source
nodes are independent and orthogonal to all the other transmissions, they can be

2The transition probability of the channel can be separated from the transition probability of
the rest of the network, i.e., a product of these two functions can represent the transition of the
whole network. A more formal definition can be found in Definition 6.1.
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replaced [KEM11] by noisy channels with the same capacity as follows:

C12 :Ys2 =
√

P1Xs1 + Zs2, with C(P1) =
1

2
log(1 + P1) = C12,

C21 :Ys1 =
√

P2Xs2 + Zs1, with C(P2) =
1

2
log(1 + P2) = C21, (5.3)

where Xs1, Xs2, Zs1, Zs2 are independent Gaussian3 random variables with zero-
mean and unit-variance, P1, P2 are corresponding power constraints, and Ys1, Ys2
are the conferencing outputs at source nodes S1 and S2, respectively. Note that sig-
nals in (5.3) are orthogonal to all the other transmissions and therefore will not mix
with signals (e.g. X1, X2) in (3.1). Now we can extend the NNC scheme [LKEC11],
originally designed for noisy cooperation (relaying) among source/relay nodes, to
our setup with orthogonal conferencing error-free bit-pipes.

Proposition 5.1. An achievable rate region of NNC with conferencing encoders is
obtained as the union of all rate pairs (R1, R2) that satisfy R1 ≥ 0, R2 ≥ 0, and

R1 < ∆R1
+ min

{

C
(

γ11 +
γ1r

1 + σ2
r

)

, C
(

γ12 +
γ1r

1 + σ2
r

)

, (5.4)

C(γ11 + γr1)− C
(

1

σ2
r

)

, C(γ12 + γr2)− C
(

1

σ2
r

)}

,

R2 < ∆R2
+ min

{

C
(

γ21 +
γ2r

1 + σ2
r

)

, C
(

γ22 +
γ2r

1 + σ2
r

)

,

C(γ21 + γr1)− C
(

1

σ2
r

)

, C(γ22 + γr2)− C
(

1

σ2
r

)}

,

R1 +R2 < ∆Rs + min

{

C(γ11 + γ21 + γr1)− C
(

1

σ2
r

)

, C(γ12 + γ22 + γr2)− C
(

1

σ2
r

)

,

C
(

γ11 + γ21 +
γ1r + γ2r + (

√
γ11γ2r −√γ21γ1r)

2

1 + σ2
r

)

,

C
(

γ12 + γ22 +
γ1r + γ2r + (

√
γ12γ2r −√γ22γ1r)

2

1 + σ2
r

)}

,

where

∆R1
= C

(

P1

1 + σ2
2

)

− C
(

1

σ2
1

)

,

∆R2
= C

(

P2

1 + σ2
1

)

− C
(

1

σ2
2

)

,

∆Rs = −C
(

1

σ2
1

)

− C
(

1

σ2
2

)

,

3In [KEM11] the noisy channel is only required to have the same capacity as the bit-pipe’s
throughput, with no restriction on the channel input or output. By restricting ourselves to Gaus-
sian signals, the capacity of the overall network will not be increased, and therefore we still have
a valid inner bound to the capacity.
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the value of P1, P2 is determined by conferencing rate (C12, C21) as defined in (5.3),
and the union is taken over all σ2

1 , σ
2
2 , σ

2
r > 0.

Proof. Given the set of transmitting nodes T = {S1,S2,R} and the set of sink
nodes D = {D1,D2}, an achievable rate region of NNC for the multicast relay
network in Figure 3.1 can be specialized from Theorem 1 of [LKEC11] as follows
∑

k∈S

Rk < min
d∈D
I(X(S); Ŷ (Sc)Y (d)|X(Sc)Q)− I(Y (S); Ŷ (S)|X(T )Ŷ (Sc)Y (d)Q),

where Ŷ is the compressed versions of Y , Q is the time-sharing parameter, S, Sc

are any pair of complementary subsets of T , i.e., S ∪ Sc = T and S ∩ Sc = ∅, with

X(S1) = {X1, Xs1}, X(S2) = {X2, Xs2}, X(R) = Xr,

X(T ) = {X1X2XrXs1Xs2},
Y (S1) = Ys1, Y (S2) = Ys2, Y (R) = Yr, Y (D1) = Y1, Y (D2) = Y2.

The achievable rate region is therefore defined by

R1 < min
d∈{1,2}

{

(5.5)

I(X1Xs1; Ŷs2ŶrYd|X2Xs2XrQ)−I(Ys1; Ŷs1|X1X2XrXs1Xs2Ŷs2ŶrYdQ),

I(X1Xs1Xr; Ŷs2Yd|X2Xs2Q)−I(YrYs1; ŶrŶs1|X1X2XrXs1Xs2Ŷs2YdQ)
}

,

R2 < min
d∈{1,2}

{

I(X2Xs2; Ŷs1ŶrYd|X1Xs1XrQ)−I(Ys2; Ŷs2|X1X2XrXs1Xs2Ŷs1ŶrYdQ),

I(X2Xs2Xr; Ŷs2Yd|X1Xs1Q)−I(YrYs2; ŶrŶs2|X1X2XrXs1Xs2Ŷs1YdQ)
}

,

R1+R2 < min
d∈{1,2}

{

I(X1X2Xs1Xs2; ŶrYd|XrQ)−I(Ys1Ys2; Ŷs1Ŷs2|X1X2XrXs1Xs2ŶrYdQ),

I(X1X2XrXs1Xs2;Yd|Q)−I(YrYs1Ys2; ŶrŶs1Ŷs2|X1X2XrXs1Xs2YdQ)
}

,

with the joint probability p(q, x1, x2, xr, xs1, xs2, yr, ys1, ys2, ŷr, ŷs1, ŷs2) partitioned
as

p(q)p(x1|q)p(x2|q)p(xr |q)p(xs1|q)p(xs2|q)
×p(ŷr|xr , yr, q)p(ŷs1|x1, ys1, q)p(ŷs2|x2, ys2, q).

By setting Q=∅ and

Ŷ (n)
r = Y (n)

r + Ẑ(n)
r , with Ẑr ∼ N (0, σ2

r ),

Ŷ
(n)
s1 = Y

(n)
s1 + Ẑ

(n)
1 , with Ẑ1 ∼ N (0, σ2

1),

Ŷ
(n)
s2 = Y

(n)
s2 + Ẑ

(n)
2 , with Ẑ2 ∼ N (0, σ2

2),
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Figure 5.1. Achievable rate region of NNC with compression forwarding via back-
haul, achieved by time-sharing among rate optimization of R1, R2, and R1 + R2,
respectively. The SNR parameters are heuristically chosen.

and applying (3.1), (3.2) and (5.3) into (5.5), we can find the region (5.4).

Note that σ2
i , i = 1, 2, r refers to the controllable quantization noise power in-

duced by noisy compression at S1, S2, and R, respectively, which leads to a rate
penalty −C( 1

σ2
i
). Rate contributions C( P1

1+σ2
2

) and C( P2

1+σ2
1

) are due to noisy relaying

of the conferencing messages. Since ∆Rs≤0 with equality if and only if σ2
1=σ2

2=∞,
i.e., no source cooperation via conferencing links, we have to compute the rate
region for noisy NC in three steps: first generate the rate region of noisy NC with-
out utilizing conferencing links; then compute rate regions by maximizing R1, R2,
and R1+R2, respectively; finally, apply time-sharing among different optimization
schemes to get the rate region, as illustrated in Figure 5.1. Note that maximization
of R1+R2 is not always necessary. For example, if 0<C12, C21≤ 1

2 , we have P1≤1
and P2≤1 according to (5.3). In such scenario, for any 0<σ2

1 , σ
2
2<∞ we have

∆Rs < 0,

∆R1
+ ∆R2

= C
(

P1

1 + σ2
2

)

− C
(

1

σ2
2

)

+ C
(

P2

1 + σ2
1

)

− C
(

1

σ2
1

)

< 0,

which means the sum rate R1+R2 cannot be increased. Details on optimization of
R1, R2, and R1+R2 can be found in Appendix 5.6.A.
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5.2 Short-message Noisy Network Coding (SNNC)

Wu and Xie have pointed out in [WX10] that the superiority of NNC over CF is
due to the postponed decoding process, rather than the large-message repetition
coding or the joint decoding of message and compression indexes. By using clas-
sical short-message encoding at the source node, compression without binning at
relay nodes, block-by-block backward decoding (either successively or jointly) at
the destination, one can achieve the same rate as NNC, as long as the relaying
signal can be treated as noise at destinations. This new scheme is coined short-
message noisy network coding (SNNC) in [KH11b] and the rate-equivalence proof
of NNC and SNNC for the single-source multiple-relay network is given in [WX10].
A simpler alternative rate-equivalence proof has been given for the single-source
single-relay network [KH11b] and the single-source multiple-relay network [KH11a].
The rate equivalence can also be established for the multiple-source multiple-relay
network [Kra12].

Using SNNC instead of regular NNC reduces encoding delay while still allow-
ing for extensions to multiple-source/relay/destination networks. In addition, the
short-message transmission facilitates source cooperation, in the presence of back-
haul or a conferencing channel between source nodes.

In the rest of this section, we show that when partial cooperation between
source nodes is possible, SNNC can achieve a strictly larger rate region than NNC
by performing rate-splitting [RU96], message exchanging, and superposition coding
with proper power allocation at source nodes.

5.2.1 SNNC with Partial Source Cooperation

SNNC divides the super messageW1 (W2) evenly into B short messagesW1,t (W2,t),
t = 1, ..., B, which facilitates message exchange and therefore can benefit from
coherent combining gain when cooperation is done as follows:

1) rate splitting at source nodes:
W1,t = [W1p,t,W1c,t],W2,t = [W2p,t,W2c,t];

2) W1c,t and W2c,t are exchanged via backhaul and then formulate Wc,t =
[W1c,t,W2c,t] before transmission t;

3) source node performs superposition coding:

X
(n)
1 =

√
α1X

(n)
1p (W1p,t) +

√
ᾱ1X

(n)
c (Wc,t), and

X
(n)
2 =

√
α2X

(n)
2p (W2p,t) +

√
ᾱ2X

(n)
c (Wc,t).

In the following we will analyze the performance of SNNC in the multiple-
source multicast relay network as in Figure 3.1. Note that the source cooperation
scheme for SNNC proposed above applies to any network where a pair of source
nodes are connected by conferencing links, although the corresponding achievable
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rate expressions have to be adjusted according to the message delivery requirement
(unicast, multicast, etc.).

With proper power allocation α1, α2 ∈ [0, 1], the received signals can be written
as follows

Y
(n)

1 =
√
α1γ11X

(n)
1p +

√
α2γ21X

(n)
2p +(

√
ᾱ1γ11+

√
ᾱ2γ21)X

(n)
c +

√
γr1X

(n)
r + Z

(n)
1 ,

Y
(n)

2 =
√
α1γ12X

(n)
1p +

√
α2γ22X

(n)
2p +(

√
ᾱ1γ12+

√
ᾱ2γ22)X

(n)
c +

√
γr2X

(n)
r + Z

(n)
2 ,

Y (n)
r =

√
α1γ1rX

(n)
1p +

√
α2γ2rX

(n)
2p +(

√
ᾱ1γ1r+

√
ᾱ2γ2r)X

(n)
c + Z

(n)
r . (5.6)

By message exchanging and superposition coding at the source nodes, we have
transferred the 2-source relay network described in (3.1) to a network with 3 inde-

pendent sources (X
(n)
1p , X

(n)
2p , X

(n)
c ). The corresponding rate constraintsR1p, R2p, Rc

can be obtained straightforwardly by applying SNNC/NNC results on independent
sources.

Define T = {S1p,S2p,Sc} and D = {D1,D2} with

X(T ) = {X1pX2pXc}, X(S1p) = X1p, X(S2p) = X2p,

X(Sc) = Xc, Y (D) = {Y1Y2}, Y (D1) = Y1, Y (D2) = Y2.

Let S, Sc be any pair of complementary subsets of T , i.e., S∪Sc = T and S∩Sc = ∅,
we can define the following rate

R(S) = min
d∈D

max







I(X(S);Y (d)|Q),

min[I(X(S); ŶrY (d)|X(Sc)XrQ),

I(X(S)Xr;Y (d)|X(Sc)Q)− I(Ŷr;Yr|X(T )XrY (d)Q)]







.

By applying the results of SNNC/NNC [LKEC11, Theorem 1] into (5.6), the achiev-
able rate region of SNNC with partial source cooperation can therefore be described
as the union of all rate pairs (R1, R2) that satisfy







































































R1 = R1p +R1c,
R2 = R2p +R2c,
0 ≤ R1c ≤ C12,
0 ≤ R2c ≤ C21,
0 ≤ R1p < R({S1p}),
0 ≤ R2p < R({S2p}),
R1c +R2c < R({Sc}),
R1p +R2p < R({S1p,S2p}),
R1p +R1c + R2c < R({S1p,Sc}),
R2p +R1c + R2c < R({S2p,Sc}),
R1p +R2p +R1c +R2c < R({S1p,S2p,Sc}),

(5.7)

with the union taken over all joint distributions that can be factorized as

p(q)p(x1p|q)p(x2p|q)p(xc|q)p(xr |q)p(ŷr|xr, yr, q). (5.8)
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By setting Q=∅ and Ŷ
(n)
r =Y

(n)
r +Ẑ

(n)
r with Ẑr∼N (0, σ2), all these mutual in-

formation constraints in (5.7) can be translated into C(·) expressions which are
functions of (α1, α2, σ

2). We then introduce notations IA, ..., IG to indicate these
constraints (depending only on α1, α2, σ

2 and link SNR γij) as follows

IA = R({S1p}),
IB = R({S2p}),
IC = R({Sc}),
ID = R({S1p,S2p}),
IE = R({S1p,Sc}),
IF = R({S2p,Sc}),
IG = R({S1p,S2p,Sc}).

Remark 5.1. Given (α1, α2, σ
2, γij), we can conclude that IA ≤ IE and IC ≤

IE but NOT IE ≤ IA+IC due to the minimization in R(S). Similarly, we have
max{ID, IE , IF } ≤ IG but NOT IG ≤ IA + IF , IG ≤ IB + IE, or IG ≤ IC + ID.

After performing Fourier–Motzkin elimination over (5.7), the achievable rate
region of SNNC with partial source cooperation for the system (3.1) is the union
of all rate pairs (R1, R2) that satisfy R1 ≥ 0, R2 ≥ 0, and







































R1 < min{IA + C12, IA + IC , IE},
R2 < min{IB + C21, IB + IC , IF },

R1 +R2 < min{IG, IA + IB + IC , IE + IB , IF + IA,

ID + IC , ID + C12 + C21,
ID + IE + IF

2

}

,

2R1 +R2< ID + IE + C12,
R1 + 2R2< ID + IF + C21,

(5.9)

where the union operation is taken over all α1, α2 ∈ [0, 1] and σ2 ∈ (0,∞).
The standard CF scheme, which uses short messages, can also benefit from

source cooperation in the same way as in SNNC. When a single Wyner–Ziv binning
process is used at the relay node, by generalizing the results in [GSG+10] for the
scenario with a single relay and two independent sources, the achievable rate region
of the standard CF with partial source cooperation can be described in the same
way as in (5.7) but with

R(S) = min
d∈D
I(X(S); ŶrY (d)|X(Sc)XrQ), (5.10)

subject to max
d∈D
I(Ŷr;Yr|XrY (d)Q) ≤ min

d∈D
I(Xr;Y (d)|Q), (5.11)

where the distribution is partitioned as in (5.8).

Remark 5.2. The achievable rates by CF with cooperation will in general be
smaller than the rates obtained by SNNC. For scenarios with multiple sources and
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multiple destinations (e.g. interference relay channel), decoding at different desti-
nations require different level of side information, which is impossible when a single
Wyner–Ziv binning process is used. Besides, successful decoding of the same bin-
ning index is confined by the weakest channel, as demonstrated in (5.11). The gain
of NNC (and thus SNNC) over CF in terms of sum rate has been demonstrated
in [LKEC11] for the two-way relay channel and the interference relay channel. In
addition, SNNC with source cooperation can be easily extended to multiple-source
multiple-relay scenarios, which is not the case for standard CF due to to the pres-
ence of Wyner–Ziv binning.

5.2.2 SNNC vs. NNC

For NNC with compression forwarding via backhaul, the transmitted signal X
(n)
1,t

(X
(n)
2,t ) is a function of the large message W1 (W2), which is not known at the

other source. Hence there is no coherent combining gain for NNC with compression
forwarding, which is not the case for SNNC and CF where rate-splitting and message
exchange is used with superposition coding.

NNC with message exchange under segment-wise cooperation can achieve the
rate RB as defined in (5.1) for all the K segments except for the first one where no
cooperation is done (hence a lower rate than RB). The corresponding achievable
rate for SNNC with the same number of message blocks is

RB×K <
B ×K − 1

B ×K +M
R∞ −

I(Ŷr;Yr|Xr)
B ×K ,

where R∞ is defined as in (5.2), and M ≪ B ×K is the extra blocks to ensure the
start of backward decoding [WX10]. As the cooperation block number B cannot be
very large due to memory constraint, NNC with message exchange will still incur
a rate loss compared to SNNC.

In absence of memory and encoding delay constraints (i.e., B →∞), and intro-
ducing fading (known only at the receiver side, either relay or destinations), NNC
may actually be advantageous, as there will be many blocks conveying the same
message, ergodic rates prevail while short messages, even with backward decoding
are subject to outages. This issue will be investigated in the future work.

To illustrate the gain of SNNC with partial source cooperation over NNC and
CF, we have plotted in Figure 5.2 the achievable rate region for the system in Fig-
ure 3.1 in the asymmetric channel setting. The outer bound is obtained based on
the genie-aided cut-set bound proposed in Sec. 3.3 and the inner bounds of NNC
are obtained with and without compression forwarding as proposed in Sec. 5.1.2.
With partial cooperation, SNNC achieves a strictly larger rate region than NNC
with compression forwarding, and the gain comes from coherent combining at all
the receiving nodes. CF with message exchange, on the other hand, performs bet-
ter than NNC (even with compression forwarding) when coherent combining gain
is large (C12 = 0.9), but worse than NNC (even without cooperation) when the
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Figure 5.2. Achievable rate regions of SNNC in the asymmetric channel setting
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with no cooperation is plotted as reference.

asymmetric channel setting effect in (5.11) dominates the coherent combining gain
C21 = 0.1). The degradation of CF compared to SNNC and is due to the asym-
metric channel setting which causes different requirement on successive decoding of
the Wyner–Ziv binning index, as explained in Remark 5.2, see also [WX10].

5.3 Amplify-and-Forward as Analog Network Coding
(AF+ANC)

When the relay cannot support encoding/decoding or interference cancellation, ad-
vanced cooperative strategies such as pDF or NNC/SNNC cannot be used. As
suggested by [KMG+07, MGM12], AF relaying as analog NC (AF+ANC) is an
attractive option in high SNR regimes. In this setup, the relay forwards a scaled
version of the signal received during the previous period. Three independent ran-

dom codebooks {V (n)
1p,t} of size 2nR1p , {V (n)

2p,t} of size 2nR2p , and {V (n)
c,t } of size

2n(R1c+R2c), are generated to encode W1p,t, W2p,t and Wc,t, respectively. At block



90
CHAPTER 5. COMPRESSION/AMPLIFICATION BASED COOPERATION

SCHEMES

Table 5.1. Illustration of the encoding/decoding process for AF+ANC withWc,t =
[W1c,t,W2c,t] for B = 2.

t = 0 1 2 3
Backhaul W1c,1⇔W2c,1 W1c,2⇔W2c,2 / /
S1 TX / (W1p,1,Wc,1) (W1p,2,Wc,2)
S2 TX / (W2p,1,Wc,1) (W2p,2,Wc,2)
R TX / / W1p,1,W2p,1,Wc,1 W1p,2,W2p,2,Wc,2
D RX / / W1,1,W2,1 → W1,2,W2,2

t, the transmitted signals are

X
(n)
1,t =

√
ᾱ1V

(n)
1p,t(W1p,t) +

√
α1V

(n)
c,t (Wc,t),

X
(n)
2,t =

√
ᾱ2V

(n)
2p,t(W2p,t) +

√
α2V

(n)
c,t (Wc,t), (5.12)

X
(n)
r,t = β

(

√

γ1rᾱ1V
(n)

1p,t−1 +
√

γ2rᾱ2V
(n)

2p,t−1 + (
√
γ1rα1 +

√
γ2rα2)V

(n)
c,t−1 + Z

(n)
r,t−1

)

,

where 0 ≤ α1, α2 ≤ 1 are power allocation parameters with ᾱ1=1−α1 and ᾱ2=1−α2.
β is the amplifying factor at the relay to satisfy the power constraint (3.2), i.e.,

β2 =
1

E[Var(Yr,t)]
=

1

1 + γ1r + γ2r + 2
√
γ1rγ2rα1α2

.

Note that β is defined in a different way from that in [MGM12] to guarantee the SNR
level at the destination nodes after multiple-hop AF relaying. The corresponding
received signals at D1 at block t and t+1 are

Y
(n)

1,t = β
√
γr1

(

√

γ1rᾱ1V
(n)

1p,t−1 +
√

γ2rᾱ2V
(n)

2p,t−1 + (
√
γ1rα1 +

√
γ2rα2)V

(n)
c,t−1

)

+
√

γ11ᾱ1V
(n)

1p,t +
√

γ21ᾱ2V
(n)

2p,t + (
√
γ11α1 +

√
γ21α2)V

(n)
c,t + Z̃

(n)
1,t , (5.13)

Y
(n)

1,t+1 = β
√
γr1

(

√

γ1rᾱ1V
(n)

1p,t +
√

γ2rᾱ2V
(n)

2p,t + (
√
γ1rα1 +

√
γ2rα2)V

(n)
c,t

)

(5.14)

+
√

γ11ᾱ1V
(n)

1p,t+1 +
√

γ21ᾱ2V
(n)

2p,t+1 + (
√
γ11α1 +

√
γ21α2)V

(n)
c,t+1 + Z̃

(n)
1,t+1,

where Z̃1,t, t = 1, ..., B + 1 are i.i.d. Gaussian with zero-mean and variance σ2
1 =

1 + β2γr1. Similarly, we can write (Y
(n)

2,t , Y
(n)

2,t+1) by introducing i.i.d. Gaussian

Z̃2,t with zero-mean and variance σ2
2 = 1 + β2γr2. The destination nodes D1

and D2 perform sliding window [Wil82] joint decoding: at the end of block t + 1,
assumingW1,t−1 and W2,t−1 have been decoded successfully, D1 can jointly decode

W1,t and W2,t from (Y
(n)

1,t , Y
(n)

1,t+1) and D2 can decode based on (Y
(n)

2,t , Y
(n)

2,t+1). The
encoding/decoding process is illustrated in Table 5.1.

Proposition 5.2. Define T = {1p, 2p, c} and a pair of its complementary subsets
S and Sc, i.e. S ∪Sc = T and S ∩Sc = ∅, the achievable rate region for AF+ANC
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is the union over all (R1, R2) satisfying R1 ≥ 0, R2 ≥ 0, and















































R1 = R1p +R1c,
R2 = R2p +R2c,
Rc = R1c + R2c,
0 ≤ R1c ≤ C12,
0 ≤ R2c ≤ C21,
R1p ≥ 0, R2p ≥ 0,
∑

k∈S

Rk < min
d∈{1,2}

{I(Vt(S);Yd,tYd,t+1|Vt−1(T )Vt(S
c))},

(5.15)

where
Vt−1(T ) = {V1p,t−1, V2p,t−1, Vc,t−1},

and the union is taken over all subsets S ⊆ T and over all power allocation pa-
rameters 0 ≤ α1, α2 ≤ 1. The compact rate region described by (R1, R2) can be
straightforwardly obtained by performing Fourier-Motzkin elimination to remove
the intermediate variables R1p, R2p, Rc, R1c and R2c.

Proof. The proof can be found in Appendix 5.6.B.

5.4 Numerical Results

5.4.1 Full Source Cooperation

We compare the lower bounds obtained by the SNNC and the AF+ANC schemes
with different link quality to the cut-set bound developed in Section 3.2 and the
NBF lower bound developed in Section 4.1.4. Unless stated otherwise, the following
heuristic parameters will be used: The S1-D1 link SNR γ11=5dB, the S2-D2 link
SNR γ22=10dB, the source-relay link SNR γ1r=γ2r=10dB, the relay-destination
link SNR γr1=γr2=10dB, and the cross-link SNR γ12=γ21=0dB.

We investigate the impact of the relay-destination link quality on the capacity
region. When the R-D1 link is not strong, the R-D2 link SNR γr2 is not a limiting
factor and therefore the capacity will monotonically increase with γr1 until it is
large enough to reach the bottleneck set by γr2, as demonstrated in Figure 5.3.
Similar observation can be obtained for SNNC with message exchange. The gap
between the cut-set bound the NBF lower bound is less than 0.05 bits/channel use.
Note that the achievable rate for AF+ANC is not monotonically increasing with
γr1 due to the fact that both signal and noise are amplified. Such non-monotonic
behavior will diminish as the source-relay channel becomes better, i.e., when AF
becomes asymptotically optimal.

In Figure 5.4 we show the impact of the source-relay link with strong cross-link
quality. When the source-relay link is poor, the NBF scheme suffers great rate loss
due to the decoding constraint at the relay node. SNNC with message exchange
and AF+ANC, on the other hand, have no such constraint and therefore can benefit
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Figure 5.5. Capacity bounds for varying symmetric cross-link SNR γ12=γ21.

from the strong cross-link. As γsr increases, decoding at the relay node becomes
trivial and NBF can benefit greatly from source-relay cooperation and therefore
outperforms NNC/SNNC with message exchange and AF+ANC.

When the source-relay link is good, as shown in Figure 5.5, the achievable rate
of NBF increases with improved cross-link quality until the decoding at the relay
becomes the bottleneck. The cut-set bound and the other two schemes have no
restriction on decoding at R and therefore will increase with the improved cross-
link quality.

5.4.2 Partial Source Cooperation

We illustrate the inner and outer bounds to the capacity region based on numer-
ical computation, with channel SNR chosen heuristically. The outer bounds are
obtained based on the genie-aided cut-set bounds developed in Section 3.3. The
inner bound of NNC with compression forwarding is based on the scheme pro-
posed in Section 5.1.2. As stated in Sec. 4.2.1, computation of the rate region of
pDF+LNC requires a union operation over eight independent auxiliary variables
and seven partial decoding combinations, making it hard to characterize the ex-
act inner bound numerically. In the following results we simply set α3=α4=0 and
α7=α8=0 in (4.32), i.e. no source-relay cooperation, to lower bound the perfor-
mance of pDF+LNC when source conferencing is possible.
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The benefit of using the backhaul has been illustrated in Figure 5.6. Without
source cooperation, achievable rates for AF/DF relaying based schemes are lim-
ited by noise propagation and decoding constraints when the source-relay link is
poor. When source cooperation is possible, these constraints can be greatly re-
duced. The difference of rate regions for SNNC with message exchange and NNC
with compression forwarding in Figure 5.6 (lower) is the gain of message exchange
over compression forwarding. A benchmark scheme based on DF relaying with no
source conferencing from [GSG+10, Proposition 4] with R3=0 has been plotted in
Figure 5.6 (upper) for reference. The gain of pDF+LNC (with source-relay cooper-
ation) over the benchmark is due to partial decoding at the relay. The gap between
outer and inner bounds is within 0.2 bits for no cooperation and within 0.3 bits for
C12=C21=0.5 bits per channel use (bpcu). The difference between different outer
bounds is within 0.01 bits in both cases.

In Figure 5.7 we compare the rate regions for asymmetric relay-destination
links (γr1 = 20dB, and γr2 = 0dB ) with and without source conferencing. All
the achievable schemes benefit from source conferencing, especially when message
exchange is used, which brings in coherent combining gain. As the relay-destination
links are asymmetric (γr1 = 20dB, and γr2 = 0dB ), all the compression based
schemes (CF, NNC, and SNNC) are constraint by the weakest relay-destination
link (i.e. γr2) due to usage of a single compression index by the relay, despite the
fact that NNC and SNNC are more capable than CF in handing the asymmetric
relay-destination links and therefore suffer less compared to CF, as explained in
Remark 5.2. The simple AF based scheme, on the other hand, has no such problem
with the asymmetric channel setups. Therefore, with C12 = C21 = 0.5 or even
no backhaul, the simple AF based scheme can beat SNNC (hence CF and NNC)
in some region. The gap between inner and outer bounds is within 0.3 bits when
the relay-destination links are weak, but decreases to within 0.1 bits for strong
relay-destination links. The difference between different outer bounds is negligible.

5.5 Summary

In this chapter we have studied various cooperative strategies when compression or
amplification is carried by the relay node. With partial source cooperation, we have
investigated the achievable rate regions of NNC with compression forwarding and
with message exchange via the backhaul, and demonstrated that encoding delay and
memory constraints can affect the achievable rate of regular NNC, and employing
instead short-message NNC can provide significant gains and therefore can achieve
a strictly larger rate region than NNC. We also investigated the achievable rate
region by AF+ANC, and shown that it can even outperform NNC when the coher-
ent combining gain is dominant and outperform CF/SNNC when the asymmetric
channel constraint is significant.
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Figure 5.6. Achievable rate region of AF+ANC, CF with message exchange, NNC
with compression forwarding, SNNC with message exchange, and pDF+LNC, as well
as the capacity outer bounds, for channels setups with direct links γ11 = 5dB and
γ22 = 10dB, cross-links γ12 = 5dB and γ21 = 0dB, source-relay links γ1r = γ2r =
3dB and relay-destination links γr1 = γr2 = 10dB, without backhaul (upper) and
with symmetric conferencing rates C12 = C21 = 0.5 bits per channel use (lower).
The benchmark refers to [GSG+10, Proposition 4] with R3 = 0.
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Figure 5.7. Achievable rate region of AF+ANC, NNC with compression forward-
ing, SNNC with message exchange, and pDF+LNC, as well as the capacity outer
bounds, for channels setups with direct links γ11 = 5dB and γ22 = 10dB, cross-links
γ12 = γ21 = 0dB, source-relay links γ1r = γ2r = 10dB and weak/strong relay-
destination links γr1 = 20dB and γr2 = 0dB, without backhaul (upper) and with
symmetric conferencing rates C12 = C21 = 0.5 bits per channel use (lower).
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5.6 Appendix

5.6.A Rate Optimization for NNC with Compression
Forwarding

We can rewrite (5.4) as

R1 < ∆R1
+ R̃1,

R2 < ∆R2
+ R̃2,

R1 +R2 < ∆Rs + R̃s,

(5.16)

where (R̃1, R̃2, R̃s) denotes the achievable rates when the conferencing links are not
used.

To maximize R1, we should set σ2
1 = ∞, i.e., S1 will not relay the message

transmitted by S2, since this can only leads to decreased value for both ∆R1
and

∆Rs . Therefore (5.16) can be translated to

R1 < R̃1 + C
(

P1

1 + σ2
2

)

,

R2 < R̃2 − C
(

1

σ2
2

)

,

R1 +R2 < R̃s − C
(

1

σ2
2

)

.

(5.17)

To maximize R̃1 + C( P1

1+σ2
2

) while keeping R̃1 + C( P1

1+σ2
2

) ≤ R̃s − C( 1
σ2

2

) and R̃2 −
C( 1
σ2

2

) ≥ 0, we can first find σ∗2 > 0 such that

R̃1 + C
(

P1

1 + σ∗22

)

= R̃s − C
(

1

σ∗22

)

,

which leads to

σ∗2 =

√

1 + P1

4(R̃s−R̃1) − 1
.

If R̃2 − C( 1
σ∗2

2

) < 0, which violates the precondition of a non-negative rate R2, we

should set σ∗2 =
√

1
4R̃2−1

instead. We can maximize R2 in the same way.

If R̃1 + R̃2 ≥ R̃s or 0 ≤ P1, P2 ≤ 1, the sum rate constraint cannot be improved
by optimizing over (σ1, σ2). In the following we only focus on the scenario when
dR , R̃s − (R̃1 + R̃2) > 0.

When C12 + C21 ≤ dR, for all 0 < σ1, σ2 <∞ we will have

∆R1
+ ∆R2

+ R̃1 + R̃2 < ∆Rs + R̃s.
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Therefore we only need to maximize ∆R1
+ ∆R2

+ R̃1 + R̃2 over all possible values
of σ1, σ2. Since

∆R1
+ ∆R2

=
1

2
log

(

σ2
1(1 + P2 + σ2

1)

(1 + σ2
1)2

σ2
2(1 + P1 + σ2

2)

(1 + σ2
2)2

)

,

it is straightforward to figure out that

σ∗21 =

{

P2+1
P2−1 , when P2 > 1;

∞, otherwise;

σ∗22 =

{

P1+1
P1−1 , when P1 > 1;

∞, otherwise.

(5.18)

When C12 + C21 > dR, there exist some σ1, σ2 > 0 such that

∆R1
+ ∆R2

+ R̃1 + R̃2 = ∆Rs + R̃s.

Therefore we can optimize the sum rate by solving the following optimization prob-
lem

max
σ1>0,σ2>0

R̃s − C
(

1

σ2
1

)

− C
(

1

σ2
2

)

subject to
1

2
log

((

1 +
P1

1 + σ2
2

)(

1 +
P2

1 + σ2
1

))

= R̃s − (R̃1 + R̃2) = dR,

which is equivalent to

min
σ1>0,σ2>0

(

1 +
1

σ2
1

)(

1 +
1

σ2
2

)

subject to

(

1 +
P1

1 + σ2
2

)(

1 +
P2

1 + σ2
1

)

= 4dR .

When P1 > 1 and P2 > 1, by denoting

µ = 1 +
P1

1 + σ2
2

, ω = 1 +
P2

1 + σ2
1

,

we have

σ2
1 =

1 + P2 − ω
ω − 1

, σ2
2 =

1 + P1 − µ
µ− 1

.

Therefore we can rewrite the minimization problem as

min

(

1 +
1

σ2
1

)(

1 +
1

σ2
2

)

= max (1 + P2 − ω)(1 + P1 − µ)

= min ω(1 + P1) + µ(1 + P2),
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where
ω(1 + P1) + µ(1 + P2) ≥ 2

√

ωµ(1 + P1)(1 + P2),

with equality achieved when ω(1 + P1) = µ(1 + P2).
On the other hand, as ωµ = 4dR , we can easily figure out that

ω =

√

1 + P2

1 + P1
2dR , µ =

√

1 + P1

1 + P2
2dR .

When P1 > 1 but P2 ≤ 1, forwarding the message from S2 can only reduce
∆R1

+ ∆R2
. Therefore it is optimal to set σ1 = ∞. The above optimization

problem becomes trivial and we can easily get

σ2
2 =

P1

4dR − 1
− 1.

Similarly, when P2 > 1 but P1 ≤ 1, we have σ2 =∞ and

σ2
1 =

P2

4dR − 1
− 1.

5.6.B Proof of the Achievable Rate Region of AF+ANC

Since X1,t − Vc,t − X2,t form a Markov chain, by sliding window joint decoding

based on (Y
(n)

1,t , Y
(n)

1,t+1) at D1 and (Y
(n)

2,t , Y
(n)

2,t+1) at D2, respectively, we can obtain
the following results

∑

k∈S

Rk < min{I(Vt(S);Y1,tY1,t+1|Vt−1(T )Vt(S
c)),

I(Vt(S);Y2,tY2,t+1|Vt−1(T )Vt(S
c))}. (5.19)

Note that

R1p +R2p +Rc < I(V1p,tV2p,tVc,t;Y1,tY1,t+1|V1p,t−1V2p,t−1Vc,t−1)

=h(Y1,t, Y1,t+1|V1p,t−1V2p,t−1Vc,t−1)−h(Z̃t)−h(√γ11X1,t+1 +
√
γ21X2,t+1 + Z̃t+1)

≤1

2
log(|Ky|)−

1

2
log(σ2

1)− 1

2
log(σ2

1 + Var(
√
γ11X1,t+1 +

√
γ21X2,t+1)) (5.20)

=C
(

γ11 + γ21 + 2
√
γ11γ21α1α2

1 + β2γr1
+
β2γr1(γ1r + γ2r + 2

√
γ1rγ2rα1α2)

1 + β2γr1 + γ11 + γ21 + 2
√
γ11γ21α1α2

+
β2γr1(1− α1α2)(

√
γ11γ2r −√γ21γ1r)

2

(1 + β2γr1)(1 + β2γr1 + γ11 + γ21 + 2
√
γ11γ21α1α2)

)

, (5.21)

where Z̃1,t, t = 1, ..., B + 1 are i.i.d. Gaussian with zero-mean and variance
σ2

1 = 1+β2γr1. The inequality in (5.20) comes from the Maximum Entropy Lemma
and the Entropy Power Inequality [CT06], with equality achieved by the joint Gaus-
sian distribution. Ky is the conditional covariance matrix of (Y1,t, Y1,t+1) given
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(V1p,t−1V2p,t−1Vc,t−1), and the equality in (5.21) is obtained by applying (5.12)
into (3.1). Following a similar procedure, it is easy to show that the other mutual
information terms in (5.19) are simultaneously maximized by Gaussian distribu-
tions. Therefore it is straightforward to translate the remaining constraints to
corresponding C(·) expressions, which are listed as follows.

R1p +R2p +Rc < I(V1p,tV2p,tVc,t;Y2,tY2,t+1|V1p,t−1V2p,t−1Vc,t−1)

= C
(

γ12 + γ22 + 2
√
γ12γ22α1α2

1 + β2γr2
+
β2γr2(γ1r + γ2r + 2

√
γ1rγ2rα1α2)

1 + β2γr2 + γ12 + γ22 + 2
√
γ12γ22α1α2

+
β2γr2(1− α1α2)(

√
γ12γ2r −√γ22γ1r)

2

(1 + β2γr2)(1 + β2γr2 + γ12 + γ22 + 2
√
γ12γ22α1α2)

)

.

Rc < I(Vc,t;Y1,tY1,t+1|V1p,t−1V2p,t−1Vc,t−1V1p,tV2p,t)

= C
(

(
√
γ11α1 +

√
γ21α2)2

1 + β2γr1
+

β2γr1(
√
γ1rα1 +

√
γ2rα2)2

1 + β2γr1 + γ11 + γ21 + 2
√
γ11γ21α1α2

)

,

Rc < I(Vc,t;Y2,tY2,t+1|V1p,t−1V2p,t−1Vc,t−1V1p,tV2p,t)

= C
(

(
√
γ12α1 +

√
γ22α2)2

1 + β2γr2
+

β2γr2(
√
γ1rα1 +

√
γ2rα2)2

1 + β2γr2 + γ12 + γ22 + 2
√
γ12γ22α1α2

)

,

R1p < I(V1p,t;Y1,tY1,t+1|V1p,t−1V2p,t−1Vc,t−1V2p,tVc,t)

= C
(

γ11ᾱ1

1 + β2γr1
+

β2γr1γ1rᾱ1

1 + β2γr1 + γ11 + γ21 + 2
√
γ11γ21α1α2

)

,

R1p < I(V1p,t;Y2,tY2,t+1|V1p,t−1V2p,t−1Vc,t−1V2p,tVc,t)

= C
(

γ12ᾱ1

1 + β2γr2
+

β2γr2γ1rᾱ1

1 + β2γr2 + γ12 + γ22 + 2
√
γ12γ22α1α2

)

,

R2p < I(V2p,t;Y1,tY1,t+1|V1p,t−1V2p,t−1Vc,t−1V1p,tVc,t)

= C
(

γ21ᾱ2

1 + β2γr1
+

β2γr1γ2rᾱ2

1 + β2γr1 + γ11 + γ21 + 2
√
γ11γ21α1α2

)

,

R2p < I(V2p,t;Y2,tY2,t+1|V1p,t−1V2p,t−1Vc,t−1V1p,tVc,t)

= C
(

γ22ᾱ2

1 + β2γr2
+

β2γr2γ2rᾱ2

1 + β2γr2 + γ12 + γ22 + 2
√
γ12γ22α1α2

)

.

R1p +R2p < I(V1p,tV2p,t;Y1,tY1,t+1|V1p,t−1V2p,t−1Vc,t−1Vc,t)

= C
(

ᾱ1γ11 + ᾱ2γ21

1 + β2γr1
+

β2γr1(ᾱ1γ1r + ᾱ2γ2r)

1 + β2γr1 + γ11 + γ21 + 2
√
γ11γ21α1α2

+
β2γr1ᾱ1ᾱ2(

√
γ11γ2r −√γ21γ1r)

2

(1 + β2γr1)(1 + β2γr1 + γ11 + γ21 + 2
√
γ11γ21α1α2)

)

,

and
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R1p +Rc < I(V1p,tVc,t;Y1,tY1,t+1|V1p,t−1V2p,t−1Vc,t−1V2p,t)

= C
(

γ11 + α2γ21 + 2
√
γ11γ21α1α2

1 + β2γr1
+
β2γr1(γ1r + α2γ2r + 2

√
γ1rγ2rα1α2)

1 + β2γr1 + γ11 + γ21 + 2
√
γ11γ21α1α2

+
β2γr1ᾱ1α2(

√
γ11γ2r −√γ21γ1r)

2

(1 + β2γr1)(1 + β2γr1 + γ11 + γ21 + 2
√
γ11γ21α1α2)

)

,

R2p +Rc < I(V2p,tVc,t;Y1,tY1,t+1|V1p,t−1V2p,t−1Vc,t−1V1p,t) =

= C
(

α1γ11 + γ21 + 2
√
γ11γ21α1α2

1 + β2γr1
+
β2γr1(α1γ1r + γ2r + 2

√
γ1rγ2rα1α2)

1 + β2γr1 + γ11 + γ21 + 2
√
γ11γ21α1α2

+
β2γr1α1ᾱ2(

√
γ11γ2r −√γ21γ1r)

2

(1 + β2γr1)(1 + β2γr1 + γ11 + γ21 + 2
√
γ11γ21α1α2)

)

.





Chapter 6

General Bounding Models for
Networks with Independent Noise

In this chapter we present general capacity bounding models for wireless networks
with independent noise, by construction of upper and lower capacity bounding
networks consisting of only noiseless bit-pipe channels. The work presented in
this chapter is motivated by the elegant framework of network equivalence the-
ory [KEM11, KEM10] and the one-shot bounding method [CME11].

We will first give a brief introduction of the network equivalence theory and
the one-shot method, and then present our improvement on the bounding models.
For non-coupled networks1 with independent noise, we apply the bounding models
directly and construct the corresponding upper and lower bounds. For coupled
networks, we propose a network decoupling method to obtain both upper and lower
bounding networks.

6.1 Introduction

In the seminal work [KEM11], an elegant theory of network equivalence has been
established and the equivalence of an independent point-to-point noisy channel and
a noiseless bit-pipe under any arbitrary networks has been proved as long as the
throughput of the latter equals to the capacity of the former. For independent
multi-terminal networks, such as multiple-access channels, broadcast channels, and
interference channels with two sources and/or two destinations, both upper and
lower bounding models have been proposed in [KEM10, KEM09]. A one-shot
bounding method proposed in [CME11] gives simple yet tight bounding models
for general MAC and for BC with two receivers. Note that in [KRV11] a layering
approach with a global information flow routing technique has been proposed to
model non-coupled wireless networks with multiple unicast transmission, and this
approach is proven to be asymptotically optimal in the sense that the capacity lower

1The definition of coupled and non-coupled networks will be introduced in Section 6.1.1.
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bounds are within a multiplicative gap from the cut-set bound. We will not follow
the approach developed in [KRV11], since we are interested in developing a general
method that can construct bounding networks for both coupled and non-coupled
noisy networks, rather than developing a scheme to find the capacity of a noiseless
network, which itself is a very difficult problem [LL03, CG08] unsolved in general.
In this chapter, we will provide efficient and simple methods that can construct both
upper and lower bounding networks consisting of only noiseless bit-pipes, which can
serve as the basis to bound the capacity of general wireless networks.

6.1.1 Basic Definitions

Before we proceed, we will first present some definitions that are frequently used
in this chapter.

Definition 6.1. Independent Channel
A point-to-point channel Ni = (Xi, p(yi|xi),Yi) with input alphabet Xi, output
alphabet Yi, and the conditional transition probability p(yi|xi) within a network
NT = (

∏

n∈T Xn, p(y|x),
∏

n∈T Yn) is said to be independent if the network transi-
tion probability p(y|x) can be partitioned as

p(y|x) = p(y/i|x/i)p(yi|xi),

where x/i denotes the vector of x without element xi, and similarly for y/i. There-
fore we can rewrite the expression of network NT as

NT = Ni × (
∏

n6=i

Xn, p(y/i|x/i),
∏

n6=i

Yn) , Ni ×NT/i.

Similarly, a multi-terminal channel/network NS within NT is said to be inde-
pendent, denoted by NT = NS × NSc , if the network transition probability can
be partitioned as p(y|x) = p(yS |xS)p(ySc |xSc), where S, Sc ⊂ T are a pair of
complementary subsets of T .

Definition 6.2. Capacity Bounding Models
Given two channels/networks C and N, C is said to upper bound N, or equivalently
N lower bounds C, if the capacity (region) of N×W is a subset of that for C×W

for any network W. We denote their relationship by N ⊆ C. C and N is said to be
equivalent if C ⊆ N ⊆ C.

For channels/networks Cu and Cl consisting of only noiseless bit-pipes, we say
that Cu is the upper bounding model and Cl is the lower bounding model for N if

Cl ⊆ N ⊆ Cu.

Definition 6.3. Coupled/Non-coupled Network
A network is said to be coupled if any of its point-to-point connections is part of
a multiple-access channel and a broadcast channel simultaneously. Otherwise the
network is non-coupled.
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XN YNX Y
p(y|x)

∏N
i=1 p(yi|xi)

⇔

(a) A noisy channel N with capacity C and its stacked network with N replicas
∏N
i=1 p(yi|xi)

x(N) y(N)
W Ŵ

α(W ) α−1(·)

(b) The channel coding argument to prove C ⊆ N for all R < C

x(N) y(N)

WW
β(x(N)) β−1(·)

{0, 1}NR → {0, 1}NR

(c) The lossy source coding argument to prove N ⊆ C for all R > C

Figure 6.1. A point-to-point noisy channel N = (X , p(y|x),Y) with capacity C
and a noiseless bit-pipe C of rate R are equivalent if R = C. The input/output

of their corresponding stack networks are x(N) ∈ XN , y(N) ∈ YN , and W, Ŵ ∈
{1, . . . , 2NR}.

As expected, wireless networks are in general coupled due to the broadcast
nature of microwave propagation.

6.1.2 Network Equivalence Theory for Independent Channels

In [KEM11], the equivalence between an independent point-to-point noisy channel
N with capacity C and a noiseless bit-pipe C of the same capacity has been estab-
lished by showing that any code that runs on a network N×W can also be run on
C×W with asymptotically vanishing error probability. Their argument is based on
a stacked network emulation approach where a large stack of N parallel replicas of
the network have been put together to run the code, as illustrated in Figure 6.1.

The proof of C ⊆ N employs a channel coding argument over the stack of N
channel replicas as illustrated in Figure 6.1(b): A messageW of 2NR bits is mapped
by the channel encoder α(·) onto a codeword x(N) of lengthN , and then transmitted
over the N -stack noisy channels, with one symbol on each replica, such that reliable
transmission over the noisy stacked network can be realized with arbitrary small
error probability as N goes to infinity for all R < C.

The proof of N ⊆ C is based on a lossy source coding argument as illustrated in
Figure 6.1(c): The input sequence x(N) to the noisy stacked network is first quan-
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tized/compressed by a lossy source encoder β(·) into 2NR bits, represented by the
message W which is then transmitted through the noiseless stacked network, and
the reconstructed sequence y(N) is selected in such a way that it looks jointly typical
with the transmitted sequence x(N), as contrast to the usual distortion measure.
The existence of a good lossy source coding codebook for any R > C is proved by
random coding argument, i.e., by showing that the average error probability over
the randomly chosen ensemble of codebooks is small. The equivalence between N

of capacity C and C of throughput R can then be established when R = C based
on the continuity of the capacity region. Readers are kindly referred to [KEM11]
for a rigorous and thorough treatment of the proof.

The concept of capacity upper and lower bounding models developed in [KEM11]
has been extended to independent multi-terminal channels in [KEM10, KEM09]
following similar arguments as illustrated in Figure 6.1, and multiplicative and
additive gaps between lower and upper bounding models for independent multi-
terminal channels have been established. Illustrative upper and lower bounding
models for multiple-access, broadcast, and interference channels which involve ei-
ther two sources and/or two destinations have been demonstrated. Given a noisy
network consisting of independent building blocks whose upper and lower bounding
models are available, we can replace these building blocks with their corresponding
upper (lower) bounding models and then characterize an outer (inner) bound for
its capacity region based on the resulting noiseless network models.

The lossy source coding argument for upper bounding models has to be exploited
for each network building block and the channel coding argument for lower bound-
ing models has to be specified for each of the established rate-achievable coding
schemes. For coupled networks involving many transmitting nodes and receiving
nodes, applying bounding models for small size building blocks will result in a very
large gap, while finding bounding models for large building blocks might be very
complex as we have demonstrated in Chapter 3 for characterizing upper bounds for
the small multicast relay networks.

6.1.3 Equivalent One-shot Bounding Models

Instead of exploiting channel/source code emulation to construct bounding mod-
els as in [KEM11, KEM10, KEM09], a class of one-shot bounding tools have been
proposed in [CME11] for independent multiple-access and broadcast channels. As
illustrated in Figure 6.2, auxiliary operation nodes are introduced to specify the rate
constraints on the sum rate and on individual rates, and the channel emulation is
realized in each time instance and hence called “one-shot” approach, as contrast
to [KEM11, KEM10, KEM09] where channel emulation is realized in each block of
channel uses. While the lower bounding models can be constructed based on achiev-
able rate regions for multiple-access channels with independent source nodes and
for broadcast channels with non-cooperating destination nodes, the upper bounding
models require special treatment, which will be outlined below.
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X1

X2

Xm

Y1

Y2

XY

l1

l2

lm

ls
l1

l2

ls

nI nI

Figure 6.2. The one-shot bounding models for multiple-access channels with m
transmitters and for broadcast channels with two receivers. The white nodes indi-
cated by nI are auxiliary operation nodes to specify the rate constraints on the sum
rate and on individual rates. All the channels are noiseless bit-pipes and indepen-
dent from others. The one-shot bounding models are fully characterized by the rate
vector (Rls , Rl1 , . . . , Rlm), where Rli is the rate of the noiseless bit-pipe li.

Upper Bounding Models for Multiple-Access Channels

For multiple-access channels with m transmitters, each with transmit alphabet Xi,
i = 1, . . . ,m, we can introduce an auxiliary operation node nI to emulate the MAC
channel by a small network with m independent and orthogonal input channels
to node nI , denoted as li with i = 1, . . . ,m, to emulate the individual rates, and
one channel ls between nI and the destination node to emulate the sum rate. We
then replace all the independent channels with noiseless bit-pipes and define a rate
vector (Rls , Rl1 , . . . , Rlm) to describe the rates of channels (ls, l1, . . . , lm). As the
one-shot bounding model is fully characterized by this rate vector, we will utilize
it to represent the corresponding bounding model C.

There are two ways to emulate the MAC channel. One can let each input channel
li carry exactly what the corresponding source node transmits, hence requiring a
noiseless bit-pipe of rate Rli ≥ log(|Xi|), where |X | is the cardinality of the alphabet
set X . Note that for continuous-valued random variables we will have |X | = ∞.
The auxiliary nodes then combine all the inputs in such a way that the output
signal at the destination node is exactly the same as in the original network. By
the point-to-point network equivalence theory, successful emulation of the original
channel requires

Rls ≥ RMAC , max
p(x1,...,xm)

I(X1, . . . , Xm;Y ).

Hence we can construct the upper bounding model as

Cu,MAC,1 = (RMAC , log(|X1|), . . . , log(|Xm|)).
Although Cu,MAC,1 is sharp on sum rate in the sense that there are some kind of
networks where the sum rate constraint RMAC is the capacity, the constraints on
individual rates are somehow loose.

Denoting zi as the channel output of li, and letting the auxiliary node emulate
the output at the destination node exactly via a predefined function g(·), i.e.,

y = g(z1, z2, . . . , zm),
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the transition probability p(y|x1, . . . , xm) and all its marginal distributions can then
be exactly emulated as follows

p(y|x1, . . . , xm) =
∑

z1,...,zm:
y=g(z1,...,zm)

m
∏

i=1

p(zi|xi).

We can therefore formulate an alternative upper bounding model as

Cu,MAC,2 = (log(|Y|), R1, . . . , Rm),

where for i = 1, . . . ,m,

Ri , max
p(xi)
I(Xi;Zi).

One way to construct the upper bounding model Cu,MAC,2 for multiple-access chan-
nels is based on a noise partitioning approach, i.e., the additive noise at the des-
tination is partitioned into independent parts and allocated to the parallel chan-
nels. For Gaussian multiple-access channel with two transmitters, as demonstrated
in [CME11], the corresponding upper bounding model is

Cu,MAC,2 =

(

∞, 1

2
log(1 +

SNR1

α
),

1

2
log(1 +

SNR2

1− α )

)

,

where SNRi is the corresponding SNR at the receiver when only transmitter i is
active, and α ∈ (0, 1) is the noise power partitioning parameter chosen to minimize
the total sum rate. The sum rate constraint is ∞ since the alphabet for Gaussian
variable is continuous and with infinite cardinality. When calculating capacity
upper bounds, this infinite upper constraint can be replaced by

RMAC =
1

2
log(1 +

SNR1

α
) +

1

2
log(1 +

SNR2

1 − α ),

i.e., the sum of the total input rates to the auxiliary node. For binary symmetric
MAC channels with distortion parameter ǫ, the corresponding distortion ǫi for
channel li should satisfy

ǫ = ǫ1(1− ǫ2) + ǫ2(1 − ǫ1).

Upper Bounding Models for Broadcast Channels with Two Receivers

Upper bounding models for broadcast channels with two receivers have also been
constructed in [CME11] for the scenario when the noise at two receivers are inde-
pendent, i.e., the transition probability can be factorized as

p(y1, y2|x) = p(y1|x)p(y2|x).
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Similar to the upper bounding models for multiple-access channels, there are also
two different bounding models for broadcast channels, i.e.,

Cu,BC,1 = (RBC , log(|Y1|), log(|Y2|)),

where
RBC , max

p(x)
I(X ;Y1, Y2),

and
Cu,BC,2 = (log |X |, R1, R2),

where for i = 1, 2,
Ri , max

p(x)
I(X ;Yi).

Gap between the One-shot Bounding Models

The gap between the upper and lower bounding models for Gaussian channels and
for binary symmetric channels have been examined in [CME11] where a gap less
than 1

2 bit per channel use has been established for two-user setups, i.e., multiple-
access channels with two transmitters, and broadcast channels with two receivers.

6.2 Bounding Models for Non-coupled Networks

For non-coupled networks, we generalize the noise partitioning approach developed
in [CME11] for multiple-access channels to setups with more than two transmit-
ters, and extend the upper and lower bounding models for broadcast channels to
scenarios with more than two receivers.

6.2.1 Noise Partitioning for Multiple-Access Channels with
More than Two Transmitters

The noise partitioning problem for a multiple-access channel with m transmitters,
each with normalized receiver-side SNR γi, i = 1, ...,m, can be formulated as follows

min
α1,...,αm

m
∑

i=1

log

(

1 +
γi
αi

)

,

subject to

m
∑

i=1

αi = 1,

αi > 0,

(6.1)

which is a convex optimization problem and can be solved efficiently using barrier
methods or primal-dual interior point methods for convex optimization [BV04].

Alternatively, we can first solve the optimization problem with two transmitters
analytically, as presented in (6.3) stated below, then apply the result to sequentially
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Input: received signal power γ1, γ2, γ3
Output: partitioned noise power α1, α2, α3

Initialize α1 with a constant in (0, 1);
Predefine a small number ǫ > 0 for precision check.
foreach Iteration i do

Calculate α2, α3 by (6.3) given γ2, γ3, with α = 1− α1;
Calculate z1, z2 by (6.3) given γ1, γ2, with α = 1− α3;
Calculate n1, n3 by (6.3) given γ1, γ3, with α = 1− α2;
if |α1 − z1|+ |α1 − n1| < ǫ then

break;
else

α1 =
α1 + z1

2
;

end

end
Algorithm 1: Noise partitioning algorithm for MAC with three transmitters

redistribute noise power among transmitters in a pairwise manner, and update the
noise partitioning (e.g., take average) after each iteration. An example of the noise
partitioning algorithm for a MAC with three transmitters is shown in Algorithm 1.
In general, the convergence of the algorithm is fast.

Given total noise power α, the noise partitioning problem can be formulated as

min
α1,α2

(

1 +
γ1
α1

)(

1 +
γ2
α2

)

subject to α1 + α2 = α,
α1 > 0, α2 > 0,

(6.2)

whose solution can be figured out straightforwardly by introducing the Lagrange
multiplier and then taking partial derivative,

α1 = α

[

1 +

√

1 + γ−1
1

1 + γ−1
2

]−1

, α2 = α− α1. (6.3)

The sum rate of Gaussian multiple-access channels with m transmitters is upper
bounded by

Ru,s =
1

2
log



1 +

(

m
∑

i=1

√
γi

)2


 ,

which is the sum rate capacity when full cooperation among all transmitters is
possible. On the other hand, the following sum rate is achievable by exploiting
independent codebooks at transmitters and successive interference cancellation de-
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coding at the receiver,

Rl,s =
1

2
log

(

1 +

m
∑

i=1

γi

)

.

The gap between the upper and the lower bounds on sum rate, measured in bits
per channel use, is therefore

∆MAC = Ru,s −Rl,s =
1

2
log

(

1 + (
∑m
i=1

√
γi)

2

1 +
∑m
i=1 γi

)

≤ 1

2
log

(

1 +m
∑m
i=1 γi

1 +
∑m
i=1 γi

)

(6.4)

<
1

2
log(m),

where the first inequality comes from Jensen’s inequality based on the convexity
of the function f(x) = x2. Hence, for Gaussian multiple-access channels with
transmitters in isolation, feedback and transmitter cooperation can increase the sum
capacity by at most 1

2 log(m) bits per channel use. The gap becomes considerably
smaller at low SNR or when the SNR for each link diverges.

6.2.2 Broadcast Channels with More than Two Receivers

In [CME11] upper and lower bounding models for broadcast channels have been
constructed for the setup with two receivers, in contrast to the multiple-access
channels where bounding models for m transmitters have been proposed. The
main difference between multiple-access channels and broadcast channels is the
encoding process when the transmitters/receivers cannot cooperate: distributed
encoding is performed in multiple-access channels while centralized encoding is
done in broadcast channels. As a consequence, only one rate constraint for each
parallel channel li together with a sum rate constraint is sufficient in multiple-access
setups. The broadcast setup, however, requires 2m rate constraints to describe each
of the individual channel, and any subset of them, including the rate constraint on
the total sum rate.

The upper bounding model for broadcast channels with m receivers can be
generalized straightforwardly from the structure developed in [CME11] by omitting
the rate constraints on some subsets of parallel channels. Note that utilizing fewer
rate constraints may result in a looser upper bounding model for general setups.
The upper bounding models with m receivers can therefore be written as follows

Cu,BC,1 =(RBC , log(|Y1|), . . . , log(|Ym|)),
Cu,BC,2 =(log(|X |), R1, . . . , Rm),
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where

RBC , max
p(x)
I(X ;Y1, . . . , Ym),

Ri , max
p(x)
I(X ;Yi), i = 1, . . . ,m.

Generalization of the lower bounding models for broadcast channels with m
receivers requires new techniques. We first introduce a rate vector of length 2m,

R = [Ri : i = 0, 1, . . . , 2m − 1],

to describe the necessary rate constraints at the transmitter. R0 is reserved for
the constraint on the sum rate, and Ri, i = 1, . . . , 2m − 1, is the rate constraint
to ensure simultaneously successful decoding of the unicast/multicast message by
receivers indicated by the index i expressed in binary format of length m. For
example, R2n−1 , n = 1, . . . ,m, is the constraint for unicast rate over channel ln
to receiver n, R5 is the constraint for multicast rate to receiver 1 and receiver 4,
and R2m−1 is the constraint for multicast rate to all receivers. For non-degraded
channels, the length of the rate vector can be up to 2m in the worst case scenario.
However, for statistically degraded parallel channels li, i = 1, . . . ,m, which is the
case for Gaussian broadcast channels, the length of the rate vector is at most m.
We first illustrate this by a toy example and then present the results for general
cases.

A Toy Example: Gaussian Broadcast Channel with Two Receivers

Let γ1 and γ2 be the effective link SNR at receiver 1 and receiver 2, respectively.
If γ1 = γ2 = γ, then we have

RBC = [R0, R3] = [0.5 log(1 + γ), 0.5 log(1 + γ)].

That is, only a common message can be decoded by both receivers.
If γ1 < γ2, we introduce the power allocation parameter β ∈ [0, 1] for superpo-

sition encoding, which results in the following individual rates

R3 = 0.5 log

(

1 +
(1 − β)γ1
1 + βγ1

)

,

R2 = 0.5 log(1 + βγ2),

where the common message (of rate R3) can be decoded by both receivers and the
private message (of rate R2) only by the more powerful receiver (receiver 2 in this
case). Hence the corresponding lower bounding model is

RBC = [R0, R3, R2] = [R3 +R2, R3, R2].
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General Case: Gaussian Broadcast Channels with m Receivers

Here we look at bounds for the Gaussian broadcast channels with m receivers.
Without loss of generality, assuming γ1 ≤ γ2 ≤ ... ≤ γm, we can encode the
codeword Wi by superposition coding with corresponding power allocation param-
eters βi ∈ [0, 1], and then utilize successive interference cancellation at receivers.
An alternative encoding/decoding approach is to encode codewords W1 to Wm by
dirty paper coding [Cos83] successively and a maximum likelihood decoder at each
receiver. Successful decoding of W1 can be realized at all receivers, and the corre-
sponding rate constraint should be stored as R2m−1. Successful decoding of Wn,
n = 2, . . . ,m can be realized at all receivers except receivers 1 to n− 1, and there-
fore the corresponding rate constraint should be stored as R2m−2n−1 . The resulting
rate vector is therefore

R = [R0, R2m−2i−1 : i = 1, . . . ,m],

where for i = 1, . . . ,m,

R2m−2i−1 =
1

2
log

(

1 +
βiγi

1 + γi
∑m
j=i+1 βj

)

, (6.5)

is the rate constraint at which message Wi can be transmitted successfully via
channel li to lm. The constraint R0 on the sum rate is

R0 =

m
∑

i=1

R2m−2i−1

=

m
∑

i=1

1

2
log

(

1 + γi
∑m
j=i βj

1 + γi
∑m
j=i+1 βj

)

=
1

2
log(1 + γ1) +

1

2

m
∑

i=2

log

(

1 + γi
∑m
j=i βj

1 + γi−1

∑m
j=i βj

)

,

where the last equality comes from the fact that

m
∑

i=1

βi = 1.

Since γi−1 ≤ γi, the function 1+xγi
1+xγi−1

is monotonically increasing on x ∈ [0, 1], with

its maximum 1+γi
1+γi−1

achieved when x = 1, it is straightforward to figure out that

R0 ≤
1

2
log(1 + γm),

where the equality is achieved when βm = 1 (i.e, βi = 0 for all i 6= m).



114
CHAPTER 6. GENERAL BOUNDING MODELS FOR NETWORKS WITH

INDEPENDENT NOISE

The sum rate of Gaussian broadcast channels withm receivers is upper bounded
by

Rs =
1

2
log

(

1 +

m
∑

i=1

γi

)

,

which can be achieved only when full cooperation among receivers is possible. The
gap between the upper and the lower bounds on sum rate, measured in bits per
channel use, is therefore

∆BC = Rs −R0 =
1

2
log

(

1 +
∑m
i=1 γi

1 + γm

)

≤ 1

2
log

(

1 +mγm
1 + γm

)

<
1

2
log(m), (6.6)

where the first inequality comes from the assumption γi ≤ γm for all i. Hence,
for Gaussian broadcast channels with receivers in isolation, feedback and receiver
cooperation can increase the sum capacity by at most 1

2 log(m) bits per channel
use. The gap becomes considerably smaller at low SNR or when the SNR for each
link diverges.

6.2.3 Illustrative Example

Given a wireless network N with independent noise, when constructing upper
(lower) bounding networks, we first replace each MAC and BC modules with the
corresponding one-shot upper (lower) bounding models. As there are more than
one bounding model for each building block, there are many different combinations,
each resulting in a valid noiseless upper bounding network Cu,i (lower bounding net-
work Cl,i) on the original network N. We should take intersection of all the valid
capacity upper bounds Cu,i to get the final (and tighter) upper bound, and this
operation is indicated by (with abuse of notation)

N ⊆
⋂

i

Cu,i.

For the lower bound, we should compute the achievable rate region for each of the
valid lower bounding network Cl,i and then take union of them to get the final (and
tighter) lower bound, i.e.,

⋃

i

Cl,i ⊆ N.

We illustrate the above bounding procedure by a non-coupled noisy network N

shown in Figure 6.3, where the source node S1 multicasts information W1 at rate
R1 to destinations D1 and D3, and S2 multicasts W2 at rate R2 to destinations D2

and D3, with aid from a full-duplex relay R. The point-to-point connections S1-
D1 and S2-D2 are binary symmetric channels with crossover probability ǫ1 and ǫ2,
respectively. The multiple-access channel ending at R and the broadcast channel
originating from R are Gaussian channels with effective link SNR γir and γrj , i =
1, 2, j = 1, 2, 3, respectively. Without loss of generality, we assume γr1 ≤ γr2 ≤ γr3
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Figure 6.3. A non-coupled noisy network N with source node S1 multicasting
information W1 at rate R1 to destinations D1 and D3, and S2 multicasting W2 at
rate R2 to destinations D2 and D3, with aid from a full-duplex relay R. The point-
to-point connections S1-D1 and S2-D2 are binary symmetric channels with crossover
probability ǫ1 and ǫ2, respectively. The multiple-access channel ending at R and the
broadcast channel originating from R are Gaussian channels.

as their order will determine the structure of the lower bounding model for the
broadcast channel.

The point-to-point connections S1-D1 and S2-D2 are independent channels in
the original network, and therefore they can be replaced by bit-pipe with through-
put equals to 1−H(ǫ1) and 1−H(ǫ1), respectively, without affecting the capacity
of the original network.

There are two types of upper bounding models for the multiple-access channel,
i.e.,

Cu,MAC,1 = (RMAC ,∞,∞),

Cu,MAC,2 = (∞, Rd1
, Rd2

),

where

RMAC = C
(

(
√
γ1r +

√
γ2r)

2
)

,

Rd1
= C

(γ1r
α

)

,

Rd2
= C

(

γ2r
1− α

)

,

α =

(

1 +

√

1 + 1/γ1r
1 + 1/γ2r

)−1

.

Since X1 and X2 are independent, the upper bounding model Cu,MAC,1 is loose as
there will be no coherent combining gain at R. Therefore only Cu,MAC,2 will be
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used as the upper bounding model for the multiple-access channel. There are also
two types of upper bounding models for the broadcast channel, i.e.,

Cu,BC,1 = (RBC ,∞,∞,∞),

Cu,BC,2 = (∞, Rl1 , Rl2 , Rl3 ),

where

RBC = C (γr1 + γr2 + γr3) ,

Rl1 = C (γr1) , Rl2 = C (γr2) , Rl3 = C (γr3) .

Since there is no destination cooperation among Y1, Y2, and Y3, the upper bounding
model Cu,BC,1 is loose. Therefore only Cu,BC,2 will be used to upper bound the
broadcast channel. The resulting upper bounding network Cu is shown in Figure 6.4.
The capacity outer bound can be calculated by applying the max-flow min-cut
principle in the noiseless network Cu, which is defined by the pentagon

Cu(R1, R2) =















0 ≤ R1 ≤ 1−H(ǫ1) + min{Rd1
, Rl1},

0 ≤ R2 ≤ 1−H(ǫ2) + min{Rd2
, Rl2},

R1 +R2 ≤ min{2−H(ǫ1)−H(ǫ2) +Rd1
+Rd2

,
2−H(ǫ1)−H(ǫ2) +Rl1 +Rl2 , Rl3}.

(6.7)

The lower bounding model for the multiple-access channel is given by the ca-
pacity region of the corresponding MAC channel, i.e.,

Cl,MAC = (R′ds , R
′
d1
, R′d2

) = (C(γ1r + γ2r), C(γ1r), C(γ2r)).

The lower bounding model for the broadcast channel can be constructed according
to the description in Section 6.2.2 based on the realization of the channel SNR γrj,
j = 1, 2, 3. Since we have γr1 ≤ γr2 ≤ γr3, the corresponding lower bounding can
be written as

Cl,BC = [R′0, R
′
4, R

′
6, R

′
7], (6.8)

where

R′0 = R′4 +R′6 +R′7,

R′7 = C
(

γr1β1

1 + γr1(1− β1)

)

,

R′6 = C
(

γr2β2

1 + γr2(1− β1 − β2)

)

,

R′4 = C (γr3(1− β1 − β2)) ,

with β1, β2 ≥ 0, β1 + β2 ≤ 1 as power allocation parameters for superposition
encoding at R. R′4 represents the rate at which the same message can be decoded
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Figure 6.4. The upper bounding network Cu where the multiple-access channel is
replaced by Cu,MAC,2 and the broadcast channel is replaced by Cu,BC,2.
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Figure 6.5. The lower bounding network Cl where the multiple-access channel is
replaced by Cl,MAC and the broadcast channel is replaced by Cl,BC .
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Figure 6.6. The capacity inner and outer bounds for the noisy network N obtained
from noiseless bounding networks Cl ⊆ N⊆ Cu, with ǫ1 = 0.02, ǫ2 = 0.04, γ1r = 3,
γ2r = 4, γr1 = 1, γr2 = 2, and γr3 = 8.

only by D3, R′6 represents the rate for success decoding only by D2 and D1, and
R′7 represents the rate for successful decoding by all the destination nodes.

The resulting lower bounding network Cl is shown in Figure 6.5, where the
redundant bit-pipe constraint R′0 is removed (therefore the auxiliary node for the
broadcast channel is merged into R). Given each valid realization of (β1, β2), there
is a valid lower bounding network Cl(β1, β2), which can be utilized to construct
a valid capacity inner bound for the original network N. Note that for networks
with general topology, there are many heuristic ways to construct a valid capacity
inner bound, depending on how the routing scheme combines with network coding
strategies. For the lower bounding network Cl(β1, β2) in Figure 6.5, the capacity
inner bound can be described by the pentagon

Cl(β1, β2) =







0 ≤ R1 ≤ min{1−H(ǫ1) +R′7, R
′
d1
},

0 ≤ R2 ≤ min{1−H(ǫ2) +R′6, R
′
d2
},

R1 +R2≤ min{R′4 +R′6 +R′7, R
′
ds
}.

(6.9)

The final capacity inner bound is therefore

Cl(R1, R2) =
⋃

β1,β2≥0
β1+β2≤1

Cl(β1, β2).

As shown in Figure 6.6, we have compared the capacity inner and outer bounds
obtained from noiseless bounding networks Cl and Cu, respectively, for the original
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⇒

(a) equivalent network after applying bounding models

S′ D′RS′D′

l2

ls

d2

dsSS DD

RR

⇒

(b) bounding network by merging constraints on bit-pipe S′–D′
Figure 6.7. Bounding network for the classical 3-node relay network by applying
the one-shot bounding models. The bit-pipe l1 between auxiliary nodes S′ and D
is due to the broadcast channel starting from source node S, and the bit-pipe d1 is
due to the multiple-access channel ending at destination node D.

noisy network N with ǫ1 = 0.02, ǫ2 = 0.04, γ1r = 3, γ2r = 4, γr1 = 1, γr2 = 2, and
γr3 = 8. The gap between the inner and outer bounds is within 0.1 bits on the sum
rate, and within 0.4 bits on individual rates.

6.3 Bounding Models for Coupled Networks

6.3.1 Channel Decoupling

The one-shot bounding model proposed in [CME11] and its extensions presented
in Section 6.2 are designed for non-coupled networks, where multiple-access and
broadcast channels are independent. In wireless networks, however, these multiple-
access and broadcast channels are usually coupled together due to the broadcast
nature of wireless transmission.

For each broadcasting node with m receivers, we introduce an auxiliary node
with one input bit-pipe channel andm output bit-pipe channels. For each receiving
node with n input sources, we introduce an auxiliary node with n input bit-pipe
channels and one output bit-pipe channel. For the full-duplex nodes in the network,
we introduce two auxiliary nodes, one for the receiving functionality and the other
for the transmitting functionality. When a wireless connection between two points
is part of both a broadcast channel and a multiple-access channel, there will be
two bounding bib-pipe channels for this connection after applying the one-shot
solution, as illustrated in Figure 6.7(a) for the classical 3-node relay channel where
the connection between the source node S and the destination node D is part
of both the broadcast channel starting from S and the multiple-access channel
ending at D. As the bit-pipe channels S–D′ and S′–D are constraints on the same
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connection S–D, we can merge these two bit-pipe constraints on the same point-to-
point connection S′–D′, as illustrated in Figure 6.7(b). Note that the constraint l1
imposed by the broadcast channel and the constraint d1 imposed by the multiple-
access channel should be simultaneously respected in the final bounding networks.
We will formally prove this in Theorem 6.1 for the upper bounding models and
demonstrate it in Section 6.3.3 for the lower bounding models.

6.3.2 Outer Bounds

Theorem 6.1. Given a noisy network with independent noise, if a noisy connection
between two nodes is part of both a broadcast channel and a multiple-access channel,
the corresponding bit-pipe in the upper bounding network should have a throughput
that equals to the maximum of the two individual rate requirements imposed by the
bonding models for corresponding broadcast and multiple-access channels.

Proof. Proof outline.
We first look at the classical relay network as illustrated in Figure 6.7, and then
extend our proof to general setups. The one-shot upper bounding models for the
relay network can be written as

Cu,BC,1 = (RBC , log(|Y|), log(|Yr |)),
Cu,BC,2 = (log |X |, Rl1 , Rl2 ),

Cu,MAC,1 = (RMAC , log(|X |), log(|Xr|)),
Cu,MAC,2 = (log(|Y|), Rd1

, Rd2
)

where

RBC , max
p(x)
I(X ;Yr, Y ),

Rl1 , max
p(x)
I(X ;Y ),

Rl2 , max
p(x)
I(X ;Yr)

RMAC , max
p(x,xr)

I(X,Xr;Y ),

Rd1
, max
p(x)
I(X ;Z1),

Rd2
, max
p(xr)
I(Xr;Z2),

and Z1, Z2 are intermediate auxiliary variables to emulate the channel output Y via
a predefined deterministic function y = g(z1, z2) such that the channel transition
probability can be partitioned as

p(y|x, xr) =
∑

z1,z2:
y=g(z1,z2)

p(z1|x)p(zr|xr),
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and the sum rate Rd1
+Rd2

can be minimized.
There are in total four combinations after applying the one-shot bounding mod-

els for the broadcast and the multiple-access channels. In the following we will show
that, for each combination, merging rate constraints on S–D′ and S′–D together
and replacing these links by a connection S′–D′ is sufficient to construct a valid
upper bounding network.

When Cu,BC,2 and Cu,MAC,2 are used for the BC and the MAC, respectively, it
is obvious that S′ in Cu,BC,2 behaves exactly the same as S and therefore replacing
the bit-pipe S–D′ by S′–D′ will not affect the model Cu,MAC,2 as

Rl1 = max
p(x)
I(X ;Y ) ≤ log(|Y|).

For discrete random variable Y , the inequality comes from the fact that I(X ;Y ) ≤
H(Y ) and the concavity of the function f(x) = −x log(x). If Y is a continuous-
valued random variable, the inequality holds since |Y| = ∞. Following similar
argument we can replace the bit-pipe S′–D by S′–D′ due to the fact that Rd1

≤
log(|X |). By choosing the throughput of S′–D′ as

RS′D′ = max(Rl1 , Rd1
),

the requirement of both upper bounding models Cu,BC,2 and Cu,MAC,2 can be ful-
filled over the noiseless network.

When Cu,BC,2 and Cu,MAC,1 are used, the throughput of the bit-pipe S′–D′ can
be set as

RS′D′ = max(Rl1 , log(|X |)).
Then the bit-pipe S′–D originating from Cu,BC,2 can be replaced by S′–D′ as Rl1 ≤
RMAC , and the inequality comes from the fact that

I(X ;Y ) ≤ I(X ;Y ) + I(Xr;Y |X) = I(X,Xr;Y ).

The bit-pipe S–D′ originating from Cu,MAC,1 can be replaced by S′–D′ as the
bounding channels ls and d1 have the same throughput log(|X |).

When Cu,BC,1 and Cu,MAC,1 are used, we set the throughput of the bit-pipe
S′–D′ as

RS′D′ = max(log(|X |), log(|Y|)).
Then we need to show that the resulting bounding model is still valid after we
replace S′–D and S–D′ by S′–D′. If X is a continuous-valued random variable, we
have |X | =∞ while RBC is finite2, which leads to RBC < log(|X |). If X is discrete
random variable, we have

RBC = max
p(x)
I(X ;Yr, Y ) ≤ max

p(x)
H(X) ≤ log(|X |).

2Y, Yr are noisy version of X and therefore I(X; Yr, Y ) is finite.



122
CHAPTER 6. GENERAL BOUNDING MODELS FOR NETWORKS WITH

INDEPENDENT NOISE

Similarly we have RMAC ≤ log(|Y|). Therefore we need a new approach to proving
the validity of the resulting upper bounding model. It is obvious that RBC and
RMAC equal to the corresponding rate constraints obtained by applying the cut-
set bound at the source node and the destination node, respectively. To make our
bounding model a valid upper bound as suggested by the cut-set bound constraints,
we can set

RS′D′ = max(RBC , RMAC).

Since RBC < log(|X |) and RMAC ≤ log(|Y|), setting

RS′D′ = max(log(|X |), log(|Y|))

will not disqualify our upper bounding model.
When Cu,BC,1 and Cu,MAC,2 are used, we set the throughput of the bit-pipe S′–

D′ as RS′D′ = max(log(|Y|), Rd1
). The bit-pipe S′–D originating from Cu,BC,1 can

be replaced by S′–D′ as the bounding channels l1 and ds have the same throughput
log(|Y|). Since Rd1

≤ RBC might not hold, the replacement of S–D′ by S′–D′ has
to be validated following the similar argument as before thanks to the cut-set rate
constraint RBC .

We can now conclude that Theorem 6.1 holds for the classical relay network.
For general network setups, we first divide each full-duplex node into two parts,

one for transmission and one for reception, interconnected by a directed bit-pipe
of infinite rate from the reception part to the transmission part. Assuming the
self-interference can be perfectly cancelled, there will be no backward connection
from the transmission part to the reception part. Such transmission/reception
part will be treated as an independent node when applying the one-shot bounding
model, and we will not differentiate them from ordinary nodes (either transmission
or reception, but not both).

A noisy connection ni,j = (Xi, p(yj|xi),Yj) from a node transmitting Xi to
another node whose received signal is Yj in a coupled network can be described by
the marginal distribution

p(yj |xi) =
∑

x/i,y/j

p(y|x)p(x/i),

where

p(y|x) , p(y1, . . . , yj , . . . , yq|x1, . . . , xi, . . . , xp)

is the transition probability of the smallest multiple input multiple output network
N = (

∏p
n=1 Xn, p(y|x),

∏q
k=1 Yk) which contains ni,j , i.e., the broadcast channel

with input Xi is necessarily and sufficiently described by the transition probability
p(y|xi) and the multiple-access channel with output Yj is necessarily and suffi-
ciently described by p(yj |x). The noisy connection ni,j and the smallest multiple
input multiple output network N that contains it are illustrated in the left part of
Figure 6.8.
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Figure 6.8. The noisy connection ni,j from the node with transmitting alphabet Xi
to the node with receiving alphabet Yj in a coupled network can be fully described by
the smallest multiple input multiple output network N that contains it. Applying the
one-shot bounding models to the broadcast and the multiple channels that contain
ni,j will incur two parallel rate constraints. The bit-pipe lj is due to the broadcast
channel and the bit-pipe di comes from the multiple-access channel. Both lj and di
should be replaced by a single bit-pipe from auxiliary node nI to auxiliary node nJ
when finalizing the noiseless bounding network.

As ni,j can be fully described by N, we can apply the one-shot bounding mod-
els to the broadcast and the multiple channels that contain ni,j to construct the
bounding networks. The upper bounding model for the broadcast channel with
input Xi can be written as

Cu,BC = (Rls , Rl1 , . . . , Rlj , . . . , Rlq),

where Rlj corresponds to the rate constraint on the parallel channel lj with output
Yj . The upper bounding model for the multiple-access channel with output Yj can
be written as

Cu,MAC = (Rds , Rd1
, . . . , Rdi , . . . , Rdp),

where Rdi corresponds to the rate constraint on the parallel channel di with input
Xi, as illustrated in the right part of Figure 6.8. Since the auxiliary nodes nI and nJ
are introduced to emulate the original nodes, we could create a bit-pipe of through-
put Ri,j from nI to nJ to replacing both lj and di. Following the same argument
as we have done for the relay network, we can show that Ri,j = max(Rlj , Rdi) is
sufficient to fulfill the requirement of both tasks.

Key Steps to Construct Capacity Outer Bounds

Given a coupled network, we can construct the capacity outer bound step by step
as follows.

Step I: Channel Decoupling for Network Decomposition
For each full-duplex node R in the network with input signal Y and output

signal X , we introduce a virtual node Rr representing its functionality of signal
reception if Y is the output of a multiple-access channel ending at R. Similarly we
introduce a virtual node Rt representing its functionality of signal transmission if
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X is the input of a broadcast channel originating from R. These virtual nodes (if
any) will be connected to the original node R by an infinite-rate bit-pipe. Such
transmission/reception virtual nodes will be treated as independent nodes when
applying the one-shot bounding model, and we will not differentiate them from
ordinary nodes (can be the starting point of a broadcast channel or the ending
point of a multiple-access channel, but not both simultaneously).

Step II: Apply One-shot Bounding Models
For each independent point-to-point connection, we replace it with a bit-pipe

whose throughput equals to its capacity [KEM11]. Similarly, for any independent
multiple-access channel or broadcast channel, replace it with the corresponding
one-shot bit-pipe models. Then, for each pair of coupled broadcast channel and
multiple-access channel, i.e., there is a noisy connection that is part of both the
broadcast and the multiple-access channel, we identify the smallest multiple input
multiple output network that contains this noisy connection, and hence also con-
tains the pair of coupled broadcast and multiple-access channels. We apply the
one-shot bounding models to this multiple input multiple output network, where
the resulting bounding model contains a point-to-point connection that satisfies rate
constraints placed by both the broadcast channel and the multiple-access channel,
as described in Theorem 6.1.

Step III: Construct a Valid Outer Bound
According to the max-flow min-cut theorem, the maximum throughput from

source to sink can be no larger than the value of the minimum cut in between.
For each transmission task (unicast or multiple cast), we identify all the cuts in
the resulting bounding network (which contains only noiseless point-to-point con-
nections) and calculate the flows across each cut. The resulting capacity region is
therefore an outer bound3 for the upper bounding network, and hence also a valid
outer bound for the original coupled noisy network.

Step IV: Take Intersection of all Valid Outer Bounds
For each MAC or BC component, there are two different upper bounding models,

which results in 2M different upper bounding networks after Step II, where M is
number of MAC/BC components. Each of these upper bounding networks will
result in a valid outer bound as described in Step III. We can then take intersection
of all these outer bounds to get a tighter outer bound.

6.3.3 Inner Bounds with Updated Lower Bounding Models

The lower bounding model designed for non-coupled networks assumes isolated
source/destination nodes, without taking into account the possibility that the trans-
mitted signal can be designed for multiple destinations (in broadcast channels) and

3As shown in [KM03], the max-flow min-cut theorem is tight on some noiseless networks, which
include noiseless networks associated with single-source multiple-unicast transmission, single-
source (two-level) multicast transmission, and multi-source multicast transmission. Therefore
the bound we obtained by the max-flow min-cut theorem might be the capacity region for the
corresponding upper bounding network.
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the received signal may consist of signals from several source nodes (in multiple-
access channels) and thus interfere with each other. When a noisy connection
between two nodes is part of both a broadcast and a multiple-access channel, the
bounding models for the broadcast channel and for the multiple-access channel
have to be updated. We will demonstrate how the update should be done step by
step as follows. Note that the proposed method will ensure a valid lower bounding
network, without claiming its optimality.

Key Steps to Construct Capacity Lower Bound

Given a coupled network, we can construct the capacity inner bound step by step
as follows.

Step I: Channel Decoupling for Network Decomposition
Following the same procedure as in Section 6.3.2 we first decompose the original

network such that every node in the resulting network can only be the starting point
of a broadcast channel or the ending point of a multiple-access channel, but not
both simultaneously.

Step II: Apply Lower Bounding Models for Broadcast Channels and
for Non-coupled Multiple-Access Channels

For each broadcast channel in the resulting network, we apply the lower bound-
ing models for broadcast channels as described in Section 6.2.2. For each non-
coupled multiple-access channel, i.e., neither of its input signals is part of the out-
put of a broadcast channel, we replace it with a lower bounding model according
to existing achievable-rate coding schemes.

Step III: Construct Lower Bounding Models for Coupled Multiple-
Access Channels

If (some of) the input signals to a multiple-access channel are the output signals
from broadcast channels, part of the input signals to the multiple-access channel
can not be decoded by the receiver and therefore behaves as interference. The
original lower bounding models for non-coupled multiple-access channels, which
assume that all the input signals can be decoded, need to be updated based on
the sum power of the interfering signals, which could be calculated by taking into
account the the signal structure of each input source nodes. We illustrate the
principle of constructing such new lower bounding models by a coupled Gaussian
multiple channel as follows.

Example: Gaussian Multiple-Access Channel with m Transmitters
Given a Gaussian multiple-access channel N = (

∏m
i=1 Xi, p(y|x),Y), where Xi

(i = 1, . . . ,m) is the input signal generating the received signal power γi (product
of transmitted signal power and the corresponding channel gain). If Xi can only be
received by the receiver in channel N, all the components ofXi can be fully decoded
by the receiver. If Xi can also be received by other nodes, i.e., Xi is the transmitted
signal from a broadcast source node, it may contains components that do not intend
to be decoded by the receiver due to rate and power allocation at the broadcast
node, as described in Section 6.2.2 for constructing the lower bounding model for



126
CHAPTER 6. GENERAL BOUNDING MODELS FOR NETWORKS WITH

INDEPENDENT NOISE

Gaussian broadcast channels. The remaining component of Xi cannot be decoded
by the receiver and therefore behaves as interference during the decoding process.
We denote the power of the interfering component by Γi, and the exact value can be
obtained from the lower bounding model with the knowledge of the corresponding
power allocation parameters chosen by the broadcast channel transmitting Xi. We
will have Γi = 0 if all messages contained in Xi are intended for successful decoding,
and Γi = γi if nothing is to be decoded.

After careful examination of the structure of all the input signals, we can cal-
culate the total power of interfering components contained in Y as follows

PI =
m
∑

i=1

Γi, (6.10)

out of which

PI,i = PI − Γi =
∑

j 6=i

Γj (6.11)

is the amount of interference power introduced by input signals other than Xi. We
call PI,i the “extrinsic interference” of Xi.

We can now construct the lower bounding model for the multiple-access channel
N based on the total power of interfering components PI obtained from (6.10). The
throughput constraints on the bit-pipe di (corresponding to the connection Xi-Y )
in the lower bounding model is therefore

Rdi = C
(

γi − Γi
1 + PI

)

, (6.12)

and the constraints on sum rate are

∑

i∈S

Rdi = C
(
∑

i∈S(γi − Γi)

1 + PI

)

,

where S ⊆ {1, 2, . . . ,m} is any subset of transmitting nodes.
Step IV: Rate Adjustment for Coupled Broadcast Channels
If a broadcast channel is coupled with a multiple-access channel, the lower

bounding model for this broadcast channel should also be adjusted. As described
in Section 6.2.2 for Gaussian broadcast channels, the lower bounding model for
a non-coupled broadcast channel depends on the effective link SNR of each indi-
vidual channels. Assume the noisy connection Xn-Yk is both part of a broadcast
channel transmitting Xn and a multiple-access channel with received signal Yk,
we denote the corresponding link SNR by γnk. After step III, we can obtain by
(6.11) the extrinsic interference power PI,nk, caused by input signals other than
Xn in the coupled multiple-access channel with output Yk. We can now adjust the
lower bounding model for the broadcast channel transmitting Xn with new rate



6.3. BOUNDING MODELS FOR COUPLED NETWORKS 127

constraints R′2m−2i−1 , corresponding to successful transmission of message Wi via
channels li to lm, by taking into account the extrinsic interference power PI,nk for
k = i, . . . ,m. Therefore (6.5) in Section 6.2.2 which defines R2m−2i−1 , should be
adjusted to

R′2m−2i−1 = min
k∈{i,i+1,...,m}

1

2
log

(

1 +
γnkβi

1 + PI,nk + γnk
∑m
j=i+1 βj

)

. (6.13)

The sum rate constraint should be adjusted by

R′0 =

m
∑

i=1

R′2m−2i−1 .

Note that the minimum operation in (6.13) comes from the fact that given
γni ≤ . . . ≤ γnm we cannot guarantee

γni
1 + PI,ni

≤ . . . ≤ γnm
1 + PI,nm

due to the effect of the extrinsic interference caused by coupled multiple-access
channels. Here we simply keep the structure of the original lower bounding model
unchanged without claiming its optimality.

Step V: Construct Inner Bound for the Resulting Noiseless Network
After applying one-shot bounding models, there will be two rate constraints on

the same bit-pipe if the corresponding noisy connection is both part of a broadcast
channel and a multiple-access channel. The rate constraint on this bit-pipe in
the resulting lower bounding network is therefore the minimum of these two rate
constraints.

The resulting lower bounding network consists of only noiseless bit-pipes, but it
may contain hyper-arcs that carry the same data from one point to multiple points
if the original noisy network has broadcast channels. How to find the optimal
scheme to manage the data flows over such noiseless networks is in general an open
problem. However, there exist many heuristic (and thus suboptimal in general)
methods, see [THMK] for example, to construct a valid inner bound.

Step VI: Take Union of all Valid Inner Bounds
When superposition coding is used in constructing the lower bounding model

for broadcast channels, there are infinite4 number of lower bounding models due
to power allocation parameters. We can construct a valid lower bound for each of
these bounding models and then take the union of all the valid lower bounds to
form the final inner bound.

4In practice we have finite number of power allocation parameters, which will result in a
slightly looser inner bound.
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6.3.4 Illustrative Examples

A Coupled Noisy Network Consisting of Two-User MAC/BC

We first illustrate the channel decoupling method and the upper bounding network
construction based on a wireless multicast relay network shown in Figure 6.9, where
two source nodes S1 and S2, connected with backhaul (rate C12 and C12), multicast
information W1 at rate R1 and W2 at rate R2, respectively, to both destinations
D1 and D2 through Gaussian channels, with aid from a full-duplex relay R. All the
broadcast channels consist of two receivers and all the multiple-access channels have
two transmitters. The bounding models (ks, k1, k2), (ls, l1, l2), and (rs, r1, r2) come
from the broadcast channels originating from S1, S2, and R, respectively. The
bounding models (ps, p1, p2), (qs, q1, q2), and (ts, t1, t2) come from the multiple-
access channels ending at D1, D2, and R, respectively. Note that the bit-pipes k1
and p1 refer to the same point-to-point noiseless connection between S′1 and D′1,
and therefore can be replaced by a single bit-pipe, as described by Theorem 6.1 for
constructing upper bounding models and by Section 6.3.3 for constructing lower
bounding models. The resulting upper bounding network is shown in the bottom
of Figure 6.9, where the maximum operation comes from Theorem 6.1, and the
minimum operation min{Rrs , Rts} comes from the fact that the maximum flow
passing through a bit-pipe is constraint by the bottleneck of that bit-pipe.

The upper and lower bounds on the sum rate obtained from the corresponding
upper and lower bounding networks have been illustrated for high-rate backhaul
scenarios in Figure 6.10 with respect to varying source-relay channel quality, and in
Figure 6.11 with respect to varying relay-destination channel quality. The cut-set
bound developed in Section 3.2, and lower bounds obtained by the NBF scheme
developed in Section 4.1.4 and by the SNNC with message exchange scheme devel-
oped in Section 5.2.1, are plotted as references. The upper bound obtained directly
from the noiseless upper bounding network is relatively good5 in all the regions we
have demonstrated, normally within a marginal difference from the cut-set bound
that is derived based on vigorous and lengthy analysis on the whole network. The
lower bound is always within 0.5 bits from the cut-set bound.

In Figure 6.10 the lower bonding models for the multiple-access channels at
D1 and D2 are constraint by the weak source-relay and relay-destination channel
gains, and they become the bottleneck in the resulting noiseless lower bounding
network when the source-relay channel gain is strong. The lower bound on the sum
rate derived from this lower bounding network is therefore unchanged despite the
improved channel quality of the source-relay link. The lower bound in Figure 6.11
is constrained by the multiple-access channels at destinations D1 and D2 for weak
relay-destination channel quality (g2rd < 15dB), and constrained by the broadcast
channels originating from S1 and S2 when the relay-destination channels are strong.

5In the sense that the gap from the cut-set bound is small.
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Figure 6.9. Channel decoupling for a wireless multiple multicast relay network,
where two source nodes S1 and S2, connected with backhaul (rate C12 and C12),
multicast information W1 at rate R1 and W2 at rate R2 respectively to both des-
tinations D1 and D2 through Gaussian channels, with aid from a full-duplex relay
R.
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Figure 6.10. Capacity bounds on sum rate for high-rate backhaul scenario with
P1 = P2 = Pr = 5dB and g11 = g22 = gr1 = gr2 = 0dB.
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Figure 6.11. Capacity bounds on sum rate for high-rate backhaul scenario with
P1 = P2 = Pr = 5dB, g11 = g22 = 0dB, and g21r = g22r = 5dB.
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A Coupled Network Contains MAC/BC with Three Users

When the cross-links S1-D2 and S2-S1 exist, as shown in Figure 6.12, the broadcast
channels originating from source nodes contain three receivers and the multiple-
access channels ending at destination nodes contain three transmitters. We can first
decompose the original network and then apply the bounding models, which will
result in a bounding network as shown in Figure 6.12 (II). As both destination nodes
need to decode both messages, we may treat them one-by-one when constructing
the upper bounding networks, as illustrated in Figure 6.12 (I). We can then derive a
valid upper bound based on the bounding network consisting only D1, and then find
another upper bound based on the bounding network consisting only D2, and finally
take intersection of them to get a valid upper bound for the original network. As
shown in (6.4) and (6.6), the difference in sum rate between the upper and lower
bounding models for broadcast channel with m receivers and for multiple-access
channel with m transmitters is at most 0.5 log(m) bits per channel use. Therefore
the outer bound obtained from bounding network (I) will be tighter than the one
obtained from (II) due to smaller gap between upper and lower bound for the
broadcast channels originating from source nodes. The lower bound, however, may
not be derived from the bounding network (I) due to the change of channel setup.
We will therefore construct lower bound only based on (II).

We first focus on the sum rate under various channel setups with high rate
backhaul. We compare the resulting two upper bounds and the lower bound to
the cut-set bound developed in Section 3.2, and the lower bounds obtained by the
NBF scheme developed in Section 4.1.4 and by the SNNC with message exchange
scheme developed in Section 5.2.1.

When the source-relay channels are good, as shown in Figure 6.13, the broadcast
channels at source nodes are not a bottleneck and therefore there is no difference
between the upper bounds obtained from bounding networks (I) and (II). When the
source-relay channels are weak, as shown in Figure 6.14, the upper bound obtained
from (I) is much better than the bound obtained from (II) as the broadcast channels
at source nodes become a bottleneck. In both scenarios, the gap between the upper
bound obtained from (I) and the cut-set bound is relatively small, usually less than
0.3 bits per channel use. The gap between the lower bound and the cut-set bound
varies, from 0.4 bits per channel use up to 0.7 bits per channel use.

When the cross links are strong, as shown in Figure 6.15, the NBF scheme per-
forms relatively poor since the decoding at the relay node becomes the bottleneck.
Our lower bound, on the other hand, achieves surprisingly good performance when
the cross links are of very good quality. The gap between our lower bound and
the cut-set bound is less than 0.5 bits per channel use as shown in Figure 6.15.
The good cross link quality helps to create bit-pipes of high throughput connect-
ing source nodes and destinations, leading to high sum rate with the help of the
high-rate backhaul. The upper bounds obtained from bounding networks (I) and
(II) overlap each other.

For low-rate backhaul scenarios, we investigate the outer and inner bounds on
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Figure 6.12. Channel decoupling for a wireless multiple multicast relay network,
where two source nodes S1 and S2, connected with backhaul (rate C12 and C12),
multicast information W1 at rate R1 and W2 at rate R2 respectively to both desti-
nations D1 and D2 through Gaussian channels, with aid from a full-duplex relay R.
The bounding network (I) is only used for constructing upper bounds.
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Figure 6.14. Capacity bounds on sum rate for high-rate backhaul scenario with
varying source-relay link quality. γ11 = 5dB, γ22 = 10dB, γr1 = γr2 = 10dB, and
γ12 = γ21 = 0dB.
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Figure 6.15. Capacity bounds on sum rate for high-rate backhaul scenario with
varying cross-link channel quality. γ11 = 5dB, γ22 = 10dB, γ1r = γ2r = 10dB, and
γr1 = γr2 = 10dB.

the capacity region obtained from the bounding networks, and compare them to
the genie-aided outer bound proposed in Proposition 3.2, the pDF+LNC inner
bound developed in Section 4.2.1, and the AF+ANC inner bound developed in
Section 5.3. When the relay-destination links and the cross links are weak, both
the outer bounds (I) and (II) are within 0.2 bits from the genie-aided outer bound
on sum rate, but deviate from it on individual rates, as shown in Figure 6.16. The
inner bound is worse than the pDF+LNC bound except for the rate constraint on
R2. The inner bound obtained from the bounding network can beat the AF+ANC
region except for the sum rate constraint. The gap between the inner bound and
the genie-aided outer bound varies from 0.2 bits to 0.4 bits per channel use.

When the source-relay links and the cross links are weak, as shown in Fig-
ure 6.17, the outer bound (I) is very close to the genie-aided outer bound on in-
dividual rates, but deviates by 0.5 bits on the sum rate. The outer bound (II) is
relatively loose. The inner bound obtained from the bounding network can almost
beat the pDF+LNC inner bound except on the sum rate, and it deviates from the
genie-aided outer bound by at most 0.3 bits per channel use.
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Figure 6.16. Rate regions and capacity outer bounds for channels setups with direct
links γ11 = 5dB and γ22 = 10dB, cross-links γ12 = γ21 = 0dB, source-relay links
γ1r = γ2r = 10dB and relay-destination links γr1 = γr2 = 0dB, with asymmetric
backhaul rates C12 = 0.5, C21 = 0.1 bits per channel use.

6.4 Summary

In this chapter we have presented general capacity bounding models for wireless net-
works with independent noise, by construction of upper and lower capacity bound-
ing networks consisting of only noiseless bit-pipe channels. We have extended the
bounding models for two-user broadcast channels to many-user scenarios and es-
tablished the gap between upper and lower bounding models. For networks with
coupled links, we have proposed a channel decoupling method which can decom-
pose the network into overlapping multiple-access and broadcast channels. We have
created an upper bounding network consisting of only bit-pipe channels by apply-
ing the one-shot models directly to the decomposed network. When developing
the lower bounding network, we have proposed to update the models for coupled
broadcast and multiple-access channels. We have demonstrated by some examples
that the resulting upper bound is in general very good and the gap between the
upper and lower bounds is usually not large.
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Figure 6.17. Rate regions and capacity outer bounds for channels setups with direct
links γ11 = 5dB and γ22 = 10dB, cross-links γ12 = γ21 = 0dB, relay-destination
links γr1 = γr2 = 10dB, and source-relay links γ1r = γ2r = 3dB, with asymmetric
backhaul rates C12 = C21 = 0.5 bits per channel use.



Chapter 7

Cooperation by Cancelling
Interference at the Transmitter

The capacity bounds established in Chapter 3, 4, 5 are based on arguments in-
volving an infinite number of channel uses, i.e., the transmit signals are of infinite
dimensions. To obtain an understanding of what one can achieve in small (or a sin-
gle) dimensions of signals and at low complexity, we consider a wireless downlink
transmission scenario where practical Costa precoding [Cos83] (also known as dirty
paper coding) is utilized at the base station to facilitate broadcast transmission to
two receivers with the aid from a half-duplex relay node. Specifically, we propose
a symbol-by-symbol scheme for the Costa precoding problem. For finite-alphabet
signaling and interference, we derive the optimal (in terms of maximum mutual
information) modulator under a given power constraint. A sub-optimal modulator
is also proposed by formulating an optimization problem that maximizes the mini-
mum distance of the signal constellation, and this non-convex optimization problem
is approximately solved by semi-definite relaxation. For the case of binary signaling
with binary interference, we obtain a closed-form solution for the sub-optimal mod-
ulator, which only suffers little performance degradation compared to the optimal
modulator in the region of interest. For more general signal constellations and more
general interference distributions, we propose an optimized Tomlinson-Harashima
precoder (THP) [Tom71, HM72], which uniformly outperforms conventional THP
with heuristic parameters. Bit-level simulation shows that the optimal and sub-
optimal modulators can achieve significant gains over the THP benchmark as well
as over non-Costa reference schemes, especially when the power of the interference
is larger than the power of the noise.

7.1 Cancelling Known Interference in Relay Networks

From information theory, it is known since [Cos83] that the achievable rate of a
communication channel remains unchanged if the receiver observes the transmitted
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Figure 7.1. The base station transmits ω1 to user 1 during time slot t1 and ω2 to
user 2 during time slot t2. The relaying signal z=f(yr) dedicated for user 1 appears
as “interference” for user 2. With non-causal knowledge of z, the base station can
design a DPC modulator x2 = X(ω2, z) given the information symbol ω2 and the
interference z.

signal in the presence of additive interference and white Gaussian noise, provided
that the transmitter knows the interference non-causally. The resulting precoding
method is known as “Costa precoding” or “dirty paper coding” (DPC) after the
title of [Cos83]. The problem of designing a DPC transmitter is important because
the scenario with known interference arises in many contexts, notably, in precoding
for inter-symbol interference channels and for the downlink multiuser MIMO wire-
less channel [TV05, CS03, WSS06, EU10]. In [WSS06] DPC has been shown to be
capacity achieving in non-degraded MIMO broadcast channels. DPC can also be
applied in a cooperative two-transmitter two-receiver wireless network [NJGM07],
in relay-aided broadcast channels [KS09], and in relay interference channels with a
cognitive source [ZV09]. Essentially, an information theoretic strategy for achiev-
ing capacity is known; it is precisely the achievability proof in [Cos83] and works
as follows: First quantize the interference into a number of bins and then, de-
pending on what bin the interference falls into, choose an appropriate code to
encode the message at the transmitter. This approach has been used with success
in [BBCS06, EtB05], for example, where sophisticated coding schemes were pro-
posed based on superposition coding [BBCS06], lattices and trellis shaping [EtB05].
Trellis and convolutional precoding was used in [YVC05] where the trellis shaping
was developed taking into account the knowledge of a non-causal interference se-
quence.

In this work we study practical DPC schemes in the context of a relay-aided
downlink channel. Consider a communication network where the base station trans-
mits information symbols ω1 and ω2 to user 1 and user 2, respectively, with the aid
of a half-duplex relay (a relay that cannot transmit and receive simultaneously).
As illustrated in Figure 7.1, the relay is dedicated to assist user 1 (the weaker/more
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distant user) whose direct link with the source fails. The base station transmits
x1 (signal for ω1) during time slot t1 and x2 (signal for ω2) during t2. The relay
listens to the base station during t1 and transmits z = f(yr) during t2, where yr
is the received signal at the relay during t1 and f(·) is the relay mapping function.
The relaying signal z, which is useful for user 1, appears as interference for user
2. Assuming that the relay function f(·) is known at the base station and that
the source-relay link is good, the “interference” z will be known at the base station
with high probability before its transmission by the relay node, which effectively
results in the Costa problem.

The goal of our work is to obtain an understanding of what one can achieve
in small (or a single) dimensions of signals and at low complexity, rather than to
achieve the channel capacity. Indeed achieving capacity requires coding over an
infinite number of dimensions, as in [Cos83]. More precisely, we consider the design
of one-dimensional1 schemesX(ω2, z) that map the information symbol ω2 ∈ Z and
an interference symbol z ∈ R (known to the base station but not to user 2) onto
an output symbol x2 ∈ R. Thereby, our focus is on symbol-by-symbol modulation
rather than on coding. To get a better understanding of how our proposed scheme
performs compared to the theoretical limit, we will use the mutual information
between the transmitted ω2 and the received signal at user 2 as the criterion for
design.

The well known Tomlinson-Harashima precoder (THP) [Tom71, HM72], origi-
nally proposed for channels with inter-symbol interference, is a symbol-by-symbol
DPC approach and therefore it serves as a good benchmark. The achievable rate
for THP has been investigated in [WC98] and a scaled THP has been invented
in [ZSE02]. THP with partial channel knowledge has been studied in [Lia05]. Es-
sentially THP (and its variations) subtracts the interference z from the information-
bearing symbol and then performs a modulo operation to avoid a power boost.
Another reason for introducing THP is that it already has wide applications. For
instance, THP has been proposed as a building block for transmit precoding for
the downlink multiuser MIMO channel [AAFS04, WFVH04]. Another symbol-by-
symbol DPC scheme proposed in [SL08] minimizes the uncoded symbol error prob-
ability by joint design of the modulator and the demodulator. It is omitted here
due to the difficulty to evaluate its performance in terms of mutual information.

For binary signaling with binary interference, we present the optimal2 modula-
tor based on an exhaustive search over all 12 possible mappings, which typically
outperforms THP even when the parameters of THP are optimally chosen. To make
our modulation design strategy applicable to higher order modulation, we propose

1Extension to inphase/quadrature (narrowband) modulation, or to other orthogonal multi-
plexing formats is immediate by treating each dimension independently. However, we do not
claim optimality for such extensions as there exist some non-symmetric constellations that might
offer better rates than symmetric ones. One such example can be found in [KAPT09] where a
5-QAM constellation is used during the broadcast phase of a two-way relay channel.

2Throughout we use “optimal” in the sense of maximum mutual information or minimum

error probability. When not explicitly stated, we refer jointly to both these criteria.
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a mapping set size reduction method that makes the exhaustive search method
applicable. We also propose a sub-optimal modulator by formulating an optimiza-
tion problem targeted at maximizing the minimum constellation distance, which
is approximately solved by convex optimization after relaxation. A closed-form
solution of the sub-optimal modulator is obtained for the case of binary signaling
with binary interference, which suffers a minor performance loss compared to the
optimal modulator in most of the interesting scenarios. For arbitrary signal and in-
terference distributions, we propose an optimized THP scheme which demonstrates
significant gains over heuristic THP in strong and medium interference scenarios.
Our proposed DPC schemes are evaluated in terms of mutual information, coded
bit-error-rate (BER), as well as energy efficiency, and compared to two non-DPC
approaches, namely orthogonal transmission and receiver centric interference can-
cellation.

The rest of this chapter is organized as follows. The system model and de-
sign criteria are introduced in Section 7.2, where a brief overview of THP is also
presented. The optimal modulator for finite alphabet signaling is discussed in Sec-
tion 7.3, and the sub-optimal modulator by maximizing the minimum distance
among constellation points is discussed in Section 7.4. For general signaling, THP
with optimized parameters for Gaussian interference is presented in Section 7.5.
Two non-DPC schemes are discussed in Section 7.6 as a reference. Simulation
results are presented in Section 7.7 and conclusions are drawn in Section 7.8.

7.2 System Model and Tomlinson-Harashima Precoder

From now on, we consider an one-dimensional Gaussian channel, and all quantities
are real-valued and scalar. As shown in Figure 7.1, the base station transmits
x1(ω1) during time slot t1 and the relay receives

yr = x1(ω1) + nr,

where nr is noise with variance σ2
r , and generates the relaying signal z = f(yr)

dedicated for user 1. During time slot t2, the base station transmits x2 to user
2 and the relay transmits z to user 1 through the same channel. Therefore the
received signal at user 2 in t2 can be written as

y = x2 + z + n, (7.1)

where n is noise. The design of the optimal relay mapping function f(·) is interesting
and challenging, as discussed in [GJ07, KL08]. For example, we can choose the
memoryless relaying function proposed in [GJ07] to maximize the generalized signal-
to-noise power ratio (GSNR) at user 1, or utilize the constellation rearrangement
proposed in [KL08] to maximize the rate for user 1 if its direct link with the source
exists. The joint optimization of the relay function and the modulator in the base
station is rather complicated. To simplify the analysis and highlight the insights
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gained in this paper, hereafter we assume a perfect source-relay link3 in Figure 7.1

with a deterministic relay mapping z =
√

Pr
Px
x1. The DPC modulator in the base

station that we envision maps an information symbol ω2 from an M -ary alphabet
(ω2 ∈ {0, . . . ,M − 1}), and the interfering relay symbol z ∈ R, onto a modulated
symbol x2 ∈ R, through the (nonlinear) modulator mapping as follows

x2 = X(ω2, z).

User 2 does not know z, but we shall assume that it knows the probability
distribution of z, say pz(u). This assumption is weak if z is drawn from a stationary
and ergodic process, because then the base station can provide information about
pz(u) to user 2. We assume that the noise is Gaussian: n ∼ N (0, σ2) where σ2

is known. Furthermore, we assume that the available average transmit power is
fixed to a constant Px. With the optimization criterion of the mutual information
I(y;ω2), the problem is then to find the best possible mapping x2 = X(ω2, z) that
maximizes I(y;ω2), i.e.,

X(ω2, z) = arg max
X: E[x2

2
]≤Px
I(y;ω2), (7.2)

where

I(y;ω2) = H(ω2)−H(ω2|y)

=

M−1
∑

ω2=0

∫ ∞

−∞

py(y, ω2) log(p(ω2|y))dy −
M−1
∑

ω2=0

p(ω2) log(p(ω2))

=

M−1
∑

ω2=0

[∫ ∞

−∞

py(y, ω2) log

(

py(y, ω2)

py(y)

)

dy − p(ω2) log(p(ω2))

]

=

M−1
∑

ω2=0

p(ω2)

∫ ∞

−∞

py(y|ω2) log

(

py(y|ω2)
∑M−1
ω′

2
=0 py(y|ω′2)P (ω′2)

)

dy.

(7.3)

The last equality comes from the fact that
∫ ∞

−∞

py(y|ω2)dy = 1, ∀ω2.

In practice, I(y;ω2) can be easily computed by Monte-Carlo integration. Naturally
py(y|ω2) (and I(y;ω2)) depends on both the specific modulator mapping X(ω2, z)
and the distribution pz(u).

7.2.1 Tomlinson-Harashima Precoding (THP)

THP is the best known available baseline for comparison and therefore we outline
its principle here. THP first maps ω2 onto a constellation point by modulating

3For Px ≫ σ2
r , x1 can be almost perfectly known/estimated at the relay.
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it via x(ω2), and then subtracts the interference z from it. A modulo operation
mod(·,Λ) is then carried out so that the resulting transmitted signal falls into the
region [−Λ/2,Λ/2]. Therefore we have

x2 = X(ω2, z) = mod(x(ω2)− z,Λ),

y = mod(x(ω2)−z,Λ) + z + n

= x(ω2) + kΛ + n

= x(ω2) + e,

where k is an integer which depends both on ω2 and z. Note that the equivalent
noise term

e = kΛ + n

also depends on ω2. In papers dealing with THP, the following heuristic (and
suboptimal) detector is usually used:

ω̂2subopt = argmin
ω2

|mod(y,Λ)− x(ω2)|.

To find the minimum error-probability receiver for THP, first note that

py(y|ω2) =
∞
∑

k=−∞

p(k|ω2)pn(y − x(ω2)− kΛ),

where the integer k is random with the following conditional distribution:

p(k|ω2) = p

(

(x(ω2)− z) ∈
[

−(k +
1

2
)Λ,−(k − 1

2
)Λ

]

|ω2

)

= p

(

x(ω2) + (k − 1

2
)Λ ≤ z ≤ x(ω2) + (k +

1

2
)Λ |ω2

)

= p

(

z ≤ x(ω2) + (k +
1

2
)Λ |ω2

)

− p
(

z ≤ x(ω2) + (k − 1

2
)Λ |ω2

)

= Fz

(

x(ω2) + (k +
1

2
)Λ

)

− Fz
(

x(ω2) + (k − 1

2
)Λ

)

. (7.4)

In (7.4), Fz(t) =
∫ t

−∞
pz(u)du is the cumulative distribution function of z. The

maximum a posteriori (MAP) receiver finds the most likely ω2 when y is received:

ω̂2MAP = argmax
ω2

p(ω2|y) = argmax
ω2

py(y|ω2) (7.5)

= argmax
ω2

∞
∑

k=−∞

p(k|ω2) exp

(

− (y − x(ω2)− kΛ)2

2σ2

)

,

where the second equality comes from the assumption of equally probable ω2. In
practice the sum in (7.5) can be truncated to a few terms since p(k|ω2) decreases
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rapidly (exponentially if z is Gaussian) as |k| increases. The difference in perfor-
mance between the two receivers, however, is usually small except for “unlucky”
choices of the mapping x(ω2) and Λ, i.e., when p(k 6= k0|ω2) is significant where k0
satisfies

mod(y,Λ) = y − k0Λ.

7.3 Optimal Modulator Design

In this section we first find the optimal mapping modulator for binary signaling
with binary interference and then generalize it to higher order modulations.

7.3.1 Optimal Mapping for Binary Signaling with Binary
Interference

For discrete, binary random variables ω2 and z (over Z and R, respectively), we
assume that

p(ω2 = 0) = p(ω2 = 1) =
1

2
,

p(z = −β) = p(z = β) =
1

2
.

(7.6)

That is, the input alphabet is binary (ω2 = 0, 1) and the interference comes from
a scaled BPSK constellation z = ±β. Also, ω2 and z are independent and all
combinations of (ω2, z) are equally likely. Therefore the mapping X(ω2, z) can be
explicitly written as

X(ω2 = 0, z = −β) , s0, X(ω2 = 0, z = β) , s1,

X(ω2 = 1, z = −β) , s2, X(ω2 = 1, z = β) , s3.
(7.7)

By symmetry (ω2 and z have symmetric probability densities), we must have x ∈
{−a,−b, b, a} for some positive constants a, b. The problem is then to find suitable
(a, b) and to map s0, ..., s3 onto the set {−a,−b, b, a} such that I(y;ω2) stated in
(7.3) is maximized. Note that

py(y|ω2) =
∑

z=±β

py,z(y, z|ω2) =
∑

z=±β

py(y|ω2, z)p(z), (7.8)

where

py(y|ω2, z) =
1√

2πσ2
exp

(

− (y − z −X(ω2, z))
2

2σ2

)

.

There are 4! = 24 permutations of the elements in {−a,−b, b, a}, of which 12 are
redundant (a and b are not ordered). The set of all possible mappings (s0, s1, s2, s3)
to be considered are:

(I) (a,−a, b,−b); (II) (a,−b, b,−a); (III) (−a,−b, b, a);
(IV) (−a,−b, a, b); (V) (−a, b, a,−b); (VI) (−a, a, b,−b);
(VII) (−a, a,−b, b); (VIII) (−a, b,−b, a); (IX) (a, b,−b,−a);
(X) (a, b,−a,−b); (XI) (a,−b,−a, b); (XII) (a,−a,−b, b).

(7.9)
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The mapping X(ω2, z) is a deterministic function that assigns one of the values
{−a,−b, b, a} to x2 for each possible pair (ω2, z). Since the variables ω2 and z are
independent and equiprobable (see (7.6)), it follows that all four possibilities for
x2, viz. x2∈{−a,−b, b, a} are equally likely. Thus the power constraint translates
into

E[x2
2] = (a2 + b2)/2 ≤ Px.

A straightforward approach, as stated in our preliminary work [DLS06], is to per-
form an exhaustive search over a fine grid which contains all (a, b) that satisfy this
constraint. And for each (a, b) we examine all the 12 mappings to identify the opti-
mal modulation which generates the highest mutual information. This optimization
process can be carried out off-line and the result can be stored in a look-up table
(indexed by Px/σ

2 and β2/σ2) with resolution as required.
The minimum error-probability receiver for the optimal (maximum mutual in-

formation) modulator has a rather simple form. To write it out explicitly, note
from (7.8) that

ω̂2MAP = argmax
ω2

∑

z=±β

exp

(

− (y − z −X(ω2, z))
2

2σ2

)

.

When the assumption of a perfect source-relay link does not hold, i.e., when z is not
perfectly known at the relay, the conditional probability py(y|ω2) must be adjusted
to reflect the reliability of z. Given the transmit power Px and source-relay link
noise power σ2

r , the conditional probability (7.8) should be rewritten as

py(y|ω2) = (1− Pe)
∑

z=±β

py(y|ω2, z)p(z) + Pe
∑

z=±β

py(y|ω2,−z)p(z),

where Pe=Q(
√

Px/σ2
r) is the error probability of detecting the BPSK modulated

ω1 (hence z).

7.3.2 Extension to Higher Order Modulation

Despite the fact that the optimization can be done off-line, it is not directly feasible
to extend the exhaustive search method proposed in Section 7.3.1 to higher-order
modulation since the number of possible mappings increases explosively with the
order of the modulation. For M -PAM signal with N -PAM interference, in total
we have MN combinations for (ω2, z) and therefore the same number of possible
X(ω2, z) values. Their amplitudes are symmetric in the real field R around the
origin and hence at most half of them, i.e. MN/2, are free to choose under the
power constraint. Besides, there are in total (MN)! permutations of the set of
MN parameters. Since MN/2 of these parameters have no ordering constraint,

the number of all possible mappings is (MN)!
(MN/2)! . And then for each of these map-

pings, we still have to do an exhaustive grid search along MN/2 dimensions to
find the optimal modulator for a particular combination of Pz/σ

2 and Px/σ
2. For
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example, in the case of 4-PAM signaling with BPSK interference, there are in to-
tal 8!/4! = 1680 different mappings and we have to do an exhaustive grid search
over 4 dimensions. Therefore for higher-order modulation, the number of candidate
mappings can become prohibitively large and makes the off-line exhaustive search
computationally impractical. In what follows we will present a method which can
greatly reduce the number of mappings.

We start with the special case with binary signaling and binary interference,
as stated in (7.6). By comparing all the mappings in (7.9), we come up with the
following observations:

1. Two mappings are said to be equivalent if one can be obtained from the other
by exchanging X(0, z) and X(1, z) for all z;

2. Mappings satisfyingX(0, z)X(1, z) > 0 will result in smaller distance between
ω = 0 and ω = 1 in the received signal constellations, and therefore should
not be considered;

3. Mappings should satisfy |X(0, z)−X(1, z)| = |X(0,−z)−X(1,−z)|.

All the equivalent mappings defined by Observation 1) are identical in the sense
that a and b are commutable, and therefore we will group them together in a pair
of parenthesis. For example, we group the following pairs of equivalent mappings
together: (III, IX), (IV, X), (V, XI), and (VI, XII). By applying Observation 2),
mappings I, II, VII, VIII are excluded. By applying Observation 3), mappings (IV,
X) and (V, XI) are also excluded. Now we only have two groups left: (III, IX)
and (VI, XII). We then search over a fine grid which contains all (a, b) that satisfy
the power constraint, and for each (a, b) we only examine the above mentioned two
mappings (one element from each group, say IX and XII) instead of twelve as in
Section 7.3.1.

For the general cases with uniformly distributed information symbols ω ∈
{0, . . . ,M − 1} and uniformly distributed interference z ∈ {z0, . . . , zN−1} with
N -PAM modulation, by defining the modulation vector associated with ω as

X (ω) , [X(ω, z)|∀z] = [X(ω, z0), . . . , X(ω, zN−1)], (7.10)

the following principles can be applied to reduce the number of mapping candidates:

1. Mappings X1(ω, z) and X2(ω, z) are equivalent if they have the same vector
set4, i.e., {X1(ω)|∀ω} = {X2(ω)|∀ω}, where Xi(ω), i = 1, 2 is defined as in
(7.10);

2. For ωi 6= ωj , the elements in received signal constellation subset {X(ωi, z) +
z|∀z} should be separated as far as possible away from any elements in
{X(ωj, z) + z|∀z};

4The assignment of each modulation vector in {X (0), . . . ,X (M−1)} to an information symbol
w ∈ {0, . . . ,M − 1} should not affect the achievable rate or symbol error probability.
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3. For each interference pair (z,−z), the subsets {X(ω, z)+z|∀ω} and {X(ω,−z)−
z|∀ω} should be equivalent in the sense that they are symmetric with respect
to the origin.

The equivalent mappings defined by the first principle will be grouped together
and all the mappings that do not follow the second and the third principles will
be deemed “unfavorable” and therefore will be dropped. For example, by applying
the above principles, the number of mappings for 4-PAM signaling with BPSK
interference can be reduced from 1680 down to 133.

7.4 Sub-optimal Modulator Design via Optimization

A suboptimal modulator by maximizing the minimum distance among constellation
points is proposed by formulating an optimization problem.

As stated in Section 7.3.2, the off-line optimization can be greatly simplified
by reducing the number of mappings. However, since the optimization in (7.2) is
non-convex, the complexity of a grid search will increase exponentially with the
number of searching dimensions. Therefore we propose here a low-complexity sub-
optimal modulator based on the criterion of maximized minimum distances among
the constellation points.

For uniformly distributed information symbols ω ∈ {0, . . . ,M−1} and uniformly
distributed interference z with N -PAM modulation, the distance between received
signal constellation points for ωi 6= ωj (omitting the noise term for simplicity) can
be classified into two types

dI = |X(ωi, zm) + zm − (X(ωj, zm) + zm)|
= |X(ωi, zm)−X(ωj, zm)|,

dII = |X(ωi, zm) + zm − (X(ωj, zn) + zn)|
= |X(ωi, zm)−X(ωj, zn) + (zm − zn)|,

(7.11)

where zm, zn are interference symbols.

There are in total NI = M(M−1)N
2 type I distances dI and NII = M(M−1)N(N−1)

2
type II distances dII. By reformulating the mapping X(ω, z) into a vector

x = [X(0, z0), ..., X(0, zN−1), X(1, z0), ..., X(M−1, zN−1)],

and denoting x(n) as the nth element of x, we can rewrite (7.11) as follows

d2I,k = (x(ik)− x(jk))
2 = xAkx

T , (7.12)

d2II,l = (x(il)− x(jl) + ηl)
2 = xBlx

T + 2xbTl + η2
l ,

ik, jk, il, jl ∈ {1, ...,MN}, k = 1, ..., NI, l = 1, ..., NII,

where bl are 1×MN sparse vectors each with only two non-zeros elements bl(il) = ηl
and bl(jl) = −ηl, and Ak (Bl) are MN ×MN sparse symmetric matrices each
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with only four non-zero elements placed in their diagonal and anti-diagonal positions
defined by ik, jk (il, jl), i.e.,

Ak or Bl=















. . . . .

. 1 . −1 .

· · . . . · ·
. −1 . 1 .
. . . . .















, bTl =















.
ηl
...
−ηl
.















. (7.13)

The sub-optimal modulator can therefore be formulated based on (7.12) as an inho-
mogeneous quadratically-constrained quadratic program (QCQP) [BV04] problem,

max
x∈RMN

min
k=1,...,NI
l=1,...,NII

{xAkxT ,xBlxT + 2xbTl + η2
l }

subject to xxT ≤MN · Px.
(7.14)

The solution of (7.14) will yield constellations with large mutual information, since
a constellation that offers a large constellation-constraint mutual information also
has a large minimum distance. By introducing

X =

[

xT

1

]

[x, 1] =

[

xTx xT

x 1

]

,

and some new matrices

Ãk =

[

Ak 0
0 0

]

, B̃l =

[

Bl b
T
l

bl η
2
l

]

, C =

[

I 0
0 0

]

,

we can reformulate (7.14) in the homogenous format [BV04] as follows

max
X∈SMN+1

t

subject to Tr(ÃkX) ≥ t, k = 1, ..., NI,

Tr(B̃lX) ≥ t, l = 1, ..., NII,

Tr(CX) ≤MN · Px, X � 0
¯
,

rank(X) = 1,

X(MN + 1,MN + 1) = 1,

(7.15)

where S
n denotes the set of n× n symmetric matrices However, the exact solution

of (7.15) is hard to find since the rank-1 constraint makes this problem non-convex.
By semi-definite relaxation (SDR) approximation [LMS+10], we can obtain the
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following relaxed version of (7.15):

max
X∈SMN+1

t

subject to Tr(ÃkX) ≥ t, k = 1, ..., NI,

Tr(B̃lX) ≥ t, l = 1, ..., NII,

Tr(CX) ≤MN · Px, X � 0
¯
,

X(MN + 1,MN + 1) = 1.

(7.16)

Since (7.16) is an instance of semi-definite programming [BV04], it can be solved
in a numerically reliable and efficient fashion by convex optimization software, e.g.
CVX [GB]. However, the globally optimal solutionX∗ to (7.16) in general has rank
greater than 1, and therefore is not a feasible solution to the original problem stated
in (7.15) and (7.14). We can extract from X∗ a feasible (normally sub-optimal)
solution x to (7.14) through randomization with provable approximation accuracy,
see [LMS+10] and references therein for more details.

Note that (7.14) and (7.16) are actually a realization of the Principle 2) stated
in Section 7.3.2. Besides, Principle 3) can also be utilized to add extra MN linear
constraints to (7.14). Then following the same procedure of reformulation and
relaxation, we can formulate a new optimization problem similar to (7.16). Detailed
discussions on reformulation, relaxation, and approximation are omitted here.

For the special case of M = N = 2, by confining ourselves to the selected
mappings IX and XII in (7.9), we can solve (7.14) analytically (see Appendix 7.9.A
for a detailed derivation), resulting in a closed-form solution for the modulation
mapping X(ω2, z) as follows:







XII, a =
√
Px, b =

√
Px, if Px ≤ β2;

XII, a = β, b =
√

2Px − β2, if β2 < Px < 5β2;

IX, a =
√

Px − β2 + β, b =
√

Px − β2 − β, if Px≥5β2.

(7.17)

This sub-optimal modulation can be carried out on-line given the instantaneous
channel conditions.

7.5 Optimized THP for Arbitrary Signal and Interference

In Section 7.3 we have discussed the modulator design x = X(ω, z) given informa-
tion symbols ω from an M -ary alphabet and an interference signal z modulated
with N -PAM. We provided the optimal nonlinear mapping based on an exhaustive
grid search, and a sub-optimal mapping based on convex optimization and relax-
ation. For an interference signal with a more general distribution (say Gaussian),
however, it appears impractical (at least without approximations) to design the
Costa modulator based the methods proposed in Section 7.3. The THP modula-
tion, however, fits for arbitrary signal and interference constellations and therefore
can be regarded as a good candidate for such scenarios. The advantage of staying
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within the framework of THP is twofold. First, there are only two parameters to
optimize over, as shown later in this section. Second, THP with heuristic parameter
choices (which is commonly used in the literature) is known to provide significant
gains over no-interference-cancellation.

Let α be half of the minimum distance between the uniformly distributed con-
stellation points, i.e., x ∈ {−α, α} for BPSK and x ∈ {−3α,−α, α, 3α} for 4-PAM
modulation, and let Λ be the parameter for modulo operations. Then THP mod-
ulation with transmit power constraint Px has two parameters α,Λ to optimize
over. THP with the heuristic parameter choice Λ = 2Mα for M -PAM modula-
tion appears to be customary and is the choice described in Chapter 10 of [TV05].
This method, referred as heuristic THP hereafter, is rather simple and can be used
for general signal constellations and interference distributions. The actual value of
Λ (therefore the value of α) is determined by the interference power Pz and the
transmit power constraint Px. For higher-order modulation with equiprobable in-
formation symbols, the resulting transmitted signal after modulo operation turns
to be approximately uniformly distributed in the region of [−Λ

2 ,
Λ
2 ], resulting in a

transmit power of Λ2

12 . Hence we have

Λ =
√

12Px, α = Λ/(2M). (7.18)

However, when the modulation order is small, such as for a BPSK modulated signal,
this approximation turns out to be biased. For the case of binary signaling with
binary interference, the exact value of α (hence also Λ) can be determined as follows
(see Appendix 7.9.B for a detailed derivation):































Λ = 4α;

α =
√

Px − β2, if Px ≥ 2β2;

α =
2β+
√

5Px−β2

5 , if β
2

5 ≤ Px < 2β2;

α =
2nβ+
√

(4n2+1)Px−β2

4n2+1 , if β2

4n2+1≤Px<
β2

4(n−1)2+1 ,

with integer n ≥ 2.

(7.19)

This heuristic parameter choice Λ=2Mα, however, appears “unlucky” in some
specific situations. Therefore we propose to use optimized parameters α,Λ for THP.
This optimization can be accomplished via a similar procedure as described in Sec-
tion 7.3, i.e., performing a grid search over all Λ, α which satisfy the power con-
straint Px. Unlike the optimal modulator where the search dimension increases with
the modulation order, the optimization problem here is always two-dimensional.
The search over all possible mappings is not necessary either.

7.6 Non-DPC Benchmarks

We present here two non-DPC approaches as a reference to evaluate our DPC
schemes.
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7.6.1 Relay Uses an Orthogonal Channel

The relay can use an orthogonal channel to help user 1 so that the relaying signal z
will not interfere with the reception of x2, under the same available resource (time,
bandwidth, energy) constraints. We use time sharing between the relay and the
base station over the same bandwidth to realize the orthogonal transmission. Let
ρ ∈ [0, 1] be the time sharing coefficient for the transmission from the base station
to user 2, and assume that the transmitted signal x2 = X(ω2) is uniform M-PAM
modulated and subject to the power constraint E[x2

2] = Px
ρ . Hence the total used

energy ρ ·E[x2
2] remains the same as for the other schemes. The mutual information

conveyed through this channel is

Iρ(y;ω2) = ρ · I(y;ω2), (7.20)

where I(y;ω2) is calculated according to (7.3), with

py(y|ω2) =
1√

2πσ2
exp

(

− (y −X(ω2))2

2σ2

)

.

Note that ρ affects the throughput of both user 1 and user 2. Therefore, to choose
ρ requires total throughput and fairness considerations. We will choose ρ = 1

2 in
our simulation for simplicity.

7.6.2 Interference Cancellation at the Receiver

One can also use no precoding at the base station but perform interference cancel-
lation at user 2. When the interference is much stronger than the signal, user 2
can perform successive interference cancellation (SIC) [TV05]: It first decodes ω1

treating x2 = X(ω2) as noise, and then subtracts the relaying signal z(ω1) from y
and uses the remaining signal to decode ω2. But for moderate and weak interfer-
ence, SIC will not work. We therefore propose here a new interference cancellation
scheme which works for all cases by keeping user 2 receiving signals in both time
slot t1 and t2. The received signals at user 2 during t1 and t2 can be written as

y1 = x1(ω1) + n1,

y = X(ω2) + z(ω1) + n,
(7.21)

where n1 is additive white Gaussian noise and x1(ω1) is the signal for user 1 under
average power constraint Px. The mutual information between the transmitted
information symbol ω2 and the received signals (y1, y) can therefore be written as

I(y1, y;ω2) =
∑

ω2

∫

y1

∫

y

py1,y(y1, y|ω2)p(ω2) log

(

py1,y(y1, y|ω2)
∑

ω′
2

py1,y(y1, y|ω′2)p(ω′2)

)

dydy1,

(7.22)
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where py1,y(y1, y|ω2) can be obtained from the Bayes rule

py1,y(y1, y|ω2) =
∑

ω1

py1,y(y1, y|ω1, ω2)p(ω1)

=
∑

ω1

py1
(y1|ω1)py(y|ω1, ω2)p(ω1). (7.23)

The second equality in (7.23) comes from the fact that y1 and y are independent if
ω1 (and therefore x1 and z) is known. We further get from (7.21) that

py1
(y1|ω1) =

1√
2πσ2

exp

(

− (y1 − x1(ω1))2

2σ2

)

,

py(y|ω1, ω2) =
1√

2πσ2
exp

(

− (y −X(ω2)− z(ω1))2

2σ2

)

.

The maximum a posteriori receiver given (y1, y) is therefore

ω̂2MAP = argmax
ω2

p(ω2|y1, y) = argmax
ω2

py1,y(y1, y|ω2), (7.24)

where the second equality comes from the assumption of equally probable ω2.

7.7 Numerical Results

In this section we will evaluate our proposed DPC schemes in terms of mutual
information, coded BER and energy efficiency. Bit-level Monte-Carlo simulation is
used to obtain the results.

7.7.1 Mutual Information

We first evaluate the performance in terms of mutual information and plot the
achievable mutual information values as a function of the signal-to-noise ratio (SNR,
Px/σ

2) at a fixed interference-to-noise ratio (INR, Pz/σ
2) of 6 dB5. Strictly speak-

ing, the actual SNR may be less than Px/σ
2 because the optimal modulator does

not necessarily use all available power. Yet we refer to Px/σ
2 as SNR because this

facilitates a well-defined comparison with the no-interference case.
In Figure 7.2 we compare mutual information for binary signaling with binary

interference. The optimal modulator and the sub-optimal modulator are slightly
worse compared to the no-interference case. THP with optimized parameters (α,Λ),
which uniformly outperforms THP with the heuristic parameter choice Λ = 4α,
experiences notable degradation in low to medium SNR regions but converges to
the optimal modulator at high SNR. Interference-cancellation performs well in high

5Here the INR value is heuristically chosen for illustration. Simulation results at other INR
values will generate similar results, though the corresponding gains may vary slightly.
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Figure 7.2. Mutual information for binary signaling in binary interference, with
INR(Pz/σ2) = 6 dB.

SNR regions but suffers from the corrupted observation of the interference in low to
medium SNR regions. By using orthogonal channels with time sharing ρ = 1/2, the
performance is relatively good in low SNR regions where the benefits of excluding
interference dominate (this is the power-limited regime). In medium and high SNR
regions (i.e., in the bandwidth-limited regime), however, the penalty of shortening
the transmission time (and therefore less channel use) becomes the bottleneck.

Note that although the mapping parameters for the optimal modulator and for
the optimized THP might change with the resolution of the searching grid, the
actual performance will only differ slightly.

In Figure 7.3 we present the case for quaternary signaling (4-PAM) with binary
interference, focusing on the performance of the optimal modulator and the sub-
optimal modulator (7.16). The optimal modulator, in all SNR regions, suffers only
a minor performance degradation compared to the no-interference case and achieves
a significant gain (up to 3 dB at low SNR) over heuristic THP. The curve of the sub-
optimal modulator is not smooth due to the fact that it is an approximate solution
of (7.14) based on relaxation and randomization, as discussed in Section 7.4. The
performance of optimized THP, not shown here to improve the readability of this
figure, lies in between the curves of the optimal modulator and the heuristic THP.

7.7.2 Coded Bit Error Rate

Next, we demonstrate that the gains predicted by calculating the mutual informa-
tion actually do indicate what one can achieve in practice. Towards this end we
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Figure 7.3. Mutual information for quaternary signaling in binary interference,
with INR(Pz/σ2) = 6 dB.

think of the system in Figure 7.1 as an inner channel, and concatenate it with a
rate-1/3 turbo code [BG96, EPG94] (memory length 2, generators 78 and 58, block
length 1000, interleaver from the WCDMA standard, Max-LOG-MAP decoding, 8
iterations). When time sharing (with ρ = 1/2) is used, the encoded bit streams
have to be punctured to rate 2/3, with the following puncturing patterns used at
the two component encoders

P 1 =

[

1 1 1 1
1 0 0 0

]

, P 2 =

[

0 0 0 0
0 0 1 0

]

.

The decoding metrics were computed by evaluating logP (ω2|y) (for the interfer-
ence cancellation scheme, logP (ω2|y1, y) is used instead). More precisely, the log-
likelihood ratios are used as soft input to the turbo decoder as follows:

L(y) = log

(

py(y|ω2 = 1)

py(y|ω2 = 0)

)

= log

(

p(ω2 = 1|y)
p(ω2 = 0|y)

)

,

L(y1, y) = log

(

py1,y(y1, y|ω2 = 1)

py1,y(y1, y|ω2 = 0)

)

= log

(

p(ω2 = 1|y1, y)
p(ω2 = 0|y1, y)

)

,

where p(ω2=0)=p(ω2=1)=1/2 is assumed. As shown in Figure 7.4, for a strong
interference scenario with INR=6 dB and for a required BER of 10−4, the optimal
modulator (and the sub-optimal modulator) suffers only a 0.1 dB loss compared to
the no-interference case, and shows a gain of 1.2 dB to the interference-cancellation
scheme and 2.4 dB to the optimized THP. These gains approximately equal the
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Figure 7.4. BER of binary signaling in binary interference with a rate-1/3 turbo
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difference in required SNR to achieve a mutual information of ∼ 0.33 bits/channel
use (or slightly larger, since the code is not capacity achieving) as shown in Fig-
ure 7.2. The same conclusion holds for heuristic THP (not shown here to simplify
the figure).

7.7.3 Energy Efficiency

In order to measure the energy efficiency of the different schemes, we defined “equiv-
alent SNR” γX as the required SNR for scheme X to achieve the same mutual infor-
mation as in the no-interference case despite the presence of interference. That is,
given SNR Px/σ

2 and INR Pz/σ
2, there exists a constant γX(Px/σ

2, Pz/σ
2) such

that
IX(γX) = Ino interf.(Px/σ

2), (7.25)

where Ino interf.(Px/σ
2) is the end-to-end mutual information with SNR Px/σ

2 for
the no-interference case, and IX(γX) is the mutual information for scheme X with
SNR γX .

In Figure 7.5, we compare the energy efficiency of the interference-cancellation
(left) and of the sub-optimal modulator (right) against the optimal modulator in
different channel conditions. Their performance difference in terms of equivalent
SNR (γopt. mod. − γX , in dB) is shown as contour plots. A positive number

indicates that the scheme has a better energy efficiency than the optimal modulator.
The interference-cancellation scheme achieves slightly better performance than the
optimal modulator when the INR is around 0 dB and the SNR is medium or high,
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Figure 7.5. Energy efficiency (difference in terms of equivalent SNR, in dB) of
interference-cancellation (left) and the sub-optimal modulator (right) compared to
the optimal modulator. A positive number indicates better energy efficiency.

with the highest gain being 0.8 dB. When the INR is larger than 0 dB and the
SNR is low, the interference-cancellation scheme suffers a performance loss of up
to 2 dB. The loss in energy efficiency of the sub-optimal modulator is rather small
except in the region indicated by the dashed line where both the SNR and the INR
are relatively small6. The performance difference demonstrated in Figure 7.4 has
been confirmed here, as shown by the ⋆ in Figure 7.5.

The SNR loss for optimized THP compared to the optimal modulator, as shown
in Figure 7.6, is up to 3.5 dB when the interference power is comparable to the signal
power.

7.7.4 Optimized THP with Gaussian Interference

We next demonstrate partial interference cancellation at the transmitter via the
optimized THP proposed in Section 7.5. For this purpose we consider transmission
of binary (BPSK) and quaternary (4-PAM) symbols on a channel with Gaussian
interference. Figure 7.7 shows the result for both heuristic and optimized THP
(computation of the optimal modulator is not directly feasible for this case; cf. Sec-
tion 7.5). It is clear that we can gain from optimizing the parameters of THP. For
quaternary signaling, the gain is significant especially in low signal-to-interference
ratio (SIR, Px/Pz) regions where interference dominates. This indicates that THP
is a fairly effective (yet strictly suboptimal) means for combating Gaussian inter-
ference known at the transmitter. The gain achieved by optimizing the parameters
of THP is much smaller in the binary case, however.

6We are more interested in interference dominated channels where DPC is most useful.
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Figure 7.6. Energy efficiency loss (difference in terms of equivalent SNR, in dB)
of optimized THP compared to the optimal modulator.

7.8 Summary

In this chapter we have studied DPC solutions for a relay-aided downlink chan-
nel that partially solve the Costa precoding problem using symbol-by-symbol pro-
cessing. We started from the simplest scenario of binary signaling with binary
interference, and derived the optimal modulator which maximizes the mutual in-
formation between the transmitter and the receiver. By proposing a mapping set
size reduction method, we extended this approach to finite-alphabet signaling and
interference. We also proposed a sub-optimal modulator based on the maximiza-
tion of the minimum constellation distance, which was formulated as a QCQP
optimization problem and approximately solved by convex optimization after re-
laxation. A closed-form solution of the sub-optimal modulator was obtained for the
case of binary signaling with binary interference, and the performance degradation
is very limited compared to the optimal modulator in most interesting scenarios.
For arbitrary signal and interference, we proposed an optimized version of THP
that outperforms the THP with heuristic parameters. Our proposed DPC solu-
tions were evaluated by simulation of mutual information, coded BER, as well as
energy efficiency, and compared to three benchmark schemes, namely THP, orthog-
onal transmission, and receiver centric interference cancellation. Simulation results
showed that both the optimal and sub-optimal modulators typically outperform
THP, even when the parameters of the latter are optimally chosen. For exam-
ple, in high INR scenarios the optimal/sub-optimal modulator can outperform the
receiver centric interference cancellation scheme by about 1 dB and outperform
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Figure 7.7. Mutual information of the optimized THP versus heuristic THP for
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the optimized THP by 2∼3dB. Furthermore, we have demonstrated that the gains
predicted by our analysis translate directly into energy savings in a turbo coded
communication link. Mutual information is therefore a relevant performance mea-
sure.

Our study indicates that rather impressive transmitter interference cancellation
performance can be achieved in a single dimension. This result serves as motiva-
tion to further study low-complexity approaches to the Costa problem. Also, an
implementation of DPC schemes in practice will likely rely on operations in a space
of small dimensions, so the problem studied here appears to be highly relevant.

7.9 Appendix

7.9.A Derivation of the Sub-optimal Modulator

For M=2 and N=2, there are in total four different symbol distances among re-
ceived signal constellation points, namely,

d1 = |X(0,−β)−X(1,−β)|,
d2 = |X(0,−β)−X(1, β)− 2β|,
d3 = |X(0, β)−X(1,−β) + 2β|,
d4 = |X(0, β)−X(1, β)|.
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As stated in Section 7.3.2, only two mappings IX and XII as stated in (7.9) need to
be considered. We can find from mappings IX and XII that d1 = d4, and therefore
only {d1, d2, d3} are used to identify the modulator X(ω2, z).

When Px ≤ β2, using mapping XII with a = b =
√
Px will result in

d2 = d3 > d1 = 2
√

Px.

The optimal detector which compares |y| with the threshold β will give almost the
same performance as the no-interference case.

When Px > β
2, we can calculate the maximized minimum distance for each

mapping and then identify the larger one. Without loss of generality, we assume
a, b ≥ 0 in the following. For mapping IX we have

dmin = min{a+ b, 2|β − a|, 2(β + b)}.

If β ≥ a, we have 2(β + b) ≥ 2(a+ b) > a+ b which means

dmin = min{a+ b, 2(β − a)}.

The maximum of dmin is achieved when a + b = 2(β − a). Combine this condition
with the power constraint a2 + b2 = 2Px, we can formulate a new equation of a as

5a2 − 6βa+ 2β2 − Px = 0,

which has two roots

a =
3β −

√

5Px − β2

5
, a =

3β +
√

5Px − β2

5
.

The former root is valid (greater than 0) only if Px ≤ 2β2 and the latter root
conflicts with the precondition a ≤ β. Hence for β2 < Px ≤ 2β2 we have

d∗IX =
4β + 2

√

5Px − β2

5
, (7.26)

with a =
3β −

√

5Px − β2

5
, b =

β + 3
√

5Px − β2

5
.

If β < a, we have
dmin = min{a+ b, 2(a−β), 2(β + b)},

whose maximum is achieved when

a+ b = 2(a− β) = 2(β + b),

i.e. b = a− 2β. Combine this with the power constraint, we get

a2 − 2βa+ 2β2 − Px = 0,
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which has a valid solution (only if Px ≥ 2β2) as follows

a = β +
√

Px − β2, b =
√

Px − β2 − β.

Hence for Px ≥ 2β2 we have

d∗IX = 2
√

Px − β2, (7.27)

with a = β +
√

Px − β2, b =
√

Px − β2 − β.

When mapping XII is used,

dmin = min{a+ b, |2β + b− a|}.

If 2β + b− a < 0, the maximum of dmin is achieved when

a+ b = a− b− 2β,

i.e., b + β = 0 which is impossible. If 2β + b − a > 0, the maximum of dmin is
achieved when

a+ b = 2β + b− a,
i.e. a = β. Hence we have

d∗XII = β +
√

2Px − β2, (7.28)

with a = β, b =
√

2Px − β2.

Compared with d∗IX in (7.26) and (7.27), d∗XII in (7.28) has greater value for
β2 < Px < 5β2 and therefore mapping XII will be selected in this region and
mapping IX will be selected when Px ≥ 5β2. Together with the finding for Px ≤ β2,
one can easily conclude the results shown in (7.17).

7.9.B Parameters for Heuristic THP

For binary signaling w ∈ {−α, α} with binary interference z ∈ {−β, β}, there are
four different combinations/values (β+α, β−α, −β+α, −β−α) subject to modulo
operation with Λ = 4α to ensure |x| ≤ Λ/2. By the assumption of equiprobable
signals and interference as stated in (7.6), only 2 out of these 4 values are of interest
due to their amplitude symmetry. Without loss of generality, we just select β + α
and β − α.

When β ≤ α, all the values satisfy the requirement |x| ≤ Λ/2 and therefore we
have

Px = E[x2] = α2 + β2 ≥ 2β2.

Hence for Px ≥ 2β2 we have α =
√

Px − β2. When α < β ≤ 3α, we have

2α < β + α ≤ 4α,

0 < β − α ≤ 2α.
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After modulo operation the resulting x has average power

Px = E[x2] = 5α2 − 4βα+ β2 < 2α2,

which has only one feasible solution

α =
2β +

√

5Px − β2

5
, for β2/5 ≤ Px < 2β2.

When (2n− 1)α < β ≤ (2n+ 1)α, for n = 2, 3, ..., we have

2nα < β + α ≤ (2n+ 2)α,

(2n− 2)α < β − α ≤ 2nα.

For n even, the modulo operation will subtract 2nα from the above two values and
result in β − (2n − 1)α and β − (2n + 1)α respectively. For n odd, the modulo
operation will subtract (2n + 2)α and therefore result in β − (2n + 1)α and β −
(2n− 1)α. Hence we conclude that

Px = E[x2] = (4n2 + 1)α2 − 4nβα+ β2 < 2α2.

Similarly, by solving the above equation for α we can get

α =
2nβ +

√

(4n2 + 1)Px − β2

4n2 + 1

when
β2

4n2 + 1
≤ Px <

β2

4(n− 1)2 + 1
.

Another solution is infeasible and thus dropped.
Summarize all the above derivation we have proved (7.19).



Chapter 8

Thesis Conclusions

8.1 Conclusions

In this thesis, we have investigated different cooperative communication strategies
in wireless networks when relaying is in use. We focus on the fundamental limits
of these cooperation schemes and highlight the principles and insights behind the
observed gains.

We have considered a relay-aided two-source two-sink wireless multicast network
with a backhaul link between the source nodes. We have successfully characterized
the capacity outer bounds by extending the proof of the converse developed by
Cover and El Gamal [CE79] for the Gaussian relay channel. For the multicast relay
network with high-rate backhaul, we find the exact cut-set bound of the capacity
region. For low-rate backhaul scenarios, we have provided genie-aided outer bounds
by introducing two new lemmas on conditional (co-)variance.

Different cooperative network coding strategies have been investigated when the
relay nodes performs either decoding, compression, or amplification. We have char-
acterized the achievable rate regions and compared them with the outer bounds and
non-network coding based benchmarks. Significant rate gains have been demon-
strated with the help of the conferencing links, especially for amplification or de-
coding based relaying schemes, or compression based schemes but with message
exchange. For high-rate backhaul, we have shown that the cut-set bound can be
achieved in certain channel configurations. In general, network coding based beam-
forming (NBF) strategies give the best performance. In high SNR regions, however,
the lattice code based strategy is preferred. FNC, which only performs modulo-2
addition in the finite field, suffers limited performance loss in most of the cases.
For low-rate backhaul, i.e., when only partial source cooperation is possible, we
have proposed a partial-decode-and-forward based linear network coding scheme
which can reduce the constraint of decoding at the relay node. We have demon-
strated that encoding delay and memory constraints can affect the achievable rate
of regular NNC, and employing instead short-message NNC can provide significant
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gains and therefore can achieve a strictly larger rate region than NNC. In absence
of encoding delay and memory constraints, however, NNC with message exchange
can achieve almost the same rate as SNNC and therefore outperforms NNC with
compression forwarding due to the coherent combining gain. We have also shown
that AF+ANC can outperform NNC when the coherent combining gain is dominant
and outperform CF/SNNC when the asymmetric channel constraint is significant.
The gap between inner and outer bounds is small, within 0.3 bits in the scenarios
we have considered. By adaptively exploiting these cooperation schemes based on
channel quality information, we may achieve a better inner bound and therefore a
smaller gap.

For wireless networks with independent noise, we have proposed a simple frame-
work to get outer and inner bounds based on the “one-shot” bounding models. We
have extended the bounding models for two-user broadcast channel to many-user
scenario and establish the gap between upper and lower bounding models. For net-
works with coupled links, we have proposed a network decoupling method which
can decompose the network into overlapping multiple-access channels and broad-
cast channels. We then apply the one-shot upper bounding blocks and create an
upper bounding network with only bit-pipe channels. When developing the lower
bounding network, we have proposed to update these lower bounding models for
each coupled broadcast and multiple-access channels. We have demonstrated by
some examples that the resulting upper bound is in general very good and the gap
between the upper and lower bound is usually not large.

For relay-aided downlink scenarios, we have proposed a cooperation scheme by
cancelling interference at the transmitter via symbol-by-symbol processing. We
started from the simplest scenario of binary signaling with binary interference,
and derived the optimal modulator which maximizes the mutual information be-
tween the transmitter and the receiver. By proposing a mapping set size reduction
method, we have extended this approach to finite-alphabet signaling and interfer-
ence. We have also proposed a sub-optimal modulator based on the maximization of
the minimum constellation distance, which can be formulated as a QCQP optimiza-
tion problem and approximately solved by convex optimization after relaxation. For
arbitrary signal and interference, we have proposed an optimized version of THP
that outperforms the THP with heuristic parameters. We have showed that both
the optimal and sub-optimal modulators typically outperform THP, even when the
parameters of the latter are optimally chosen. Furthermore, we have demonstrated
that the gains predicted by our analysis translate directly into energy savings in
a turbo coded communication link. Mutual information is therefore a relevant
performance measure.

The results present in this thesis will provide better understanding of various
cooperative communication strategies that have been investigated in our research
work, which will guide the design and implementation of future cooperative com-
munication systems.
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8.2 Future Work

Several open problems remain for future work. As we have demonstrated that the
NBF strategy cannot take full advantage of the cross-link in high-rate backhaul
scenario, a better cooperating scheme is needed. For NNC with compression for-
warding via backhaul, the optimal compression functions is yet to be determined
based on the available backhaul capacity, channel settings, and message delivery
requirement. In absence of memory and encoding delay constraints, and introduc-
ing fading (known only at the receiver side, either relay or destinations), NNC may
actually be advantageous, as there will be many blocks conveying the same mes-
sage, ergodic rates prevail while short messages, even with backward decoding are
subject to outages. This issue will be investigated.

Most of the results obtained in this thesis can be extended to more general
networks. For example, it is very interesting to figure out a systematic way to ex-
tend our outer bounding methods to more networks, either with more relay nodes,
or with more source nodes. The various cooperative network coding schemes pro-
posed in this thesis can also be applied to general network setups. For asymmetric
channel setups, it is also very interesting to investigate the effect of multi-level
compression at the relay nodes for CF/NNC/SNNC based schemes. Our study on
symbol-by-symbol DPC has indicated that rather impressive transmitter interfer-
ence cancellation performance can be achieved in a single dimension. This result
serves as motivation to further study low-complexity approaches to the DPC prob-
lem.
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