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Abstract— This paper deals with cooperative target-capturing
problem for multi-vehicle systems with dynamic network topol-
ogy. Firstly, we introduce a dynamic network topology that
depends on relative distance between the vehicles. Secondly,
we propose the target-capturing strategy based on consensus
seeking with dynamic network topology. In proposed strategy,
at least one vehicle can acquire the information of the target-
object and network topology among vehicles is time-varying
but always connected. To analyze the convergence of target-
capturing behavior with dynamic network topology, algebraic
graph theory and matrix theory are utilized. Finally, numerical

simulation results and experimental results are provided that
demonstrate the effectiveness of the proposed method.

I. INTRODUCTION

In recent years, there have been increasing research in-

terests in the distributed cooperative control of networked

multi-vehicle systems. Several research groups developed

the coordination control strategies that achieve a capturing

formation around a target-object (specific area) by multiple

mobile vehicles using neighbor information [1]-[6]. Owing to

the broad range of applications (e.g. investigations in haz-

ardous environments, mobile sensor networks and security

systems), the task of capturing target-object is investigated

in the distributed cooperative control of networked multi-

vehicle systems.

The capturing the target-object is divided into two prob-

lems, grasping behavior and enclosing behavior. The grasp-

ing behavior is the object-closure condition in decentralized

form in [3]. On the other hand, the enclosing behavior is that

multiple vehicles are controlled in a distributed manner to

converge to an assigned formation while tracking the moving

target object. Kobayashi et al. [4] proposed the decentralized

grasping control law using the concept of force-closure and

enclosing control law based on a gradient decent method for

multiple vehicles with the local information in a plane. In

their method, each vehicle requires the local information of

target-object and two neighbor vehicles. Marshall et al. [5]

proposed a cyclic pursuit based formation control strategies

for multiple mobile vehicles moving in a plane. They showed

that the multiple vehicles finally can assemble in a circular

formation that is similar to that of [4]. In [6], Kim et al.

proposed a distributed cooperative control method based

on a cyclic pursuit strategy in a target-capturing task in 3

dimensional space by multi-vehicle systems. In the above
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method, each vehicle’s behavior is decided using the local

information of the target-object and one neighbor vehicle.

In their method, all vehicles require the information of the

target-object. In addition, the network topology among the

vehicles is limited to the cycle graphs. i.e. enclosing the

target-object cannot be achieved with the network topology

except cycle graphs. Consensus algorithm based formation

control strategies for multi-vehicle systems are proposed in

[7]-[8]. Ren [7] proposed the formation control strategies

for multi-vehicle systems where the states of each vehicle

approach a common time-varying reference state. Similarly,

Namerikawa et al. [8] proposed a formation control strategies

based on consensus algorithm for multi-vehicle systems. In

this paper, the controller gains are designed by consensus

algorithm, Lyapunov stability theorem and algebraic graph

theory. From the techniques of these researches, we proposed

the consensus seeking based target-capturing strategy for

multi-nonholonomic vehicle systems in 2 dimensional plane

[9]. In our frameworks, at least one vehicle can observe the

target-object and the target-object is included in the network

topology which has a directed spanning tree. Therefore the

network topology that can be treated is wider than these

previous researches. However, we assumed that framework

in fixed network topology in these papers. In many scenar-

ios, networked cooperative systems can possess a dynamic

network topology that is time-varying due to node and link

failures/creations, packet-loss, state-dependence and forma-

tion reconfiguration[10]-[14]. In many of these researches,

consensus problems and the problems that states approximate

to one point are treated. However, time-varying or dynamic

reference signal (i.e. the target-object in this paper) is not

treated in these researches.

In this paper, we propose the target-capturing strategy for

networked multiple vehicles with dynamic network topology

which are controlled to converge to the formation while they

are tracking the target-object moving in 3 dimensional space.

We first define a dynamic network topology that depends

on the relative distance between the vehicles. Secondly, we

propose the capturing control law based on the consensus

seeking algorithm to each vehicle. Finally, the effectiveness

of the proposal method is verified by the numerical simula-

tions and experiments.

This paper is organized as follows. Section II intro-

duces the multi-vehicle systems and target-object in three

dimensions, network topology that depends on relative dis-

tance between the vehicles and control objectives. Section

III describes the proposed consensus seeking based target-

capturing strategies for multiple vehicles. Section IV de-

2009 American Control Conference
Hyatt Regency Riverfront, St. Louis, MO, USA
June 10-12, 2009

WeA19.6

978-1-4244-4524-0/09/$25.00 ©2009 AACC 635



� �

�

�

�
�

�
��	

�
���

� �

�
	

�
�
�
	

Fig. 1. Coordinate frames and notations

�



�+1

=

�

��

[rad]

�



�

�

�

�

�

Fig. 2. An example of Target-capturing behavior (in xy plane)

scribes the results by numerical simulations. In Section V,

we validate our proposed results by experiments. Finally, we

summarize the obtained results in Section VI.

II. PROBLEM STATEMENT

A. Multi-vehicle Systems and Target-Object

In this paper, we consider the following n ≥ 1 mobile

vehicles in Cartesian Coordinates 1(see Fig. 1).

ṙi = ui, i = 1, 2, · · · , n. (1)

where ri = [xi yi zi]
T ∈ R

3 is the position of ith vehicle

and ui ∈ R
3 is the control input of ith vehicle. Next, the

target-object is assumed by the following equation.

ṙobj = f(t, robj , r1, · · · , rn) (2)

where robj = [xobj yobj zobj]
T ∈ R

3 is the position of the

target-object.

In this paper, the target-object moves depending own states

and the states of the neighbor vehicles. Moreover, the target-

object has the following Assumption 1.

Assumption 1 f(t, r1, . . . , rn, robj) is piecewisely continu-

ous in t and locally Lipschitz in robj , r1, · · · , rn.

The target-objet will be expressed by the following Examples

1, 2 and 3.

Example 1

ṙobj = g (robj , t) (3)

In Example 1, the target-object moves that depends on

own states. The target-object does not use the states of

neighbor vehicles. However, the motion of this target-object

is unnatural. In actual environment, we have to assume the

target-object that obtains the information of the neighbor

vehicles to escape from the multi-vehicle systems. Then, the

following model was assumed in [2].

Example 2 [2]

ṙobj = k1
obj

n
∑

j=1

aobj,j (robj − rj) (4)

aobj,j =

{

1, if target can observe jthvehicle
0, otherwise

(5)

where k1
obj ∈ R is the positive constant gain.

1In 2D plane, nonholonomic vehicles such as two-wheeled vehicles
used that can be expressed as the linear first-order system by feedback
linearization using the virtual structures [9].

If robj = rj ,
∀j is satisfied, then ṙobj = 0. In Example

2, the target-object moves to escape from the neighbor

vehicles. Therefore, it is guessed that the capturing the

target-object becomes difficult in Example 2. In this model,

the more the away from the multi-vehicles, the more the

target-object accelerates. Therefore, we here introduce the

following model.

Example 3

ṙobj = ∇Uobj (6)

Uobj = k2
obj

n
∑

j=1

aobj,je
−‖robj−rj‖ (7)

where k2
obj ∈ R is constant gain and ‖·‖ is Euclidean norm.

The potential function Uobj → 0 as ‖robj − rj‖ → ∞.

In Example 3, the target-object moves to escape from the

neighbor vehicles. In this model, if the distance between

the target-object and the neighbor vehicle, then the more

quickly the target-object runs away. Therefore, Example 3

is the model near more actual phenomenon compared with

Example 2.

B. Network Topology

Information exchange between the vehicles or between the

vehicle and the target-object can be represented as a graph.

We give here some basic some terminology and definitions

from graph theory. Let G = (V , E ) denoted a graph with

the set of vertices V = {1, 2, · · · , n} and the set of edges

E ⊆ V ×V . The graph is divided into undirected graphs and

directed graphs (digraphs). The set of neighbors of vertex i
is denoted by

Ni(‖rij‖) = {j : ‖rij‖ ≤ ρ} ⊆ {1, 2, · · · , n}. (8)

where rij = ri − rj and ρ ∈ R+ is an interaction range.

An undirected graph is called connected if there is an edge

between any distinct pair of vertices. A directed graph is

called strongly connected if there is a directed path from

every vertex to every other vertex. A directed tree is a

directed graph, where every vertex has exactly one parent

except for one vertex, called root, which has no parent, and

the root has a directed path to every other vertex. Note that

in a directed tree, each edge has a natural orientation away

from the root, and no cycle exists. In the case of undirected

graphs, a tree is a graph in which every pair of vertices is

connected by exactly one path. A directed spanning tree of
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a directed tree formed by graph edges that connect all of the

vertices of the graph. Note that the condition that a digraph

has a directed spanning tree is equivalent to the case that

there exists as least a vertex having a directed path to all of

the other vertices. In the case of undirected graphs, having an

undirected spanning tree is equivalent to being connected. A

graph with no edges (but at least one vertex) is called empty.

The adjacency matrix A(G ) = [aij ] ∈ R
n×n is defined as

aii = 0 and aij = 1 if (j, i) ∈ E where i 
= j. The adjacency

matrix of a undirected graph is defined accordingly except

that aij = aji,
∀i 
= j, since (j, i) ∈ E implies (i, j) ∈ E .

The degree of vertex i is the number of its neighbors |Ni|
and is denoted by deg(i). The degree matrix of graph G is

diagonal matrix defined as D(G ) = [dij ] ∈ R
n×n where

dij =







deg(i) =
n
∑

j=1,j �=i

aij , i = j

0 , i 
= j
(9)

graph Laplacian of the graph G is defined by

L(G ) = D(G ) −A(G ) = [lij ] ∈ R
n×n (10)

It is well known that the graph Laplacian have several

fundamental properties as follows.

Property 1 All the row sums of L are zero and thus 1 =
[ 1 1 · · · 1 ]T ∈ R

n is eigenvector of L associated with

the eigenvalue λ(L) = 0.

Property 2 For a connected graph, the graph Laplacian

L is symmetric positive semi-definite and the eigenvalue

λ(L) = 0 is unique.

Now, we assume that the following network topology among

vehicles is satisfied.

Assumption 2 Network topology among the vehicles is

time-varying but always connected.

C. Control Objectives

We first define the position in which ith vehicle encloses

the target-object as capturing position Ri ∈ R
3. Note that

for the sake of clarity and page limitation, this paper only

considers the equal convergence positions for all vehicles;

i.e.,

‖R1‖ = ‖R2‖ = · · · = ‖Rn‖ = ξ = const. (11)

where ξ ∈ R is the capturing radius. Let φi =
tan−1(yi/xi) denotes the counterclockwise angle of ith

vehicle and the center is the target-object. We also define

the following target-capturing behavior.

Definition 1 (Target-capturing Behavior)

The n vehicles are spaced out around the target-object at

intervals of the assigned angles and maintain these angles

and each vehicle approaches to the target-object and finally

keeps the distance ξ.

In other words, the control objectives for the target-capturing

behavior can be formulated as follows (see Figure 2);

[Control Objectives]

C1) lim
t→∞

‖ri(t) − robj(t)‖ = ξ,

C2) lim
t→∞

‖ṙi(t) − ṙobj(t)‖ = 0,

C3) lim
t→∞

‖φi+1(t) − φi(t)‖ = 2π
n

[rad], i = 1, 2, · · · , n

In control objective C3), if i = n, then n + 1 = 1.

In the next section, the target-capturing strategy which

achieves the control objectives C1)-C3) is developed.

III. PROPOSED CONTROL STRATEGY

In this section, we discuss the case that a portion of

vehicles have access to the target-object (i.e. the networked

leader-follower systems). It is assumed that it is generally

difficult for each vehicle to get the information of the target-

object in actual environment. We first introduce the following

assumption.

Assumption 3 At least one vehicle can get the information

of target-object.

We propose the following target-capturing control laws.

ui = κi

[

aiobj (‖riobj‖) {−k (r̂i − robj) + ṙobj}

+

n
∑

j=1

aij (‖rij‖)
{

−k (r̂i − r̂j) + ˙̂rj

}



 (12)

aiobj(‖riobj‖) =

{

1, (‖ri − robj‖ ≤ ρobj)
0, (‖ri − robj‖ > ρobj)

(13)

κi =
1

aiobj(‖riobj‖) +
∑n

j=1 aij(‖rij‖)
(14)

Ri = ξ





cosαi sin βi

sin αi sinβi

cosβi



 , αi =
2π(i − 1)

n
[rad] (15)

where k ∈ R is constant gain, Rij = Ri −Rj , r̂i = ri −Ri,

ρobj ∈ R, αi ∈ [0, 2π) and βi ∈ (−π/2, π/2) are the desired

capturing angles. And, aiobj is the variable that represents

whether vehicles can recognize the target-object. Actually,

ρobj is the sensor range. In two dimensional plane, we design

the capturing position Ri as βi = 0 [rad]2.

From Eq. (15), the control objective C1) can be rewritten

as follows

lim
t→∞

‖ri − robj‖ = ‖Ri‖ = ξ,

lim
t→∞

(r̂i − robj) = lim
t→∞

(ri − Ri − robj) = 0. (16)

and

lim
t→∞

‖ri − rj‖ = Rij(= Ri − Rj),

lim
t→∞

(r̂i − r̂j) = 0 (17)

Furthermore, we consider the desired capturing angle αi. The
angles between i + 1 and i can be represented as follows

‖αi+1 − αi‖ =

˛

˛

˛

˛

2πi

n
−

2π(i − 1)

n

˛

˛

˛

˛

=
2π

n
[rad]

2If we design βi = 0, we can get the same capturing position Ri =
ξ[cosαi sin αi]

T ∈ R
2 in [9]
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Hence, the control objectives C1)-C3) can be rewritten the

following new control objectives C’1)-C’2) :

C1’) lim
t→∞

‖r̂i(t) − r̂j(t)‖ = 0, lim
t→∞

‖r̂i(t) − robj(t)‖ = 0,

C2’) lim
t→∞

‖ṙi(t) − ṙj(t)‖ = 0, lim
t→∞

‖ṙi(t) − ṙobj(t)‖ = 0,

for i, j (i 
= j) = 1, · · · , n.

In this paper, we consider the case when the graph

topology is not constant. The switching signal σ : [0,∞) →
P is the right continuous switching signal and P =
{1, 2, . . . , r}; r ∈ N is the finite index set associated with

the elements of GN = {G 1, . . . ,G r}. We assume that

the switching signal is piecewise continuous and denote

by tw, w = 1, 2, . . . the consecutive discontinuities of the

switching signal σ(t).
Here, we have the following Theorem 1.

Theorem 1 : Consider the system of n vehicles (1) and

the target-object (2). We apply the capturing control laws

(12)-(15) to the system. If the system satisfies k > 0 and

[Assumptions 1-3], then the system asymptotically achieves

the control objective C’1).

Proof: Substituting Eq. (12)-(15) into Eq. (1).

ṙi = κi

[

aiobj (‖riobj‖) {−k (r̂i − robj) + ṙobj}

+

n
∑

j=1

aij (‖rij‖)
{

−k (r̂i − r̂j) + ˙̂rj

}



 (18)

We assume the target-object as n + 1th vehicle. Let robj
.
=

r̂n+1 = rn+1 − Rn+1, Rn+1
.
= 0 and aiobj

.
= ain+1. Here,

we can get the following closed loop system.



















n+1
∑

j=1

a1j 0 · · · 0

0
n+1
∑

j=1

a2j · · · 0

...
. . .

. . .
...

0 · · · 0 1



















⊗ I3











˙̂r1

˙̂r2

...
˙̂rn+1











= −k



















n+1
∑

j=1

a1j −a12 · · · −a1(n+1)

−a21

n+1
∑

j=1

a2j

. . . −a2(n+1)

...
. . .

. . .
...

0 0 0 0



















⊗ I3











r̂1

r̂2

...

r̂n+1











+













0 a12 · · · a1(n+1)

a21 0
. . . a2(n+1)

...
. . .

. . .
...

0 0 0 1













⊗ I3











˙̂r1

˙̂r2

...
˙̂rn+1











(19)

Eq. (19) can be rewritten as

(Lσ ⊗ I3) ˙̂r = −k(Lσ ⊗ I3)r̂ (20)

where Lσ , Dσ and Aσ are graph Laplacian, degree matrix

and adjacency matrix that depend on the switching signal

σ(t), ⊗ is Kronecker product and r̂ ∈ R
3(n+1) is r̂ =

[

r̂T
1 r̂T

2 · · · r̂T
n+1(= rT

obj)
]T

.
3 Next, we introduce error variables r̂ei

.
= r̂i− r̂n+1. Thus

the following error system is obtained.
























n+1
∑

j=1

a1j −a12 · · · −a1n

−a21

n+1
∑

j=1

a2j −a23 −a2n

...
...

. . .
...

−an1 · · · −an(n−1)

n+1
∑

j=1

anj

























⊗ I3











˙̂re1

˙̂re2

...
˙̂ren











=−k

























n+1
∑

j=1

a1j −a12 · · · −a1n

−a21

n+1
∑

j=1

a2j −a23 −a2n

...
...

. . .
...

−an1 · · · −an(n−1)

n+1
∑

j=1

anj

























⊗ I3











r̂e1

r̂e2

...

r̂en











(21)

Eq. (21) can be rewritten as

(Mσ ⊗ I3) ˙̂re = −k(Mσ ⊗ I3)r̂e (22)

where r̂e =
[

(r̂1 − r̂n+1)
T · · · (r̂n − r̂n+1)

T
]T

∈ R
3n

and Mσ ∈ R
n×n is new matrix to represent the network

topology.

Here, Eq. (20) and Eq. (22) are equivalent equations. If

Assumptions 2, 3 is satisfied, then (Mσ ⊗ I3)r̂e = 0 has an

evident solution r̂e = 0 and Mσ is nonsingular matrix.

From the following relationship, we can verify whether

Mσ is nonsingular matrix.

Mσ is positive definite =⇒ Mσ is nonsingular

Here, we introduce a nonzero vector x = [x1 x2 · · ·xn] ∈
R

n to prove it. If the network of system is connected graph

(aij = aji, ∀i, j(i, j 
= n + 1)), then xTMσx can be

expressed as follows.

xTMσx =

n
∑

l=1

aln+1x
2
l +

n
∑

j=1

aij (xi − xj)
2

(23)

And furthermore, if at least one vehicle can get the informa-

tion of target-object (ain+1 = 1) and x 
= γ1, then we can

get the following condition.

n
∑

l=1

aln+1x
2
l > 0 (24)

3If the network topology is fixed, then the following equations are
obtained from Eq. (20).

(L ⊗ I3)r̂ → 0 as t → ∞

r̂i − robj → 0 as t → ∞, i ∈ V
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where γ ∈ R is any scalar constant. From property 1 of

graph Laplacian, the second term of Eq. (23) is represented

as n
∑

j=1

aij (xi − xj)
2

= xTLσx ≥ 0 (25)

From property 2 of graph Laplacian, when the eigenvector

of graph Laplacian and 1 = [1 1 · · · 1]T are only linearly

dependent, the eigenvalue of graph Laplacian is zero.

If the second term of the right side of Eq. (23) is zero, then

the first term is strictly positive. Conversely, the first term of

the right side of Eq. (23) is zero, then the second term is

always positive. Here, we can get the following condition.

xTMσx =

n
∑

l=1

aln+1x
2
l +

n
∑

j=1

aij (xi − xj)
2

> 0 (26)

Accordingly, if assumption 2 is satisfied, Mσ is strictly

positive definite and nonsingular.

Multiply the both sides of Eq. (22) by (Mσ ⊗ I3)
−1

.

Thus, we can get the following equations.

˙̂re = −k (Mσ ⊗ I3)
−1

(Mσ ⊗ I3) r̂e (27)

˙̂re = −kr̂e (28)

This closed loop system is the system that does not depend

on the network topology. Therefore if the network topology is

the time-varying, then the closed loop system representation

does not change. Convergence speed of vehicles is decided

only by controller gain k and choice of the gain is easy.

From the control gain is positive (k > 0), we can get:

r̂e → 0, ˙̂re → 0 as t → ∞, (29)

r̂ → 1 ⊗ r̂n+1, ṙ → 1⊗ ˙̂rn+1 as t → ∞. (30)

Hence, the states of the system converge to the target-object.

r̂i → robj , ṙi → ṙobj as t → ∞, i ∈ V , (31)

r̂i → r̂j , ṙi → ṙj as t → ∞, i, j ∈ V . (32)

In other words, the control objectives C’1) and C’2) are

achieved.

Now, we can get the following remark.

Remark 1 If all vehicles cannot get information of

the target-object, then Mσ has strictly zero eigenvalue

λ(Mσ) = 0 and Mσ is not nonsingular matrix.

IV. NUMERICAL SIMULATIONS

In this section, the performances of the target-capturing

strategy is evaluated by numerical simulations. To illustrate

the capturing performances of the proposed method, the

simulations are carried out in which n = 4 vehicles described

by Eq. (1) and one target-object. Now, we show the following

two cases.

Case 1) the target moves at random.

Case 2) the target moves according to the model in Ex. 3.

The numerical simulations were done assuming k =
0.1, ρ = ρobj = 4, ξ = 1, k2

obj = 0.1, βi = 0. The

simulation results are shown in Figures 3-4. Figure 3(a)
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Fig. 3. Simulation results of Case 1
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Fig. 4. Simulation results of Case 2

illustrates the trajectories of four vehicles and the target-

object in Case 1). In figure 3(a), ’×’ is the initial position of

each vehicle, ’•’ is the final position of each vehicle. Figure

3(b) illustrates time plots of the states of the vehicles and

the target-object in Case 1). Figure 4 illustrates trajectories

of the vehicles and the target-object and time plots of the

states of the vehicles and the target-object in Case 2). These

results show that all vehicles converge to a circular formation

around the target-object. From the simulation results, the

control objectives C1)-C3) are achieved.

V. EXPERIMENTAL EVALUATION

In experiments (see Figure 5), n = 3 two-wheeled vehicles

(nonholonomic vehicles) for vehicles and the same one vehi-

cle for the target-object are used. The vehicles used in the ex-

periments are controlled by a digital signal processor (DSP)

from dSPACE Inc., which utilizes a PowerPC running at 3.2

[GHz]. Control programs are written in MATLAB/Simulink,

and implemented on the DSP using the Real-Time Workshop

and dSPACE software which includes ControlDesk, Real-

Time Interface. A CCD camera is mounted above the ve-

hicles. The video signals are acquired by a frame grabber

board PicPort and image processing software HALCON. The

sampling time of this system is T = 0.2 [s]. The states of

the vehicles are calculated by using the image processing.

In the experiments, we consider the vehicle whose equa-

tions are given as




ẋi

ẏi

θ̇i



 =





cos θi 0
sin θi 0

0 1





[

vi

ωi

]

(33)

where [xi yi]
T is the position of ith vehicle, θi ∈ (−π, π]

is the orientation of ith vehicle, vi is the velocity of ith

vehicle and ωi is the angular velocity of ith vehicle. This
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Fig. 5. Experimental setup
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Fig. 6. Definition of virtual structure (a) actual vehicle and virtual vehicle,
(b) actual target-object and virtual target-object

vehicle has the nonholonomic constraint. In other words, the

vehicle cannot move at horizontal direction. Here, we can

use the virtual structure framework from [9]. Now, we define

the following virtual structure for feedback linearization as

shown in Figure 6.





xvi

yvi

θvi



 =





xi + xd cos θi − yd sin θi

yi + xd sin θi + yd cos θi

θi



 (34)

where [xvi yvi]
T is the position of ith virtual vehicle, θvi ∈

[−π, π) is the orientation of ith virtual vehicle, [xd yd]
T

is the distance between actual vehicle and virtual vehicle.

Similarly, the virtual target-object is defined from the real

target-object in direction [xd yd]
T . Here, we have to choose

xd 
= 0. After some manipulations, we can get the linear

virtual vehicle and we apply the proposed control laws to

each virtual vehicle. From the convergence of the virtual

vehicles, the convergence of the actual vehicles can be

achieved.

The experiment was done assuming k = 0.5, ρ =
0.5 [m], ξ = 0.33 [m], [xd yd]

T = [0.07 0]T [m]. The

experimental results are shown in Figures 7-8. Figure 7

illustrates the trajectories of three vehicles and the target-

object. Figure 8 illustrates time plots of the states of the

vehicles and the target-object. The motion of the target-object

is set as follow : [ẋobj ẏobj ]
T = [0.03 0]T [m/s]. At the

initial position, the one vehicle cannot observe the target-

object. Hence, one vehicle begins to move in roughly 20 [s].

These results show that all vehicles converge to a circular

formation around the target-object. From the experimental

results, the control objectives are achieved.
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Fig. 7. Experimental result: Trajec-
tory
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Fig. 8. Experimental result: Time
plots of states (xi and yi)

VI. CONCLUSIONS

In this paper, we have proposed target-capturing strategy

for multiple vehicles with dynamic network topology which

are controlled to converge to the formation while they are

tracking the target-object moving in 3 dimensional space. We

first have defined a dynamic network topology that depends

on the relative distance between the vehicles. Secondly,

we have proposed the capturing control law based on the

consensus seeking algorithm to each virtual vehicle. Finally,

the effectiveness of the proposal method was verified by the

numerical simulations and experiments.
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