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Abstract

Testing is a widely applied technique to evaluate software quality, and coverage criteria are often used to assess the adequacy

of a generated test suite. However, manually constructing an adequate test suite is typically too expensive, and numerous

techniques for automatic test-suite generation were proposed. All of them come with different strengths. To build stronger

test-generation tools, different techniques should be combined. In this paper, we study cooperative combinations of verification

approaches for test generation, which exchange high-level information. We present CoVeriTest, a hybrid technique for test-

suite generation. CoVeriTest iteratively applies different conditional model checkers and allows users to adjust the level of

cooperation and to configure individual time limits for each conditional model checker. In our experiments, we systematically

study different CoVeriTest cooperation setups, which either use combinations of explicit-state model checking and predicate

abstraction, or bounded model checking and symbolic execution. A comparison with state-of-the-art test-generation tools

reveals that CoVeriTest achieves higher coverage for many programs (about 15%).

Keywords Test-case generation · Test coverage · Software testing · Conditional model checking · Cooperative verification ·

Model checking

1 Introduction

Verification is an integral part of software development

processes [54,67]. Next to code reviews and static code

analysis, testing is a widely adopted quality-assurance tech-

nique. Since manually constructing test suites is laborious,

automatic test-case generation techniques are used, where

possible. Black-box testing uses, for example, model-based

techniques, and white-box testing might be based on control-

flow coverage. In this paper, we are interested in white-box

techniques for structural coverage. Existing, automatic test-

generation techniques in this area range from random testing

[68,104] and fuzzing [50,95,96], over search-based testing

[99] to symbolic execution [43,47,93,105] and reachability

analyses [13,25,80,81].

A preliminary version was published in Proc. FASE 2019 [26].

A replication package is available on Zenodo [27].
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Reachability analyses perform well when they are

applied to bug finding. This is supported by a recent case

study that compared model checkers with test tools w.r.t.

bug finding [32]. Furthermore, reachability analyses derive

test suites that achieve high coverage, and several verifi-

cation tools support test-case generation (e.g., Blast [13],

PathFinder [123], CPAchecker [25]). At the first glance,

performing a reachability check for each test goal seems too

expensive. However, due to tremendous advances in software

verification [11], in practice, those reachability analyses can

be made pretty efficient. This motivated us to use reachability

analyses for test-case generation.

It is well known, e.g., from the International Com-

petition on Software Verification (SV-COMP) [11], that

reachability analyses come with different strengths and

weaknesses. For example, consider function foo in List-

ing 1. Let us assume that we want to generate test cases for

all branches. Explicit state model checking [35,89] cannot

detect the infeasibility of the if-branch in line 5 because it

cannot capture a concrete value for variable n. In contrast,

the different branches of the while loop can easily be reached

when explicitly tracking the concrete values of variables. An
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1 void foo(int n) {

2 s=1; i=0;

3 if(n<0)

4 i = -(n+s);

5 if(i<n) pause ();

6 else

7 while(i<n) {

8 if(s==1) compute ();

9 if(s==2) publish ();

10 if(s==3) s=0;

11 i++; s++;

12 }

13 }

Listing 1 Example program foo

analysis based on predicate abstraction [71] must learn the

predicates n < 0, i ≥ 0, s = 1 to detect the infea-

sibility of the if-branch in line 5. To reach the different

branches in the while loop, predicates s = 1 and s = 2 are

required. Learning these predicates might need expensive,

counterexample-guided abstraction-refinement [53] steps. In

CPAchecker, about half of the test-case generation time is

spent on the refinement. For bounded model checking [41],

it is easy to detect that the condition i<n is not feasible, but

it needs to unroll the while loop at least three times. Thus,

the loop bound k must be increased multiple times, and each

time bounded model checking is restarted. Symbolic execu-

tion [93] can detect the infeasibility of the if-branch in line 5.

Moreover, like explicit-state model checking, symbolic exe-

cution easily covers the branches occurring in the while loop,

but it may fail to terminate the exploration of the while loop.

The combination of approaches, which is applied in a

wide area of computer science [49,94,108,124], is a typical

solution to overcome weaknesses of different approaches.

Also, test and verification approaches already employ com-

binations. Existing approaches can be classified into paral-

lel combinations [19,42,68,82,100,116,117,119], sequential

combinations [28,33,51,57,66,83,88], selective combina-

tions [4,15,61,65,91,121], nested combinations [6,7,64,113],

and interleaved combinations [8,60,73,98,120]. In this paper,

we are particularly interested in interleaved combinations

because we think they provide a good trade-off between

the effort for their implementation and the efficiency of

the combined approaches. Existing interleaved test-case

generation techniques typically alternate a fixed set of

approaches and prescribe which information is exchanged.

We propose a new cooperative, verifier-based testing

approach called CoVeriTest, which interleaves different

reachability analyses and exchanges various types of analysis

information between analyses. In contrast to existing inter-

leaving approaches, CoVeriTest allows us to configure the

analyses that will be combined and the level of cooperation,

i.e., which information is exchanged.

CoVeriTest is inspired by abstraction-driven concolic

testing [60], which interleaves concolic execution and pred-

icate abstraction and informs the concolic execution about

infeasible paths detected by the predicate analysis. In detail,

CoVeriTest iteratively executes a configurable sequence

of reachability analyses. In each iteration, the analyses

are run sequentially and each analysis in the sequence is

limited to its individual, but configurable time limit. More-

over, we can configure CoVeriTest to exchange different

types of information gained during a reachability analy-

sis, e.g., which paths are infeasible, have already been

explored, or which abstraction level to use. We imple-

mented CoVeriTest in the configurable software-analysis

framework CPAchecker [29], which offers a large variety

of reachability analyses, and use a large, well-established

benchmark set to evaluate 126 CoVeriTest configura-

tions. Furthermore, we compare CoVeriTest with two

existing state-of-the-art test-generation tools. Our experi-

ments confirm that the CoVeriTest approach is valuable

for test generation.

Summing up, we make the following contributions:

• We present the test-generation approach CoVeriTest

that supports flexible, high-level interleavings of reach-

ability analyses with information exchange.

• We perform an extensive evaluation of CoVeriTest

studying 126 different CoVeriTest cooperation setups

and comparing CoVeriTest against two state-of-the-art

test-generation tools.1

• CoVeriTest’s open-source tool implementation and our

experimental data are publicly available for others to

reproduce our results (see Sect. 6).

This paper is an extended version of a paper presented at

FASE 2019 [26]. To become self-contained, we added mate-

rial about test-case generation from counterexamples and

about condition construction. We enriched our explanations

with examples. Furthermore, we added a new cooperation

type transform-precision to CoVeriTest, which

transfers information about the abstraction level from one

analysis to another. Our experiments are extended to study

the new cooperation type and a second combination of ver-

ifiers. All our experiments are run on the same version of

the benchmark set. CoVeriTest participated in Test-Comp

2019 [84] and 2020 [85].

1 We choose the best two tools VeriFuzz and Klee from the 1st

International Competition on Software Testing (Test-Comp 2019) [12]:

https://test-comp.sosy-lab.org/2019/.
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Fig. 1 CFA for example program foo

2 Foundations of test-case generation with
reachability analyses

2.1 Programs

Following literature [22], we model a program by a control-

flow automaton (CFA).

Definition 1 (Control-Flow Automaton) A control-flow

automaton P = (L, ℓ0, G) consists of

• a set L of program locations, which represent the program

counter values,

• an initial program location ℓ0 ∈ L , and

• a set G ⊆ L × Ops × L of control-flow edges, where

Ops denotes the set of all possible operations.

Figure 1 shows the control-flow automaton for the func-

tion body of our example foo from Listing 1. The CFA

contains an edge for every statement and two, dashed, blue

edges for every condition in an if- or while-statement. The

Fig. 2 Encoding test goals as specification violation

two edges represent the two possible evaluations of the

respective condition.

For the semantics of a CFA, we assume a standard opera-

tional semantics, which we do not further detail.

2.2 Test goals

Generally, our approach should work for all elementary cov-

erage criteria [81], i.e., criteria that can be expressed by a set

of independent predicates on program paths (the test goals).

For simplicity, we demonstrate our CoVeriTest approach

on simple, structural coverage properties like branch cov-

erage. In our program representation, structural coverage

properties map to coverage of control-flow edges. Thus, we

formally represent a set of test goals by a subset of a pro-

gram’s control-flow edges.

Definition 2 (Test Goals) A set of test goals for a CFA P =

(L, ℓ0, G) is a subset goals ⊆ G of control-flow edges.

Looking at program foo in Fig. 1, the test goals for branch

coverage are the blue, dashed edges.

Our test-goal format is not a standard specification for-

mat for reachability analyses, which we want to apply for

test generation. Specifications for reachability analyses typ-

ically encode when a property violation is reached, e.g.,

using an observer automaton [14]. Figure 2 shows how to

turn a set of test goals into a common observer automaton

specification. The observer automaton monitors the control-

flow edges reached and traverses from the initial, safe state

q0 to the violation state qe when an edge from the set

of test goals is explored.

2.3 Generating tests from counterexamples

CoVeriTest employs reachability analyses to construct fea-

sible counterexamples for test-goal specification violations.

These counterexamples reflect executions that cover at least

one test goal. Since counterexamples are not standard tests,

they need to be transformed into tests. More concretely, we

need to extract a test vector, i.e., a sequence of test inputs

for parameters and external methods like random, scanf,

__VERIFIER_nondet_int. We write our test vectors in

the format2 used by the International Competition on Soft-

ware Testing [12].

2 https://gitlab.com/sosy-lab/software/test-format/blob/master/doc/

Format.md.
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To compute a test vector from a feasible counterexample,

we follow the approach of Blast [13], which we briefly

sketch now:

1. Compute the strongest postcondition [62] for the counter-

example. We use an encoding that applies skolemization

to replace existential quantifiers and that works similar to

static single assignment [1].

2. Get a satisfying assignment for the strongest postcon-

dition formula, e.g., using an SMT solver.

3. In the order of the occurrence of all inputs, find out the

corresponding variable for the input in the formula, look

up its value in the satisfying assignment, and write the

value to the test vector.

For example, consider the following counterexample:

ℓ0
s=1;
−−−→ ℓ1

i=0;
−−−→ ℓ2

!(n<0)
−−−−→ ℓ7

i<n
−−→ ℓ8

s==1
−−−→ ℓ9

The strongest postcondition for this counterexample is

s1 = 1 ∧ i1 = 0 ∧ ¬(n0 < 0) ∧ i1 < n0 ∧ s1 = 1

and a corresponding satisfying assignment is

n0 �→ 1 i1 �→ 0 s1 �→ 1 .

The only input in our example is the parameter n,

which is referenced by n0 in the formula. The generated

test looks as follows:

1 <testcase >

2 <input>1</input>

3 </testcase >

2.4 Abstract reachability graphs

CoVeriTest uses abstract reachability graphs (ARGs) [13]

for cooperation between analyses: ARGs are the primary

artifacts for exchanging information inside CoVeriTest.

We also extract counterexamples, which we need for test

generation, from this data structure. An ARG is constructed

for a program P = (L, ℓ0, G) and tracks the work per-

formed by a reachability analysis, that is, stores the abstract

state space that has been explored so far and the frontier

nodes (abstract states that still need to be explored). The

representation of the explored abstract state space (abstract

states and successor relation) depends on the respective

reachability analysis. For example, a value analysis repre-

sents abstract states as value assignments, while a predicate-

abstraction analysis represents abstract states as predicates.

Additionally, the ARG keeps the information about the

abstraction level of an analysis, e.g., tracked variables and

considered predicates, respectively.

Fig. 3 ARG for example program foo

Definition 3 (Abstract Reachability Graph) An abstract

reachability graph ARG = (N , succ, root, W , π) for a CFA

P = (L, ℓ0, G) consists of

• a set N of explored abstract states,

• a relation succ ⊆ N × G × N that describes the already

explored successor relations,

• the abstract state root ∈ N ,

• a set W ⊆ N of frontier nodes, and

• a precision π determining the abstraction level.

Next to the syntactical requirements mentioned in the

above definition, an ARG must also fulfill the following

semantic requirement: Each ARG node n ∈ N must either

be contained in W or all its abstract successors must have

been explored. We do not formalize this requirement since

this would require a complete formalization of abstract

reachability analyses.

Figure 3 shows an ARG for our example foo. For sim-

plicity, we labeled ARG edges by program operations instead

of CFA edges. The reachability analysis constructing the

ARG finished the exploration of the outer if-branch and

stopped exploration when reaching a specification violation

after executing statement s==1. The path in red shows the

counterexample paths from Sect. 2.3. Furthermore, dotted

states belong to the set of frontier nodes. All abstract states

(nodes) contain information about the program counter (loca-

tion information). Data values are abstracted by a set of

predicates [71]. Here, we consider predicates s = 1, i ≥ 0,

and n < 0. Furthermore, the test-goal specification from

Fig. 2 is monitored. For the example, we assume that the set

of test goals only contains the conditions of the if-statements

in the while-loop, e.g., all other test goals for branch coverage

have already been covered.
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2.5 Condition

Conditions were first proposed as an information exchange

format in conditional model checking [23], a cooperative

verification approach. A condition describes which program

execution paths have already been explored by an analysis.

Analyses can use conditions to focus their exploration on

unexplored paths. However, verifiers that do not understand

conditions can safely ignore them.

A condition is commonly modeled as an automaton

that accepts the verified program paths. Verified program

paths are described using syntactical program paths in

combinations with data assumptions on the syntactical

paths. For this paper, we ignore assumptions in our

formal definition of conditions.

Definition 4 A condition A = (Q, δ, q0, F) consists of

• a finite set of states Q,

• a transition relation δ ⊆ (Q \ F) × 2G × Q, where G

denotes the set of control-flow edges of a program,

• an initial state q0 ∈ Q, and

• a set F ⊆ Q of accepting states.

The specific condition Anone = ({q0},∅, q0,∅) describes

that no exploration has been done, i.e., the complete state

space needs to be explored.

In CoVeriTest, we use conditions to focus test-case gen-

eration on paths that have not been explored by the previous

analysis run. Conditions used in CoVeriTest do not impose

any data restriction on syntactical paths.

Like in sequential conditional model checking [23],

CoVeriTest will extract conditions from ARGs. Alg. 1

describes the extraction process. The idea is to copy incom-

pletely explored ARG paths (i.e., paths ending in a fron-

tier node f ∈ W ) to the condition and to reduce the

completely explored state-space parts to a single accept-

ing state. In lines 2–6, the algorithm performs a back-

ward search from the set W of incompletely explored

nodes to detect all nodes on paths leading to frontier

nodes. All these detected nodes become states in the

condition. Line 7 builds the set of accepting states, which

represent all non-extendable completely explored subgraphs

of the ARG. Thus, we add one accepting state, whenever an

ARG edge leads from a Q-state (state on an incompletely

explored path) to a non-Q-state. Line 8 puts it all together

and constructs a correct condition. The condition states are

given by the union of the accepting states and the states

detected in lines 2–6. The transition relation is a restriction

of the ARG’s successor relation to all edges on incompletely

explored paths.

Figure 4 shows the condition constructed by Alg. 1

from our example ARG shown in Fig. 3. For the sake of

Algorithm 1 Extracting condition from ARG

Input: arg = (N, succ, root, W, π )

Output: extracted condition

1: Q={root}∪ W ; waitlist=W ;

2: while (waitlist 
= ∅) do

3: pop q from waitlist

4: for each (p,(ℓ,op,ℓ’), q) ∈ succ do

5: if ( p/∈ Q) then

6: Q = Q ∪ {p}; waitlist = waitlist ∪ {p};

7: F = {q | ∃(p,g, q) ∈ succ ∧ p ∈ Q ∧ q /∈ Q};

8: return (Q ∪ F, root, succ ∩ Q × G × (Q ∪ F), F);

Fig. 4 Condition constructed from ARG shown in Fig. 3

representation, we labeled the edges only by operations

instead of complete CFA edges. Since reachability analyses

typically construct ARGs that are unrollings of CFAs, condi-

tions extracted from ARGs are sparse and can be efficiently

represented by an adjacency list.

2.6 Test generation with reachability analyses

Having introduced the basics, we finally describe how to gen-

erate tests with a single reachability analysis. Algorithm 2

depicts the test-generation workflow. For test generation,

the algorithm of course needs the program and the set of

test goals. We also provide a time limit for test genera-

tion. To apply the algorithm in CoVeriTest, we need two

additional inputs, an initial ARG and a condition. These

two inputs provide the information gained in cooperation

to the component test-generation algorithm. Basically, they

guide the state-space exploration. Without cooperation one

would use condition Anone and an ARG consisting only of

the root node (the beginning of the state-space exploration)

and an empty precision.

First, Algorithm 2 initializes the data structures for the test

suite and the set of covered goals. Additionally, it generates

the initial specification as shown in Fig. 2. Then, it generates
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Algorithm 2 Generating tests with a (conditional)

reachability analysis

Input: prog = (L, ℓ0, G), goals ⊆ G, limit ∈ N,

arg = (N, succ, root, W, π ), condition ψ

Output: generated test_suite, covered goals, updated arg

1: test_suite=∅; covered=∅;

2: ϕ=generate_specification(goals);

3: while (goals 
= ∅ and arg.W 
= ∅ and elapsed<limit) do

4: arg = explore(prog, ϕ, arg, ψ , limit − elapsed);

5: if (arg.W 
= ∅ and elapsed<limit) then

6: τ = extract_counterexample_path(arg);

7: test_suite = test_suite ∪ generate_test(τ );

8: covered = covered ∪ {last_edge(τ )};

9: goals = goals\{last_edge(τ )};

10: ϕ=generate_specification(goals);

11: return (test_suite, covered, arg);

tests until all test goals are covered, the state space is explored

completely (arg.W = ∅), or the time limit is exceeded.

Finally, it returns the generated test suite, the set of covered

goals, and the last ARG built. The ARG is only returned to

enable cooperation.

To generate tests, Algorithm 2 continues the exploration

of the current ARG taking into account program prog, spec-

ification ϕ, current ARG arg, (if understood) condition ψ ,

and the remaining test-generation time. The exploration stops

due to three reasons: (1) the state space is explored com-

pletely (arg.W = ∅), (2) the time limit exceeded, or (3) a

counterexample has been found.3 Reasons (1) and (2) indi-

cate that the test-generation process should be stopped. Only

when reason (3) applies, a test is generated. The test is gener-

ated from a counterexample. First, the counterexample path,

which is a path from the root to a violating state, needs to

be extracted from the ARG. Since only the traversal of a test

goal leads to a specification violation (see Fig. 2), the last

edge on the path is a test goal. After path extraction, Alg. 2

generates a test from the counterexample path following the

procedure explained earlier and adds the test to the test suite.

To finish test generation, the covered test goal (last edge of

the counterexample path) is added to the set of covered test

goals and removed from the set of (open) test goals. Since the

set of test goals might change during loop-body execution,

finally the specification ϕ is updated.

3 For the presentation, we assume that the exploration does not stop if

an infeasible counterexample is found. In practice, we add a counter-

example check to imprecise analyses and skip lines 5–10 whenever the

check does not confirm a counterexample.

Fig. 5 Visualization of CoVeriTest’s analysis cycle

3 COVERITEST approach

The previous section introduced the basic concepts for test

generation with a single component reachability analysis. In

this section, we describe CoVeriTest.

3.1 COVERITEST workflow

CoVeriTest combines different reachability analyses for

test generation to accommodate for the different strengths

and weaknesses of reachability analyses: certain test goals are

harder to cover for one analysis than for another. To optimize

the number of covered goals while keeping the instantiation

effort of the combination simple, we decided to rotate anal-

yses for test generation in cycles. In contrast to a sequential

combination, analyses that get stuck trying to cover a par-

ticular goal may recover later. In advantage over parallel

combination possibilities, we avoid to cover the same goals

in parallel. In advantage over algorithm selection, we do not

need to know in advance which analysis can cover which

goal. Moreover, CoVeriTest supports cooperation among

analyses, allowing them to exchange information about their

exploration using ARGs.

Before we explain the CoVeriTest algorithm (Alg. 3),

we provide an overall description of the workflow using the

illustration in Fig. 5. While the standard test-generation in

Alg. 2 gets an ARG and a condition, CoVeriTest gets a

sequence of analysis configurations. An analysis configura-

tion is a pair of an analysis and an individual time limit for

that analysis. An analysis run is the execution of an analysis

configuration. One analysis cycle is a sequence of n analysis

runs, which is defined by a sequence of n analysis config-

urations. The analysis cycle is the core of CoVeriTest’s

alternating test-generation process, according to which ARG

and condition are set up before running an analysis. As illus-

trated in Fig. 5, CoVeriTest cycles through a sequence of

n analysis runs, each defined by an analysis configuration

(analysis i , time limit i). Each analysis run gets initialized
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Algorithm 3 CoVeriTest: alternating reachability analyses

to generate tests

Input: prog = (L, ℓ0, G), goals ⊆ G, total_limit ∈ N,

configs ∈ (analysis × N)+

Output: test_suite

1: test_suite = ∅; args = 〈〉; current = 0;

2: while (goals 
= ∅ and elapsed_time<total_limit) do

3: analysis = configs[current].first;

4: limit = configs[current].second;

5: (arg, ψ) = coopAndInit(prog, args, configs.length);

6: (tests, covered, arg) =

analysis(prog, goals, limit, arg, ψ);

7: test_suite=test_suite ∪ tests;

8: goals = goals\covered; args = args ◦ 〈arg〉;

9: if (arg.W = ∅) then

10: return test_suite;

11: current = (current+1) % configs.length;

12: return test_suite;

with information from the central data store, which contains

the program, the remaining test goals, and a sequence of pre-

viously constructed ARGs. When an analysis terminates, it

adds its constructed ARG in the central data store and adds

the produced test cases to the central test suite.

Now consider Alg. 3, which more formally defines the

overall CoVeriTest algorithm. The inputs prog, goals,

and total_limit are similar to the inputs in Alg. 2. At

the beginning (line 1), CoVeriTest initializes the test suite,

the sequence of ARGs, and the index of the current analysis

configuration. Then, it iterates over the analysis configura-

tions. In each iteration, CoVeriTest extracts the current

analysis configuration (pair of analysis and time limit4), sets

up and runs the respective analysis, and afterward registers

the results of the analysis run in its data structures. The

newly generated tests are added to the test-suite. Covered

test goals are removed from the set of (open) test goals, and

the sequence of ARGs is extended by the returned ARG.

The iteration stops if all test goals are covered, the global

time limit is exceeded, or the waitlist W of the current

analysis is empty. At the end, CoVeriTest returns the

generated test suite.

Now, let us look closer at the specifics of the CoVeriTest

workflow. In line 9, CoVeriTest checks whether the last

analysis run finished its exploration. If the analysis finished

its exploration, then all reachable goals are detected and

all remaining, uncovered goals are unreachable. Thus, the

4 Generally, fixed time limits can become problematic if certain

counterexample can only be found using more time than provided by the

time limit. However, CoVeriTest provides a cooperation type in which

analyses continue their previous exploration, i.e., the iteration time

limit is transparent to the analysis.

Algorithm 4 coopAndInit: set up start point for analysis

exploration, possibly transferring knowledge from previous

analysis runs

Input: prog = (L, ℓ0, G), args ∈ (arg)+, numAnalyses ∈ N

Output: ARG for program prog, condition describing explored state

space

1: ψ = Anone; π = ∅; root = (ℓ0,⊤);

2: if (length(args)≥numAnalyses) then

3: if (reuse-arg) then

4: return

(last_arg_of_analysis(numAnalyses, args), ψ);

5: if (reuse-precision) then

6: π = last_arg_of_analysis(numAnalyses, args).π ;

7: if (length(args)>0) then

8: if (use-condition) then

9: ψ = extract_condition(args[length(args)-1]);

10: if (transform-precision) then

11: π = π ∪ transform(args[length(args)-1].π );

12: return (({root}, ∅, root, {root}, π ), ψ);

generated test suite is returned. Otherwise, the index of the

next analysis configuration is set for the next iteration. The

method coopAndInit sets up the analysis, i.e., it pre-

pares the ARG and condition. During preparation, it may

reuse information from previous ARGs and, thus, supports

the cooperation between different iterations in CoVeriTest.

The cooperation options are explained next when describing

the method coopAndInit.

Method coopAndInit (Alg. 4) is responsible for the

setup of the cooperation between analysis runs. CoVeriTest

provides the following 4 cooperation options: reuse-

arg, reuse-precision, use-condition, and

transform- precision. We distinguish between two

types of cooperation, which mainly differ in the coop-

eration partner. First, we provide cooperation between

different analysis runs of the same analysis (in differ-

ent cycles): reuse-arg and reuse-precision. Cur-

rently, CoVeriTest allows to reuse the complete ARG

or the precision5 of the previous run of an analysis.

Second, we offer cooperation between different analyses:

use-condition and transform- precision. On

the one hand, CoVeriTest can use conditions to exclude

those paths from future exploration that have been explored

by another analysis. On the other hand, CoVeriTest can

refine the abstraction level of a given analysis by adding infor-

mation from the precision of other analyses to the precision

of the given analysis.

Except for the reuse-arg option, all cooperation

options can be combined arbitrarily. The optionreuse-arg

cannot be combined with the other three options due to

the following reasons: (1) a combination with the reuse-

5 The precision specifies the level of abstraction of the abstract model

that the analysis constructs.
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precision option is always implied because the ARG

already contains the precision. (2) A combination with the

options for cooperation between different analyses is tech-

nically incompatible. To integrate information from other

analyses in the exploration, currently the analysis needs to

restart its exploration.

CoVeriTest uses ARGs to exchange information

between analyses. Thus, callers of the methodcoopAndInit

must transfer the sequence of already generated ARGs. To

distinguish ARGs constructed by the same analysis from

ARGs constructed by different analyses, Alg. 4 is also pro-

vided the number of different analysis configurations used by

CoVeriTest.6 Additionally, the program, which is needed

for the setup, is passed to coopAndInit.

After having clarified the inputs, we now explain the

behavior of Alg. 4. In line 1, it starts with the initialization

of the ARG components and the condition. Thereby, it is

pessimistic and assumes that no cooperation is enabled. The

condition is set to the condition Anone, i.e., no path has been

explored, and the precision is empty. Additionally, the root

node describes all states pointing to the beginning of the pro-

gram, i.e., the beginning of any new exploration. Lines 2–11

update precisions and conditions according to the configured

cooperation options. Line 4 or line 12 returns the setup for

the next analysis run. The ARG returned in line 12 only con-

tains the root node, which needs to be explored. Hence, the

next analysis run will restart the state-space exploration.

Lines 2–6 are responsible for cooperation of the same

analysis. Such a cooperation is of course only possible when

the analysis has been run before, i.e., CoVeriTest iterated

over all analysis configurations at least once. For cooperation,

we only consider the last ARG constructed by the analysis.

Since the configuration is not changed during execution of

CoVeriTest, the last ARG should contain all reuse informa-

tion of the analysis’ previous ARGs. Lines 3 and 4 handle the

reuse-arg option, which is incompatible with the remain-

ing options. Thus, the last ARG of the analysis is looked

up and returned together with the non-restricting condition

ψ = Anone. Lines 5 and 6 handle the reuse-precision

option. Like in reuse-arg, the last ARG of the analysis is

extracted. However, line 6 only updates the precision to the

precision of that last ARG.

Lines 7–11 show the setup of the cooperation between

different analyses. Cooperation between different analyses

becomes possible after the first analysis run, i.e., the first

loop iteration in Alg. 3 finished. Currently, CoVeriTest

only considers the last generated ARG. Lines 8 and 9 handle

the use-condition option, which extracts a condition

that describes the paths explored by the previous ARG. The

6 Note that the index of the current analysis is not provided since it can

be computed from the length of the sequence of ARGs and the number

of analysis configurations.

extraction process has been described in the previous sec-

tion. Lines 10 and 11 handle thetransform-precision

option. This option refines the abstraction level (i.e., the

precision) of the next analysis with information obtained

from the precision used in the last analysis run. The next

paragraph describes how precisions can be transformed

for different analyses.

3.2 Transformation of analysis precision

CoVeriTest transforms precisions to propagate knowledge

about the abstraction level necessary for the reachability

analyses from one analysis to another. The incentive of this

information exchange is to avoid to rediscover the knowledge

about the required abstraction level in expensive refinement

steps. However, note that different analyses use different

types of precisions. A precise transformation might not

always be possible. Furthermore, there does not exist one

transformation procedure for all types of precisions, but the

procedure depends on the type of input and output precision.

If the format of the input and output precision is the same,

the transform method will simply be the identity function.

For all other pairs of input and target precision type, we need

a dedicated transformation procedure. So far, CoVeriTest

only supports one such dedicated transformation procedure

that allows the transformation of a set of predicates into a set

of tracked variables. The idea of this transformation proce-

dure is that if a variable is used in a predicate, the variable will

be somehow relevant for the reachability analysis. Thus, the

procedure adds all variables occurring in a predicate to the

returned target precision, formally πV =
⋃

p∈πP
vars(p).

For example, consider the following set of predicates

πP = {i ≥ 0, n < 0, s = 1}, a possible precision of the

predicate analysis. Transforming the precision πP into a set

of tracked variables, e.g., a precision for the value analysis,

results in πV = {i, n, s}.

3.3 Implementation

We integrated our CoVeriTest approach into the software-

analysis framework CPAchecker [29]. This framework is

highly configurable and provides a large number of differ-

ent reachability analyses. Due to its support for conditional

model checking, CPAchecker also contains an implemen-

tation for condition extraction. Furthermore, CPAchecker

supports various export formats for counterexamples. Thus,

the generation of tests from counterexamples was already

available in CPAchecker. To integrate CoVeriTest in

CPAchecker, we basically implemented Alg. 2 and an algo-

rithm integrating Alg. 3 and Alg. 4. While we could have used

CPAchecker’s specification format (observer automata)

to provide the test-goal specification to the analyses, it is

technically quite difficult to adapt CPAchecker’s observer

123



Cooperative Verifier-Based Testing with CoVeriTest 321

automaton whenever the set of test goals changes. Thus,

we implemented our own updatable observer component to

monitor uncovered test goals. Our observer component is

a direct implementation of automata like the one shown in

Fig. 2. It is integrated as a configurable program analysis [22],

CPAchecker’s interface for an analysis (component). This

way it can be easily composed with reachability analyses.

4 Experimental evaluation

We study CoVeriTest cooperation setups using a com-

bination of either explicit-state model checking—named

value analysis in the following (Val)—and predicate abstrac-

tion (Pred), or bounded model checking (BMC) and symbolic

execution (SymExec). The detailed cooperation setups are

described later in this section. As test goals, we use branches.

Branch coverage is a commonly used coverage criterion that

is supported by many test-generation tools and is easy to

express as a set of test goals. We evaluate our experiments

along the following research questions.

4.1 Research questions to evaluate

In the following, we list the research questions together with

brief mentioning of the results that we obtained, which we

later describe in more detail.

RQ 1. Time Limits for Val+Pred. We study cooperation

setups using Val+Pred, and compare the coverage achieved

by cooperation setups that use the same reuse type (i.e.,

the same configuration of the cooperation options), and

thus, only differ in the time limits. Result: The combina-

tion Val+Pred performs best if more runtime is assigned to

the stronger predicate analysis.

RQ 2. Reuse in Val+Pred. From all sets of co-

operation setups using Val+Pred that differ only in the time

limits, we select the best and compare these.

Result: The combination Val+Pred achieves higher cover-

age if it reuses own information and does not use conditions

for the predicate analysis.

RQ 3. Time Limits for BMC+SymExec. We study coopera-

tion setups using BMC+SymExec, and compare the coverage

achieved by cooperation setups that use the same reuse type,

and thus, only differ in the time limits. Result: The combi-

nation BMC+SymExec performs well if switches between

analyses are avoided.

RQ 4. Reuse in BMC+SymExec. From all sets of coop-

eration setups using BMC+SymExec that differ only in the

time limits, we select the best and compare these. Result:

The combination BMC+SymExec performs best if the BMC

analysis is restricted by a condition.

RQ 5. Best combination. We compare the coverage

results of the best cooperation setup of each verifier

combination. Result: CoVeriTest performs best using

combination Val+Pred.

RQ 6. Cooperation versus single analysis. For each of our

analysis combinations, we compare the coverage achieved by

the best cooperation setup using that analysis combination

with the coverage achieved by one of the analyses of the

combination alone. Result: Cooperative test-generation often

performs better than a single analysis.

RQ 7. Cooperation versus parallel analyses. For each anal-

ysis combination, we compare the coverage achieved by the

best cooperation setup for that analysis combination with the

coverage achieved when running the analyses of the combi-

nation in parallel. Result: An interleaved combination often

performs better than a parallel combination.

RQ 8. Cooperation versus other tools. We let the best

cooperation setup construct test suites in the same environ-

mental setup as in the International Competition on Soft-

ware Testing (Test-Comp 2019).7 Then, we compare the

coverage of CoVeriTest, which is measured by the Test-

Comp 2019 validator, with the coverage of the best two

test-generation tools from Test-Comp 2019. Result: Cooper-

ative test-generation with CoVeriTest complements exist-

ing test-generation tools.

4.2 Experimental setup

We now describe the setup of our experiments, i.e., the co-

operation setups of CoVeriTest, the tools and the evaluation

tasks, as well as the computing resources.

4.2.1 COVERITEST cooperation setups

A CoVeriTest cooperation setup consists of (1) a sequence

of analysis configurations (each a pair of analysis and time

limit, see Sect. 3.1) and (2) one of 10 reuse types (in order to

configure Alg. 4 with the respective cooperation options). We

restrict our evaluation to the 4 program analyses Val, Pred,

BMC, and SymExec.

Value analysis (Val). CPAchecker’s value analysis [35]

explicitly tracks the variable values of all variables in

its current precision. Untracked variables are abstracted

by any value. To determine which variables to track, the

value analysis combines counterexample-guided abstraction

refinement (CEGAR) [53] with path-prefix slicing [38] and

refinement selection [37]. Value analysis can be efficient if

only few variable values need to be tracked. If many different

values are assigned to variables (e.g., for loop counters), then

huge state spaces might be created.

Predicate analysis (Pred). CPAchecker’s predicate analysis

applies predicate abstraction with adjustable block encoding

(ABE) [30]. ABE abstracts at dedicated locations (in our case

7 https://test-comp.sosy-lab.org/2019/.
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loop heads) and computes the strongest postcondition at all

remaining locations. The precision of the predicate analysis

is a set of predicates that is determined with CEGAR [53],

lazy refinement [77], and interpolation [74]. The predicate

analysis is powerful and often handles loops easily. However,

computing abstractions requires expensive SMT solver calls.

Bounded model checking (BMC). CPAchecker’s bounded

model checking iteratively unrolls the CFA up to a given

loop bound k while simultaneously encoding the unrolled

CFA and the property specification into a formula.

To find counterexamples, the satisfiability of the gener-

ated formula is checked. CPAchecker’s BMC formula

encoding is based on the unified SMT-based approach for

software verification [20]. Furthermore, BMC is enhanced

with constant propagation applied to the unrolled CFA to

rule out simple, infeasible paths. The loop bound k, which is

the precision of BMC, is increased iteratively. BMC is very

precise, but it may not terminate in case of unbounded loops

and the satisfiability checks can become costly.

Symbolic execution (SymExec). We use SymEx
+ [31],

an approach that combines symbolic execution [93] and

CEGAR [53]. During CEGAR we apply path-prefix

slicing [38] and refinement selection [37]. The CEGAR

approach determines which variables to track symbolically

and which path condition constraints to consider. Tracked

variable values and constraints form the precision. Symbolic

execution can be efficient if it only tracks few symbolic vari-

ables and constraints, but may struggle with loops or many

symbolic variables and constraints.

As in our previous work [26], we combine value and

predicate analysis. Additionally, we combine BMC and sym-

bolic execution. Note that we neither combine value analysis

and symbolic execution nor BMC and predicate analysis

because the latter analyses can subsume the first analyses.

Furthermore, we do not consider a combination of value

analysis and BMC because BMC uses constant propaga-

tion already, which is a special case of value analysis. We

also excluded a combination of symbolic execution and

predicate analysis since it is similar to the combination

of value and predicate analysis (predicate analysis tracks

the symbolic values already).

To complete the analysis configurations, we need to speci-

fy the time limit for each analysis run. We are interested in

two questions: (1) Are switches between analyses beneficial

for the test coverage and (2) does the coverage benefit from a

non-uniform distribution of the time resources, i.e., different

analyses get different individual time limits? To this end, we

select four time limits (10 s, 50 s, 100 s, 250 s) that are applied

to both analyses and trigger switches often, sometimes, or

rarely. Furthermore, we apply the two non-uniform time-

limit pairs (20 s, 80 s) and (80 s, 20 s). Combining all 6 time-

limit pairs with the two analysis combinations, we get 12

analysis configurations.

Fig. 6 Reuse types specify the cooperation types for CoVeriTest

experiments. We abbreviate the set of cooperation options for analysis

Ai as coi . We assume that the cooperation setup is for two analyses Ai

and A j

In the following, we describe the reuse types that we

use in our experiments to configure CoVeriTest’s cooper-

ation setups. A reuse type specifies the cooperation options

for Alg. 4, which prepares the initial ARG (including the

precision) and the condition for the next analysis run. The

algorithm has access to ARGs from previous analysis runs.

Thus, the reuse type defines the cooperation between anal-

ysis runs. For the CoVeriTest cooperation setup that we

experiment with, we need to specify for both analyses how

they use the information from previous ARGs. In our experi-

ments, we use the 10 reuse types (2 of them are parametric)

listed in Fig. 6.
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The first seven reuse types are supported for all combina-

tions of analyses; the last three types are only supported for

Val+Pred, because the precisions of symbolic execution and

BMC are not convertible. Additionally, reuse types condAi

and condAi
+r are parametric. Analysis Ai can be instantiated

with either analysis in the combination. Thus, we end up with

12 different reuse types for analysis combination Val+Pred

and 9 for analysis combination BMC+SymExec. Combining

the 12 analysis configurations (6 per analysis combination)

with all compatible reuse-types, we obtain 126 cooperation

setups (72 for Val+Pred, 54 for BMC+SymExec).

4.2.2 Tools

CoVeriTest is part of the software-analysis framework

CPAchecker. For our experiments, we use version

cpachecker-1.8-coveritest-sttt (revision 31 599) of

CPAchecker. To compare CoVeriTest with state-of-the-

art tools, we use the two best tools from Test-Comp 2019:

VeriFuzz [50] and Klee [43]. We use their versions sub-

mitted to Test-Comp 2019. Klee uses symbolic execution.

VeriFuzz is a test-generation tool based on the fuzzer AFL.

To improve on AFL, VeriFuzz applies verification tech-

niques to compute initial inputs and to set the parameters

for AFL. For the comparison of CoVeriTest with Veri-

Fuzz, and Klee, we used VeriFuzz’s and Klee’s results8

from Test-Comp 2019 [12],9 where the coverage of the test

suites was measured using the test-suite validator TestCov

[34] in version v1.2,10 which is based on gcov11 to measure

branch coverage.

Note that we need to measure the branch coverage

externally (using the original program) for this compar-

ison because due to internal program transformations in

CPAchecker, especially splitting of branch conditions,

branches considered by CoVeriTest may differ from the

actual program branches. Since all CoVeriTest cooperation

setups are based on the same tool (CPAchecker), we do not

need to measure branch coverage externally when compar-

ing the CoVeriTest cooperation setups. Thus, we compare

the number of generated tests when comparing CoVeriTest

cooperation setups.

8 https://test-comp.sosy-lab.org/2019/results/.

9 Note that this is only possible because for the comparison we execute

CoVeriTest in the environment (hardware, resource limits, etc.) used

for Test-Comp 2019.

10 https://gitlab.com/sosy-lab/software/test-format/tags/v1.2; more

recent versions of TestCov are available from https://gitlab.com/

sosy-lab/software/test-suite-validator.

11 https://gcc.gnu.org/onlinedocs/gcc/Gcov.html.

4.2.3 Programs and test goals

The test-generation tools CoVeriTest, Klee, and Veri-

Fuzz generate tests for C programs, and they all participated

in Test-Comp 2019. The structural coverage property con-

sidered in Test-Comp 2019 is branch coverage. Thus, we

use the set of all branches as test goals. To compare these

three test tools, we use all 1 720 programs of the Test-

Comp 2019 benchmark set12 that are used to generate tests

for the branch-coverage property. For the comparison of

the different CoVeriTest cooperation setups, we extend

the benchmark set to all 7 644 programs considered in the

software-verification competition SV-COMP 2019. Note that

this is only possible because we do not need to execute tests

to compare CoVeriTest cooperation setups.

4.2.4 Computing resources

We run our experiments on machines with 33 GB of memory

and an Intel Xeon E3-1230 v5 CPU with 8 processing units

and a frequency of 3.4 GHz. The underlying operating system

is Ubuntu 18.04 with Linux kernel 4.15. We use the same

resource limits as in Test-Comp 2019. Each test-generation

run may use up to 8 processing units, 15 min of CPU time,

and 15 GB of memory. Furthermore, the test-suite execution

runs, which are required to compare against the other state-of-

the-art test-generation tools Klee and VeriFuzz, are granted

only 2 processing units and 7 GB of memory, but 3 h of CPU

time. Measuring resources and enforcing limits is done by

BenchExec [39].

4.2.5 Availability

All our experimental data are available online13 [27].

4.3 Experimental results

RQ 1. Time Limits for Val+Pred: Assign More Time to Pred.

First, we study CoVeriTest cooperation setups that inter-

leave analyses Val and Pred, looking at the configuration of

time limits. Next to the already fixed analysis combination,

we also fix the reuse type and compare for each of the 12 reuse

type all six CoVeriTest cooperation setups that only differ

in their time limits. For comparison, we use relative cover-

age, which is relative to the highest number of covered goals

instead of the total number of test goals. We select this mea-

sure because it allows a better comparison of the approaches,

especially when many test goals are either unreachable or not

covered by any of the approaches. To compute the relative

12 https://github.com/sosy-lab/sv-benchmarks/tree/testcomp19.

13 https://www.sosy-lab.org/research/coop-testgen/STTT/.
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Fig. 7 Comparison of relative coverage (number of covered goals

divided by maximal number of covered goals) achieved by 72 different

CoVeriTest cooperation setups that use a combination Val+Pred. Fig-

ure 7a–l compares the relative coverage for cooperation setups using a

fixed reuse type and different time limits. Figure 7m compares the best

cooperation setup (which is always (20 s, 80 s)) of each reuse type

coverage for a set of cooperation setups, one extracts per

task and cooperation setup the achieved number of covered

goals and divides it by the maximum number of covered

goals extracted for that task. Figure 7 shows box plots for

each reuse type. The box plots show the distribution of the

relative coverage. The closer the bottom border of a box is

to one, the higher is the coverage achieved. For all 12 reuse

types, the last box plot has the bottom border closest to one.

These box plots represent cooperation setups that use a time

limit of 20 s for Val and 80 s for Pred in each round.

RQ 2. Reuse in Val+Pred: Use Own Information But No

Condition for Pred. Up to now, we found out how to configure

time limits for CoVeriTest with Val and Pred. Now, we look

into the configuration of the reuse type. To this end, we fix

the time limit to (20 s, 80 s), the time limit that performed

best for each reuse type, and compare the relative coverage

of the resulting 12 cooperation setups. Figure 7m shows box

plots of the distribution of the relative coverage, which is

relative to the highest number of covered goals. Since the

highest number of covered goals depends on the compared

cooperation setups, boxes in Fig. 7m can be significantly
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(a)
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Fig. 8 Comparison of relative coverage (number of covered goals

divided by maximal number of covered goals) achieved by 54 dif-

ferent CoVeriTest cooperation setups that use a combination

BMC+SymExec. Figure 8a–i compares the relative coverage for coop-

eration setups using a fixed reuse type and different time limits. Figure 8j

compares the best cooperation setup of each reuse type

Fig. 9 For both analysis combinations, Val+Pred (first two scatter plotters) and BMC+SymExec (last two scatter plots), we compare the coverage

achieved by the respective best CoVeriTest cooperation setup with the coverage achieved when running the single analyses alone
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larger than in the respective figure of the reuse-type. The

first five box plots in Fig. 7m show all cooperation setups that

do not reuse own information. The sixth to eighth box plots

show all cooperation setups that reuse own information, but

in which Pred uses conditions. The ninth to twelfth box plots

show those cooperation setups that reuse own information

and do not use conditions for Pred. We observe that these

last four box plots are smaller than the remaining box plots

and their bottom borders are closer to one. Looking into our

raw data, we found out that the best cooperation setup only

reuses the ARG.

RQ 3. Time limits for BMC+SymExec: Switch Rarely. Next,

we consider CoVeriTest cooperation setups that interleave

BMC and SymExec. Again, we first look at the configuration

of time limits. As before, we fix the reuse type and compare

for each of the 9 reuse types all 6 CoVeriTest cooperation

setups that only differ in their time limits. Figure 8 shows box

plots for each reuse type. These box plots show the distribu-

tion of the relative coverage. For all 9 reuse types, the box

plot that shows the time limit configuration (250 s, 250 s) has

a bottom border close to one, but not necessarily the closest.

Switching rarely is a good choice, but not necessarily the best.

This is also supported when comparing BMC and SymExec

for test generation in isolation (not in CoVeriTest). Both

analyses achieve about the same coverage for one third

of the tasks, for one third BMC performs better, and for

another third SymExec is best. Nevertheless, when using the

condition constructed from the ARG of the SymExec (reuse

type conds , cond, conds+r, and cond+r) assigning

more time to BMC than to SymExec is typically significantly

better. A possible explanation is that the condition gener-

ated by SymExec might prevent BMC from merging at join

points, which makes BMC inefficient. In contrast, if using

cooperation option reuse-precision or reuse-arg,

it is best to assign more time to SymExec than to BMC. The

reason might be that BMC reuses only the loop bound k while

SymExec reuses much more information, namely which vari-

ables and constraints to track.

RQ 4. Reuse in BMC+SymExec: Use Conditions from

SymExec. So far, we learned how to configure time limits for

different reuse types of BMC and SymExec. Next, we want

to find out how to configure the reuse type. For each reuse

type, we select from the six available cooperation setups the

one that performed best. Again, we use the relative cover-

age for comparison, which depends on the compared co-

operation setups. Therefore, the relative coverage of a

cooperation setup varies when computed for different sets

of cooperation setups. Figure 8j shows the box plots of the

distributions of the relative coverage. Only the last four box

plots show cooperation setups that use conditions constructed

from the ARGs of SymExec. Since the last four, especially

the last three, boxes are smaller than the first five boxes and

their bottom borders are closer to one, we conclude that the

Fig. 10 Comparison of the coverage achieved by the best CoVeriTest

cooperation setup for the two analysis combinations used by

CoVeriTest

last four cooperation setups achieve higher coverage. The

best cooperation setup (conds+r) reuses own information

and restricts BMC to paths not yet explored by SymExec.

RQ 5. Best Combination: Val+Pred is Best. Our goal is

to find out which of our analysis pairs performs best. To

this end, we compare the coverage, i.e., number of covered

goals divided by number of total goals, achieved by the best

CoVeriTest cooperation setup of each analysis combination

that we evaluated. Figure 10 shows a scatter plot that com-

pares the coverage achieved by the best cooperation setup for

BMC+SymExec (x-axis) with the coverage achieved by the

best cooperation setup for Val+Pred. Note that we excluded

those programs from the scatter plots, for which we miss the

number of covered goals for at least one test generator, e.g.,

due to timeout of the analysis. Looking at the scatter plot, we

observe that more data points are in the upper left half, i.e., the

CoVeriTest cooperation setup interleaving Val+Pred often

performs better. Indeed, the combination Val+Pred achieves

a higher coverage for about 40% of the programs, and both

combinations achieve the same coverage for another 40 % of

the programs.

RQ 6. Cooperation Versus Single Analysis: Combination Bet-

ter than Single Analysis. To find out whether CoVeriTest

benefits from interleaving, we take the best CoVeriTest

cooperation setup for each analysis combination (Val+Pred

and BMC+SymExec) and compare it against the analyses of

the combination. Each single analysis is granted the same

time limit for test generation as the CoVeriTest coopera-

tion setup. Figure 9 shows four scatter plots. Each scatter

plot compares the coverage achieved by the respective best

CoVeriTest cooperation setup (x-axis) with the coverage

achieved by one of the CoVeriTest analyses alone. Again,

we excluded those programs from the scatter plots, for which

we miss the number of covered goals for at least one test

generator. Looking at the scatter plots, we see that in the

last three scatter plots most of the points are in the lower

right half. Thus, the CoVeriTest cooperation setup often

achieves a higher coverage than the respective single anal-

ysis. The second scatter plot, which compares CoVeriTest

using Val+Pred with the predicate analysis, is more diverse.

About 53 % of the points are on the diagonal, i.e., both

123



Cooperative Verifier-Based Testing with CoVeriTest 327

Fig. 11 Comparison of the coverage achieved by CoVeriTest’s best

cooperation setup using a combination of a combination Val+Pred (left)

and BMC+SymExec (right) with the coverage achieved by the parallel

combination of the respective analyses

test generators achieved the same coverage. The predicate

analysis achieves higher coverage for about 21 % of the

programs (upper left half), while CoVeriTest performs bet-

ter for 26 % of the programs. CoVeriTest is especially

beneficial for programs that only need few variable values

to trigger the branches, like ssh programs or programs from

the product-lines subcategory.

RQ 7. Cooperation versus Parallel Analyses: Better Inter-

leave than Parallelize. For both analysis combinations,

Fig. 11 compares the coverage of the respective best

CoVeriTest cooperation setup (x-axis) with the coverage of

a test generator running a parallel combination of the same

analyses.14 As before, the scatter plots in Fig. 11 do not con-

tain data points for which we miss the coverage value for

one of the test generators. Looking at the scatter plots, we

observe that many points (58 % and 64 %, respectively) are

on the diagonal, i.e., the two test generators achieved the

same coverage. Furthermore, CoVeriTest performs better

in about 33 % (lower right half of the left scatter plot) and

20 % of the programs. In total, CoVeriTest achieves more

often a better coverage than the parallel test generator and,

thus, should be preferred over the parallel test generator. This

is no surprise because parallelization evenly distributes the

CPU time among the analyses, while we learned from pre-

vious experiments (e.g., RQ 1) that CoVeriTest cooperation

setups often perform better with uneven runtime distribution.

RQ 8. Cooperation versus Other Tools: CoVeriTest’s

Cooperation Complements Well We compare the best

CoVeriTest cooperation setup with the two best tools of

Test-Comp 2019 [12]: VeriFuzz and Klee. As already men-

tioned, we compare the branch coverage achieved by the

respective tools, which was measured by the test-suite vali-

dator TestCov [34]. Figure 12 shows two scatter plots.

Each scatter plot compares the branch coverage achieved by

CoVeriTest with the branch coverage achieved by one of

the other tools. Points in the lower right half indicate that

14 The parallel test generator uses CPAchecker’s parallel algorithm

and shares test goals between the analyses.

Fig. 12 Comparison of the branch coverage achieved by CoVeriTest

(best cooperation setup) with the branch coverage achieved by the

existing state-of-the-art test generation tools VeriFuzz (left) and Klee

(right)

CoVeriTest achieved higher coverage. Both scatter plots

contain points in both halves.

In concrete numbers, CoVeriTest achieves higher cover-

age than VeriFuzz or Klee for about 15 % of the programs

(257 and 246 programs, respectively). In contrast, Veri-

Fuzz and Klee achieve higher coverage for about 77 %

of the programs (1298 and 1022 programs, respectively).

Thus, there exist programs for which CoVeriTest per-

forms better and vice versa. For example, CoVeriTest is

often better on tasks of the subcategorysequentialized.

However, CoVeriTest has problems with tasks from cate-

gories array and ECA. We already know from verification

that CPAchecker sometimes lacks refinement support for

tasks with arrays. The problem with the ECA tasks is that

these tasks contain a loop in which the feasibility of exe-

cution paths heavily depends on specific variable values,

that these variables are initialized with concrete values, and

that the values of these variables are changed in each loop

iteration. Thus, it may take several loop iterations to reach

certain branches. While we know from verification that the

value analysis performs better on ECA tasks than the pred-

icate analysis, which has to apply CEGAR to learn about

the specific variable values, the CoVeriTest cooperation

setup used for comparison grants the predicate analysis

more time. Summing up, CoVeriTest is not always best,

but it is also not dominated—CoVeriTest complements

the existing approaches.

4.4 Threats to validity

Our results might not generalize for several reasons. We

evaluated CoVeriTest on programs of a diverse and well-

established benchmark set, which consists not only of

verification tasks from real-world applications but also con-

tains generated programs. CPAchecker’s analyses are well

trained on this benchmark set, and CoVeriTest may take

an advantage of these benchmark programs. However, the

training is performed w.r.t. a different property: reachability

of a function call instead of reachability of branches (the test
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goals). Furthermore, our CoVeriTest cooperation setups

use two combinations of verifiers. We already observed that

some conclusions hold for one combination, but not for the

other. Our results might not carry over if using CoVeriTest

with a different set of verifiers.

The coverage results might be imprecise. The compar-

ison of CoVeriTest with VeriFuzz and Klee relies on

the coverage values reported by the test-suite validator

TestCov [34]. Due to bugs, TestCov might report wrong

coverage numbers. However, TestCov was used in Test-

Comp 2019 and in other research projects, and thus, we

trust it. Furthermore, it is based on the well-established

coverage-measurement tool gcov. Therefore, severe bugs

are unlikely. For the remaining comparisons, we relied on

the number of covered goals reported by CoVeriTest. While

in principle invalid counterexamples could be used to cover

test goals, we assume this is unlikely. The analyses used

by CoVeriTest are executed in the SV-COMP configura-

tion of CPAchecker or use a CEGAR approach. In both

cases, they try hard to avoid reporting false results. Another

problem is that whenever CPAchecker does not output

statistics (due to timeout, out of memory, etc.), we use the last

number of covered goals reported in the log. However, this

might be an underapproximation of the number of covered

goals. All these problems do not occur in the comparison of

CoVeriTest with existing test-generation tools. Thus, this

comparison still supports the value of CoVeriTest.

5 Related work

Different reachability analyses take turns in CoVeriTest to

generate tests for C programs. To enable cooperation among

analyses, CoVeriTest reuses different types of information

from ARGs constructed by previous analysis runs.

5.1 Testing with verifiers

There is a survey on test-case generation with model check-

ers [63], but most approaches discussed in the survey

rely on formal models instead of programs. However, also

some model checkers for software support test generation.

Blast [13] applies predicate abstraction to generate a test

for each program location that can be reached with a state

fulfilling a target predicate p. For test generation, Blast uses

predicate abstraction. FShell [79–81] and CPA/Tiger [25]

generate tests for a coverage criterion specified in the FShell

query language (FQL) [81]. Both transform the FQL speci-

fication into a set of test-goal automata and check for each

automaton whether its final state can be reached. FShell

uses CBMC [55] to answer those reachability queries,

and CPA/Tiger uses CPAchecker’s predicate abstraction.

PathFinder [123] can generate tests with explicit-state

model checking or symbolic execution. Generally, test-

case generation with symbolic execution [93] has received

lots of interest [44,105]. Moreover, conditional testing [33]

proposes a template construction that builds an automatic

test-case generator from an arbitrary verifier that can pro-

duce violation witnesses [17]—a standard exchange format

for counterexamples, which is supported by many verifiers.

Basically, the template combines the verifier with a trans-

former [18] that generates tests from witnesses.

5.2 Combined approaches for testing and
verification

Combinations used for testing and verification can

be classified into parallel, sequential, selective, nested,

or interleaved combinations.

Parallel combinations. Portfolio combination approaches

[72,78,82,102] run different, independent configurations in

parallel. A second class of approaches [19,24,56,68,69] runs

different approaches in parallel while letting them interop-

erate, e.g., exchange information. A third class splits the

search space [21,23,52,100,116,117,119], e.g., program exe-

cutions, among different workers. Workers often apply the

same approach, but to different parts of the search space.

Sequential combinations. Also, sequential approaches may

split the search space between different approaches [23,28,

33,51,59,88]. Typically, the subsequent approach is restricted

to the search space not considered by the previous approaches.

Like CoVeriTest, conditional model checking [23,28] uses

a condition to restrict the search space. The condition is con-

structed from an ARG when a verifier gives up. Conditional

testing [33] and CoVeriTest exchange information about

covered test goals. Conditional testing uses reducers and

extractors to exchange this information between arbitrary

test tools. Evacon [83] combines symbolic execution and

search-based testing and transfers the generated tests from

one approach to the other. Further sequential combinations

testify the result of the previous approach [48,57,66,97,107].

Selective combinations. Selective combination approaches

[4,15,58,61,65,91,109,121] perform algorithm selection

[108]. They use certain features of a verification or test task

to choose the best approach for the particular task.

Nested combinations. Nested combinations use another

approach as one component of the main approach.

CBST [113] uses symbolic execution to compute the ini-

tial population for search-based testing. EvoSuite [64] uses

concolic execution to compute some of the new individuals

in search-based testing. EvoSE [7] uses concolic execu-

tion, and some others [6] apply symbolic execution during

fitness computation of individuals in search-based testing.
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VeriFuzz [50] applies verification techniques to compute

initial inputs and to set the parameters for the fuzzer AFL.

Interleaved combinations. Interleaved combinations

alternate different approaches. For example, the verifiers

UFO [2] and SMASH [70] alternate underapproximation

with overapproximation, while SYNERGY [73], DASH [8]

and others [128] alternate test generation and proof construc-

tion to (dis)prove a property. Klee [43] alternates different

exploration strategies. Hybrid concolic testing [98] inter-

leaves random testing and symbolic execution. When random

testing does not make progress, symbolic execution is started

from the current state. Symbolic execution stops as soon

as it covers a new goal and provides the input for cov-

ering the goal to random testing. Similarly, Driller [120]

and Badger [103] alternate fuzzing with concolic execu-

tion. However, they exchange inputs when changing from

one analysis to the other. Alternating different approaches

[92,125] can also augment test suites. Abstraction-driven

concolic testing [60] interleaves concolic execution and pred-

icate analysis. It inspired us to work on CoVeriTest, which

is designed as a generalization of abstraction-driven concolic

testing, in order to explore more such combinations.

Conditional testing. The concept of conditional testing [33]

explains how testing approaches can be combined such that

approaches with different strengths can contribute to the test

suite, and thus, increase the coverage. From a conceptual

viewpoint, CoVeriTest is an instance of conditional test-

ing: CoVeriTest and conditional testing maintain a set of

test goals to book-keep what work is done already and what is

still left to do (Fig. 3 [33] explains the passing of test-goal sets

for conditional testers). CoVeriTest’s sequence of analysis

runs and analysis cycles (Fig. 5 and Alg. 3) can be expressed

as sequential tester (Fig. 8 [33]) and cyclic tester (Fig. 9 [33]),

respectively. The standard Alg. 2 for generating test cases

using reachability analyses can be expressed as a combina-

tion of a verifier-based tester and a cyclic conditional tester,

as described in Figs. 13 and 14 [33]. On top of the above

features, CoVeriTest supports cooperation setups in which

not only test-goal sets but also ARGs, condition automata,

and abstraction precisions are exchanged between different

analyses (ARGs can be huge in size).

5.3 Reusing information from state-space
exploration

Information from state-space explorations has been reused in

different context like, e.g., validation of verification results

or incremental verification.

Validating results. Validation approaches use information

provided by the verification to check the verification result.

Many verifiers [11] construct verification witnesses [16,17]

from the explored state space. To check correctness results,

several proof-carrying code approaches provide (partial)

state-space information [3,10,86,110], transform the state

space into verification conditions [9,46,75,114], or transform

the program into an easier verifiable program [87].

Incremental verification. The goal of incremental verifica-

tion is to use information from a previous verification to

reverify a program after the program or property changed.

Some approaches [106,126,127] use the state-space infor-

mation to skip the verification of unmodified program

parts. Other approaches reuse the solutions of constraint or

SAT proofs [5,90,101,122]. Precision reuse [36] and trace-

abstraction reuse [111] reuse information on the abstraction

level. Other types of approaches [25,40,45,76,112,115,118]

adapt the explored state space to the change. Extreme model

checking [76] and CPA/Tiger [25] adapt ARGs. Extreme

model checking [76] reuses still valid ARG parts and reex-

plores invalid ARG subgraphs. CPA/Tiger [25] transforms

an ARG that was constructed for one test goal such that it fits

to a new test goal. Lazy abstraction refinement [77] adapts

an ARG to continue exploration after abstraction refinement.

CoVeriTest continues the exploration of the ARG, but does

not need to adapt it. Furthermore, it integrates the idea of pre-

cision reuse and some of the analyses in CoVeriTest apply

lazy abstraction refinement.

6 Conclusion

Software quality assurance is an important aspect in soft-

ware development. Testing is a standard means for quality

assurance, but state-of-the-art techniques have difficulties

in covering sophisticated branching conditions [32]. Anal-

yses that are designed to check reachability properties are

well suited for this task because they only need to check the

reachability of such a branching condition and generate a test

if the branch condition is reachable. Nevertheless, for each

technique there exist reachability queries (i.e., branch condi-

tions) on which the technique is inefficient or fails in practice.

To overcome this limitation, we propose CoVeriTest,

which interleaves different reachability analyses to gener-

ate tests. In our experiments, we study various CoVeriTest

cooperation setups that differ in the used analyses, the

time limits of the analyses, and the information exchanged

between analysis runs. CoVeriTest works best when inter-

leaving value and predicate analysis, letting them resume

their exploration, restricting the information exchange

between them to covered test goals, and assigning the more

mature predicate analysis a larger time limit. Furthermore,

a comparison of CoVeriTest with (a) the analyses used

by CoVeriTest and (b) state-of-the-art test-generation tools

show the benefits of our CoVeriTest approach.

Future Work. Currently, not all reuse options are always

available. Precision transformation is only available from

predicate to value analysis. It is promising to develop such
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transformations for other combinations as well. Furthermore,

not all options can be freely combined. It would be interest-

ing to investigate how to automatically detect unavailable

options. One question is, e.g., how to adapt the ARG to a

new condition.

Another future direction focuses on a better understanding

of CoVeriTest, i.e., when and in which cooperation setup to

use CoVeriTest. Therefore, one could study the influence

of program and analysis characteristics on the performance

of CoVeriTest.
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