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A cloud of cold N two-level atoms driven by a resonant laser beam shows cooperative effects both in the
scattered radiation field and in the radiation pressure force acting on the cloud center-of-mass. The induced
dipoles synchronize and the scattered light presents superradiant and/or subradiant features. We present a
quantum description of the process in terms of a master equation for the atomic density matrix in the scalar,
Born-Markov approximations, reduced to the single-excitation limit. From a perturbative approach for weak
incident field, we derive from the master equation the effective Hamiltonian, valid in the linear regime. We
discuss the validity of the driven timed Dicke ansatz and of a partial wave expansion for different optical
thicknesses and we give analytical expressions for the scattered intensity and the radiation pressure force on
the center of mass. We also derive an expression for collective suppression of the atomic excitation and the
scattered light by these correlated dipoles.

© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

Cooperative scattering by large collections of resonant atoms has been studied extensively for many years

adopting either a classical or a quantum description. Often a quantum formalism is more convenient to

describe the atom-light interaction. For instance, superradiant emission can be obtained when many inde-

pendent atoms interact resonantly with photons, as studied in the seminal work by Dicke [1]. However,

many features can well be described with classical models for the atoms with a polarizability and for the

light field. Many features of Dicke superradiance can thus be explained using classical theory. As atoms

appear to be excellent systems to study any possible deviation from classical many body features, it is of

general interest to understand and to monitor cooperative effects, even at a classical level, in a cloud of

atoms. New intriguing effects can arise, when fluctuations due to the coupling with the vacuum modes

can no longer be described by a classical field approach and the atoms can also become entangled during

the cooperative scattering. Such cooperative scattering with atomic ensembles can appear in a number of

experimental situations in free space [2] or in cavities [3].

Collective spontaneous emission at single excitation level [1] has also been studied in resonant nuclear

scattering of synchrotron radiation [4,5] and has recently received growing interest with the study of single

photon superradiance from N two-level atoms prepared by the absorption of a single photon [6–9]. It has

been shown that the photon is spontaneously emitted in the same direction as the incident field with a

cooperative decay rate proportional to N and inversely proportional to the size of the atomic cloud [8].

In a series of theoretical [10] and experimental [11, 12] studies, the authors have recently addressed the

question of the quasi-resonant interaction of light with clouds of cold atoms, bridging the gap from single
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atom behavior, with granularity effects due to the discrete nature of the atomic distribution, to a ‘mean-

field’ regime, where a continuous density distribution is the relevant description and leads to cooperative

effects. In these works, the authors describe the collective atomic response under continuous excitation of

a low intensity light field using an effective Hamiltonian model valid in the linear regime. From it, the

average radiation pressure force and the scattered intensity have been derived, observing the modification

from the single-atom values due to cooperativity [13].

In this paper, we present an extended model based on a master equation in the single-excitation ap-

proximation. Such model provides a more complete description of the linear regime, useful to investigate

the distinctions between classical and quantum features, even though a complete description of quantum

correlations in our system requires to take into account a larger number of excitations [14, 15]. In particu-

lar, we show that by a first-order perturbation expansion of the master equation we recover the previously

adopted linear model for classical optics. We also derive an analytical expression showing the cooperative

suppression of atomic excitation and the related fluorescence. This effect bears some common features

with the dipole blockade studied in Rydberg systems [16–18]. In our case the long range 1/r dipole-dipole

coupling is at the origin of this important suppression even for dilute clouds of cold atoms. We note that

this suppression occurs in the linear optics regime and is thus not related to a photon blockade.

2 The master equation approach

2.1 The exact master equation for driven atoms

The dynamics of a system of atoms driven by an external laser beam and undergoing cooperative re-

emission into vacuum modes (see Fig. 1) can be described by a master equation approach [19, 20]. Let us

consider a system of N two-level atoms with transition frequency ωa, positions rj and excited decay time

Γ. Each atom is described by the spin half angular momentum algebra, with Si
− = |gi〉〈ei|, Si

+ = |ei〉〈gi|,
Si

z = |ei〉〈ei| − |gi〉〈gi| satisfying the commutation relations [Si
+, Sj

−] = δijS
i
z and [Si

±, Sj
z ] = ∓2δijS

i
±.

The interaction Hamiltonian is

H =
�Ω0

2

N
∑

j=1

(

Sj
−ei∆0t−ik0·rj + Sj

+e−i∆0t+ik0·rj

)

+�

N
∑

j=1

∑

k

gk

(

Sj
−eiω0t + Sj

+e−iω0t
)(

ake−iωkt+ik·rj + a†
k
eiωkt−ik·rj

)

(1)

where Ω0 = dE0/� is the Rabi frequency of the classical incident field with amplitude E0 and wave

vector k0, d is the dipole matrix element, ∆0 = ω0 − ωa is the pump-atom detuning, ak is the photon

annihilation operator with wave number k and frequency ωk = ck, gk = d[ωk/(2�ǫ0Vph)]1/2 and Vph the

photon volume. We have assumed the rotating wave approximation (RWA) in the first term accounting for

the interaction with the external laser, but not in the second term: there, the coupling between atoms and

vacuum field modes is described in the scalar light approximation, where near field and polarization effects

are neglected, since we are considering dilute clouds, with N(λ/R)3 ≪ 1 (R the system size).

It has been shown in [19] that the spontaneous emission properties can be conveniently described by a

reduced master equation for the atomic system in the Born-Markov approximation, given by

dρ

dt
= −i

Ω0

2

∑

i

[

ei∆0t−ik0·riSi
− + e−i∆0t+ik0·riSi

+, ρ
]

−i
∑

i

∑

j �=i

∆ij [S
i
+Sj

−, ρ]

+
1

2

∑

i

∑

j

γij

{

2Sj
−ρSi

+ − Si
+Sj

−ρ − ρSi
+Sj

−

}

. (2)
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Fig. 1 (online colour at: www.fp-journal.org) Experimental configuration: a cloud of two-level atoms (a)

is driven by an incident laser detuned by ∆0 from the atomic resonance ωa, with wave vector k0 (b).

where

∆ij = −Γ

2

cos(k0|ri − rj |)
k0|ri − rj |

, (3)

γij = Γ
sin(k0|ri − rj |)

k0|ri − rj |
. (4)

and Γ = d2k3
0/(2π�ǫ0). The first term in the master equation (2) describes the interaction with the external

laser. The second term describes the dipole-dipole interactions and arises from the virtual photon exchange

between pairs of atoms. It becomes especially important at small interatomic distances, it is responsible

for the collective Lamb shift [21, 22] and plays an important role in the subradiant emission [9, 23, 24].

Finally, the third term of Eq. (2) describes the cooperative emission. The Markov approximation ignores

retardation effects and takes the long time limit, i.e. t ≫ 1/ω0 and t ≫ max{|ri − rj |/c}. Hence, it

requires that the system size is not too large, such that one photon travels through the atomic cloud faster

than the characteristic cooperative emission time.

The RWA approximation adopted in the present model requires more subtle arguments. As discussed

in [19], when applied to the second term of the Hamiltonian of Eq. (1), the RWA consists in ignoring

anti-resonant terms like a†
k
Sj

+ and akSj
− which correspond to simultaneous creation or annihilation of a

photon and atomic excitation (i.e. virtual transition). These terms are responsible of the shift of the ground

state which contributes to the terms ∆ij in Eq. (2). However, the master equation (2) has been obtained

in [19] from the complete Hamiltonian (1) including the anti-resonant term, and making the RWA only on

the master equation, neglecting the rapidly oscillating terms like Sj
+ρSi

+e2iω0t. Hence, Eq. (2) obtained

by making the RWA on the master equation rather than on the Hamiltonian does include the shift of

the ground state. These remarks make clear that RWA on the Hamiltonian is not the same as RWA on the

master equation and that one should make RWA on the final equations of motion. Since the counter-rotating

terms as S+ρS+e2iω0t are not important because Γ ≪ ω0, Eq. (2) provides an accurate description of the

interaction, including both the contributions of the real and virtual transitions to the frequency shift.

2.2 Single-excitation approximation

The master equation (2) has been used to describe, in the absence of the driving laser, the superradiant and

subradiant decays from excited atoms. For a system confined in a volume whose size is much smaller than

the radiation wavelength, and neglecting the dipole-dipole interaction terms ∆ij , Dicke [1] introduced the

angular momentum states |J, M〉 = Sym{|e . . . e; g . . . g〉}, with M = −J, . . . , J . If the system is initially

prepared in a symmetric (superradiant) state (with e.g. J = N/2), and in the absence of coupling to

antisymmetric (subradiant) states, the radiative desexcitation occurs between symmetric states only. Note
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however that the presence of dipole-dipole interactions may induce coupling with subradiant states [23]. In

our case, the presence of the driving laser provides the atom excitation which subsequently scatters and/or

decays cooperatively. If the driving field is sufficiently weak or largely detuned from the atomic resonance,

we can assume that the atomic system is weakly excited, with at most one atom out of N excited. If

the atoms are organized in a symmetric state, the decay rate is NΓ. Recently, it has been shown that an

extended system of size R ≫ λ (λ = 2π/k0 is the light wavelength) containing a single excited atom

among N and prepared in the timed Dicke state [4, 6, 8, 25]

|TD〉 =
1√
N

N
∑

j=1

exp(ik0 · rj) |g1, . . . , ej , . . . , gN〉, (5)

decays with a rate ΓN ∝ NΓ/(k0R)2. Also, an external field Ω0 drives the system mainly in a steady state

of the form [10, 11]

|Ψ〉N ≈ |g1, . . . , gN〉 +

√
NΩ0e

−i∆0t

2∆0 + iΓ(1 + b0/12)
|TD〉, (6)

where b0 = (3λ2/2π)
∫

dz ρ(0, 0, z) ∝ N/(k0R)2 is the resonant optical thickness along the propagation

direction z of the driving laser and ρ(r) is the atomic density. However, a small fraction of the initial ground

state is still coupled to the subradiant states, as discussed in [26].

The previous works studying cooperative scattering by weakly excited atoms were based on a effective

Hamiltonian model and brought us to a description equivalent to that of N classical linear dipoles driven

by the external field [10, 13]. Here, we go beyond the linear optics approximation using a master equation

approach, still restricted to a single excitation. This restriction would be limited to the case of weak driving

field, but may have a larger validity, for instance for Rydberg’s atoms where some kind of blockade is

provided [27].

By projecting Eq. (2) on the ground state |G〉 ≡ |g1, . . . , gN 〉 and on the single-excitation states

|i〉 ≡ |g1, . . . , ei, . . . , gN 〉, neglecting the states containing more than one excitation and defining ρi,G =
〈i|ρ|G〉 exp(i∆0t), ρG,G = 〈G|ρ|G〉 and ρi,j = 〈i|ρ|j〉, we obtain

dρG,G

dt
= −i

Ω0

2

∑

k

(

e−ik0·rkρk,G − eik0·rkρG,k

)

+
∑

k,l

γklρl,k, (7)

dρi,G

dt
=

(

i∆0 −
Γ

2

)

ρi,G − i
Ω0

2

(

eik0·riρG,G −
∑

k

eik0·rkρi,k

)

−
∑

k �=i

( γik

2
+ i∆ik

)

ρk,G, (8)

dρi,j

dt
= −i

Ω0

2

(

eik0·riρG,j − e−ik0·rj ρi,G

)

− i
∑

k �=i

∆ikρk,j + i
∑

k �=j

∆kjρi,k

− 1

2

∑

k

(

γikρk,j + γkjρi,k

)

. (9)

We note that these equations still conserve the probability: ρG,G +
∑

i ρi,i = 1.

2.3 Perturbative solution

We now show that the effective Hamiltonian approach can be obtained by a perturbative expansion of ρ in

terms of the Rabi frequency Ω0 of the external field. Assuming ρ = ρ(0) +ρ(1) + . . . , if initially the system
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is in the ground state, the zero-order term yields ρ
(0)
G,G = 1 and ρ

(0)
i,G = ρ

(0)
i,j = 0, whereas at the first order,

Eqs. (7)–(9) reduce to:

dρ
(1)
G,G

dt
=

∑

k,l

γklρ
(1)
l,k , (10)

dρ
(1)
i,G

dt
=

(

i∆0 −
Γ

2

)

ρ
(1)
i,G − i

Ω0

2
eik0·ri −

∑

k �=i

( γik

2
+ i∆ik

)

ρ
(1)
k,g, (11)

dρ
(1)
i,j

dt
= −i

∑

k �=i

∆ikρ
(1)
k,j + i

∑

k �=j

∆kjρ
(1)
i,k − 1

2

∑

k

(

γikρ
(1)
k,j + ρ

(1)
i,k γkj

)

. (12)

Since ρ
(1)
i,j (0) = 0, Eqs. (10) and (12) imply that at all times ρ

(1)
i,j (t) = ρ

(1)
G,G(t) = 0. The remaining

Eq. (11) can be written defining βi = ρ
(1)
i,G and using Eqs. (3) and (4), as

dβi

dt
=

(

i∆0 −
Γ

2

)

βi − i
Ω0

2
eik0·ri − Γ

2

∑

k �=i

exp(ik0|ri − rk|)
ik0|ri − rk|

βk. (13)

Furthermore, we observe that, since ρi,j = 〈i|ρ|G〉〈G|ρ|j〉 +
∑

k〈i|ρ|k〉〈k|ρ|j〉, the first non zero order

for the dipole correlations corresponds to the second order for the field: ρ
(2)
i,j = ρ

(1)
i,Gρ

(1)
G,j = βiβ

∗
j .

2.4 Effective Hamiltonian

Equation (13) can be expressed in the form of a Schrödinger equation

i�
d|Ψ〉
dt

= Heff |Ψ〉, (14)

where |Ψ〉 = α|g〉 +
∑N

i=1 βi|i〉 and the effective Hamiltonian is

Heff =
�Ω0

2

∑

i

(

e−ik0·riSi
− + eik0·riSi

+

)

− �∆0

∑

i

Si
+Si

− − �Γ

2

∑

j

VijS
i
+Sj

−, (15)

where

Vij = (1 − δij)
cos(k0|ri − rj |)

k0|ri − rj |
+ i

sin(k0|ri − rj |)
k0|ri − rj |

. (16)

Assuming that at low saturation the system is weakly excited, so that α ≈ 1, the projection of Eq. (14)

over the excited states |i〉 leads to Eq. (13). Is has been shown that this equation describes also the temporal

evolution of N harmonic oscillators driven by the scalar electric field radiation E0, as predicted by classical

linear optics [9, 28]. It is important to notice that, even if the collective atomic state |Ψ〉 is entangled, the

knowledge of only the probability amplitudes βi obtained from the linear equations (13) is not by itself

sufficient to detect entanglement, due to its classical nature. Conversely, entanglement could be observable

in the solution of the master equation, even restricted to a single-excitation, since it contains correlations

between atoms, and in particular between the ground state and the excited states.

Finally, we notice that the exact master equation (2) can be written in terms of the effective Hamiltonian

(15), using Eqs. (14), (15) and ρ = |Ψ〉〈Ψ|, as

dρ

dt
=

1

i�

(

Heffρ − ρH†
eff

)

+
∑

i

∑

j

γijS
j
−ρSi

+. (17)

The last term in Eq. (17) describes the refilling of the ground state due to spontaneous decay of the excited

states, and is necessary to preserve the density operator trace equal to unity.
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2.5 Timed Dicke state

Let us show how the steady state Eq. (6) provides an approximated solution of the single-excitation master

equation. First, we observe that the external field couples the ground state |G〉 to the timed Dicke state

|TD〉 defined in Eq. (5). The matrix elements involving the TD state are

ρTD,G = 〈TD|ρ|G〉 =
1√
N

∑

j

e−ik0·rjρj,G, (18)

ρTD,TD = 〈TD|ρ|TD〉 =
1

N

∑

j

∑

m

e−ik0·(rj−rm)ρj,m. (19)

Their temporal evolutions are obtained from Eqs. (7)–(9) as

dρG,G

dt
= −i

√
NΩ0

2

(

ρTD,G − ρG,TD

)

+
∑

k

∑

l

γklρl,k, (20)

dρTD,G

dt
=

(

i∆0 −
Γ

2

)

ρTD,G − i

√
NΩ0

2

(

ρG,G − ρTD,TD

)

− 1√
N

∑

i

e−ik0·ri

∑

k �=i

( γik

2
+ i∆ik

)

ρk,G, (21)

dρTD,TD

dt
= −i

√
NΩ0

2

(

ρG,TD − ρTD,G

)

+
i

N

∑

i

∑

j

e−ik0·(ri−rj)

⎛

⎝

∑

k �=i

∆kjρi,k −
∑

k �=i

∆ikρk,j

⎞

⎠

− 1

2N

∑

i

∑

j

∑

k

e−ik0·(ri−rj)
(

γikρk,j + γkjρi,k

)

. (22)

These equations show explicitly the coupling induced by the laser between |G〉 and |TD〉. However, the

dipole-dipole interactions and the cooperative decay favor the coupling also to all the other “subradiant”

states |s〉, with s = 1, . . . , N −1, completing the single-excitation Hilbert subspace. We make the assump-

tion that all the matrix elements among these states |s〉 can be neglected, supposing that their occupation

probability is small compared to the timed Dicke state. In practice, we assume

ρi,G = 〈i|TD〉〈TD|ρ|G〉+
∑

s

〈i|s〉〈s|ρ|G〉 ≈ 1√
N

eik0·riρTD,G, (23)

and

ρi,j = 〈i|TD〉〈TD|ρ|TD〉〈TD|j〉+ · · · ≈ 1

N
eik0·(ri−rj)ρTD,TD. (24)

By substituting these expressions in Eq. (20)–(22) we obtain

dρG,G

dt
= −i

√
NΩ0

2

(

ρTD,G − ρG,TD

)

+ ΓNρTD,TD, (25)

dρTD,G

dt
=

[

i∆N − ΓN

2

]

ρTD,G − i

√
NΩ0

2

(

ρG,G − ρTD,TD

)

, (26)

dρTD,TD

dt
= −i

√
NΩ0

2

(

ρG,TD − ρTD,G

)

− ΓNρTD,TD, (27)
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where ∆N = ∆0 − LN and [13]

ΓN =
1

N

∑

i

∑

j

γije
−ik0·(ri−rj) = NΓ〈|SN (k0, θ, φ)|2〉θ,φ, (28)

LN = − 1

N

∑

i

∑

j �=i

∆ije
−ik0·(ri−rj) =

NΓ

2π
P

∫ ∞

0

dκ
κ3

κ − 1
〈|SN (k0κ, θ, φ)|2〉θ,φ, (29)

are the cooperative decay rate and the collective Lamb shift, respectively. In Eqs. (28) and (29) we intro-

duced the structure function

SN (k) =
1

N

N
∑

j=1

ei(k−k0)·rj , (30)

and the average is taken over the total solid angle of emission of a photon with wave vector k at an angle

θ with k0, where |k| = k0. Finally, the integral over κ in Eq. (29) is evaluated as a principal part.

Equations (25)–(27) have the form of optical Bloch equations for a two-level system with collective

states |G〉 and |TD〉, interacting with a collective Rabi frequency
√

NΩ0, detuning ∆N and linewidth ΓN .

The steady-state solution is given by,

ρs
TD,G =

1

1 + sc

( √
NΩ0

2∆N + iΓN

)

, (31)

ρs
TD,TD =

1

2

(

sc

1 + sc

)

, (32)

where

sc =
2NΩ2

0

4∆2
N + Γ2

N

(33)

is the collective saturation parameter. We recover the previous linear result of [10] in the limit sc ≪ 1, with

a steady-state amplitude of the excited state

βi ≈
(

Ω0

2∆N + iΓN

)

eik0·ri =
βTD√

N
eik0·ri . (34)

We have numerically verified that the timed Dicke ansatz of Eqs. (23) and (24), or equivalently Eq. (34)

in the linear regime, is a good approximation of the system when b(∆0) < 1, where b(∆0) = b0/[1 +
(2∆0/Γ)2] is the optical thickness. Figure 2 shows a contour plot of the ratio P/PTD (P =

∑

j |βj |2
and PTD = |βTD|2, where βj and βTD have been obtained from the numerical solution of Eqs. (13) and

from (34) respectively) as a function of N and ∆0/Γ, for a Gaussian spherical distribution with parameter

k0σR = 15. For all values of b(∆0) < 1, the excited state population is well described by the timed

Dicke ansatz and yields a ratio P/PTD ∼ 1. This result is confirmed by the analysis of the standard

deviation σβ =
√

〈|β̃|2〉 − |〈β̃〉|2/|〈β̃〉| of β̃ = βe−ik0.r (see right Fig. 2 where the contour plot of σβ is

also showed). σβ quantifies the deviation of the excitation field from the ‘mean-field’ timed-Dicke state:

this deviation becomes significant when b(∆0) is larger than unity. Figure 2 (right) suggests that for large

optical thickness the homogeneous approximation assumed in the timed Dicke ansatz (see Eq. (34)) is no

more valid and a better description is demanded.
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Fig. 2 (online colour at: www.fp-journal.org) Left: Ratio of the excited state population computed numerically and

in the timed Dicke approximation P/PTD . Right: Standard deviation σβ . The cloud is Gaussian with k0σR = 15.

The contour plots show the iso-optical thickness lines b(∆0) = b0/(1 + 4∆2

0/Γ
2) where b0 = 3N/(k0σR)2. This

color-coded plot helps visualize the timed Dicke approximation validity region: b(∆0) < 1.

2.6 Beyond the timed Dicke state approximation

To account for the non-uniformity of the excitation within the cloud, the field β can be decomposed as

a sum of waves that describe its spatial fluctuations. This approach has been considered in [29], where

Eq. (13) has been solved analytically for a continuous distribution with a Gaussian spherical profile, ne-

glecting the cosine part of the exponential kernel and so the associated collective Lamb shift ∆ij . Although

the use of a such truncated kernel is not allowed when the decay of the excitation is observed [30], it may

still provide a reasonable approximation for small density and low optical thickness b(∆0). The stationary

excitation amplitude obtained in [29] using a partial wave expansion is

β(r) = Ω0

∞
∑

n=0

in(2n + 1)

2∆0 + iΓ(1 + λn)
jn(k0r)Pn(cos θ), (35)

where jn are the spherical Bessel functions, Pn the Legendre polynomials, θ the angle with respect to

the laser wave vector k0 and λn = N(π/2σ2)1/2In+1/2(σ
2) exp(−σ2/2), where σ = k0σR and σR is

the rms width of the Gaussian distribution. Equation (35) accounts for non-homogeneity of the excitation

probability density |β(r)|2. In this context, neglecting LN , the timed Dicke expression (34) appears as a

‘mean-field’ approximation, which can be recovered assuming Γ(1+λn) ∼ ΓN in Eq. (35). Going further

beyond, an exact solution for the continuous-density limit of Eq. (13) with the exponential kernel has been

derived using the Mie theory, although more mathematically demanding [31]. In that case, the excitation

of an atom was calculated properly including both the incident and the phase-shifted radiation field from

the other atoms.

3 Observables

3.1 Force on center of mass

Cooperative effects can be investigated by a direct detection of the scattered photons. However, this mea-

surement can be in general difficult, since for an extended atomic system the emission is strongly forward

directed and the detector can be saturated by the incident laser. The scattered radiation field detected at
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distance r and time t is the sum of the single fields scattered by the N atoms of position rj ,

E(r, t) =
dk2

0

2iǫ0

N
∑

j=1

e−iω0(t−|r−rj |/c)

|r − rj |
Sj
−(t). (36)

In the far field limit, |r − rj | ≈ r − (r · rj)/r and

E(r, t) ≈ dk2
0

2iǫ0r
e−iω0(t−r/c)

N
∑

j=1

e−ik·rj Sj
−(t), (37)

where k = k0(r/r) and ω0 = ck0, so that the average intensity is

I(r, t) = ǫ0c〈E†(r, t)E(r, t)〉 =

(

d2ω4
0

16π2ǫ0c3r2

)

∑

j

∑

m

e−ik·(rj−rm)ρj,m(t). (38)

Alternatively, it is relatively easier to detect the cooperative effects by considering the radiation pressure

force exerted on the atoms. If the atoms are sufficiently cold, it is experimentally possible to measure the

atomic motion after their exposition to the incident laser beam. The radiation pressure force acting on the

jth-atom is F̂j = −∇rj
H = F̂aj + F̂ej where [10, 13]

Faj = i�k0
Ω0

2

{

ei∆0t−ik0·rj Sj
− − e−i∆0t+ik0·rj Sj

+

}

, (39)

Fej = F
(self)
ej − �k0Γ

2

N
∑

m=1

r̂jm

(k0rjm)2

{

Sj
+Sm

− (1 − ik0rjm)eik0rjm + h.c.
}

, (40)

where rjm = |rj − rm| = |rjm| and r̂jm = rjm/rjm. Faj and Fej result from the recoil received

upon absorption of a photon from the pump and from the emission of a photon into a direction k, re-

spectively. The emission force Fej acting on the jth-atom has two contributions: a self-force F
(self)
ej =

−�Γ
∑

|k|=k0
kSj

+Sj
− due to its own photon emission, and a contribution accounting for the coupling

between the jth-atom and all the other atoms. Note that the dipole-dipole interactions can occur via a cou-

pling to common vacuum modes of radiation. The interference terms in the total scattered field can leave

a fingerprint on the forces acting on the atoms inside the cloud. This force has a term decreasing as 1/rjm

and one decreasing as 1/r2
jm. Their average values on the single-excitation atomic states are

〈Fj
a〉 = i�k0

Ω0

2

{

e−ik0·rj ρj,G − c.c.
}

, (41)

〈Fj
e〉 = − �k0Γ

2

N
∑

m=1

r̂jm

(k0rjm)2

{

ρj,m(1 − ik0rjm)eik0rjm + h.c.
}

. (42)

Notice that the self-force average to zero since the emission is isotropic. The force on the center-of mass

of the atomic cloud, 〈F〉 = (1/N)
∑

j〈Fj〉 is of particular interest. From Eq. (41) and (42), its component

along the z axis of incidence of the laser is

〈Fz〉 =
�k0

N

⎧

⎨

⎩

Ω0

∑

j

Im[exp(ik0 · rj))ρ
∗
j,G] − Γ

∑

j,m

ẑjmj1(k0rjm)Im(ρjm)

⎫

⎬

⎭

, (43)

where j1(z) = sin(z)/z2−cos(z)/z is the first order spherical Bessel function and ẑjm = (zj −zm)/rjm.

In the timed-Dicke limit, using the approximations (23), (24) and neglecting saturation, Eq. (43) be-

comes [13]

〈Fz〉 = �k0Γ
Ω2

0

4∆2
N + Γ2

N

N
〈

(1 − cos θ)|SN (k)|2
〉

θ,φ
. (44)
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The radiation pressure force can be influenced by different effects. On one side, the finite extent of the

atomic cloud can produce strong forward oriented scattering. The balance between the momentum of the

incident and scattered photons and the atoms indicate that for forward emission, the net recoil imprinted

onto the atoms is vanishing, resulting in a reduction of the radiation force. A different contribution to the

reduction of the radiation force can be seen in the prefactor of Eq. (44), which would appear even in the

case of isotropic scattering (i.e. when 〈Fe〉 = 0). The importance of this prefactor can be understood from

the cooperative coupling of several atoms into the same vacuum mode. The number of available modes

for large spherical clouds can be estimated by Nm ∼ (k0R)2 (where R is the cloud’s size), resulting in a

number of atoms per mode scaling as N/Nm ∼ N/(k0R)2. This scaling is conveniently related to the on-

resonant optical thickness of the atomic cloud b0. For a Gaussian density distribution with root mean square

size σR, b0 = 3N/(k0σR)2, N〈|SN |2〉θ,φ = 1+b0/12 and N〈(1−cos θ)|SN |2〉θ,φ = b0/24(k0σR)2 [10].

It is convenient to compare the cooperative radiation pressure force to the force acting on a single

independent atom Find = �k0ΓΩ2
0/(Γ2 + ∆2

0). The ratio of the cooperative radiation pressure force for a

Gaussian cloud to the single-atom force in the timed Dicke limit can be written as (neglecting the collective

Lamb shift)

Fz

Find

=
4∆2

0 + Γ2

4∆2
0 +

(

1 + b0
12

)2

Γ2

[

1 +
b0

24(k0σR)2

]

. (45)

One can also use the partial wave expansion to account for the inhomogeneity of the field β, in which case

the force ratio reads [29]:

Fz

Find

=
Γ2 + ∆2

0

N
(46)

×
∞
∑

n=0

(

(2n + 1)λn(1 + λn)

4∆2
0 + Γ2(1 + λn)2

− (2n + 2)λnλn+1[4∆2
0 + Γ2(1 + λn)(1 + λn+1)]

[4∆2
0 + Γ2(1 + λn)2][4∆2

0 + Γ2(1 + λn+1)2]

)

.

Figure 3 shows the ratio of the cooperative to independent radiation pressure force as a function of the

atom number N and detuning ∆0 for a Gaussian cloud with root mean square size k0σR = 10. The left

figure shows the numerical results computed from the effective Hamiltonian equation (15) and Eq. (43),

the central one describes the timed-Dicke formula Eq. (45) and the right picture stands for the partial wave

equation (??). While all methods predict a significant reduction of the force ratio for small detuning and

large atom number, the partial wave approach yields better agreement with the numerical approach for

∆0 < Γ and N > 1000, despite the fact that the present partial wave approach has been limited to a sine

kernel, not fully accounting for virtual-transition induced phase shifts [30].

Fig. 3 (online colour at: www.fp-journal.org) Ratio of the cooperative to independent radiation pressure force as a

function of the atom number N and detuning ∆0. The cloud is Gaussian with k0σR = 10. The contour plots show the

iso-optical thickness lines b(∆0) = b0/(1 + 4∆2

0/Γ
2) where b0 = 3N/(k0σR)2. The left figure shows the numerical

results computed from the effective Hamiltonian equation (15) and Eq. (43), the central figure stands for the analytical

formula Eq. (45) and the right figure correspond to the modal expansion (??).

© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.fp-journal.org



Fortschr. Phys. 61, No. 2 – 3 (2013) 387

3.2 Dicke subradiance

Dicke subradiance is the counterpart of superradiant emission and corresponds to the partial trapping of

light due to destructive interferences. In a subradiant state, the atomic dipoles are arranged such that the

macroscopic polarization of the cloud is small reducing the emission rate of the system. Subradiant emis-

sion has been previously observed for two ions [32] and also for the emission of a cloud of N atoms in a

free space into a single radiation mode [33]. In a recent paper [26], we showed that the system presented

above is ideal to observe for the first time long photon storage into metastable subradiant states for N
atoms in free space.

In Sect. 2.5, we saw that the laser pumps the system from the ground state |G〉 into the timed Dicke state

|TD〉. Then the dipole-dipole interaction terms couple the timed Dicke state to the different other states of

the system. Some of these states |ψsuper〉 have short lifetimes Γsuper > Γ and are thus called superradiant.

Fig. 4 (online colour at: www.fp-journal.org) Energies and decay rates of the modes of the system obtained by

computing the eigenvalues of the effective Hamiltonian Heff for Gaussian clouds with N = 2000 atoms and k0σR =
10, 30, 100 (b0 = 60, 6.7, 0.6) given respectively by the blue, red and green curves. The denser the system is, the

wider the energy and decay rate distributions are. The continuous straight lines show the timed Dicke state decay rates

ΓN for the three different system sizes. For dilute clouds (green line), the timed Dicke emission rate ΓN is centered on

the distribution P (Γ) and ΓN ≃ Γ. When the cloud optical density increases (blue line), the timed Dicke decay rate

tends to the tail of the distribution and ΓN ≃ Γmax.
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Some other states |ψsub〉 have long lifetimes Γsub < Γ and are called subradiant. As the effective Hamil-

tonian is non-Hermitian, its eigenstates are not orthogonal and have common features with autoionizing

states or Fano resonances [23]. Figure 4 shows the mode energies and decay rates for three different system

sizes. It shows that the denser the system is, the wider the energy and decay rate distributions are. Figure

4 also shows the timed Dicke decay rate ΓN to compare it to the decay rate distribution of the system

modes P (Γ). For dilute clouds, the timed Dicke emission rate ΓN is centered on the distribution P (Γ) and

ΓN ≃ Γ and when the cloud optical density increases, the timed Dicke decay rate tends to the tail of the

distribution and ΓN ≃ Γmax.

Fig. 5 (online colour at: www.fp-journal.org) Sketch of the subradiant emission couplings.

After driving the system with the laser for a long time, which allows populating subradiant states using

the scheme sketched in Fig. 5, we monitor the decay of the system by looking at the excited state population

P (t) after switching off the laser. A typical decay curve of the excited state population computed from

the numerical solution of the effective Hamiltonian approach is shown on Fig. 6. This figure shows the

excitation probability P (t) =
∑

j |βj |2 as a function of time (black solid line), obtained by integrating

Eq. (13) for N = 2000 atoms distributed by a Gaussian distribution with k0σR = 10. The other parameters

are Ω0 = 0.01Γ and ∆0 = 10 Γ and the laser is switched off after t = 50 Γ−1. The origin of time is set

such that it corresponds to the time when the laser is switched off. Under the action of the continuous laser

excitation, the atoms reach a quasi-stationary state close to the timed Dicke state. The small subradiant

Fig. 6 (online colour at: www.fp-journal.org) Excited state population P =
∑

j
|βj |

2 decay after switch-

ing off the laser (the initial state corresponds to the steady state. The black dashed curve shows the single

atom decay (without cooperative effects). At first, the fast decay corresponds to superradiance with a rate

ΓN = (1 + b0/12)Γ. After some time, part of the light remains trapped in the cloud which corresponds

to subradiant emission. Parameters for the simulation: N = 2000, k0σR = 10, Ω0 = 0.01 Γ, ∆0 = 10 Γ

(the laser was on before during 50 Γ−1 to let the system reach the steady state). The superradiant emission

diagram (blue curve) is strongly forward directed. The emission diagram of the subradiant states (red curve)

is isotropic. The green curve shows the subradiant emission diagram averaged over eight realizations of

disorder.
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fraction present in the atomic state after the exposition to the laser can be detected observing the excitation

decay after the laser has been switched off. The fast initial decay rate of the superradiant state is ΓN =
(1 + b0/12)Γ as expected since the steady state corresponds approximately to the timed Dicke state. After

some time, the emission rate becomes much below the single atom emission rate (black dotted line in

Fig. 6). It corresponds to the subradiant emission region. At first, the subradiant decay is not exponential

since several modes decay simultaneously. For longer times, it then ends up with a pure exponential decay,

referred as the subradiant decay rate, when only one long-lived mode dominates [26, 28], as shown in

the red part of the decay curve of Fig. 7. We have checked numerically the very intuitive result that the

subradiant decay rate measured on the relaxation curves P (t) corresponds to the longest lifetime of the

effective Hamiltonian modes [28]. This confirms the role of cooperativity in long lived excitations in the

cloud as investigated in [34].

Fig. 7 (online colour at: www.fp-journal.org) Excited state

population as a function of time for the same parameters as

Fig. 6 (N = 2000, k0σR = 10, Ω0 = 0.01 Γ, ∆0 = 10Γ).

The laser is switched off at t = 0. The curve together with

Fig. 6 show that the subradiant decay is purely exponential

only after a certain amount of time (red part of the curve),

when the mode with the longest lifetime dominates. We call

this final decay rate the subradiant decay rate. In this example,

Γsub = 8.5 10−3 Γ.

Using Eq. (38) from the previous section, we can study the emission diagram of the system. Fig. 6 shows

the emission diagram as a function of time during the decay of the cloud. At first, the emission diagram of

the timed Dicke state is clearly forward directed, a phenomenon reminiscent of Mie scattering. At longer

times, subradiant modes show isotropic emission diagrams: they do not possess the symmetry of the laser

excitation since they are not directly coupled to it. This property can be exploited in the experimental

detection of subradiance.

In [26], we proposed to use inhomogeneous broadening schemes such as the cloud optical thickness, the

cloud temperature, or the driving laser intensity as possible control parameters for subradiance. However,

other parameters such as a far detuned speckle field, magnetic fields, or near field couplings can also be

used. By control of subradiance, we mean two different things: controlling the population of the subradiant

states as well as their decay rates. Exploiting these inhomogeneous broadening schemes allow to control

and tune the dipole-dipole couplings, which is the genuine interaction leading to cooperative effects (su-

perradiance, subradiance, cooperative Lamb shift). This would allow for the first observation of subradiant

emission from a cloud of atoms in free space.

3.3 Dipole-dipole induced suppression of excitation

In the perturbative limit, where each dipole is driven by the external field, plus a small perturbation by the

field scattered by all other dipoles, we can obtain an analytical solution of the excitation state population

and the angle-resolved scattered field.

From Eq. (38) we obtain the steady-state scattered intensity in the direction (θ, φ) for the timed Dicke

state, still neglecting saturation:

I(r, θ, φ) =

(

I0

16π2k2
0r

2

)

Γ2N2|SN (θ, φ)|2
4∆2

N + Γ2
N

. (47)
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and the total scattered intensity

Ps = r2

∫ 2π

0

dφ

∫ π

0

dθ sin θ I(r, θ, φ) = P0
NΓΓN

4∆2
N + Γ2

N

, (48)

where I0 is the incident intensity and P0 = I0/(4πk2
0). In Fig. 8, we plot the normalized excited state

population (blue solid line on the left figure) as a function of b0 and for ∆0 = 100Γ,

P

NP (1)
=

4∆2
0 + Γ2

4∆2
N + Γ2

N

≈ 4∆2
0 + Γ2

4∆2
0 + Γ2(1 + b0/12)2

, (49)

and the normalized total scattered power (blue solid line on the left figure)

Ps

NP0
≈ Γ2

4∆2
0 + Γ2(1 + b0/12)2

(1 + b0/12), (50)

where P (1) = Ω2
0/(4∆2

0+Γ2) is the single-atom excitation probability and we have neglected the collective

Lamb shift, ∆N ≈ ∆0. We observe that increasing the optical thickness b0 the excitation population

decreases, whereas the total scattered power has a maximum around b0 ∼ 24(∆0/Γ). The normalized

excited state population and total scattered power resulting from the partial wave solution (35) in the

continuous-density approximation, obtained in [29] for large Gaussian clouds,

P

NP (1)
=

4∆2
0 + Γ2

∆0Γ(b0/3)
arctan

[

∆0Γ(b0/3)

4∆2
0 + Γ2(1 + b0/6)

]

, (51)

and

Ps

NP0
=

3

b0
ln

[

1 +
Γ2b0

3

1 + b0/12

4∆2
0 + Γ2

]

, (52)

are also plotted in Fig. 8 (red dashed lines): they show a deviation from the timed Dicke approximation for

very large resonant optical thickness b0.

From these curves we can see that even for dilute clouds of cold atoms, the long range coupling between

the dipoles leads to a cooperative modification of the excitation of the atoms and its related total scattered

power. Note that the total scattered power initially increases with increasing number of atoms, despite the

Fig. 8 (online colour at: www.fp-journal.org) Normalized excited state population (left) and normalized total scattered

power (right) as a function of the optical thickness b0 for ∆0 = 100 Γ. The blue solid lines correspond to Eqs. (49),

(50) and the red dashed lines to Eqs. (51), (52).
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decrease in the normalized total population of the excited state. This can be understood by the fact that

cooperativity leads to enhanced superradiant emission rates. For larger number of atoms, the suppression

of the atomic excitation dominates the enhanced superradiant emission and the total scattering rate of the

large cloud of atoms is reduced by the dipole-dipole couplings. We stress that even though the signature

of such a suppression of fluorescence of the cloud of N atoms might bear a resemblance with a photon

blockade regime [16–18], our model does not take into account optical nonlinearities required to describe

such photon-photon coupling. A suppression of excitation can thus be obtained in the absence of nonlinear

optical response. In contrast to dipole blockade effects in Rydberg states with near-field (1/r3) or Van

der Waals coupling (1/r6), we are in the presence of long-range dipole-dipole couplings where all atoms

participate in the suppression of the atomic excitation, and not only a small volume around an excited atom.

4 Conclusion

In this paper, we have presented a master equation and an effective Hamiltonian approach to describe coop-

erative effects in clouds of cold atoms. This master equation approach, even though still restricted to single

excitation, allows to go beyond the effective Hamiltonian approach. In particular, we have highlighted the

possibility of cooperative suppression of the atomic excitation, via the long range dipole-dipole couplings

and in the absence of any non-linear photon blockade mechanism. Future work will include the possibil-

ity of experimental observation of Dicke subradiance, long range dipole-dipole blockade and cooperative

effects beyond linear optics.
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