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Abstract

It has long been acknowledged that the devel-
opment of scientific applications is in need of
better software engineering practices. Here
we contrast the difference between conven-
tional software development of CFD codes
with a method based on coordinate free math-
ematics. The former approach leads to pro-
grams where different aspects, such as the dis-
cretisation technique and the coordinate sys-
tems, can get entangled with the solver algo-
rithm. The latter approach yields programs
that segregate these concerns into fully in-
dependent software modules. Such consider-
ations are important for the construction of
numerical codes for practical problems. The
two approaches are illustrated on the coating
problem: the simulation of coating a wire with
a polymer.

*This investigation has been carried out with sup-
port from the European Union, ESPRIT-IV project
21871 SAGA (Scientific computing and algebraic ab-
stractions).

"This research was mostly carried out during the
author’s sabbatical at University of Wales Swansea,
throughout the academic year 1997/98.

1 Introduction

Numerical codes for solving numerous impor-
tant civil and industrial problems have existed
for many years. A great number of these ex-
hibit the problem which in the computer sci-
ence community is referred to as software rot
— a deterioration of software quality as the
programs have been modified over the years.
Currently, there is therefore, a considerable
amount of research being undertaken on the
restructuring and redevelopment of numerical
software and a genuine interest in using mod-
ern software engineering practices in the pro-
cess, e.g., [BH96, BL97, BPR92, WBPR93,
WK92, Ahl97, Ah199).

Most numerical codes have been devel-
oped within applied mathematics communi-
ties, and the preferred programming language
has long been Fortran, in one or other of
its many versions. Fortran was tradition-
ally an imperative language with multidimen-
sional arrays being the basic type construc-
tor and was without type abstraction facili-
ties. A change of language, e.g., to functional
or object-oriented does not necessarily involve
a basic change in the approach to program-
ming numerical codes. However, there are
genuine benefits from changing to languages
with more powerful software structuring con-



cepts. These may include an easier transition
to parallel code, as for Fortran—90, High Per-
formance Fortran [Sch96] or functional lan-
guages, or a more user friendly interface to ad-
vanced data representations, as documented
for object—oriented programming.

It is still the case that numerical software
development has stayed within the conven-
tional, applied mathematical framework, the
main phases of which can be summarised as:

1. model the physical problem;
2. formulate an abstract solver algorithm;

3. discretise in space/time, to transform the
continuous problem to its discrete coun-
terpart;

4. refine the solver, utilising properties of
the problem (such as symmetries);

5. convert/translate to program code.

This tends to lead to specialised, monolithic
programs that are only usable within the
realm for which they were developed. They
are monolithic in the sense that the whole pro-
gram was developed as one unit for one pur-
pose. It is often difficult to extract and reuse
parts of the software in programs for solving
different, but related, problems.

In this paper we will contrast such a conven-
tional development approach with one which
is closer to the underlying pure mathematical
concepts. The coordinate free development
process consists of the steps:

1. model the physical problem;
2. formulate an abstract solver algorithm;

3. refine the solver utilising properties of the
problem (such as symmetries) at the ten-
sor level;

4. translate to program code.

Here the discretisations etc. come in the
form of libraries which are linked into the
code. This technique has been proposed in

[MKH96], and its software foundation was ex-
plored and further developed in [HMMK?92]
and [Hav99b]. A case study is presented in
[HFJ99).

In this study a detailed worked example
is presented to highlight and contrast the
two approaches. This will clarify the con-
cepts and differences in reasoning that are
used in these two development techniques.
Thus, we utilise two pure—bred approaches,
being fully aware that conventional develop-
ment now normally is combined with and
utilises more advanced software development
techniques. Few groups have employed the
abstraction oriented technique to such a full
extent as we explore it here. However, the
need for higher levels of abstraction have been
indicated in [Ahl97, Ahl99], where the Com-
pose project is described. Compose makes use
of the C++ class library Overture [BH96] to
build a framework for extendable PDE solvers
where PDE problems are treated as objects.
Also in [WK92] the MAPS system has been
proposed which uses sets and maps on which
to base more abstract types such as grids and
meshes. These can be seen as abstracting the
continuous level. The concepts of coordinate
free mathematics, as advocated here, provides
abstractions at yet a higher level. Hopefully,
this presentation may inspire others to try to
advance their software technology from a con-
ventional one to higher levels.

The particular example we have chosen to
develop is a coating problem for Newtonian
flows. This is outlined in Section 2, where the
mathematical development leads to a precise
algorithmic formulation at a naturally coordi-
nate free level.

The conventional development process in
Section 3 begins by describing briefly the fi-
nite element method (FEM) where, for sim-
plicity, a Cartesian coordinate system is as-
sumed. Technical details are then supple-
mented at the discrete level. Often different
considerations are presented in a disjoint fash-
ion, and the reader is expected to merge them
in a consistent way. The choice of coordinate
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Figure 1: Tube Tooling

system has a marked influence on how the op-
erators are defined, but this is often glossed
over at this stage of the development process.
This approach tends to lead to one type of
code, whether it is expressed in a classical
procedural language such as Fortran—77, or
expressed using object—oriented or even func-
tional languages.

Subsequently, in Section 4 we demonstrate,
in more detail, how the coordinate free ap-
proach, using tensor mathematics, yields a
quite different type of program. The sec-
tion introduces the concepts of coordinate
free mathematics, such as tensor fields, de-
scribes the Sophus software library which sup-
ports these concepts, and shows how the
FEM would be realised within this framework.
These concepts are then used to develop the
solver for the coating problem at an abstract
level, but with the technical detail needed to
develop a proper code. This programming
style naturally requires the target language to
have template classes, a feature lacking from
even the more recent versions of Fortran, but
which are present in C++ [Str97]. This lat-
ter language is now increasingly being used by
practitioners in the field of high performance
computing.

In Section 5 the coating problem is modified
by changing from the Cartesian coordinate
system to an axi—symmetric system which is
ideal for the simulation. The implications
of such are compared under both program-
ming approaches. For the conventional devel-
opment technique, this may imply extensive
modification and recoding (if say analytical
integration is employed), as the change of co-
ordinate system has a marked influence on the
way the operators are defined. In contrast, for
the coordinate free approach this only entails
a reconfiguration of the solver.

The final section discusses consequences of
these findings.

2 Outline of the Fluid Flow
Problem

The computational fluid dynamics problem
used for illustration is that based on a wire
coating flow [HTJTW90]. Here, it is sufficient
to consider essentially a Stokesian setting,
that of incompressible flow. This is a basis
upon which to develop the present methodol-
ogy, subsequently to be extended into the non-
Newtonian regime. The overall goal, in the



solution of such problems, is to predict an op-
timal process design by which a coating (poly-
mer) of suitable properties may be obtained,
e.g. smooth coating with minimal residual
stressing. The tooling design employed, is
tube tooling. This is shown schematically in
Figure 1.

The liquid polymer melt undergoes a
pressure—driven annular flow within the tool-
ing die, prior to being dragged by the wire
through the geometry, as indicated. This de-
sign allows the polymer to find a free surface
between the die exit and the attachment point
on the wire, involving a drawn—down section.

We begin with the basic partial differen-
tial equations (Navier-Stokes) to specify the
flow problem, and develop a weak, algorith-
mic form, taking into account a semi—implicit
time stepping scheme. This solver will then
be further refined, in subsequent sections, to
produce executable code using the finite el-
ement method for both the conventional and
coordinate free development. Iterative and di-
rect algebraic solvers, such as Jacobi iteration
and Choleski decomposition, will be used for
different stages. The former is employed for
inverting Mass—matrix based systems, and the
latter for Pressure Poisson Stiffness matrices
that are sparse, symmetric and banded.

2.1 The problem description

The specific type of wire coating problem of
relevance is defined via input data sets. The
governing equations for viscous incompress-
ible isothermal flow may be described, in a
coordinate independent form, by the gener-
alised Navier-Stokes equations

ou

pgy Telu-Viu-

V- 2u(sym(Vu))) + Vp=1£ (1)

with the associated incompressibility con-
straint

V-u=0. (2)

The parameters and variables with type infor-
mation are specified as follows:

e p is the density, a real number,

e u(x,t) is the fluid’s velocity, a vector
field,

° %—‘t‘ is the time derivative of the fluid’s ve-
locity, a vector field,

e 1 is the viscosity, a scalar field and in
general a function of Vu,

e p(x,t) is the pressure, a scalar field,

e sym(_) is the symmetrisation operation.
For a matrix 7, it can be defined by
sym(7) = 2(7 +77), where _T is the ma-
trix transpose operator,

e f is an external force acting on the fluid,
a vector field,

e V is the spatial derivative, which is used
in several forms:

1. (v-V)u, the convective derivative of
a vector field, yields a scaled deriva-
tive of the vector field u in the di-
rection of the vector field v,

2. Vp, the gradient, yields a vector
field when applied to a scalar field

b,

3. Vu (gradient) yields a matrix tensor
field when applied to a vector field
u?

4. V -u, the divergence, yields a scalar

field when “dotted” with a vector
field u,

5. V - 7 (divergence) yields a vector
field when “dotted” with a matrix
tensor field .

2.2 Non—dimensional form

Rather than adopting the above dimensional
formulation (1) directly, the solver will be



based on normalised equations, using a non—
dimensional group number, the Reynold num-
ber Re = p“ﬁ—go. The scaling factors, all real
numbers, are: length scale {y; velocity scale
ug; viscosity scale pg; and time scale t5. We
also simplify the presentation, by assuming
hereon that f = 0. This yields the formula-

tion, for 0 < Re < 1,

au/ / / /!
RQW + Re(u’ - V')u

=V (24 (sym(V'W))) + V' =0

(3)

V-u=0 (4)

where

e u = u/uy is the fluid’s dimensionless ve-
locity,

e V' is the spatial derivative after normali-
sation (using an adjusted metric from its
dimensional counterpart),

o 1/ = u/up is the dimensionless viscosity,
a scalar field,

e p' = p/pp is the dimensionless pressure
scaled by a pressure factor, a scalar field.

In addition, the simplification also depends
on the following relationships between the pa-
rameters:

uoto = Lo;  po = prouo/lo-

This is ensured via choice of ug, £y and pg. For
clarity, the prime notation is discarded subse-
quently. In the steady coating problem con-
sidered, Reynold numbers tend to be small,
of typical value Re ~ 10~4. This is due to
the large levels of viscosity involved in these
polymer melt flows.

The particular test problem considered is
annular in configuration and hence two di-
mensional. The weak formulation presented
in Section 2.6, is valid for two or three dimen-
sions, and any geometry. The annular coor-
dinate configuration is detailed in Section 5.1
illustrating the complexity involved in chang-
ing coordinate systems.

2.3 Time-discretisation and strong
form of equations

We now derive the initial equations which
lead to the matrix equations (26 — 28) in
Section 3. A semi—discretisation of Taylor—
Galerkin/pressure correction form is applied
to (3) and solution vectors u” and p" intro-
duced at discrete time t, for constant time
interval At.

A set of difference equations is now estab-
lished which can be used to solve for u"*! and
p"*t1 in terms of u” and p”. We first take an
approximation to %—‘; in (3) by considering the
half interval (tn,t,41/2):

2Re
A ©)

where s(u) = V- (2usym(Vu)) — Re(u- V)u.

Here, a Taylor—Galerkin approach is
adopted of two—step form that addresses the
convective aspects of the problem. For a full
explanation of this well-established technique
see [TW87, HTJTW90, Don84, ZLMP85].

In order to obtain the solution at time step
tn+1, we identify the target equation

(un+1/2 o un) _ S(un) - vpn

Re

At( n+l _ un)

(6)
= s(u"™/2) — (1 - 0)Vp" + oVp™T)

u

where 0 < # < 1. Here, we have taken a 6 rule
pressure gradient approximation and evalu-
ated s at u"t1/2 (we actually take 6 = 1/2,
and so, this is a Crank—Nicolson formulation).
However, since (6) does not separate u™*! and
p" ! we introduce an intermediate free vari-
able u*, as the solution of

&(u* —u") = s(u”“p) — Vp"

Ar (7)

Note that with u* also satisfying

Re

o =) = (V" - V),

(8)

it follows that u"*! will satisfy (6) as re-
quired. It is implied that the velocity u™ at



all times ¢, must satisfy the incompressibility
constraint expressed by equation (4). By ap-
plying the divergence operator V- to equation
(8), we derive the associated auxiliary equa-
tion

Re

—V-u* =0V -Vt —ph).

A 9)

This Poisson equation for the pressure dif-
ference over a single time step completes the
problem specification. The four vector equa-
tions (5), (7), (9) and (8), will subsequently
give rise to matrix equations once spatial dis-
cretisation has been conducted. This we out-
line in Section 3.

Rearranging the equations yields the fol-
lowing strong formulation consisting of three
steps. The first step splits into two mathemat-
ically similar substeps, following a predictor—
corrector pattern (two—step Taylor—Galerkin).
The substeps 1a and 1b calculate the halfstep
u"*t1/2 and the auxiliary u* approximations
to the velocities.

e Step la
2Re, n n
E(u /2 _y) = V- (2usym(Vu™))
—Re(u" - V)u" — Vp" (10)
e Step 1b
Re

(U —u") = V- (2usym(Vu'?)

At
_Re(un+1/2 . v)un+1/2 — Vp" (11)

e Step 2

OV (VG ) = 2o(Vu) (12)
e Step 3

e ) = 6V ) (13)

These steps are iterated from an initial guess
to produce a steady state solution.

2.4 Initial and boundary conditions

The system of equations of the previous sec-
tion are solved by imposing appropriate initial
conditions on the domain (2,

u(x,0) = up(x)
p(x,0) = po(x),

where V - ug = 0, and appropriate boundary
conditions on I' as

u=g(x,t) onlIy (14)

n-o=gs(x,t) onls.

Here I' = I'y UT's encloses the domain €2, n is
the unit outer normal on I', g; (x, t) represents
the velocity vector prescribed on I'y, go(x,t)
designates the traction vector prescribed on
I', and o is the total Cauchy’s stress tensor.
For an incompressible Newtonian viscous fluid
we have in a Cartesian coordinate system

8’[% i 8u])
an axz

oij = —pdij + po(

where pp is a Newtonian fluid viscosity and
0i; the unit tensor. The coating problem is a
steady flow and boundary conditions of type
I'y only are assumed. In the most general
statement of the problem free surfaces with
steady traction boundary conditions would
apply.

Since there is no restriction on the choice of
boundary conditions for u* (a free variable),
we may equate u* to u”t! on the complete
boundary I'. The implication from such a
choice and step 3 is that V(p"*! — p") should
vanish on I'. Also, the boundary conditions
at step 3 are clearly prescribed. For steady
boundary condition problems of immediate
relevance, such assumptions are exact. For
transient instances, assuming smoothness in
time for pressure, would indicate accuracy to
a first order in this variable at least, and hence
to a second order in velocity from (13). This
argument maintains the overall order of the
scheme [vK86]. We shall see below, in the
variational form of the problem, that natural



homogeneous Neumann boundary conditions
emerge from step 2 and these are a distinct ad-
vantage to this scheme [HTJTW90, HTWO91].

2.5 Semi—implicit form of solver

With a Crank—Nicolson treatment of diffusion
terms we derive a semi—implicit time stepping
scheme of second order accuracy. This allows
a wider window of stability above an explicit
implementation and thus permits the use
of practical working time steps [HTJTW90,
HTWO91, vK86]. Such advantages continue
through to more complex non—Newtonian set-
tings, where inertial influences via Reynolds
number are low, in contrast to elastic effects
(for further details see [MTWO8]). In step la,
the term u” in the viscous term of the explicit
scheme is replaced by the average at t,1/2
and t,. After rearranging, so that u”+1/2 ap-
pears in the difference term u™**/2—u” on the
left hand side only, we obtain for the modified
step la’

E(u 12 _u™) V- (usym(V(u" /2 —u")) Re/Q
=2V -(usym(V(u"™))—Re(u"-V)u"—Vp".
(15)

Step 1b is treated in a similar manner, where
u"*t1/2 in the viscous term is replaced by the
average of u” and u*, yielding step 1b’

)~ V- (asym(V(n* —u?)) =
2V - (usym(V(u")) — Vp" -
Re(u" /2. v)u"t1/2. (16)

The semi—implicit solver is then described
by (15), (16), (12) and (13).

2.6 Weak formulation

The weak variational formulation of the prob-
lem is now derived. We use two sets of test
functions: a class of quadratic vector shape
functions v € V and a class of scalar shape
functions ¢ € Q). Both sides of equations (15),

(16) and (13) are dotted with the vector shape
functions v and the scalar test functions ¢ are
multiplied into the algorithmic step 2, equa-
tion (12).

The results are integrated over the whole
domain §2 and simplified, via integration by
parts. This reduces second—order derivatives
from the integrands to first—order and pres-
sure gradients to order zero in the defining
velocity equations. Further simplification is
achieved using the divergence theorem which
gives rise to the integrals over the boundary
r.

From (15) step 1a” becomes:

2he
At

/ psym(V(u" /2 — u™)) . VvdQ
Q

/(un+1/2 o un) -vdQ +
Q

= [Grsym(T (@) vy mdr
2 /Q psym(V(u")) - VvdQ —

((un-V)un).de+/Qp“(v-v)dQ

In a similar manner, starting from equation
(16), we obtain step 1b”:

i—i/g(u*—u”)-vdﬂ—&—

/Q,usym(V(u* —u")) - VvdQ =
/F(usym(V(u* +u"))-v—p"v) ndl —

/ 2usym(V(u™)) - VvdQ + / p"V - vdQ —
Q Q

/ Re(un+1/2 . v)un+1/2 . vdQ
Q

Step 2" becomes:

0/ V(p"tt —p") - VagdQ —
Q

—Re

0 /F (V" —p")m)gdl = —o

Ar [, (Vu)ad®



and step 3”:

i—i / (™ —u") - vd =
Q

9/(pn+1—p”)Vde—9/(p"“—p”)(v-n)df
Q r

Finally, all surface integrals are equated to
zero. This is in accordance with the details of
the boundary conditions as expressed in Sec-
tion 2.4. The test functions used will vanish
on the boundary I'y, where the velocities are
prescribed, as indicated in equation (14) and
for the coating problem considered, it is as-
sumed there are no traction boundary contri-
butions.

In step 2 of the algorithm, the surface in-
tegral can be removed since V(p"™! — p") is
taken to vanish over the whole of I', as dis-
cussed in Section 2.4. In addition, due to im-
position of fixed Dirichelet boundary condi-
tions on u"t! — u*, we can ignore the associ-
ated surface integrals over I's for the pressure
fields again owing to the choice of test func-
tions. The weak formulation can thus be ex-
pressed through the following set of equations:
Step la:

2he

At

/ psym(V(u"t/2 —um)) . VvdQ =
Q

/(un+1/2 _ un) -vdQ +
Q

— Z/Q,usym(V(u")) - VvdQ) —

Re/Q((u" -V)u") - vdQ + /Qp"(V - v)dQ
(17)
Step 1b:

Re
* ny . (0]
—t/(u —u") - vdQ +

/Q,usym(V(u* —u")) - VvdQ =
-2 /Q pusym(V(u")) - VvdQ —

Re/(u”+1/2~V)un+1/2-de+/ p"V-vd)
Q Q
(18)

Step 2:

9/ V(™ —p") - VadQ =
Q

_AR: /Q(V -u*)gdQ (19)

Step 3:

i—i / (U™t —u*) . vdQ =
Q

0 /Q (p" Tt —p™)V - vdQ. (20)

This completes the development of the vari-
ational formulation of the problem. This will
be used as the starting point for the discreti-
sation over space both for the conventional
development, in Section 3, and for the coordi-
nate free approach, in Section 4, both leading
to implementable simulations.

3 Conventional Software
Development and
Discretisation

This section describes the conventional ap-
proach for numerically solving equations (3)
and (4). The domain over which the solution
is required is first triangulated into a finite—
element mesh with nodes at the vertices and
mid points of the edges. The weak formula-
tion, as presented in section (2.6), is used to
derive a set of matrix equations relating the
values of the velocities and pressure at the
mesh nodes. This is presented initially within
a Cartesian coordinate framework.

3.1 The finite element method

We now obtain the fully discretised equa-
tions using the finite element method (FEM).
The total number of nodes and vertex nodes
in the mesh are denoted by m, and m, re-
spectively. Two sets of spatial shape func-
tions, V' and @ are employed. V = {g;|j =
1,...,my} is a set of piecewise quadratic



functions (quadratic on each element) and
Q = {vjlj = 1,...,mp} is a set of linear
functions (linear on each element). A shape
function is associated with a node, it is con-
tinuous, takes on the value 1 at its node and 0
at the other nodes of its compact support. It
has local support, in the sense that the shape
function is non-zero only on the elements bor-
dering to its node. A vector field is now ap-
proximated by u” ~ ;":“1 Ujpj and a scalar
field by p" = Z;n:”l Pj'p;, where the super-
script n denotes evaluation at time step n, as
before.

The finite element interpolants are then
substituted in equations (17 — 20) and appro-
priate test functions v and ¢ chosen to pro-
duce a set of matrix equations.

Taking the first equation (17) we have:

my

2Re +1/2 "
Z[Tt/ggoj(U? —UY) - vdQ +
j=1

/usym(V(U;‘“/2 —U)y))) - VvdQ] =
Q
- ;[Q/Slusym(chjU?) - VvdQ +
Re/Q((U" -V)e;UY)) - vdQ] +
;(/Q UR(V - v)dQPP). (21)

It is convenient to represent all the vectors Uy,
in R3, j = 1---m,, as one combined column
vector U of size 3m,,, thus

U= (Ui,Ui2, - ,Uim,,U21,Us2, - - -,
Uy, Ust, Usg, -+ Uz, )T

where Uj; is the xj-component of Uj for [ =
1,---,3.

We consider the various types of integrals
which appear in equation (21). The first term
is of the form:

> /ﬂ $;U; - vdQ.
j=1

Expanding U; using the standard Euclidean
basis vectors {ei, ez, es} leads to

3 mey

ZZ/nglejel -vdf).

1=1 j=1

The Galerkin method is adopted by choos-
ing the test functions to be generated by the
shape functions V. Letting Lpé = pje; and
taking as test functions v = ¢[* for m =
1,---,3and i = 1,--- ,m, yields the follow-
ing 3m, terms

3 my

>3 [ ol eraau

=1 j=1

Taking the above as elements of a 3m,, column
vector, it clearly can be represented as the
matrix—vector product MU where M has the
block structure

Mll M12 M13
M = M21 M22 M23
M31 M32 M33

where

My = [ ghera @)

Evidently M = 0 for | # m and M¥ are all
identical and given by

Mélj_/g;(pigoj'dg.

This matrix M is the mass matrix.

To deal with the second term in (21), after
expanding U; in terms of the basis vectors,
we consider

3 my

S>> [ usym(V (W) - vvae.
=1 j=1"%
This yields the 3m,, terms
3 mey
33 [ noym(V W) - Veran.
=1 j=1"%



As a vector this latter term can be expressed
as SU and writing S in block form (S'™), each
block is determined by

St = [ woym(Vieh))- Veran. (23

S is referred to as the diffusion matriz. Note
that S is symmetric and in particular (S™) =
(Slm)T )

The next expression in (21) to consider is

3 My

SN /Q((U -V)phU;) - vdQ

1=1 j=1

(where U = Y™ ¢, Uy) producing a 3m,
vector which can be written N(U)U where

N = [(C U Vel elan. 2
k=1

N(U) is called the convection matrix.
The final term in (21) has the form

S [ (v -vydery),
k=1

yielding the 3m,, terms

> /Q G(V - @I)dQPD).

Since V - 7" = gf; for m = 1,---,3, the
above can be represented as LP, where
Ll
L=| L2
L3

and the entries of each block are defined as

D
?z=/wk“”d9
Q

0T,

LT is then the associated incompressibility
matrix.

Using the above, the desired matrix equa-
tion for a discretised version of step 1la is:

2
EM + S)(Un+1/2 _ Un) _

Y
LP" — (28 + ReN(U™))U™. (26)

10

for m=1,---,3.(25)

Equations (18) and (20) can be discretised
in a similar manner yielding the equations
(27) and (28) for steps 1b and 3.

R
(KiM +S)(U* —U™) = LP" — 2SU™ —

ReN(U”H/Q)U"H/Z. (27)

Re

EM(U”“ —U*) = 0L(P™™ — P™). (28)

For discretising step 2, we have, substitut-
ing in equation (19)

03 [ Vir Vadrpt - Bp) =
k=179
3 my

e 2> [ (V- ehaanu,

=1 j=1

Here we take @Q as the set of test functions to
obtain the following set of m,, equations:

Mp
0y / Vg, - VipidQ(PP — PP =
k=179
3 My

—Re 0p;
At ;;/Q axlwd Ui

To express the left hand side, we introduce
the pressure stiffness matriz K

(Kiy) = ( /Q Vi Va2  (29)
then, step 2 becomes
oK (P! — Py = _AR;GLTU*. (30)

Equations (26), (27), (30) and (28) then
constitute the matrix representation of the
problem. It is important to realise that the
integrands appearing in the definitions of M,
K, and L can all be evaluated analytically
since the functions ¢; and ¥ are of a simple
form, and so the matrix elements are known
at the start of the computation.



3.2 Solving the Equations

Equations (26), (27) and (28) are solved using
Jacobi iteration. Although the mass matrix
M is generally very large, it is not necessary to
store such a matrix explicitly, and in practice,
only the element sub—block matrices M, need
be constructed. The iteration takes the form:

x(r+1) — x(r) _
Mey
wD™'Y LIMX{) - wD'B  (31)
e=1
where D is a chosen diagonal form and w is a
positive relaxation factor [HTW91, DTW92].

The direct Choleski method is employed to
solve the pressure difference equation (30).
The decomposition must be performed only
once at the outset of the time—stepping pro-
cedure. This leads to an efficient implemen-
tation.

Termination for steady state is determined
by using an ¢>norm on the difference be-
tween the velocity vectors at consecutive time
steps and halting when this is less than some
threshold tolerance.

3.3 A discussion of relevant coding
techniques

The exposition above is at a very basic data
level, expressed in the form of vectors and ma-
trices. The form is imperative in style — do
this, then do that, update the variables and
repeat until termination — this is suitable for
implementation in any of a number of lan-
guages. The preferred choice among scientific
programmers would be a dialect of Fortran,
typically Fortran—77, but Fortran—90 is be-
coming more popular, see the survey [Hop97].
The program developed in this section has
been implemented in Fortran-90 and amounts
to about 15,000-20, 000 lines of code.
Several authors have followed this style
of software development for Object—Oriented
languages such as C++ and more recently
Java. This typically results in classes rep-
resenting vector and matrix operations with
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BLAS like routines. The general impression is
that there is little gained over the use of For-
tran from the conceptual point of view, even
though the increased emphasis on software en-
gineering principles that these projects have,
often is beneficial for the quality of the code —
especially when compared to dusty deck For-
tran.

A variation on this is the use of the Diff-
pack software package [BL97]. It is a support
environment for the development of object-
oriented numerical software, and has embod-
ied many good software engineering features
and practices. The tendency is for Diffpack
code to be closer to the numerical algorithm
allowing the software developer to focus more
clearly on the numerical aspects of the task
than that experienced by a Fortran program-
mer. However, Diffpack’s approach to numer-
ical software development is still basically the
conventional one outlined above, making the
choice of discretisation and coordinate sys-
tems explicit in the code.

More applicative implementations using
functional languages have also been tried
[GSWZ95]. In these cases also the focus is
on basic data structures and operations on
them. The benefits of using function calls and
recursion rather than variable updates and it-
eration show more in a greater readiness for
automatic parallelisation (see the papers and
approaches in [Szy91]) than in the way the
code is structured in the large. However, as
for object—orientation, developers working in
this area tend to put more emphasis on good
software practices than does the classically
trained Fortran programmer.

4 Coordinate Free
Methodology

In the coordinate free methodology we write
the program code based directly on the con-
cepts present in the abstract algorithm as de-
veloped in Section 2.6. For this we need an
understanding of these abstract mathematical



concepts, together with their software reali-
sation and support. Then implementing the
numerical solver becomes straightforward.

In this section we first briefly present the
notions of tensors and coordinate freeness, in-
troducing the necessary notations and termi-
nology. An outline is then given of the Sophus
library and it is indicated how the finite ele-
ment method (FEM) may be implemented in
Sophus. Finally, we show how the solver for
the coating problem can be implemented us-
ing Sophus.

4.1 Coordinate free mathematics

The concepts from algebra and coordinate
free mathematics sketched here are given
thorough treatment in the books [Lan95,
Sch80].

Plain numerical types, such as the real
numbers, are often abstracted as fields or
rings. Given a ring R, we may define, for any
integer n > 0, n-positional numerical types
over R, commonly known as n-dimensional
vectors v € R". For any n, the set of n-
dimensional vectors v form a vector space V.
(Strictly speaking, this is a module, and only
a vector space when R is a field. However, to
avoid confusion with the usage of module in
computing we shall use the term vector space
below).

Given a basis B = {by,...,b,}, a vector
v € V can be identified by its coordinates v =
(ai,...,ap), i.e., ring elements ay,...,a, €
R, such that v a1 * b1+ ...+ ay * by,
Note that there is a distinction between a vec-
tor v € V as an n-positional numerical type,
and its coordinates v with respect to a basis
B C V, even though the latter also may be
considered an n-positional numerical type. It
is only when using the normalised Cartesian
coordinate system that the data values v = v.
The normal representation for vectors is rela-
tive to some coordinate system, but then care
has to be taken to interpret coordinates v only
relative to that coordinate system.

The collection M of linear mappings from
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vector spaces V to W form a vector space.
IfV = R” and W = R", for m,n > 0,
we know that the linear mappings from V' to
W can be represented as n by m matrices,
which we also may regard as (nm)-positional
numerical types, or, in other words, as (nm)-
dimensional vectors. Using the tensor prod-
uct ® we may combine a basis B for an m-
dimensional vector space V with a basis B’
for an n-dimensional vector space W to form
a basis B ® B’ for the (nm)-dimensional vec-
tor space M of linear mappings from V to W.
This means that any linear mapping £ € M is
expressible using a linear combination of the
basis vectors b; ® b;, for b, €¢ B C V and
b, € B' C W (this does not imply that ev-
ery vector £ can be expressed by v ® w for
veVandw e W). If V = R then the tensor
product reduces to the ring-vector product.

Covectors v € V* are (nl)-dimensional vec-
tors which take n-dimensional vectors v/ €
V' to 1-dimensional vectors (ring elements
v(v') € R). There is an operation * : V —
V*, dualisation, which takes a vector and re-
turns a covector. The inner product, or the
dot product v - v/ of vectors v,v' € V is de-
fined by v - v/ = v*(v/).

Normally we have to do computations on a
vector v € V on its coordinate representation
v relative to a coordinate system B C V. It is
important that changing the basis of the vec-
tor space V should not change the effect of
operations on the vector v € V. This can be
achieved by making the operations, such as
the dot product and dualisation _*
which basis is being used. Then appropriate
corrective action may be taken in the compu-
tations, and we may use operations on vec-
tors independently of coordinate system, thus
achieving coordinate free mathematics.

, aware of

Our tool for doing this is the notion of ten-
Given a ring R, an integer b > 1, a
b-dimensional vector space V with basis vec-

SOTS.

tors B C V, then tensor spaces T 1(%1933 are the
n-dimensional vector spaces where n = bF,

for some k£ > 0. It is easy to see that the



)

ring itself is the tensor space TI(%?B for any
b. The tensor product of a (b*!)-dimensional
tensor 71 € T 1'(%1?]13) and (b*2)-dimensional ten-
sor Ty € Tgffg)

sor (11 ® 7)) € Tgfgrb).

is a (b*11#2)-dimensional ten-
The dot prod-

k) .
uct of two tensors 71,70 € T}(“)B 1s a tensor

(7'1 . 7'2) S TI(%O’)B

We need to distinguish between the tensor
spaces and also on how they are formed with
vector and covector components. This gives
us many distinct tensor spaces for any b* di-
mensions, k > 0, providing a distinct slice for
every combination of covectors and vectors in
the formation of T]g%. In conventional nota-
tion these slices are distinguished using upper
and lower indices. Making certain that the
covector and vector components match up, we
may apply one tensor as a linear mapping to
another tensor. Specifically this notion carries
down to b-dimensional tensors TI(%% (applying
covectors to vectors) and 1-dimensional ten-

sors Tg?g (multiplication of ring elements).

4.2 Scalar, vector and tensor fields

For a ring or field R, such as the set of real
numbers, given a set X, the set Fx_.p of
functions f : X — R forms a ring with, for
any f,g € Fx_pg, multiplication defined by
(f-9)(x) = f(x)-g(x) for all z € X, addition
by (f+9)(z) = f(x)+g(x) for all x € X, and
so forth. The ring Fx_.g is called a scalar
field. We may consider every ring element
a € R as a scalar field @ € Fx_,r by defining
a(z) = a for every x € X. Scalar fields Fx_.p
may be used in the constructions of vector
spaces and tensor spaces, yielding the notions
of vector fields Vx_, g, with basis £ C Vx_,g,
and tensor fields TIS’];LR, g for every k > 0.
A scalar field assigns a different value to ev-
ery point in X. A vector field likewise may
change throughout X, such that every point
of X is assigned a vector with different direc-
tion and magnitude. The basis vectors for a
vector field may thus define any kind of curvi-

linear coordinate system, including Cartesian
and cylindrical.

For X a vector space over the ring R, then
X will be included in Vx_ g in the same way
as R is included in Fx_.r. And, as before,
there are inclusions from Fx_,g to T}?()_)R, )

and from Vx_g to TI%()_%E.

If the set X satisfies the properties of being
a manifold, i.e., it has the notions of direc-
tion and proximity, we may define non—trivial
derivation operations on the scalar field. Typ-
ically X will be a b-dimensional vector space
with basis vectors B C X, such as the 3-
dimensional space in which most physics takes
place. We may then define partial derivatives
% of the scalar fields f € Fx_pr along any
vector x € X. The partial derivative will
also be a scalar field since it changes through-
out X, so g—i € Fx_pr. Knowing the partial
derivatives along the basis vectors B is suf-
ficient to compute the derivatives along any
vector in X. If X is a b-dimensional vec-
tor space this forces the vector field Vx_.p
to have b dimensions, and the basis E for
the vector field will then have b linearly inde-
pendent b-dimensional vectors. At the level
of tensor fields T}?_}Rv p we may now define
many derivation operations, all of which may
be computed from the partial derivatives on
the scalar field Fx_ .

For a scalar field f € Fx_. g, an integration
a = [q fdX of f for asubdomain Q C X with
basis vectors B C X yields a ring element a €
R. Scalar field integration gives rise to tensor
field integration o = fQ odX for o € T}f()
yielding values o € R.

~>R7E

Derivation and integration operations on
tensor fields, like the dot product, depend on
the choice of basis F for Vx_. p.

We may now treat all symbols in the equa-
tions of Section 2.6 as tensors and coordinate
free operations on tensors. Some of the de-
scriptions in Section 2.1 are now explained
in the more general tensor setting. Let us
summarise the operations we need, after the
simplification of the solver, and assuming the
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appropriate tensor slices:

e sym(o) is the tensor symmetrisation op-

erator taking a tensor o € T}X) nE to

a tensor in the symmetrical subspace of

7k)

Fx_r,E"

e +, — are the tensor field addition and
subtraction operations taking a pair of

(k)

tensor fields from T g to a tensor
] (k) X—R>
field in TFXHR B

)

e o x 7 is the scalar-tensor field multipli-
cation taking a € T}O) p and T €
X—R>

T}? E to a tensor field in T( ) B

Note that a*xT =a®T. Normally we
write a7 for a * 7.

e o -7 is the tensor field dot product taking
tensor fields 0,7 € T( )
( )

ing a scalar field in Try .5

g and return-
— R

e V is the spatial derivative, which is used
in several forms:

1. (v - V)o, the convective derivative,

yields a tensor field in T( ) hE for
the derivation of the tensor field o €
ng{)HR p in the direction of the vec-

tor field v € T}B_}R B

2. Vo, the gradient, yields a tensor
field in ng::l]){ p When applied to a
tensor field o € T}’“) gy thus it

X—R

takes a scalar field to a vector field
and a vector field to a matrix field,

3. V - o, the divergence, yields a ten-
sor field in T(k) i E when applied to
a tensor field o € T(kH) g thus it

takes a matrix field to a Vector field
and a vector field to a scalar field.

¢ [,0dX integration of a tensor field o €
T}?LR p over a subdomain 2 C X yields

a ring element in R.

There is an important distinction between
tensor fields T( ) hE p based on the tensor con-
struction using scalar fields as the ring, and
tensor fields T : X — wa)g which directly
assign a tensor to every point x € X. The
former allow us to build advanced tensor op-
erations, such as derivation operations, from
scalar field operations, such as the partial
derivatives. The latter require us to imple-
ment the advanced tensor operations directly
in terms of the (discretised) representation of
X, see the discussion in [Hav99b][Section 4.2].
As is evident, the former, which we have cho-
sen, give a clear separation between discretisa-
tion methods for the scalar field and the spa-
tial derivation operations at the tensor level.
The latter force a tensor field implementation
for each discretisation.

4.3 A framework for a tensor based
library

The Sophus library framework describes a li-
brary architecture for providing the abstract
mathematical concepts from PDE theory as
programming entities. This means that any
piece of a program, or even any module in
the library, may be coded using any of the
abstractions defined. At compile time, imple-
mentations for each of the abstractions will be
chosen, such that no circular dependencies on
the implementations occur. This means that,
e.g., a mesh implementation may build on an-
other mesh implementation, but that the lat-
ter mesh cannot be built on the former mesh.
The Sophus framework is based on the notions
of manifold, scalar field and tensor field, while
the implementations are based on the con-
ventional numerical algorithms and discreti-
sations. The Sophus framework is structured
around the following concepts:

e Basic n-dimensional mesh structures
with a ring R as template argument.
These are like rank n arrays (i.e., with n
independent indices) with element type
R, but with general map operations, i.e.,
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performing an argument function for ev-
ery element. It also has specific opera-
tions like +, — and * mapped over all
elements (much like Fortran-90 array op-
erators) as well as the ability to add, sub-
tract or multiply all elements of the mesh
by a scalar in a single operation. There
are also operations for shifting meshes
in one or more dimensions. Operations
like multidimensional matrix multiplica-
tion @ and linear equation solvers such as
Choleski decomposition and Jacobi iter-
ation may easily be implemented for the
meshes.

Not all mesh implementations will pro-
vide all operations. Some implementa-
tions may be more specialised, e.g., as-
suming a sparse mesh or a mesh with
certain symmetries. Other implementa-
tions may provide fully general parallel
and sequential implementations that can
be used interchangeably, allowing easy
porting between computer architectures
of any program built on top of the mesh
abstraction.

Manifolds X. These are sets with a no-
tion of proximity and direction. They
represent the physical space 2 C X
where the problem to be solved takes
place.

Scalar fields Fx_,g. They describe the
measurable quantities of the physical
problem to be solved. As the basic layer
of “continuous mathematics” in the li-
brary, they provide the partial derivation
and integration operations. Also, two
scalar fields on the same manifold may
be pointwise added, subtracted and mul-
tiplied.

The
such as the finite difference and finite el-
ement methods, provide different designs
for the implementation of scalar fields.
Scalar fields are typically implemented
using the mesh structures with reals for

different discretisation methods,
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the ring to store the data. Not all mesh
operations are relevant in this context, so
it is possible to choose mesh implementa-
tions that, e.g., do not support equation
solvers or matrix multiplication, when
configuring implementations for a pro-
gram.

Tensors T}’jﬂm p- These provide coor-
dinate free mathematics based on the
knowledge of the coordinate system F,
whether it is Cartesian, axi—symmetric
or general curvilinear. The tensor class
provides the general differentiation and
integration operations, based on the par-
tial derivatives and integrals of the scalar
fields. Tensors also provide operations
such as componentwise addition, sub-
traction and multiplication, as well as
tensor product, composition and appli-
cation.

The implementation is based on the basic
mesh structures, with scalar fields as the
ring parameter. Thus tensor operations
are formed from expressions on scalar
fields performed by the mesh classes.
Again, many operations of the mesh are
not needed, allowing more specialised
mesh implementations to be used. For
instance, equation solvers are not needed,
while matrix multiplication algorithms
are important.

Equation administrators. These are ab-
stractions containing collections of scalar
and tensor fields with the purpose of
building the matrices and vectors used to
describe sets of linear equations, such as
those needed for implicit time stepping
schemes. These matrices and vectors do
not represent coordinate free properties
of a physical system, but abstract the im-
portant properties of linear equations.

Equation administrators are also imple-
mented using mesh structures with ten-
sor fields or reals as the ring, as appro-
priate. Here operations like matrix mul-



tiplication and matrix equation solvers
are important, and relevant mesh imple-
mentations must provide these. Also, ad-
ditional properties like symmetries and
block diagonal structures may be ex-
ploited by appropriate mesh implemen-
tations.

In general a partial differential equation pro-
vides a relationship between spatial deriva-
tives of tensor fields representing physical
quantities and their time derivatives. Given
constraints in the form of the values of the
tensor fields at a specific instance in time
together with boundary conditions, the aim
of a PDE solver is to show how the phys-
ical system will evolve over time, or what
state it will converge to if left by itself. Us-
ing Sophus, the solvers are formulated on top
of the coordinate—free layer, forming an ab-
stract, high level program for the solution of
the problem.

4.4 The finite element method in
Sophus

The finite element method presented in Sec-
tion 3.1, is now redeveloped in a more abstract
manner suitable for implementation in the So-
phus approach. In this more general setting,
the method is based on the observation that
given a manifold X with basis B C X and
a ring R, a scalar field p € Fx_. g, may be
approximated by a sum p ~ > gec o g for
scalar fields ¢ € G C Fx_ R, termed shape
functions, and scalars P, € R. The larger the
set G, the better the approximation, but this
will increase computation times since larger
data sets will have to be computed. For nu-
merical reasons, different scalar fields should
be approximated by different shape function
sets, but if these different discretisations are
to be used in the same expressions, the dif-
ferent sets of shape functions must be coordi-
nated.

This coordination is achieved by splitting
the domain X into a set &€ of disjoint elements

e € &, such that Ugsege = X and for each
element designate a fixed set of integration
points. A scalar field’s value at an integration
point represents its average value in a subre-
gion of the element. In a 2-dimensional case
the domain may typically be split into trian-
gles, the choice adopted in Section 3.1. For
the FEM, the shape functions are continuous
within elements and have small support, i.e.,
are non-zero only for a few elements. This is
normally restricted further, so that the func-
tions g € G take their maximum value 1 € R
at exactly one point — the nodal point — in the
domain X, and are non-zero only on those el-
ements adjacent to that point (referred to as
the domain of local compact support for g).
Also, a shape function is 0 at the nodal points
of all other shape functions within its collec-
tion. These are the same constraints as used
in the conventional approach presented in Sec-
tion 3.1.

The shape functions ¢ € G are normally
chosen so that the partial derivatives g—i €
Fx_g for x € B C X and the integral
fe gdX € R on an element ¢ C X may be
computed analytically. In Section 3.1, for ex-
ample, these were chosen to be either linear
or quadratic functions. Since the differentia-
tion and integration operations are linear with
respect to R, we have that

op Jg
ax ~ 2P
geG
/de ~ Z(Z(Pg-/ng))
Q ecf g€l €

In the variational form, all expressions involv-
ing the scalar fields are integrated in each
PDE equation. This means we do not need
to approximate the scalar field or tensor field
expressions as such, but rather their effect
on the integrals. The values at the integra-
tion points provide such an approximation,
so these are the only values we really need to
use when computing scalar field expressions.
This also implies that elements and integra-
tion points are the only coordination needed

16



between scalar fields. Each scalar field may
be based on different sets of shape functions
for that matter.

4.5 Developing a solver for the
coating problem

Recall, that for the coating problem we are
working with a subdomain 2 C X of the
physical 3-dimensional world X. The tensor
fields are T 1(”]2*3, g Where R is the set of re-
als, £ = {ej,ez,e3} C Vx_,p are the stan-
dard basis vectors, and k = 0 (scalar fields),
k =1 (vector fields) or k = 2 (matrix fields).
In the variational form of the equations for
the solver in Section 2.6 we are using scalar

fields ¢ € @ C TIE&)HR,E and vector fields

veV C T}%()_% p as test functions for the
integrals.

The coordinate free, variational form, of the
solver equation steps (17 — 20) for the coating
problem need some refinement to serve as an
algorithm for an actual computation. Looking
at the left hand sides of the equations we see
there are three problems to address:

e The integrals compound the value of
scalar fields into a scalar, so we need to
restore the unknown scalar fields on the
left hand side from these scalars (steps 1,
2 and 3).

The vector fields representing the veloc-
ity are “dotted” with a vector field, so
only information about the magnitude of
the left hand side vectors is known, with
no information about the direction (steps
1 and 3).

The symmetrisations of Vu are “dotted”
with Vv terms, thus intermixing infor-
mation concerning all components of the
vector u, so that not even the magni-
tude of the unknown vectors are explic-
itly available (step 1).

The above is a more abstract view than that
indicated in Section 2.6. But, as in the con-
ventional case, the solution to these problems

is to generate more equations at each step,
by choosing appropriate sets of test functions,
so that we get enough scalars to compute
the unknown scalar and vector fields. How
to achieve this becomes increasingly involved.
We relate the techniques to the individual
steps of the algorithm, starting with the sim-
plest cases.

e Step 2: a scalar field integrated to a
real value. If we approximate the scalar-
field (p"*t! — p") € Tg()_,R,E by a sum
Yogec(Pytt = Py)- g for scalars (Pyth —

PJ) € R and shape functions G C

7(0)

Fy_p B W€ may move the scalars out
of the derivation and integration expres-
sions. We may then reformulate step 2
to

Vg€ Q [9 Z(P;“—P;)(/Q Vg-VqdX) =

geG
/Q(V : u*)qu] .

This gives us a system of equations with
|Q| right hand sides’

[
for each ¢ € @. It has |G| unknowns
(Pt — Py for g € G. The |Q| x |G
integrals on the left hand side are in-
dependent of the variables of the prob-
lem, so we may define a mesh matrix
Kig = [oVg-VqdX for g € G,q € Q
(this is a matrix with data elements from
R, and is not a tensor structure but just a
mesh-of-R structure). This corresponds
to the pressure stiffness matrix K from
(29). Ensuring that |Q| = |G|, the un-
knowns are uniquely determined, and we
may solve the system § KQ(P"H! — Pn) =
B using a suitable matrix solver.

—Re
At

B, =

Assuming that P is known it is easy
to find P;H once the system is solved

'For a set X the notation | X | means the cardinality
of X.
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and the (P! — P?), for g € G, have
been found. Calculating the scalar field
p"tl e T}?HR g will be simplified if G
is taken to be the shape functions used
in the discretisation of the scalar fields
p € Fx_p as described in Section 4.4.
This also ensures that we will not lose
any accuracy by the approximations of

p" 1 in the system of equations.

Step 3: a vector field compounded to
scalar field and then integrated to a real
value. We may represent the unknown
vector (u"t! —u*) € TI%()HR,E as the lin-
ear combination ui * €1 + ug * €9 + ug * €3

of basis vectors e1,ez,e3 € E C TFxHR,E

(0)
and scalar ﬁelds UL, U, U3 € TFX;»R,E'
Then the equation becomes

Re &
A_tz( u; xe; - vdX) =

i=1 7
o [ i@ vax|.

Now we can restore the scalar fields using
the technique of shape functions g € G’
as above, giving the following system of
equations for each v € V

Ywvev

3
Re n *
At Z (Z(U(gﬁ)l N U(g,i))(/Q gei- VdX)>

geG’ \i=1

= 6?/9(19"+1 —-p")(V-v)dX.

We choose G’ as the shape functions for
the discretisation of the scalar field com-
ponents for u € TI%)HR,E‘ Then we en-
sure that |V| = 3|G’| so that we have
the same number of equations |V as un-
knowns, which is |G’| times the number
of dimensions. This time the matrix on
the left hand side becomes M, ;; =
Jogei-vdX, for g e G',i € {1,2,3} and
v € V. We need to treat (g,4) as one in-
dex in order to have M be a normal ma-
trix. This corresponds to the mass ma-
trix M from (22).
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e Steps la and 1b: symmetrisation with

vector field compounded to scalar field
and then integrated to a real value. Using
the same technique as above, we may eas-
ily separate the unknowns from the first
(explicit) part of the left hand side terms.
This also separates the unknowns from
the symmetrised term since symmetrisa-
tion is linear with respect to scalar multi-
plication. Then we may reformulate step
la to, Vv eV

3
> (i - v

geG’ Mi=1

/Q(%gei'”ﬂSym(V(gez-))-Vv)dX) N

- 2/Q,usym(Vu") (Vv)dX —
Re/Q((u"-V)u”)-vdX—F/Qp”(V-v)dX

with equation matrix M’ = QTR{ZM + S,
and step 1b to, Vv € V .

3
> (Z(U&,z) —Ulg.))
geG’ “Mi=1

Re
/Q(A—tgei-er,u Sym(V(gei))-vv)dX> _

- Z/Q,usym(Vu”) (Vv)dX —

Re/((un+1/2 . v)un+1/2) -vdX +
Q

/Q PV - v)dX

with equation matrix M"” = %M +
S, where Sy (g5 = [ousym(V(ge;)) -
VvdX. Here S is the diffusion matrix
S from (23). This provides us with aug-
mented matrices compared with step 3,
but otherwise with the same number of
equations and the same number of un-
knowns as in step 3 above.

Note that we do not need to build counter-
parts to the incompressibility matrix L in (25)



nor the convection matrix N in (24). This is
possible since those represent right hand sides,
and thus are implied by the tensor expressions
in this approach.

We will use the Galerkin simplification on
the resulting systems of equations by choosing
scalar field test functions Q = G C T}(&)ﬁm B
and vector field test functions V = {g*e|g €
G'.e € B} C Ty) . . Normally, we will
not choose G = G’, as there are different nu-
merical constraints on the pressure p and the
velocity u.

Combining this information, we arrive at
the final coordinate free algorithm for the
coating problem. The collections of shape and
test functions may be kept in a mesh data
structure. 'We may then use the mesh map
operations to generate the right hand sides
and left hand side matrices. This eliminates
the need for explicit loops for the generation
of the equations. Then we employ the matrix
solvers written for the mesh classes to find the
unknowns. The algorithm repeats the follow-
ing steps until time—stepping convergence cri-
teria are met, given initial values for U™ and
P™

Calculate u™ from U™;
Calculate p™ from P™;
Step 1a: solve for U"*t1/2 — U™ in

M/@<Un+1/2 _ Un) —
(/Q —2pusym(Vu")(Vv)—Re((u™-V)u")-v+

(V- v)ix )

veVvV

Calculate u*+1/2 from yn+i/2 —yn yn
and G';
Step 1b: solve for U* — U™ in

M'aU* -U") =
(/ —2psym(Vu") - (Vv) —
Q

Re((u”+1/2-V)u”+1/2)~v+p"(V-V)dX)
vev

Calculate u* from U* — U™, U™ and G’;

Step 2: solve for P*T1 — P in

OKQ(P" — P") =

(/ﬂ —feg. u*)qu)

At
Calculate p™*! from P*t! — P? P™ and
G,
Step 3: solve for U™+ — U* in

q€Q

Re n+1 *\
S MaU U*) =

([ o0+ =@ -viax)

veVv

Set U™ as U™t —U* plus U* and ensur-
ing boundary condition;
Set P™ as P*t!1 — P" plus P™ and ensur-
ing boundary condition;

Recall that the velocity values at the bound-
aries are prescribed, hence we must ensure
that these values remain unchanged at every
step. The matrix K will be banded and sparse
and the equations in step 2 can be solved us-
ing Choleski decomposition. The matrices M,
M’ and M" are very large. With a careful
choice of elements and using orthogonal basis
vectors, i.e., ¢ # j implies e; - e; = 0, matrix
M can be reduced to a banded form. Jacobi
iteration will be a useful technique for solving
the equations in steps 1 and 3. The element—
by—element construct and solve procedure and
matrix conditioning provide such a choice.

For this problem appropriate choices for
test and shape functions are

e for () = G: functions which reside at the
vertices of the elements, and are linear
within each element, and

e for V = G’: functions which reside at
the vertices and mid-points of the edges
of the elements, and are quadratic within
each element.

Note that the mesh classes are used for many
distinct purposes in the solver:

e in the implementation of the scalar field,
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e in the implementation of the tensors,
e for storing the set of test functions, and
e for data matrices K and M, M’ and M".

In a configuration of the solver program dif-
ferent implementations of the Mesh class may
be chosen for each of these different purposes
in order to reduce storage requirements, im-
prove run—time efficiency and provide parallel
execution.

Testing for convergence is performed using
the L? norm for velocities and pressure.

Coding this algorithm as a computer pro-
gram is now straightforward if a library with
the concepts of the Sophus framework is avail-
able. We have not fully implemented this ap-
plication in Sophus yet, but based on experi-
ence with this framework [HFJ99] the follow-
ing seems reasonable: The PDE solver would
be written as a procedure, and based on the
detailed exposition above this should only be
about 100-200 lines of code, including test for
termination. Additional procedures to input
data sets, set up the data and output the re-
sults will increase the solver module code size
to about 1,000 lines of code. The code needed
for a simple user interface, I/O file handling
and configuration of the PDE solver typically
lies around 1000 lines of code as well. Thus
a complete solver and configuration may be
written in less than 2000 lines of code.

4.6 A discussion of relevant coding
techniques

The coding technique we advocate is based
on notions of data abstraction and encapsula-
tion. These may take the form of the class
construct in object—oriented languages like
C++ [Str97], Eiffel [Mey92], GJ [BOSW9S]
and Java [GJS96], type abstraction and func-
tors in applicative functional languages like
standard ML and Haskell, or packages in im-
perative languages like Ada and Fortran-90.
The reuse of modules such as Mesh in both the

implementation of scalar fields and the imple-
mentation of tensors requires template classes
or generic packages, as present in Ada, C++,
Eiffel, standard ML, Haskell and GJ.

The structuring mechanism does not force
any specific coding practice for implementing
the algorithms. Thus both applicative styles,
as supported by functional languages, and
more conventional styles that modify vari-
ables for reuse of storage may be used. The
latter encompasses imperative styles, which
are typical of Fortran, Ada and C++, and
object-oriented styles, which are supported by
C++, Eiffel, GJ and Java. Within each group
one may favour languages which allow oper-
ators and overloading. This supports a more
algebraic notation by making it possible to
define scalar field and tensor operations with
infix syntax and names like +, %, —, / etc.
Support for this can be found in diverse lan-
guages as C++, standard ML and Fortran-90.
Only standard ML allows user defined infix
operator names, the other languages only sup-
port a limited set of names which is quickly
exhausted by the plentitude of tensor level
unary and binary operators.

We have developed Sophus using C++ in
an imperative, object—oriented manner. This
means that the programmer may have full
control over creation of temporary variables
and reuse of storage by modifying the val-
ues of variables. This style tends to favour
machine efficiency. The development of the
coordinate free algorithm above has an im-
perative flavour in its sequencing of opera-
tions and iteration over the main equations
for the PDE solver. Sophus also allows alge-
braic style expressions by utilising the oper-
ator overloading permitted by languages like
C++ and Fortran-90. This seems to have a
negative effect on execution time efficiency,
but provides a greater ease of programming
which may improve software development ef-
ficiency. Sophus can easily be reimplemented
in other languages which support the neces-
sary abstraction mechanism. If the emerg-
ing Fortran-2000 supports templates it would
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seem a suitable language for this style of pro-
gramming.

The tensor oriented package RHALE++
[BPR92, WBPRY3] is also implemented in
C++ using an object—oriented, imperative
style. This package differs from Sophus by
implementing vector and tensor fields directly
on the manifold, instead of lifting the scalar
field. The package Overture [BH96] does
not provide tensor abstractions but provides
the scalar field abstractions (the continuous
level). Compose [Ahl97, Ahl99] adds equa-
tion handlers on top of these, but the tensor
level is still lacking.

5 Modifying the Problem

The quality of a software development
methodology and programming style can best
be evaluated by checking how easy it is to
modify and upgrade programs. For the coat-
ing problem one such modification is the
change of coordinate system, motivated by
the annular nature of the problem. Us-
ing cylindrical coordinates the data sets may
be reduced to two—dimensional scalar fields.
Cylindrical coordinates have z—axis at the
centre of the wire, r—axis as radial distance
from the z—axis, and #-axis as azimuthal ro-
tation angle of an rz—plane. The data fields
will vary only along the r— and z—axis, being
constant along the f—axis. Thus all partial
derivatives with respect to 6 vanish, and there
is no need to store information for this axis.

5.1 Conventional case

We now describe the formulation using cylin-
drical coordinates, where we take an axi-
symmetric geometry which would be a typ-
ical situation for the coating problem. A con-
centricity assumption is adopted for the par-
ticular coating problem being considered, so
u = (ur,0,u;). The integration over the do-
main becomes specific for any particular ge-
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ometry, so

/Qf(x)g(x)dQE27T/T/Zf(r,z)g(r,z)rdzdr,

and similarly for the vector and tensor inner
products. In cylindrical coordinates, using v
for a vector and s for a scalar, and the partic-
ular assumptions of the problem,

10 ov,
Vv g(e) 55
O0s 0s
VS = (5r§ =+ 5z&;

where 6, and d, are unit vectors in the r and
z directions, respectively, and

0 10 0
51-—4-59;% %

or
With the above definitions, the operators in
the variational formulation of the problem (17
—20) can be replaced to yield a formulation in
cylindrical coordinates. For example the dyad
Vu can be evaluated, using equation (32) and
properties of unit vectors d,., dg and 6, to be;

v +6, (32)

Qur g Ous
or or
Vu=|0 % 0 (33)
our ou,
0
0z 0z

By expanding the Uj; in terms of the base
vectors d,, 09 and d, and using as test func-
tions ¢} = ;0, and ¢; = ¢;0, we arrive at
the following expression for the S matrix:

ST Sz
S = |: (STZ)T g2z :|
where
Ilm __ l m

and [,m € {r, z}. Using (33) we have

20 o O
sym(V") = Oar 2—“’(()%
ym(Ve") = 05

3—f 0 O



and
0 0 %
sym(Vp*)=[ 0 0 0
o) o)
o 0 25

Substituting in (34) we can express the com-
ponents of S as follows:

rr__ 8902 8@] PYiPj
Sij = 2w // Or Or 2r2 +
8901 8‘70]
B oz
rz 8901 8903
Si; = 27r// e 32 rdrdz,
2 &pz 890] 0p; Dp;
Si = / 9z 02 o ar}”i dr.

In a similar way, the remaining system ma-
trices, defined in axi-symmetric cylindrical
coordinates are given by;

M;; = QW//[@icpj}rdzdr, (35)
N(V)ij =

27T//<,0i%[QOZVE%+QO[VZ%}TdZdT

rto " or ? 0z ’
(36)
K, = 27r//V¢;C - Vpyrdzdr, (37)

L}, = 277//1/1;%7%2’6#,
rJz r

L} = 277//1/};%7“(&6&“. (38)

Here V;f and V/ are the nodal velocity com-
ponents in radial (r) and axial (z) directions
respectively.
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5.2 Coordinate free case

The solver for the coating problem was pre-
sented in a coordinate free notation in Sec-
tion 4.5. This means that the solver is inde-
pendent of coordinate system, and need not
be changed when moving to cylindrical coor-
dinates. However, the configuration must be
altered to provide the tensor class with the
definition of the appropriate coordinate sys-
tem and the scalar fields must be reduced to
2-dimensional form. These changes will only
affect a few lines in the configuration mod-
ule, assuming that the necessary modules are
present in the Sophus library.

The changes in configuration sketched
above may not be sufficient to gain optimal
speed for the axi-symmetric problem. The
reason is that, unless the tensor class has been
optimised for axi—symmetry, it will still acti-
vate all the computations of a 3-dimensional
problem. This can be reduced if a specific
axi-symmetric version of the tensor class is
implemented. Such an implementation may
take 1000—4000 lines of code, but need not be
written from scratch.

6 Discussion

In this paper, we have presented two differ-
ent approaches to developing numerical soft-
The first, the conventional methodol-
ogy, is that followed by the majority of the
numerical programming and applied mathe-
matical community. The other approach, ad-
vocated here, is an abstraction method using
on coordinate free mathematics.

ware.

We can view the two methods as indicated
in Figure 2. Both methods start with the
mathematical formulation on the left. The
conventional method then drops down to the
machine level (left downward arrow and bot-
tom horizontal arrow). In the coordinate free
method, all development takes place at the
abstract level, and the library modules link
down to the machine level (top horizontal ar-
row and dotted right vertical arrow).



PDE Abstract Abstract
’ Algorithm ’ Program
Scalar fields, tensors
discretisation i library
Y
Discretised Discretised
Algorithm ’ Program

Arrays, Matrices

Figure 2: Coordinate free versus conventional methodology.

We observe here one symptom of a cultural
divide between the field of programming the-
ory and numerical analysis. This divide does
not simply depend on the individual prob-
lems each community normally addresses, but
goes deeper, and depends on the way we rea-
son about problem solving and programming,.
This can be seen in the different methodolog-
ical approaches to solving a complex problem
like the coating problem and its implementa-
tion using the finite element method (FEM),
as illustrated in this paper. This indicates
that for the abstraction method to be ac-
cepted by the numerical community would re-
quire new training and instruction. Thus only
a gradual transition to coordinate free numer-
ics and other abstraction oriented methodolo-
gies is to be expected.

From a programming theory viewpoint,
there is a definite need to present the coating
problem at the abstract level as far as possi-
ble. Only after all the technical details have
been exposed at that level, should the discreti-
sation technique be introduced as an orthogo-
nal issue. Here the FEM should be exposed al-
gorithmically, not solely on its mathematical
merits as an approximation technique. If this
is done properly, the change of coordinate sys-
tems, such as switching from Cartesian to axi—
symmetric will be orthogonal to both the de-
tailed exposition of the abstract mathematical
algorithm and the discretisation technique.

The two methodological approaches to the
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presentation of the problem as discussed in
this paper, are exposed in the manner the
software development is handled.

Conventional software development in the
field of computational modelling typically
commences with some partial differential
equation (PDE). This is then refined into an
abstract algorithm, and then experience and
insight is used to transform to a discretised
version of the algorithm. Further refinement
takes place at the discrete level, and the lan-
guage being used allows for the elementary
data types of arrays and matrices. We then
arrive at a sequential program, that may be
further refined into a parallel program.

The software development methodology we
propose would also start with the step of con-
verting from a PDE to an abstract algorithm.
The departure then lies in the further devel-
opments that would stay at a mathematical
level, yielding an abstract program. This may
then be linked together with a software library
such as Sophus, yielding either a sequential or
a parallel program without any further signif-
icant modification.

The two different development strategies
give vastly different software characteristics.
First, consider the relative sizes of code pro-
duced by the two approaches. The conven-
tional Fortran code for our case study totals
approximately 18,000-19,000 lines of code.
In contrast, the exposition of the coating pro-
gram and its detailed pseudocode is well be-



low 1,000 lines of code, with an estimate of
the size of the final coded application pro-
gram being approximately 2,000 lines?. Tak-
ing lines of code as a measurement of the de-
velopment costs, which is the basis for cost
estimating models like COCOMO [Boe81], we
find an overwhelming reduction in code devel-
opment costs for the coordinate free method-
ology compared to the traditional methodol-
ogy.

Second, consider the modifiability and
adaptivity of the resulting software. The
conventional development produces one ap-
plication, and reuse of components from this
software will be incidental. The Sophus Li-
brary framework is designed for reuse and
to be incrementally implemented. Basically
the solver for a new problem relies on the
concepts defined by the Sophus library inter-
face. When configuring the program, relevant
modules from the library are reused, but if
the library lacks an implementation with cer-
tain characteristics, such a code may be de-
veloped and integrated into the library. The
cost of implementing a discretisation from
scratch, i.e., defining the manifold with asso-
ciated point set and scalar field, we estimate
as requiring approximately 4, 000 lines of code
[HFJ99]. Adding a new discretisation tech-
nique for an existing manifold corresponds to
developing only 1,000-2,000 lines of code. It
should also be recalled that all implementa-
tion of the same abstraction, such as that of
scalar fields, have the same interface. So that
given two different scalar field discretisations,
we may interchange them within the same ap-
plication program with little adaptation.

The above observations and statistics in-

2This comparison may seem quite unfair since we
are comparing unstructured Fortran code without the
use of libraries with estimates of highly structured
C++ code using library modules. The comparison
is still relevant, as we are comparing the outcome of
two different development methodologies. We are not
discussing whether code can be structured in one lan-
guage or not in another, nor the general availability
of libraries and how these may be used in different
languages.

dicate that the abstraction oriented method-
ology promoted in this paper may well im-
prove computational modelling productivity
dramatically. An added bonus is that such
an approach supports easy transition between
sequential and parallel versions of the code
[Hav99al.

Traditionally, applied mathematicians and
numerical analysts have been sceptical in
adopting programming languages other than
Fortran. This is mainly due to a fear of ef-
ficiency loss in their codes. This no longer
seems the case, as a language such as C++
and the use of abstractions in many cases, has
been shown to be comparable in efficiency to
Fortran, see [ABCT97, Rob96, VJ97]. This is
deemed highly encouraging for emerging ab-
straction oriented implementations of numer-
ical solvers. Unfortunately, the resulting effi-
ciency seems sensitive to memory layout and
other factors which are difficult to control.
However, a source—level transformation tool,
such as CodeBoost [DHH99], can be invalu-
able in this respect. It makes it possible to
systemise experiments with various data lay-
outs and other transformations of the code.
It is clear that several pilot implementations,
with execution speed comparable to conven-
tional Fortran code, of different problems is
needed to convince a larger proportion of the
numerical community of the benefits of ab-
straction oriented methodologies.

A further open question, clearly relevant to
the practitioner, is to what extent this man-
ner of writing programs affects numerical er-
ror propagation. There is no reason to expect
it to be worse than for conventionally devel-
oped programs, but the ease with which one
may change discretisation technique may lead
to situations where an inappropriate discreti-
sation technique is being used. One possibil-
ity to prevent this from happening, is to pro-
vide the scalar fields with some “certificate”
of their numerical properties at the abstract
level.
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