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In [6], one of the authors gave a construction for a new class of finite affine
planes. These new planes are all of order q2 (where q is a prime power) and each
has the property of admitting a translation group of order q2 which is transitive
on the points of a subplane of order q. At least one other class of planes (the
Hughes planes) has this same property. Hence the term "semi-translation plane"
was introduced. (See [7] for precise definitions.)

Our main purpose is to investigate circumstances under which the planes
in [6] may (I) bs self dual or (2) admit collineations displacing the line at infinity.
A properly chosen coordinate system must be what we call "automorphic" (see
the definition immediately preceding Corollary 1) if either (1) or (2) is to hold.
We are thus led to the more general question of automorphic algebraic systems
and the planes coordinatised by them.

In Theorem 2, multiplication for automorphic algebras is given a relatively
explicit form. In Theorem 5, we show that there are severe restrictions on the
associativity of multiplication. In Theorem 7, we show that the right distributive
law cannot hold and, in Theorem 8, that the corresponding semi-translation planes
are "strict," characteristic two being an exception.

The dual of a semi-translation plane coordinatised by an automorphic system is
also a semi-translation plane coordinated by an automorphic system. The relation
between the two coordinate systems is given quite simply in Lemma 1.

Our last theorem does not deal directly with automorphic coordinate systems
as such. It shows that, in Ostrom's construction, strict semi-translation planes
derived from nonisomorphic planes must themselves be nonisomorphic.

I. Summary of background information. For further details and definitions, see [7].
Whenever we use small Greek letters (excepting p, a, x) in this paper, it is to be

understood that we are dealing with an algebraic system Z of order q2 which
contains a subfield 5 of order q. The small Greek letters are to be understood as
denoting elements of 5- In all cases, the elements of Z constitute an abelian group
under the operation of addition.
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20 D. L. MORGAN AND T. G. OSTROM [April

The following remarks pertain to the known semi-translation planes and their
coordinate systems, provided that the coordinate system is appropriately chosen:

Lines are represented by equations of the form y = (x — a)m + ß, y = xy + b
and x - c. If the plane is self dual or admits a collineation displacing
the line at infinity, then the following "partial left distributive law" holds:
a(b + a) = ab + aa for all a, b eX and all a e g.

Those planes that are strict semi-translation planes can be obtained from other
planes related to them in the following way:

Let n be an affine plane of order q2 and let 9ft be a set of q + 1 points on the line
at infinity. Suppose that every two affine points of % which are collinear with a point
of 9ft can be embedded in an affine subplane of order q whose extension to a
projective plane contains 9ft. Then there is an affine plane n' whose affine points
are the affine points of it. The affine lines of it' are (1) the lines of n which do not
intersect 9ft and (2) the proper subplanes of n which contain 9ft.

In this case %' is said to be derived from it. The process of deriving is of order
two, i.e., n is also derived from it'. Each collineation of n which carries 9ft into
itself is also a collineation of it' (in the sense that a collineation may be considered
to be a permutation of the points which carries lines into lines). If all of the affine
points of some line intersecting 9ft in n are in a single transitive class under the
translation group of it, then it' is a semi-translation plane.

The original plane n is coordinatised by a system X which is a right vector space
of dimension two over g. 9ft is the set of points at infinity of the subplane coordi-
natised by g. Using 1, i as basis elements, elements of X may be written in the
form ia + ß. Let X' be the coordinate system for it'. The elements of X' are the
same as the elements of X. Addition is the same in both systems; X' is a right
vector space over g. If the point (x, y) of n has coordinates (if v + f2, ir\l + n2)'m
X, then this same point has coordinates (x', y') = (if x + nu if2 + n2) in X'.
Let o denote multiplication in X'. For XY =£ 0, (if t + r¡¡) ° (tXY + X2) = if 2 + n2 is
equivalent to (if t + f2) (tHi + ß2) = ifh + n2 in X, where X^tHi + p.2) = t + X2.
If the partial left distributive law holds in X(X'), then X'(X) admits a group of
automorphisms of order q such that g is elementwise fixed. If X and X' both
admit the partial distributive law, then both X and X' are "automorphic,"as
defined in §11. The relation between % and X' is given in [7], but was originally
developed by Albert [1].

In the case of the planes constructed by Ostrom [6], n is a dual translation plane
and 7t' is a semi-translation plane. If it' is self dual or admits collineations moving
the line at infinity, the coordinate systems can be chosen so that % and X' are
automorphic.

II. Automorphic algebras. In this part, the argument makes no direct use
of the fact that the systems under consideration are coordinate systems for
planes.
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Let Z be a set of q 2 elements (where a is a power of a prime p) with the opera-
tions of addition and multiplication defined in Z that:

(1) Addition is an abelian group.
(2) Nonzero elements of Z form a loop under multiplication.
(3) Z contains a subsystem 5 which is a field of order q with respect to addition

and multiplication.
(4) The additive group of Z is a right vector space of dimension two over g

with respect to multiplication on the right by elements of $•
(5) a(b + a) = ab + aa for all a, beZ and all a eg.
In the rest of this paper we shall consider systems which satisfy properties

(l)-(5). We shall take 1, t as basis elements so that every element of Z may be
written in the form ta + ß.

Theorem 1. Under the conditions (l)-(5), let a be an automorphism of addi-
tion and multiplication in Z such that (i) each element of 5 is fixed by a, (ii)
the order of a divides q, (iii) ta = ta + ß. Then a = 1.

Proof. If ta = ta + ß and a is of order k, then by induction
t = tak = tak + (ak~1+ ••• + a + l)ß. Hence, ak = 1, and since k is a power of
the prime p, we have a = 1.

Definition. We shall say that a system Z satisfying conditions (l)-(5) is auto-
morphic if Z admits a group S of automorphisms such that (i) E is of order q ; and
(ii) each element of 5 is left fixed by each element of 2.

Corollary 1. Z is automorphic if and only if for each ôe^ there is an
automorphism a in 2 such that ta = t + ô.

Theorem 2. // Z is automorphic and if (fa0(ia2) = th(au a2) + k(au a2)
where ax ^ 0, h(ax, a2) and k(au a2) are in 5> then

(tax + ßi) (ta2 + ß2)

= t[h(aua2) - ßta2 + ax)52] + ß&^hfa, a2) + k(aua2)

-ß2a\-la2 +ßj2.

Proof.   By the partial distributive law we have

(tat + /?0 (ia2 + ß2) = (tai + ßi) '«2 + 0ai + ^1)^2

= (tai + ßi) t*2 + taiß2 + ßiß2.

Now let us consider the automorphism a in S such that ta = ( — ax 1ßi.

[C*i + ßx)(toz)~\° = (íaOítaz-al^aO
= (í«0 (t0l2) - tß1cc2

= t[h(au a2) - JV2] + k(«i> «0-
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Now ta"1 = t + a1~1ßi. Hence

(tai +P0(ta2) =   [(í«t +ßi)ta2\aa~l

=  {í[A(a1,a2) -   ß^] + k(aua2)}a~l

= (í + af^OWai.aO - <*20i] + ^Oi^O
= ([«(a^aO - a201] + ^i«i_1Ä(ai» ot2) + k(ai,a2)- i?2a1"1a2.

Henee

(ía¿ + ßi)(lcc2 +ß2)

= í^a^aO - a2ßt + ax ß2] + ^1a1~1fi(a1,a2) + /c(a1;a2)- J?íaf ^2 + ^^2.

Theorem 3. Leí y(ía + ß)= tP(y, a) + ßy + R(y, a) where P(y, a) and P(y, a)
are in $, í/ien under the hypothesis of Theorem 2, P(y, a) = ay.

Proof. Consider y(ta + ß) = tP(y, a) + ßy + R(y, a) where ß ^ 0 and consider
the automorphism a such that to = t — a-1/?. Apply a and we have
[y(ta + /?)] a = yia = iP(y,a) + P(y, a). On the other hand, y(ta + ß)
= tP(y, a) + j?y + R(y, a). Hence,

[y(ta + j8)]ff = íPÍJ, a) - a_1/JPiy, a) + ßy + R(y, a),

and on equating the two expressions for [y(ta + ß)~\a, we get that P(y, a) = ay.

Corollary. y(ia + ß) = íay + ßy + R(y, a).

Theorem 4. The full left distributive law holds in Z if and only if for each
fixed ax j¡= 0, h(at, a2), and k(at, a2) are additive on a2.

Proof.   By calculation.

Theorem 5. // Z is automorphic and if the elements of $ associate and
commute with elements ofZ: then q ^ 3.

Proof. Let t2 = tä+ ß. Under the hypotheses, (íaO(ía2) = räa^ + j5axa2.
Thus, h(au a2) = äaxa2 and k(ax, a2) = ßaxa2.

Here we make use of the condition that multiplication must be a loop.
Consider the equation

(*) (tei + ßx)(ta2+ ß2) = (tyi +y2).

Let us fix ia2 + ß2 with a2 ^ 0. Then each tyx + y2 must determine a unique
ta! + /?! such that (*) is satisfied. We shall see, however, that iy! + y2 can deter-
mine tai + ßx uniquely only in a limited number of cases.

First of all, there are at most q choices of tyx + y2 which can lead to ax = 0,
corresponding to the q possible values for ßx. If ax ^ 0, (*) is equivalent to the
pair of equations
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äa^ - a2ßt]+ a^ß2 = yu

ß^2 + ßa^2 - ß\alxa2 + ßj2 = y2.

Eliminating ßu we get the quadratic in at :

(t) «Îj5af2 + «i(ä?i + ZWV - 72> - 7i«2_1 = 0.

Now (f) is (partially) equivalent to (*) in the sense that, for given tyt + y2,each
nonzero solution of (f) for at leads to a determination of ßu such that iat +ßt is
a solution of (*).

There are, at most, three ways in which tai +ßl can be uniquely determined :
(1) at = 0 in (*) and ( |) does not apply.
(2) (|) has two solutions but one of them is zero. In this case, the nonzero

solution of (f) might possibly correspond to a unique solution of (*).
(3) (t) has a unique solution for ai.
In case (2), we must have yt = 0. The case where tyt + y2 = 0 comes under

case (1); hence, there are at most q — 1 values of íy¡ +y2 which correspond to
case (2).

In case (3), the discriminant A = (âyx + ß^^y^ - y2)2+ Ay\ß must be zero.
This cannot ever happen unless — ß is a square. If — ß is a square, then the
equation A = 0 determines y2 in terms of y^

72 = 7i(â+/W ±2.J -ß).

If y, = 0, then y2 = 0 and we are back to case (1). Otherwise, there are at most
2(q — 1) values of ty1 + y2 such that A = 0.

Thus the total number of values of iyt + y2 such that tay + ßx is uniquely
determined is at most q + (q — 1) + 2(q — 1) = Aq — 3. But there are q2 values
for iyt + y2 and q2 > Aq — 3 if q > 3. That is, we get a contradiction unless
«2*3.

Definition. If X is automorphic and if for each S =£ 0 there exists an auto-
morphism a fixing g elementwise such that ta = tö, then we shall say that X is
strongly automorphic.

Note that, for each a # 0, ß a strongly automorphic system admits an auto-
morphism which carries t into ia + ß. Thus, a strongly automorphic system
admits all possible automorphisms which fix g.

Theorem 6. IfX is strongly automorphic and if the elements of g associate
on the right with elements ofX, then X is a left Hall-Veblen-Wedderburn system.

Proof. Let í(íf + n) = tf(£, n) + g(Ç, n). If the elements of g associate on the
right, then /(f<5, nô) = /(f, n)ô and g(f<5, nö) = g(f, t])ô. In particular,
/(f, 0) = f/(l, 0) and g(Ç, 0) = fs(l, 0).
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If a # 0, there is an automorphism carrying i into ia + ß. Hence,
(ta + ß) [((a + j?)f + r¡-¡ = (ia + ß)f(C, n) + g(f, n). But also,

(ia + ß) [(ta + ß)C + r,-] - (ta + ß) {(ta + /?)f ] + (ia + ß)n

= (ta + ß) f/(l, 0) + fg(l, 0) + tarç + ßn.

Hence,

a/(f^) = af/(l,0)+a^
and

/?/(£, >Z) + tätf = ßtf(hQ) + fg(l,0) + ßn.
Solving for/and g, we obtain

(ia + ß) [(ta + /?)f + r,-] = (ia + « [f/(l, 0) -m] + fg(l, 0).
Except for the interchange of right and left multiplication, this is precisely of the
form given in Theorem 20.2.7 in Hall's book [4], with/(l, 0) and g(i, 0) replaced
by r and s, respectively.

The restrictions on r and s necessary in order that multiplication be a loop
are precisely those given by Hall.

Now let us consider the possibility of a right distributive law in X:

Theorem 7. Suppose that (tax + ßt) (ia2) = (iat) (ia2) + ßi(ta2) for some
particular au ßu a2 all distinct from zero. Then g must have characteristic 2.

Proof.

(tat + ßt) (ía2) = (íaO (ía2) + ßt(ta2)

= iZj(a!,a2) + k(aua2) + ta2ßy + R(ßua2)

= t[h(aua2) - a2J?!] + ß^1 h(aua2) + fc(a!,a2) - ßfa^1 a2;

hence, t( — ot2ß1) = ta2ßl, or 2 atßt = 0  so X is of characteristic 2.

Corollary. Except possibly at characteristic 2, the right distributive law
does not hold in X.

III. Applications to the geometry. In this part we shall be concerned with
planes coordinatised by automorphic systems. Whenever we refer to a semi-
translation plane coordinatised by such systems, it is to be understood that the
equations of lines take the form mentioned in §1 unless indications are given to
the contrary:

Definition. A semi-translation plane is said to be a strict semi-translation
plane if the translation group is exactly of order q2.

Theorem 8. Let n be a semi-translation plane coordinatised by an auto-
morphic system. Then it is a strict semi-translation plane unless q is even.
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Proof. The mappings (x, y) -*■ (x + a, y + ß) constitute a group of trans-
lations of order q2. Hence, if 71 is not strict, there exist some t, 1 not both zero
such that (x, y) -* (x + tt, y + tn) is a translation.

Consider the line y = xf. Its image must be y = (x — a) t + ß, where
(a — tt, ß — tn) is a point on y = xl. That is, ß — tn = (a — tt)t.

Since the image of each point (c, ct) must be on y = (x — a)t + ß, we have the
identity

ct + tn = (c + tt — a)t + ß        for all c.

This is equivalent to

ct = (cl + tt - a)t + (a - tt)t.

Taking c = 0, (a — tt)t = — (tt — a)t. If t ¥= 0, a i= 0, take c = a and we
get (tt — a)t= (tt)t — at. By a slight modification of the argument in Theorem 7,
Z must have characteristic 2. Similarly, if t i1 0 but a = 0, take c = y# 0 and
apply the same argument. If t = 0, a # 0 we get c/ = (c — a)i + ai and again Z
is of characteristic 2. If t and a are both zero, then n = 0 contrary to the condition
that t and n are not both zero.

Remark. See [7] for an example of a semi-translation plane of even order
which is coordinatised by an automorphic system but is not a strict semi-trans-
lation plane.

Definition. The coordinate system Z will be said to be linear with respect
to 5 if, for y in 5 and b in Z, y = xy + b is the equation of a line.

As mentioned in §1, Z is linear with respect to Ç in the known cases. However,
the situation arises in the following lemma where the coordinate system might
possibly not be linear with respect to $. See Theorem 3 for the definition of P.

Lemma 1. Let it be a semi-translation plane coordinatised by an auto-
morphic coordinate system Z. Let it' be the dual of it. Then it' can be coordi-
natised by a coordinate system Z' where

(a) The elements ofZ' are the same as the elements ofZ.
(b) IfZ is linear with respect to $, then R' = 0 in Z'.
(c) Z' is linear with respect to 5 and addition in Z' is the same as addition

in Z if and only if R = 0.
(d) The general rule for multiplication in Z' differs from multiplication

in Z only in that n(a1( a2) and k(au a2) are replaced by h'(au a2) = — ñ(a2, a¡)
and k'(au a2) = fc(a2, a0, respectively.

Proof. Since n' is the dual of 7t, there exists a 1-1 mapping from the lines of
7t onto the points of 71', such that the image of the set of lines through a point
of 7t is the set of points on a line of Tt'. Let us assign coordinates (x', v') in accor-
dance with the following scheme :
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loo -» («O,

X = c -* (c),

y = (x - a)c + ß -> (c, ca- ß) = (x', y'),

y = xa + b -* (a, — b) = (x', y').

Consider the set of points (x', y') of it' which are collinear with (y) and (0,0).
These points are the images of the lines of k through the intersection of x = y
and y = 0. The lines of it which go through (y, 0) are of the form y = (x — y)c
and correspond to (x', y') = (c, cy). Thus y' = x'y is the equation of a line of
it', i.e., multiplication on the right by elements of g is the same in X' as in X.

Now consider the set of points (x', y') collinear with (y) and (0, b) in it'. These
points are the images of the lines of it which go through (x, y) = (y, — b). The
case where x'eg offers little trouble and we shall not go through the details.
The line y = (x — a)c + ß contains (y, — b) if and only if (y — a)c + ß = — b.
Thus the points of it' collinear with (y) and (0, b) are of the form
(x', y') = (c, ca — ß) where (y — a)c + ß = — b. Let c = if + r\, then

(y - a)c = (if + n) (y - a) + R(y - a, f ) = cy - ca + R(y - a, f ).

Putting cy — ca + R(y — a, f) + ß = — b we get that ca — ß = cy+b +R(y — a, f)
which corresponds to y' = x'y + b + R, where R depends upon x'. Taking
y = 1, we see that addition in X' is identical with addition in X if and only if
R is identically zero.

If R = 0 we then have that X' is linear with respect to g. This establishes part (c).
Now for each a, there is a group of elations of it with center (co) and axis

x = a. Each of these groups is of order q; (oo) is also the center of a group of
elations with axis /«,. Thus, it is a dual semi-translation plane with respect to
(co) and it ' is a semi-translation plane with respect to l'^. Thus if* denotes mul-
tiplication in X' and m <£ g, then y' = (x' — a) * m + ß is the equation of a line
in n'. To determine the operation *, consider the set of points (x', y') collinear
with (x', y') = (0,0) and (x', y') = (1, tp2 + v2).

These points correspond to the lines of n through the intersection of y = 0 and
y = x — tp2 — v2, i.e., the point (x, y) = (tp2 + v2,0). Note that the line
x = tp2 + v2 corresponds to the point at infinity (tp2 + v2) in it'.

If y = (x - a)c + ß contains (tp2 + v2,0), then (tfi2 + v2 - a)c + ß = 0.
Thus we are concerned with the points (x', y') = (c, ca — ß) such that
(tfi2 + v2 — a)c + ß = 0. Taking c = tpx + v1; the equation

(tp2 +v2-a)(tn1 + Vl) +JS = 0

can be solved for a, /? by using the rule for multiplication in T. Note that, if
c$F, /ij t¿ 0, we obtain
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a = v2 - h^pjpï1 - p2vipî\

ß =  - k(p2, Pi).

Using these values of a and ß in x' = c = tpi + vx, y' = ca — ß we get that

y' = (tpi + vi)*(tp2 + v2)

= t[- h(p2,Pi) - p2vi + v2pi]

+ [- h(ß2,p1)pl~\ + k(p2,pi) - v2p~ix p2 + vtv2].

This establishes part (d) of the lemma. We have yet, however, to con-
sider multiplication of the type a*(tp2 + v2). Here we are concerned with
points (x', y') = (x, — b) which are images of lines y = xa + b such that
(tp2 + v2)a + b = 0. We have:

a * (tp2 + v2) = — b = tp2a + v2a.

This establishes part (b) of the lemma. We have already shown that multipli-
cation on the right by elements of g is the same in Z and Z'.

Lemma 2. If q is odd and n' of Lemma 1 is isomorphic to it and Z is linear
with respect to g, then R = 0 in Z.

Proof. We have pointed out that Tt' is a semi-translation plane; the centers
of the translations are the points (oo) and (y) (y varies over g) in Z'. If Tt' is iso-
morphic to 7t, then Z' is (in effect) another coordinate system for tt. We must
consider the possibility that Z' might correspond to another choice for the line
at infinity. However, if a projective plane is a semi-translation plane with respect
to two lines lY and l2, there is a collineation carrying /j into l2. This implies that
we can, without loss of generality, identify the lines at infinity of Z and Z'.

If q is odd, te is a strict semi-translation plane. The set 9JÎ of centers of trans-
lations has coordinates chosen from (oo) and elements of g in both Z and Z'.

Now consider the partial affine plane consisting of the affine points of 71 and
the lines of 71 which intersect "¡üt. Consider also the following properties of Z :

(a) Addition is associative.
(b) Z is linear with respect to 5.
(c) Elements of 5 distribute on the right.
(d) g is a field.

These properties of Z imply that for each a in Z and each Ô in $> the mappings
(x, y) -+ (x + a, y + aô) and (x, y) -*(x,y + a) are translations of the partial
plane. The group of translations with center (ô) is isomorphic to the additive
group of Z.

This implies that if Z' is a new coordinate system for 71 with the new choices
for (00), (0), and (1) all in 2R, then T also has properties (a), (b), and (c). More-
over, addition in Z' will be isomorphic to addition in Z. By Lemma 1, R = 0.
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Theorem 9. Let it be a semi-translation plane coordinatised by an auto-
morphic system X which is linear with respect to g. Then a necessary condition
that it be self dual is that R = 0. It is sufficient that the above conditions be
met and h(alf a2) = — Zi(a2, aj) and k(au a2) = k(a2, ax).

Proof. The requirement that R must be zero follows immediately from the
previous two lemmas. If X is linear with respect to g, R = 0, h(aua2) = — Zi(a2,ax)
and fc(al5 a2) = Zc(a2, at), then it and its dual have isomorphic coordinate systems
Hence, n is self dual.

Definition. Let X be the coordinate system for a semi-translation plane it. We
shall say that X is regular if the following conditions are satisfied :

(a) X is automorphic.
(b) R = 0.
(c) X is linear with respect to g.
(d) Lines of it whose slopes are not in g are given by equations of the type

y = (x — a)m + ß where m £ g.
Note that the condition that R = 0 implies that elements of g commute with

elements of X; moreover, X is both a right and left vector space over g. It is well
known that if some point at infinity is the center of a group of translations of
order q2, then the plane admits a coordinate system in which addition is associative
and the coordinate system is linear. Such planes will be called linear planes.

Theorem 10. For each semi-translation plane it which is coordinatised by a
regular coordinate system X there is a plane ñ coordinatised by a system X
such that:

(a) The elements of X are the same as the elements ofX.
(b) //* denotes multiplication in X, then

(tax + ßt) * (ta2 + ß2) = tlH(*lt a2) + arf2 + a2ß{\ + [K(au a2) + ßj2~\

where H and K are in g.
(c) X is linear, i.e., lines of it' are given by equations y' = x' * m + b.

Proof. The plane ñ will be obtained from itbya chain of constructions. We
shall be considering several different planes and several different coordinate
systems. We shall find it convenient not to introduce new symbols for multipli-
cations in these various systems.

First of all, we obtain the plane derived from it. The coordinate system can be
obtained from X by the process given in §1. The set of points in the subplane
of it coordinatised by g will be the set of points on x'.= 0 in the new coordinate
system. This set of points is in a single transitive class under the translations of it
and of the derived plane. Thus lines of the derived plane will be represented by
linear equations.

In X we have :
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(t«t +ßi)(ta2 +ß2)

= t[h(aua2) + a^ - a^] + fi^^tifa, a2) + k(at,a2) - ßlayla2 + ßtß2

when ax ^ 0 and

ßi(ta2 + j32) = iajj»! + ß2ßi.

We find that multiplication in the coordinate system of the derived plane takes
the form :

(<«! +ßi)(ta2+ß2)

= t[h(ai,a2~l)a2+a1ß2-a2ßi']+h(ai,a2)a2ßiai1 +k(a1,a21)-ß2ar1a2+ ßiß2

when au a2 # 0 and

(Ja + J?)y;= y(JaJ+ ß)i= tayl+ ßy.

If we now interchange right and left multiplications, we obtain the coordinate
system of a plane dual to the plane derived from 71.

If we derive again, we get a plane with a linear coordinate system in which:

(tei +ßi)(ta2 +ß2)

= t[ - h(a2i,a~i1)a1a2 + ßya2 + a^2] + kfa1, a^1) + ßiß2

= t[H(au a2) + ßia2 + a^] + K(au a2) + ßiß2.

As obtained, the rule for multiplication in the last case does not hold if au or
a2 is zero. However, the rule

ßi(ta2 + ß2) = (Ja2 + ß2)ßi = ta2ßi + ßtß2

holds in each of the four coordinate systems. Furthermore,

(JaO (fa2) = JH(a1; a2) + K(au a2).

We can remove the exceptions by agreeing that H and K are both zero when
either ax or a2 are zero.

Note that the additive group is the same in each of the four coordinate systems.
Now this whole process is reversible. That is, if we start with a plane coordi-

natised by a "partial division ring" (we have the right and left partial distributive
law) in which multiplication takes the form:

f(«i + ßi)(ta2 + ß2) = J[H(ai)a2) + atß2 + a2^] + X(al5a2) + ßxß2,

we end up with a semi-translation plane having a regular coordinate system.
It is an interesting question as to whether there are partial division rings which

are not division rings. If H and K are appropriate constant multiples of aja2,
we will have a field. (Moreover, at the second and third stages, we will have a
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Hall-Veblen-Wedderburn system.) The only other system of this type known to
us is a slight generalization of Dickson 's commutative division rings [3]. Here
we take H(at, a2) = 0, K(aly a2) — Sa"a2 where ô is a non-square in g; p and a
are automorphisms of g. In the case where p = a, the semi-translation plane with
Zi(a1; a2) = 0, k(ax, a2) = ôa["oL2ais self dual by Theorem 9.

Theorem 11. Let it be a semi-translation plane coordinatised by a regular
coordinate system. Suppose further that ( — l) (ab) = ( — a)b. Then if it*
admits collineations moving Zœ, X satisfies the left inverse law.

Proof. It was established in [7] that, under the hypothesis, the subplane
coordinatised by g is an invariant subplane. Furthermore, since it* admits a group
of elations of order q with center (co) and axis x = 0, if Zœ is carried into any line
other than x = 0 by some collineation, then there is some collineation which
carries Z«, into x = 0. This, in turn, implies the existence of a group of elations
with center (0, 0) and axis x = 0. In particular, we will have an elation a with
axis x = 0, center 0 which carries lm into x = 1.

Thus the lines y = xm and the points on x = 0 are all fixed by a. Furthermore,
since (co) is fixed, each line x = c is carried into another line through (co). For
some value of c, x = c -* lx. We may, in general, write x = c -» x = c* if it be
understood that c* = oo indicates that the image line is Zœ. We shall denote
the line through two given points by the symbol "U". We now indicate the
images of various points and lines under the mapping a:

(m) -> (l,m),

y = b -» (l,0)U(0,Z>),i.e.,y = Z>-y = (x-l)(-i>),

(c,b)-+ (c*,(c*-l)(-b)).

Since y = — x is fixed, this implies that (c* — 1) (c) = — c*. This, in turn, implies
that ( — 1)* = co, i.e., x = — 1 -> Zœ.

Hence,
(-1,0)-» Zœn(y = 0), i.e., (-1,0)^(0),

y = (x + l)m -» (1, m) U (0),   i.e,. y = (x + l)m -» y = m.

Thus the image of (c, (c + \)m) must lie on y = m. That is,

(c*-l){(-l)[(c + l)m]} = m.

With m = 1, we get that (c* — 1)( — c — 1) = 1, i.e., (c* — 1) is the left inverse
of — (c + 1). If — 1 associates, this implies that

( — c — 1)-1[( — c — l)m] = m      for c # — 1.

Remark.   One can now apply Theorem 10 to the planes obtained (by the chain
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of constructions of Theorem 9) from the generalizations of Dickson 's division
rings. The left inverse law is not satisfied by the coordinate system of the semi-
translation planes; these planes do not admit collineations moving lx.

Next, we wish to point out some of the geometric implications of Theorem 5.
Consider the left nearfields of order q2 which satisfy conditions (l)-(5) of § II with
the additional condition that the elements of g commute with elements of Z.
By Theorem 5, these nearfields are not automorphic for q ^ 3.

Each of these nearfields can be used to coordinatise two distinct planes:
(a) a dual translation plane with lines represented by linear equations,
(b) a semi-translation plane which is a Hughes plane.
Both of these planes are derivable. From (a) we obtain a semi-translation plane;

from (b) we obtain a linear plane. These two planes are again coordinatised by a
common algebraic system obtainable from the nearfield by the process described
in §1. The absence of the group I of automorphisms in the nearfields implies the
absence of the partial left distributive law in the derived algebra. It was pointed
out in [7] that the planes derived from the Hughes planes [5] formed a new
class of planes except in those cases where the nearfields might admit the group Z
of automorphisms.

Furthermore, dualizing a result of André [2], if tc is a dual translation plane
coordinatised by a nearfield, then the collineation group of 7t either fixes or inter-
changes the two lines lm and x = 0. Suppose that ti admits a collineation (whose
order divides q) which fixes some subplane 7tj of order q. lîiti contains /„, it must
also contain x = 0. If 7tt contains the points at infinity of the subplane 7t0 co-
ordinatised by g, then iti can be carried into 7t0 by a collineation of 7t. This implies
the existence of collineations fixing 7t0 pointwise and automorphisms of the
nearfield, contrary to Theorem 5.

If the plane derived from 7t should admit a group of dations of order q with
some finite line as axis, center on the line at infinity, then 7t would admit a corre-
sponding group of collineations fixing a subplane pointwise. Since this cannot be
the case, the derived plane admits no such dations. This implies that the derived
semi-translation planes are not self dual and admit no collineations displacing the
line at infinity.

Theorem 12. Let iti and it2 be strict semi-translation planes which are derived
from the linear planes ñx and ñ2, respectively. Suppose that there exists an
isomorphism a such that itia = 7t2. Then %iO = ñ2.

Proof. Let 7t! and 7t2 be derived from ñu and 7t2 with respect to SD^ and3D<î2,
respectively. Then ftj and 7t2 can be derived from iti and 7t2 with respect to the
sets 2JC-! and 3R2, where Wi and 2R2 are the respective sets of centers of trans-
lations. If 7tx and 7t2 are strict semi-translation planes, then SfJljcr = W2. Let lx be
a line of ñx which does not intersect <¡SRÍ. Then lx is also a line of iti which does
not intersect 50Î,. Hence, /,<r is a line of 7t2 which does not intersect W2, i.e., a line
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of 7t2 which does not intersect 3R2. Let 777x be a line of ñx which does not intersect
9Jli- Then mx is a subplane of 7t! which contains 2Rj. Hence, mxa is a subplane of
7t2 which contains 9K2. It follows that mxa is a line of ft2 which intersects 3R2.
Thus, in any case, a carries lines of iti into lines of 7t2.

Corollary. Letitx andit2 be isomorphic strict semi-translation planes derived
from the linear plane ñ with respect to the sets <Silx and SR2. Then ñ admits a
collineation which carries <$RX into 9Ji2.

Correction added in proof. In Lemma 1, the condition R = 0 is needed from
the start to insure that y' = constant is the equation of a line in 71 ! The proof
of Lemma 2 thus becomes invalid; Lemma 2 is probably false. The conclusion
to Theorem 9 should read, "Then it is self dual if R s 0, h (ax, a2) = —h (a2, ax)
and k(ax, a2) = k(a2, ax)."
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