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COORDINATE SYSTEMS USED IN GEODESY:

BASIC DEFINITIONS AND CONCEPTS

By Tomas Soler1 and Larry D. Hothem,2 Member, ASCE

ABSTRACT:In order to properly apply transformations when using data
derived from different space techniques, the corresponding frames
should be clearly stated. Only then can a rigorous comparison of results
be established. This review is an attempt to expound some of the basic
definitions and concepts of reference frames to users from diverse
backgrounds, who are not familiar with the geodetic terminology.

I

INTRODUCTION

The principal problem of geodesy may be stated as follows (Hirvonen
1960): "Find the space coordinates of any point P at the physical surface
S of the earth when a sufficient number of geodetic operations have been
carried out along S." Therefore, in order to know the position of P, the
definition of an appropriate frame to which these spatial coordinates refer
IS of primary importance..' ~

Due to the nature of the rotational motions of the earth and to other

geodynamic phenomena, a rigorously defined, earth-fixed coordinate sys-
tem at the degree of accuracy of our current observational capabilities is
not presently available. Recent meetings, colloquiums, and workshops
organized jointly by the International Association of Geodesy (lAG) and
the International Astronomical tTnion(IAU) are attempts to coordinate the
work of different groups in the international scientific community for the
future definition and selection of reliable reference frames (e.g., see
Wilkins and Mueller 1986).

In this review, only those terrestrial (earth-fixed) and local reference
frames that are commonly used in geodesy will be covered.

The writers are fully aware of a proliferation of standard geodetic texts
covering the topics treated here (e.g., Heiskanen and Moritz 1967;Hotine
1969; Rapp 1975; Groten 1979; Bomford 1980; Leick 1980; Torge 1980;
Vanfcek and Krakiwsky 1982). Nevertheless our impression is that an
increasing number of users of modern space techniques-some of them not
familiar with geodetic terminology-need a succinct introductory expla-
nation of coordinate systems and their fundamental relationships (see
Appendix I). These systems are constantly mentioned and are assumed to
be known in the published literature. Consequently, our principal motiva-
tion was to set forth in a comprehensive concise way the most basic
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definitions and equations, thus unifying as much as possible the nomencla-
ture and notations that are the principal sources of confusion when
different references are contrasted.

In the following sections, several important coordinate systems of
geodetic significance will be presented. They are grouped into three
fundamental categories: (1) Global; (2) curvilinear; and (3) local.

GLOBAL CARTESIAN COORDINATE SYSTEMS

To standardize the notation as much as possible, all global Cartesian
terrestrial coordinate systems will be represented by boldface, lowercase
letters. Capital letters will be reserved for the astronomically defined
inertial coordinate systems not covered in this review.

(x, y, z): Conventional Terrestrial Reference Coordinate System (CTRS)
The CTRS has the following definition:

1. Origin: At the geocenter (center of mass of the earth).
2. z-axis: Directed toward the conventional definition of the North Pole,

or more precise, towards the conventional terrestrial pole (CTP) as defined
by the International Earth Rotation Service (IERS).

3. x-axis: Passes through the point of zero longitude (approximately on
the Greenwich meridian) as defined by the IERS.

4. y-axis: Forms a right-handed coordinate system with the x- and
z-axes.

World Systems
These are different terrestrial coordinate systems close to the CTRS,

although not conventionally adopteti by international agreement. These
world coordinate systems are materialized by station coordinates derived
from independent satellite observations and solutions accomplished by
different organizations using their own software and methods.

Examples of the most widely used world systems are:

1. (x, y, z)wGsn : Primarily is derived through Doppler observations and
the ephemerides of the navy navigation satellite system (NNSS). Before
January 4, 1987, it was also realized from p~eudoranges and/or phase
observations and the precise ephemerides of the navigation, satellite,
timing and ranging (NAVSTAR) global positioning system (GPS).

2. (x, y, Z)WGS84:After January 4, 1987, was realized through pseudo-
ranges or phase observations and the precise ephemerides of the
NAVSTAR GPS. The broadcast ephemerides were switched to the WGS
84 system on January 23, 1987.

3. (x, y, Z)SLR:Primarily is defined by satellite laser ranging (SLR) and
the ephemerides of the satellite LAGEOS, e.g., Goddard Space Flight
Center (GSFC) solution SL5 and University of Texas solution LSC8402.
See Tapley et al. 1985.

4. Very long baseline interferometry (VLBI) techniques, which observe
extragalactic radio sources such as quasars and are strictly kinematic, can
provide only orientation and scale, but not a geocentric origin. However,
they can determine precisely the earth rotation parameters, ERP (i.e.,
polar motion components xp, Yp, and Universal Time (UTI) needed for a
rigorous definition of the CTRS (x, y, z).
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FIG. 1. Conventional Terrestrial, Geodetic, and Local Geodetic Frames

Some as yet unexplained small differences between the origins, orien-
tation, and scale of these world coordinate systems have been found
(Hothem et al. 1982). Transformation parameters between several world
coordinate systems and the CTRS were recently determined by Boucher
and Altamimi (1985).

(0, v, w): Geodetic Coordinate Systems
There is one geodetic coordinate system for each datum (see Fig. 1).

They are definedas follows: ~

1. Origin: Is at the center of the reference ellipsoid used for defining the
datum in question.

2. w-axis: Coincides with the semiminor axis b of the reference ellip-
soid.

3. o-axis: Passes through the point A = 0, <I> = O. (See later in the
corresponding section, the definition of curvilinear geodetic coordinates).

4. v-axis: Forms a right-handed triad with the u- and w-axes.

Examples of Cartesian geodetic coordinate systems derived after trans-
forming the datum curvilinear coordinates (including heights) into Car-
tesian coordinates are: (1) (u, v, W)NAD27;(2) (u, v, W)NAD83; and (3) (0, v,
W)European datum'

A datum (strictly speaking a reference surface) is often based on the
best-fitting ellipsoid to the earth or any of its regions. Consequently, two
wide categories of datums should be mentioned: (1) Global or absolute
(geocentric); and (2) regional or continental (nongeocentric).

The "ideal" global datum is defined by the earth's be'st-fitting ("mean
earth") ellipsoid. Because the earth is rotating and has mass, its best
physical approximation is given through the four parameters of a geodetic
reference system (GRS), namely: (1) a, equatorial radius; (2) GM, geocen-
tric gravitational constant; (3) J2 , dynamical form factor; and (4) ro,earth's
angular velocity.
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Notice that the flattening ("shape") of the GRS ellipsoid is not one of the
adopted constants, but it can be determined from the set of four given
parameters (Chen 1981).

However, due to the observational limitations imposed by early conven-
tional geodesy, two different types of datums have been historically
implemented:

1. A two-dimensional continental horizontal datum materialized by the
curvilinear coordinates (A, <1» referred to a prescribed ellipsoid and
determined through an adjustment of all available geodetic measurements
(directions, distances, astronomic azimuths, latitudes, and longitudes),
e.g., NAD 27.

2. A completely separated continental vertical datum, which in essence
is a physical datum (i.e., ellipsoid independent) based on the adjustment of
leveling observations and the heights of selected tidal stations, e.g.,
NGVD 29 (National Geodetic Vertical Datum of 1929; see Zilkoski and
Balazs 1987).At this writing, no global vertical datums have been defined
or adopted.

The recently completed NAD 83 (see Wade 1986; Bossler 1987) is an
example of a global horizontal datum referred to the ellipsoid defined by
the parameters of the GRS 80 adopted at the XVII General Assembly of
the IUGG (International Union of Geodesy and Geophysics) held in
Canberra, Australia, in December 1979(Moritz 1980, 1984;Chovitz 1981;
Burkholder 1984).Although the NAD 83 incorporates observations deter-
mined through modern space techniques, such as Doppler and VLBI,
nevertheless the adjustment does not include as unknowns the geodetic
height of the points. Consequently:the NAD 83 remains a horizontal
datum.

With Doppler or GPS receivers, Cartesian coordinates (x, y, z)wGsn
were initially determined from the raw observations. These coordinates
can be transformed into curvilinear (A,<1>,h)wGsn using the semimajor axis
and flattening of the so-called WGS 72 ellipsoid. In this instance, therefore,
we may talk about curvilinear coordinates in the "WGS 72 datum."
Incidentally, this WGS 72 datum, although global (i.e., the reference
ellipsoid is assumed geocentric), is not based on any internationally
adopted GRS. After January 4 and 23, 1987, the precise and broadcast
ephemerides of the GPS satellite constellation were both changed to the (x,
y, Z)WGS84system. As mentioned earlier, an ellipsoid must be selected to
transform Cartesian to curvilinear (A, <1>,h)WGS84coordinates. Accord-
ingly, we may now talk about the satellite-determined "WGS 84 datum. "
The suggested ellipsoid for WGS 84 was the GRS 80 ellipsoid. However,
there is an insignificant difference between the flattenings of the two
ellipsoids, which does not affect practical results (DMA 1987).

Continental horizontal geodetic datums established a long time ago using
classical geodetic observations and procedures are nongeocentric. Ob-
served astronomic latitude and longitude values, the adopted geoidal
undulation and deflections of the vertical at the datum origin (e.g., station
MEADES RANCH in Kansas, for the NAD 27), and the selected param-
eters of the fitting ellipsoid, all influence the shifts .:lx, .:ly, .:lzof the origin
of the (0, v, w) Cartesian geodetic system with respect to the geocenter.
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Use of a simplified Laplace condition and errors in measured astronomic
azimuths introduce nonparallelism between geodetic and/or world coordi-
nate systems. The appropriate relationship is established through the
differential rotations OE,ot(!,and ow respectively, around the u-, V-, and
w-axes (see Fig. 1). Different observing techniques to determine baseline
lengths may generate a detectable differential scale factor, os, between
systems.

Clearly, if Lh = .:ly = .:lz = OE= ot(!= ow = os = 0, then (u, V,w) = (x,
y, z), except for possible distortions in the geodetic datum generally caused
by propagation of errors and inconsistencies in the reduction of obser-
vations to the ellipsoid. Due to the random nature of these distortions, they
are impossible to correct "globally" using closed-form equations. Local
(as opposed to continental) readjustment of observations or transfor-
mations, using polynomial expansions with coefficients based on local
displacements of latitude and longitude, are the most rigorous way of
transforming curvilinear coordinates between conventional horizontal
datums, such as NAD 27 and NAD 83 (Wade and Doyle 1987).

CURVILINEAR COORDINATE SYSTEMS

Due to the nature of tbe basic reference surface used in geodetic
problems, sometimes it isconyenient to employ curvilinear coordinates
instead of spatial rectangular coordinates. This is especially true when an
ellipsoid is adopted as reference.

(X-, <1>,h): Curvilinear Geodetic Coordinates

These coordinates are defined as follows (see Figs. 1 and 2):

u

u

e

Geodetic
meridian of P

FIG. 2. Geodetic and Local Geodetic Frames
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1. ~: Geodetic longitude. Angle between the plane uw and the geodetic
meridian plane of point P measured positive toward the east (or west for
the NAD 27 and NAD 83 datums); 0 :s:~ :s:h.

2. <1>:Geodetic latitude. Angle between the normal to the ellipsoid at P
and the plane uv; -Ti/2 :s:<I>:s:Ti/2.

3. h: Geodetic height. Distance along the normal to the reference
ellipsoid between P and the surface of this ellipsoid. Some authors use the
term ellipsoidal height for this parameter.

Note that a point P may have different sets of curvilinear geodetic
coordinates, each one based on independent geodetic datums (i.e., non-
geocentric NAD 27 in contrast to geocentric NAD 83).

(A, <1>,H): Natural (or Astronomic) Coordinates
Natural coordinates are strictly based on physical properties and are

unique at each point P. They include the following:

1. A and <1>:Astronomic longitude and latitude. These curvilinear
coordinates are directly determined from observations; therefore, they
refer to the instantaneous earth rotation axis and equator. The normal to
the ellipsoid is replaced by the direction of the plumb line.

2. H: Orthometric height. Also loosely referred to as elevation or mean
sea level height. It is derived from;leveling observations and gravity data;
it is the distance along the plumb line from P to the geoid. This third natural
coordinate may be replaced by the value of the geopotential at P. The
geoid is the equipotential surface of the earth gravity field that best
approximates mean sea level.

An important formula relates hand H with Ng (undulation or geoidal
height): h = H + Ng. .

In practice only reduced astronomic coordinates to the CTRS system are
used. These include polar motion corrections to the CTP. For more details,
consult Mueller (1969). The reduced coordinates include the following:

I. A*: Reduced astronomic longitude.
2. <1>*:Reduced astronomic latitude.

In the ideal case of parallelism between the (x, y, z) and (u, v, w)
systems, the transformation between the reduced astronomic and geodetic
coordinates is established through the (astrogeodetic) deflection of the
vertical components ~ and 11defined as (Heiskanen and Moritz 1967,p. 83)

~ = <1>*- <I> ,. (1)

11= (A* - ~) cos <I>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)

LOCAL CARTESIAN REFERENCE FRAMES

Local coordinate systems are Cartesian frames with their origin at the
point P of observation. When P is on the earth's surface, the local
coordinate system is called topocentric.

(x, y, z): Local (Terrestrial) Frames
Local terrestrial frames are defined as follows:
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1. Origin: Any point P(x, y, z).
2. The X-, y-, and z-axes are parallel to any prescribed terrestrial (x, y,

z) frame.

We may define.a local terrestrial frame at any point with respect to any
of the world systems mentioned before, e.g., (x, y, z)wGsn or (x, y,
Z)WGS84.

These types offrames are used to report results from relative positioning
techniques (e.g., GPS relative satellite positioning or VLBI). Because the
relative coordinates of a point B with respect to another point A (assumed
known) are determined, sometimes the notations (dx, dy, dz) or (~, ~y,
~z) are used, where dx == ~ = XB - XA, etc. This implies that the
coordinates of the forepoint (remote station) B with respect to the
standpoint (reference station) A are known in a local frame at A, which is
parallel to any terrestrial (world) system (e.g., WGS 84).

(e, n, u): Local Geodetic Frame
Local geodetic frames (see Figs. 1 and 2) are defined as follows:

1. Origin: Any point peA, <j:J,h) referred to a given ellipsoid.
2. u-axis: Normal through P to the reference ellipsoid. The positive sign

in the outward (geodetic zenith) or "up" direction.
3. e-axis: Normal to u and to th!; geodetic meridian plane (when h = 0,

tangent to the geodetic parallel of P). Positive (east) in the direction of
increasing A.

4. n-axis: Perpendicular to e and u forming a right-handed triad (when h
= 0, tangent to the geodetic meridian of P). Positive (north) in the direction
of increasing <j:J.

Notice that t\1e local geodetic frame (e, n, u) is right-handed but is
generally not parallel to the frame (u, v, w) previously defined. Transfor-
mations between different types of local geodetic systems were discussed
by Soler and Chin (1985).

Local geodetic frames are ellipsoid dependent and small rotations
around the e-, n-, and u-axes should be applied in order to transform local
vector components at any point from one datum to another. Consequently,
when local geodetic systems are used, it is required to mention the datum
to which the (A,<j:J,h) curvilinear coordinates of the standpoint refer. Also
notice that although the local (terrestrial) frames are always parallel to the
corresponding geocentric system, the orientation of the local geodetic
frame changes with geodetic position.

Related to the local geodetic frame are the following parameters (see
Fig. 2):

1. a: Geodetic azimuth. Angle in the plane of the local geodetic horizon
counted positive clockwise from geodetic north; 0 :S a :S 2TI.

2. v: Vertical angle. Angle in the plane containing the geodetic vertical
(i.e., normal to the ellipsoid of the corresponding datum) and the forepoint
measured from the local geodetic horizon to the direction between the two
points and counted positive above the horizon; -TI/2 :S v :S TI/2.

(e*, n*, u*): Local Astronomic Frame
Local astronomic frames are defined as follows:
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1. Origin: At point P.
2. u*-axis: Normal through P to the geopotential surface of P (i.e.,

tangent at P to the plumb line passing through P). Positive outwards (i.e.,
astronomic zenith).

3. e*-axis: Normal to u* and to the CTP referred astronomical meridian

of P. Positive east in the direction of increasing astronomic longitude.
4. n*-axis: Normal to u* and e* forming a right-handed system. Positive

north in the direction of increasing astronomic latitude.

The relationship between the astronomic and geodetic azimuth and
vertical angle is obtained from Heiskanen and Moritz (1967, pp. 186 and
190):

a* = a + 'TJtan <I>+ (~ sin a - 'TJcos a) tan v . . . . . . . . . . . . . . . . . . . (3)

v* = v + ~cos a + 'TJsin a (4)

where 'TJand ~ are the deflection of the vertical components defined
previously. Incidentally, the so-called Laplace's equation (or condition) is
merely ~a = a* - a.

CONCLUSIONS

When using relative positioning methods, it is general practice to
express the data in local frames with origin at the fixed station. That type
of selection obviously will establish the required relationship of the
location of any point with respect to the one assumed known.

The question that may be asked now is which of all the local frames
previously discussed is optimum or most appropriate for representing the
components of each individual baseline vector. In the writers' opinion,
available baseline components in various data bases should always be
given in a clearly specified local frame of the terrestrial type (e.g., the local
CTRS, WGS 72 or WGS 84 systems at the fixed point). The analyst
retrieving the data should then decide which other local frame is the most
appropriate to express the final results. This naturally will depend on the
particular problem under study (e.g., geodetic surveying, dynamic posi-
tioning, or geodynamics).

Local terrestrial frames (Le., frames located at the observation point and
parallel to any previously defined terrestrial frame) are difficult to visual-
ize. Even a trained observer located on the surface of the earth will have

a hard time knowing, for example, the direction of an axis parallel to the
Greenwich meridian from the observation point. To remedy this problem,
a local geodetic frame may be used to express vector components in which
the three axes will point, respectively, to the geodetic east, north, and
zenith. This selection should always be exercised when treating the short
baselines typically used in surveying practice.

The importance of local geodetic frames is crucial when the final
statistics of the GPS solutions are portrayed. Although the components of
the baseline vector in the local geodetic frame are not very meaningful for
long baselines, nevertheless, the standard or root mean square (rms) errors
of the determined position in this particular frame are very useful for
interpreting the results. Notice that a check of the errors in longitude,
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latitude, and geodetic height will provide 'better insight into problems such
as dependence of the solution on orbitiC"geometry, ionospheric and
tropospheric delays, timing errors, etc. "C1e'arly,these types of analyses
will be very difficult to interpret if the final standard errors -are expressed
only in the Cartesian global or local terrestrial frames.

ApPENDIX I. IMPORTANT EQUATIONS USED IN GEODETIC

TRANSFORMATIONS

All the equations described in Appendix I are based on the following
conventions:

J 1. All coordinate systems are right-handed.
2. Positive rotations are counterclockwise rotations as viewed looking

towards the origin of the coordinate system.
3. The geodetic longitude Ais counted positive toward the east.

Transformation from Curvilinear Geodetic (A, $, h) to Cartesian
Geodetic (u, v, w) Coordinates

{
:

}

=

{

~~:~) ~~: : ~~: ~

}
""""""""""""" (5)

w [N(l - eZ)+ h] sin $

where (A, $, h) are given in any arbitrary datum based on an ellipsoid of
semimajor axis a and flattening f, and

a

N = W principal radius of curvature in the prime vertical plane. . . (6)

Z . Z I
W = (l - e Sill $)1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (7)

eZ = 2f - f Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (8)

Transformation from Cartesian Geodetic (u, v, w) to Curvilinear (A, $, h)
Coordinates

The following noniterative (and for all practical applications, rigorous)
method is based on the work of Bowring (1985):

!

v
tan A = - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (9)

u

(w + eZa sin3 /L)/ (I-f)

tan $ = (p - e2a COS3 /L) . I~. . . . . . . . . . . . . . . . . . . . . . . . . . (10)

h = p cos $ + w sin $ - (~) (11)

I
where p = (UZ + vZ)1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (12)

I

r = (pz + wZ)1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (13)
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tan ~ = w(1~f) [1 + e:~,~~ }. . . . . . . . . . . . . . . . . . . . . . . . . . (14)

Seven-Parameter (Similarity) Transformation between Any Two
Cartesian Systems, e.g., from (u, v, w) to (x, y, z)

m ~ {E} + (I H'{ ~:w

ow
1

- 010

- OIjJ

]{

U

}OlE : . . . . . . . . . (15)

where Ax, Ay, Az = coordinates of the origin of the frame (u, v, w) in the
frame (x, y, z); 010,01jJ,ow = differential rotations, respectively, around the
axes (u, v, w) to establish parallelism with the (x, y, z) frame; and os =
differential scale change.

Transformation from Local (x, y, z) to Local Geodetic (e, n, u)
Coordinates

{:}~ lRJG} (16)

where the rotation matrix [R] may be computed from

[R] = R] G 1T - ~)R3(A + ~ 1T)

[

-sin A cos A . 0

]
= - sin ~ cos A - sin ~ sin A cos ~ (17)

cos ~ cos A cos ~ sin A sin ~

The geodetic azimuth and vertical angle of the forepoint with respect to
the standpoint can be computed, respectively, by

e
tan a. = - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (18)n

tanv= u

(e2+ n2)~ (19)

General Differential Transformation of Curvilinear Geodetic

Coordinates from Datum Dl to Datum D~ ::" :", ,
The final geodetic coordinates on datum D2'afe

Am = ADI+ dA .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (20)

~D2= ~DI + d~ (21)

hm = hDi + dh .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (22)

The differential corrections (dA, d~, dh) may be obtained from the
matrix equation
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(N+h) cos <I>dA.

} {{

dU

} {

dU

} }(M +d~) d<l> = [R]:: :-:: . . . . (23)
7 parameters Sa, Sf

where Nand [R] were given previously by Eqs. 6 and 17,respectively, and

\

{

du

} {

IlX

} [

OS

dv = Ily + - ow
dw

7 Ilz ot\!par

Ow

OS

- 010

-ot\!

]{

U

}~; : .. .. .. .. . .. (24)

I

1
{

~~

} = - [D]{~;} (25)
dw Sa, Sf

[

cos <I>cos A./W a(1 - f) sin2 <I>cos <I>COS A./W3

]

[D] = cos <I> sin A./W a(1 - f) sin2 <I>cos <I>sin A./W3 . . . . . . (26)
(1 - e2) sin <I>/W (M sin2 <I>- 2N)(1 - f) sin <I> Dl

The differential parameters Ilx, Ily, Ilz; 010,ot\!, ow; and os were defined

previously and

oii = aD2 - aDl (27)

of = fm - fDl , , , (28)

oa = oq + qDl os . . . . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . (29)
J

oa is the total change in reference ellipsoid semimajor axis when a
differential scale change os is also involved in the transformation between
datums. See Soler and van Gelder (1987). Finally

a(1 - e2)
M = ..., . . . , . . , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , (30)

which is the principal radius of curvature in the plane of the meridian.
The exact correspondence of the expression shown in Eq. 23 with the

often-quoted Molodenskii equations (Molodenskii et al. 1960) may be
consulted in Soler (1976).j

'I
"

Transformation between Local Geodetic (e, n, u) and Local
Astronomic (e*, n*, u*) Frames

{

e*

} [

IT) tan <I>

n* = - T) tan <I> 1

u* T) ~ ~~]{nd'" (31)

where <I>= the geodetic latitude of the point; and T)and ~are, respectively,
the components of the deflection of the vertical along the prime vertical
(positive east) and meridian (positive north).
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ApPENDIX II. IMPORTANT PARAMETERSUSED IN GEODETIC

TRANSFORMATIONS

Tables I and 2 show the adopted transformation parameters for several
world systems to be used in the equations described in Appendix I.

TABLE 1. Adopted Transformation Parameters for Several World Systems

aDetermined from comparison with SLR.

bDetermined from comparison with VLBI.

TABLE 2. Parameters otSome Adopted Ellipsoids

Note: GRS = Geodetic Reference System; NAD = North American Datum; NSWC = Naval

Surface Warfare Center; NWL = Naval Weapons Laboratory; WGS = World Geodetic System; a =
semi major axis (size);! = flattening (shape).
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ApPENDIX IV. NOTATION

The following symbols are used in this paper:

(e, n, u)

(0, v, w)

(x, y, z)

(x, y, z)

N =

Ng
h

H =

local (right-handed) geodetic coordinate system at any
point (>', <1>,h); e-axis points to (geodetic) east; n to
(geodetic) north; and u to (geodetic) zenith;
geodetic coordinate system. In general, a nongeocentric
coordinate system with origin at center of ellipsoid defining
geodetic datum; w-axis coincides with semiminor axis h of
ellipsoid; 0 passes through point (>' = 0, <I> = 0); v forms
right-handed coordinate system with 0 and w;
Conventional Terrestrial Reference Coordinate System
(CTRS). Earth's fixed geocentric coordinate system; z
points toward the CTP; x passes through point of zero
longitude as defined by IERS; y forms right-handed coor-
dinate system with x and z;
local (terrestrial) frame. Origin is at point of observation
and X-, y-, and z-axes are, respectively, parallel to x-, y-,
and z-axes;
orthometric height (i.e., mean sea level height or eleva-
tion);
principal radius of curvature in prime vertical plane;
undulation (i.e., geoidal height); and
geodetic height (Le., ellipsoidal height).
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