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S u m m a r y .  - I t  is shown that an a]]ine H]elmslev plane J~ is a translation plane i] and only 

i] each o] its coordinat~ biternary rings B = <]~, T, To, O, I> are linear. Addition and mul- 

tipliea~on in the ternary ring <k, T, 0, 1> are de]ined by a ~- b ~ T(a, 1, b) and a.b = 

= T(a, b, 0), respectively, and it is proved that every biternary ring of a translation plane 

has the additional properties that <k, -~> is an abelian group, <k, + ,  .> is right distributive, 

and T(a, I,  b) = To(a, 1, b). Moreover, i] a single linear biternary ring o] JC has these three 

properties, then JE is a translation plane. I t  is shown that a translation plane i8 Desargue. 

sian i] and only i] it  has a linear biternary ring such that T = T O and <k, ~-, .> is an 

a/line H#lmslev ring. Hessenberg's theorem ]or a]]ine H#Imslev planes is proved, and a 

special con]igwrational condition which is equivalent to the commutativity o] multiplication 

in  each biternary ring is introduced. 

1 ,  - I n t r o d u c t i o n .  

Affine Hjelmslev planes, henceforth called A.H. planes, are generalizations of 

ordinary afflne planes, where more than one line may pass through two distinct 

points. 

The coordinatization of ordinary affine planes from the elements of an algebraic 

structure was discussed in [1] by E. A~TtN, and in [8] by M. HALL. In the former 

approach, which is valid for Desarguesian planes only, one constructs the coordi- 

nate ring first, and then introduces coordinates. In  the lat ter  case, the approach 

is reversed, and is valid in any affine plane. The coordinate ring in the Hall construc- 

tion is called a Hall te rnary  ring. 

Artin's ideas were generalized by KLINGENB:EI~G in [10]. Lii~]~BURG, in [14], and 

L o ~ v , R  and LANE, in [12], extended these notions. However, early attempts to 

coordinatize arbitrary A.H. planes by a generalization of a Hall ternary ring were 

unsuccessful. KLIG:ENBERG, in [10], introduced coordinates for points from an alge- 

braic structure which was essentially a generalization of a double loop, but he had 

to assume tha t  the plane was Pappian in order to coordinatize the lines; cf. [10], 

S 5.14, In [6], Drake coordinatized a subclass of A.H. planes, called radial H-planes, 

by H-modules, generalizing the concepts of SPERNE~ in [15]. Finally, CYGA~OVA, 

in [5], and the author, in his Ph.D. thesis, independently introduced coordinates 

into an arbi t rary A.H. plane over a generalized ternary ring called an H-femur. 

Moreover, in [5], it was shown tha t  an A.H. plane can be constructed over every 

(*) Entrata in Redazione il 16 ottobre 1973. 
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H-ternar. Recently, BACON, in [4], eMled an H-ternar a biternary ring, and showed 

that  biternary rings and A. H. planes are categorically equivalent. 

The purpose of this paper is to study the interaction between the geometric pro- 

perties of an A.tt. plane and the algebraic properties of its biternary ring, thus gene- 

ralizing the results of HALL in [8]. 

In Section 2, we define an A.H. plane and introduce coordinates over a biternary 

ring B ~ <k, T, To, 0, 1}, where k is the set of points incident with a lille of the 

plane, T is a ternary operator, To a partial ternary operator, and 0 and I are distinct 

points. Every partial ternary operator can be extended to a ternary operator on It. 

The operator T generates in the usual fashion an addition (+)  a, nd a multiplication (.). 

We show tha t  the neighbour relation restricted to k is a congruence on k; i.e., a ~  b~; 

i = 1, 2, 3, implies T(al,  a2, as) ,~ T(bl, bo, b~) and To(a1, a2, a3) ~ To(b1, b~, b3). We 

use this result to obtain the algebraic properties of < k , + ,  .}. The structure 

of (/~, + ,  • } is essentially the same as tha t  of the algebra introduced by KLI~GE~- 

BEI~G in [10]. The operator :To also generates an addition, Q, and a multiplication, Q. 

Later, we consider conditions under which T, + ,  and • coincide with To, (~, and Q, 

respectively. For ordinary planes, T and To always coincide. 

In Section 3, we show tha t  an A.tL plane is a translation plane if and only- if 

each biternary ring is linear, i.e., T(a, b, e) = a.b + e and To(a, b, c) = a Q b Q c. 

M:oreover, we show tha t  translation planes are exactly the ones which can be coor- 

dinatized by linear biternary rings with the properties (i) <k, + } is an abelian group, 

(ii) </c, + ,  • } is right distributive, (iii) T(:I, a, b) == To(l, a, b). The translations, in 

this case~ are the mappings (x, y) -~ (x + a, y + b). 

In Section 4, a translation plane is called Desarguesian if for any collinear triple 

(P, Q, R), where P is not a neighbour of Q, there exists a dilatation fixing P and 

mapping Q into R. This definition of Desarguesian is weaker than of KLI~G~BE~G 

in [11]. An example of a Desarguesian plane which is not Desarguesian in the sense 

of Klingenberg was constructed in [12], 5. Given a translation plane, we show that  

if dilatations exist for collinear triples (PQR) such that  P is a neighbour of neither Q 

nor R, then in each biternary ring, T and To coincide, and <lc, + ~ • } is an associative 

ring. In  fact, <k, + ,  .} is an A.I-I. ring; cf. [12], 2.9 In view of [12], 3, the plane 

is Desargaesian if there exists a linear bitern~ry ring B _~ <k, T, To, 0, 1> such tha t  

T = To and <k, + ,  • > is an A.H. ring. In  [10], Klingenberg showed that  his algebra 

is a commutative A.tt. ring if the plane satisfies the minor Desarguesian and the 

Pappian configuratioI1 theorems for A.K. planes. He did not consider a Desargussian 

configuration theorem. This was introduced in [13] and was shown to be equivalent 

to the above mentioned weak definition of Desarguesian. 

In Section 5, we use Klingenberg's results and those of our earlier sections to 

obtain an algebraic proof of a generalization of Hessenberg's theorem for A.It. planes. 

This was done for ordinary planes by KLI~CGE~]3]~G in [9]. Finally, we introduce 

a special Pappus configur~tional condition and show that  it is equivalent to the 

commutativity of multiplication in each biternary ring. 
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2.  - C o o r d i n a t i z a t i o n  o f  a n  A . H .  p l a n e .  

In  this section, we present ,  for the convenience of the  reader ,  the  essential ideas 

f rom [5] and  the  au thor ' s  thesis. 

An A.H. plane is an incidence s t ruc tu re  wi th  parallelism, {P, L, I ,  H }. Here  P 

and L are  sets, I c P x L ,  and It c L × L  is an equivalence relat ion.  The elements 

of P[L] are points [lines] and are denoted  by  P,  Q, ... [4 m, ...]. We wri te  lHm for 

( l ,m)e t [  and  PIl  for  ( P , l ) e I .  P, QI1 shall me a n  PI1 and Qll. We pu t  gAh~- 

= { P e P I P I g  , h}, gVh = {PePJPIg  or PIh}. PIgVh shall mean  Pig or PIh. I f  

A c P  and  l e  L, pu t  A A l  = { P e A t P I I  }. tAI is the  eard inMity  of the  set A. 

Define (P, Q) e ~ p  if there  exist  l, m e L, l ~ m, such t h a t  P, QI1, m. We usually 

wr i te  P~-.pQ for (P, Q ) e ~ . .  Define (1, m)e~"L (or l~Lm)  if for every  PIl  the re  

exists QIm such P ~ p  Q and for every  Q][m the re  exists PI1 such t h a t  Q .-~p P.  I f  

the re  is no danger  of ambigui ty ,  we shall wr i te  P ~-- Q for P ~--p Q and t ~ m for 1 ~L  m. 

I f  P ~  Q[l-~ m] we call P and Q[l and m) neighbours. I f  P and Q[1 and m] are not  

neighbours,  we wr i te  P ,  Q[l * m.]. 

An incidence s t ruc ture  with p~rallelism, 3~ -=- {P, L, I ,  ]l), is called an amine 

Hjelmslev plane (or an A.H.  pla~e) if i t  satisfies the  following sys tem of axioms. 

(A1) For  any  two points  P and Q there  exists l E L such t h a t  P ,  QI1. We wri te  

I = P Q  if P * Q .  

(A2) There  exist  P~, P2, Pa e P such t h a t  P~P~- ~ P~P~; i # j ¢: k # i; i, j, I¢ = 1, 2, 3. 

(A3) ~ p  is t r ans i t ive  on P .  

(A4) I f  PIv, h, t hen  v ~ h iff tvAht = 1. 

(A5) I f  v ~ h; p, RIv; Q, Rib; and P ~ Q ,  then  R ~ P ,  Q. 

(A6) I f  v ~ h ;  j , v ;  Pig, j; and QIh, j; t h e n  P ~ Q .  

(AT) I f  vIlh; PI j ,  v; and v * j ;  then  j ~ h and there  exists Q such t h a t  QIh, j. 

(AS) For  eve ry  P e P and  eve ry  1 e L, there  exists a unique line Z(P ,  l) such t h a t  

PIL(P,  l) and ll[Z(P , 1). 

The set H g =  {leL]g]ll } is a pencil of L. We wir te  ll~-.pII2 (or lI~..~II~) if 

the re  exist  l~ell~ and 4eH~ such t h a t  l ~ 4 .  Any  set of t h ree  points  which sa- 

t isfy the  condit ions of (A2) is a triangle. 

:Let P and L be the  quot ien t  spaces of ~ p  and ~L respect ively;  ZP and ZL will 

denote  the quot ien t  maps of ~ p  and ~L respectively.  I f  P e P and t e/~, we define 

P I i  iff the re  exists S e P such t h a t  Sit  and  S ~ P.  I f  II is the  paral lel ism relat ion 

for o rd inary  affine planes, then  the  incidence s t ruc ture  J~ = {P, L, I ,  [[} associated 

with JE in an o rd ina ry  affine plane. I f  1Am = ~, t hen  ltl~; el. [14], Sect. 2.6. 

1 2  - .A~nali di ~Iatematica 
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Select a t r iangle  {0, X, :Y} of 3£. P u t  g = OX, h = OY,  E = L (X ,  h ) A L ( Y ,  g) 

and  k = OE. The elements  of k are  denoted  by  a, b, c, ... : The  lines g~ h, and k are 

called the essential lines of the  t r iangle  (0,  X, Y}. I f  P is any  point ,  then  

x ---- kAL(P,  h) ,  y ---- k A L ( P ,  g) 

are the coordinates of P.  The poin t  wi th  the  coordinates  x and y shall be denoted 

by  P(x,  y), or s imply by  (x, y). Then P(x,  y) I k  if and only if x ---- y, and x = P(x,  x). 

We pu t  E = I  and 0----0. Call L,----{teLiIIz . .~II~ } and L~- - - - { l eLI l I~ . l I~} ,  the  

sets of lines o] t h e / i r s t  and second kind, respectively.  I f  1 e L, ,  then  the  elements 

and v of k defined by  

L(o, 1)A YE = P(u ,  1) ,  l a g  = P(v, O) 

are  the coordinates of l, and if l e L 2 ,  the  e lements  m , n  defined b y  

L(O, 1 ) A X E  = P(1, m ) ,  1Ah = P(O, n) 

are the  coordinates of 1. 

(m, n) shall be denoted by  l[u, v]l (l[m, n]~.), or s imply b y  [u, v]l ([m, n]~). 

refers to a line whose k ind  is not  specified. 

We summarize  the  basic proper t ies  of coordinates;  cf. [5], 2. 

2 . 1 .  M 

2 . 2 . -  

2 . 3 . -  

2 . 4 . -  

2 . 5 . -  

2 . 6 . -  

Next ,  

The line of the  first (second) k ind with the  coordinates u, 

t[m, n] 

l[m, n] e L1 implies m,-.  O. 

7[m, n]_~Al[J, v],l = 1. 

l:)(a, b) .-~ P(c, d) .¢:>a,~ c and b..~ d. 

l[m, n],-. l[u, v] ¢=>the lines are o/ the same kind~ m.-~ u, and n ,~  v. 

l[m~ nJlll[u, v]<=>the lines are o/ the same kind, and m = u. 

I] l[m, n]Al[u~ v] == O, then the lines are o/ the same kind and m, - ,u .  

we introduce the not ion of a b i t e rna ry  r ing or an H- te rna r ;  cf. [4], [5]. 

2.7. DEFINITIONS. 

(a) An algebraic sys tem R ~ <R, T, O, 1>, where R is a set, T is a t e rn a ry  

operator ,  and 0, 1 are dis t inct  elements of R, is a ternary ring if the  following axioms 

hold. 

(~o) T ( m , O , n ) = n - - - - - T ( O , m , n ) ,  for allm, neR. 

(~1) T(1, m, O) = m ---- T(m,  1, 0), for all m e R .  

(73~) T(a,  m, x) ---- b is uniquely  solvable for  x, for  all a, m~ b e R. 
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The elements 0 and 1 are called the  zero and unit of R, respect ively;  cf. [3], 2.5. 

(b) I f  R ~ (R, T, 0, 1} is a t e r n a r y  ring, t h e n  a t  b = T(a, 1, b) and a.b == 

= T(a,  b, 0) are the assoeiated addition and multiplication of R, respectively.  The 

system A(R)  ~ (R, ~ , . ,  0, 1} is the  associated algebra of R. R is linear if T(a, b, c) = 

----a.b-~ e. 

(e) I f  R is a t e r n a r y  ring,  then  a # 0 is a right (te]t) divisor o] zero if the re  

exists b # 0 such t h a t  a.b = O(b.a -= 0). D+(D_) is the set consisting of 0 and the 

r ight  {left) divisors of zero. D o =  D+(~ D_ is the  set of (two-sided) divisors o] zero. 

I f  a, b ¢ R, we define a ~ b if and only if eve ry  x which satisfies the  equat ion a = 

= T(x,  1, b) is an  e lement  of D+. 

(d) To is a partial ternary operation of R if and only if To is a funct ion  f rom 

R × D+ × R  into R wi th  the proper t ies  

(i) To(m, O, n) = n = To(O,p, n) for  p e D +  and m, n e R .  

(ii) T0(1, u, 0) = u for u e D+. 

(iii) To(a, m, x ) ~  b is uniquely  solvable for x, for all (a, m, b ) e R × D + × R .  

(e) An algebraic sys tem B ~ <R, T, To, 0, 1} is a biternary ring iff the  fol- 

lowing axioms hold. 

(ill) t t  _~ <R, T, O, 1} is a t e r n a r y  ring. 

(fls) ~ is an equivalence re la t ion on R. 

(fiB) To is a par t i a l  t e rna ryo  pera t ion  on R. To (b, u, r ) ~ - v  if (b, u, v ) e  R × D+ ×t¢. 

(fi4) T(x,  ml,  n l ) =  T(x,  m2, n2) is uniquely  solvable for x if and only if ml T too.. 

(fls) The system T ( a ~ , x , y ) =  b~; i = 1 ,2 ,  uniquely  determines the pai r  x, y if 

a~ ~ as. I f  a~ ~ as and b~ T bs, t hen  the  system cannot  be solved. I f  al T as 

and b~ W b2, t hen  x e D + .  

(fiG) The sys tem y ---- T(x,  m, n) and x = To(y, u, v), where u s D+, determines uni- 

quely  the  pa i r  x, y. 

(fl~) I f  a~"~as and  b~'~b2 and (a~,b~)sZ=(a~,b2), t hen  one and only one of the 

systems T(a~, x, y) = b~; To(b~, u, v) = a~; i -= 1, 2, is solvable wi th  respect  to 

x, y;  u, v. The solvable sys tem has at  least  two solutions; and x~ W x2, Yl W Y2; 

or u~ W u2, v~ W v2, according as the  fo rmer  or l a t t e r  sys tem is solvable. 

(fls) The sys tem To(b~, x, y) --~ a~; i = 1, 2, 

(i) de termines  uniquely  x e D +  and y e R  if bj ~ bs and a~ W a~, 

(ii) has no solutions for x and y if al T a~. 



176 J . W .  LORIN_~R: Coordinate theorems for a/fine Hjelmslev planes 

(fl~) I f  To(b, u~, v~) ----- a; i = 1, 2, then vl ~ v2 and there  exists at least  one pair  al, 

bt such tha t  a l =  To(bi, ui, v~), i = 1, 2. 

(fl~0) The function T induces a function T in R/,~ and (M/ ,~ ,  T, ~, T) is a t e rna ry  

field with 0 = {z]z ,~ 0} and i --- {zlz ~ 1} in the  sense of M. Hall ;  cL [8]. 

The following two propert ies  are immediate  consequences of (~;~), (~:), and (fis). 

(fl~) T(x, m, n ) =  b is uniquely solvable for x if m T 0, for all m, n, b e R. 

(fl~) T(a, x, n ) =  b is uniquely solvable for x, if a T 0, for all a, n, b e R. 

If ~ is the ident i ty  relation, then D+ = {0}, To coincides with T, and (R,  T, 0, 1)  

is a Hall  t e rna ry  ring; el. [8]. 

2.8. DE~'~ZTI0~. - Let  {0, X,  Y} be a triangle. Define 

2.8.~. - T(~, m, ~) = kA1;(L(P(O, n), 0~'(~, m))AL(~, h), g), ~or (x, m, n e  k). 

2.8.2. - To(y, m, n ) =  kAL(Z(P(n,  0), OP(m, 1))AL(y, g), h) for (y, m, n ) e k × D + ×  k. 

I t  was shown in [4] and in the  author ' s  thesis, t ha t  B ~ @, T, To, 0, 1 )  is 

b i t e rna ry  ring, 

P(x, y)II[,u v]~ if and only if x = To(y, u, ~), 

and 

P(x, y)II[m, n]~ if and only if y = T(x, m, n) .  

B is the  biternary tiny of J¢ with respect to (0, X ,  Y}. R ~ (k, T, 0, 1)  is the 

ternary ring o/JE with respect {0, X,  Y),  and A(R) is the  associated algebra of R. Notice 

tha t  To can be defined for all (y, m, n ) e k  and tha t  Ro--= @, To, 0, 1)  is the  ter- 

nary  ring of Jg wi th  respect  to {0, Y, X}. 

The main  result  of [5] is given below; also cf. [4]. 

2.9. TJ~ZEOREM. -- :Let B be a biternary ring, and let JE(B) ---- (P,  L, II, I )  be the 

incidence structure defined by 

P-----RxR; 

L : L1 t j L~ , 

where L1 consists oJ sets of the form 

[u, v/l= {(to(y, u, ~), y):yeR},  (u, v)eD÷xR, 

and L~ consists of sets of the form 
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[m, nJ]l[u , v] i] and only i] the lines are of the same kind and m : n; and 

incidence is given by set-theoretic containment. 

Then JC(B) is an A.H.  plane. 

I n  the  res t  of th is  paper ,  B, R and A(R) will refer  to the  s t ruc tures  of 2.8 wi th  

respec t  to a fixed coordinate  sys t em {0, X, Y} of a given A.H.  p lane  J¢. 

2.10. REd,ARK. - ( 0 ,  X, Y} is a triangle o] J¢ and P(a, b ) :  P(~, b); lira, n ] : l [ ~ ,  ~]. 

P ~ o o F . -  The first s t a t emen t  is clear. !qow let  ( : ,  y) be  the  coordinates of 

P(a, b). Then 

~ :  ~AL(_P(a, b), h )=  zL(k)/'\ ~L(L(-P, h ) ) =  Zp(kAT~(P, h)) : )3.(a)= ~ .  

Similarly,  Y = 6 and l[m, n] -- l[~, ~]. 

2.11. L ] ~ : : .  - D+ = 0 (cf. [5], Theo rem 16). 

PROOF. - L e t  n G D+. Then  the re  exists  m ¢ 0 such t h a t  n . m  = 0. Hence  (0, n) 

as well as (0, 0) lies on bo th  [0, 0]: and [m, 011. Thus (0, 0) ~ (0, n) and  so 2.3 implies 

n ~ 0 .  

Conversely,  assume n ~ 0 .  Then  (0, n ) ~  (0, 0) and  so the re  exists  m ¢ 0 such 

t h a t  [m, 01i pusses t h rough  b o t h  points .  Thus  0 = n .m  and  so n G D+. 

2.12. TH~O]ZE~:. - Let B : (OE, T, To, O, T), where To : T-~×:~×~, be the biter- 

nary ring o] JC associated with (0, X,  :[}. Then the map Z~: B-->B(a-->~) is a bit- 

ernary ring epimorphism. Hence ~"x. ~ (k× k) is the congruence associated with this 

homomorphism, i.e.~ T(a~ a~, a3),~ T(b~, b~, b3 i] a~--~ b~; i = 1, 2, 3; and similarly 

]or To. Moreover, ,..~p N (k × k) : 57 and B/~ ~--- ~B. 

PRooF. - Clearly )~k is surject ive.  We mus t  show t h a t  Z~T = Tg~, and  g~T o = 

: T0z~ res t r i c t ed  to k×D+×k.  Since 7~ :  (Ze,)/L) is a h o m o m o r p h i s m  and g ~ =  

g~]~, 2.10 yields 

m, n ) ) :  n), O (1, m))AL(x, h), g)) 

: n), OP(1, m))AL(x, h), g)) 

= O~AL(L(~(~, n), 0~(~, m))AL(~, ~), g) 

= ~(x,  m, n) = Tx~(x, m, n) .  

I t  t hen  follows t h a t  T(al, a2, as) ,'~ T(bl, b2, b~) if a~,~b~; i = 1, 2, 3. The  analo-  

gous resul t  for To is verif ied in the  same fashion. Hence  ~ p  n (k × k) is a congruence 

on B. We nex t  show t h a t  57 : ~ p n  (k×k). B y 2 . 1 1 ,  i t  follows t h a t  a 57 b implies  

a,~b. Conversely,  assume a ~ b .  P u t  M = L((a  ,b), k)Ah and  0 = kAL(M, g). Then 

f rom 2.8.1, we see t h a t  a t  c : b. Now (a, b) ,.~ (a, a) b y  2.3, and  so L((a, b), k) ~ k 
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Thus 0--~M and so 0,-~e. By  2.11, a ~ b .  Finally, B / ~ _ ~ B  by  [7], p. 57. 

The fact  t h a t  -~ is a congruence yields the following corollary. 

2.12.1. - COI¢OLLA~¥. - D +  is a subalgcbra o] B, T(k, D+, D+) k) T(D+, k, D+) _c D+, 

----- aq-  D+, and B / D + ~ B .  

Using the fact  t h a t  ~ is a congruence, one can obtains horter  algebraic proofs 

of m a n y  of the results in [5]. We give examples in 2.13 and 2.14. 

2.13. L ~ A . -  I /  P(al ,  b~)-~ P(a2, b2), then P(a~, b~)P(a2, b2)~ L~ i] and only i] 

a l  " ~  a 2  • 

PROOF. - Suppose l[m, n]~ is the given line. Then m, - ,0 ,  by  2.1. Also 

at-~ To(bi, m, n); i---- 1,2.  Since ~ is a congruence, To(hi, m, n) ~ To(hi, O, n); 

i = 1, 2. Then 2.7 (d) (i) implies a~--~ a~. Conversely, if a~ ~-a~ and l[m, n]~ is the 

given line, then  T(a~, m, n) ,-~ T(a~, m, n) and so b~ ~ b~. Hence P(a~, bl) ,,~ P(a~, b~); 

a contradiction.  

2.14. 

(1) 

(2) 

(3) 

(~) 

(5) 

(6) 

(7) 

(s) 

TI~EORE~. - A(R)  has the ]ollowing properties. 

(k, ~-} is a loop with neutral element O. 

a . O - ~ O . a : O  and a . 1 - - l = l . a - ~ a ,  ]or all aEk .  

I~ a .~ 0 and b ~ k, then there exist unique x and y such that xa ~ b and 

ay = b. 

I] x,~ O and x y = x z  or yx = z x ,  then y = z .  

I] x ~ 0 and xy,-~xz or yx,-~zx, then y,.~z. 

0~- D + :  D_---- Do and Do is an ideal o] A(R); c]. [5], Theorems 16,17. 

I] abeDo,  then a~Do or beDo;  el. [5], Theorem 15. 

0 =  ~+~-~_, where ~1+(~_) is the set o] non-right (non-left) multiplicative 

inverses o] A(R) .  

P~ooF. - (1) The unique solutions of x ~  a - .  b and a t  y----b are 

and 

x ---- k / \L(s ,  h) ,  where S = L((O, a), k)AL(b,  g), 

y =  b), k(Ah, g). 

Clearly, a~-  0 ---- 0 -[- a = a, for all a~/~, by  (~0) and (~1). 

Assertion (2) follows ~rom (~6o) and (~61), and (3) and (4) are consequences of (fin), 

(fi12), and 2.12. Assertion (5) follows from the application of (4) and 2.12 to the l~all 

t e rnary  ring B.  
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(6) F r o m  2.11, we have  (}-= D+. ~Now we show t h a t  i ) = D _ .  Le t  a,-~0. 

Then  (1, 0 ) ~ ( 1 ,  a) and so 0(1, a)~g .  Hence there  exists M e  0, wi th  MI0(1,  a), 

g. Thus M = (c, 0) for some e ¢ 0, and e .a  -- 0. This proves t h a t  0_c D .  Conver- 

sely, if a~D_ ,  then  there  exists b % 0 such tha t  b . a =  O. I f  a~O, then  (2) and 

(4) imply b ---- 0; a contradic t ion.  Final ly,  by  2.12.1, 0 is an ideal  of A(R). 

(7) Le t  ab~Do. By (6), Do----0. Since a .0  = 0, we have a . O ~ a . b .  I f  a ~ 0 ,  

then  (5) implies be(3. 

(8) By  2.14 (3), ~+c~.  Conversely, if x ~ 0  and xy----1, then,  f rom the con- 

guence -~, we obta in  xy,.~O; i.e., 1 ~ 0 ;  a contradict ion.  

2.14.1. - CO~OLLARY. -- A(R)/Do_~ A(R). 

2.14.2. COI~OLLARY. - JC is a proper A.H. plane if and only i] the disjointness rela- 

tion is strictly liner than the parallel relation. 

P~ooF. - Le t  Je be proper .  Then  the re  exists m e R such t h a t  m ~ 0 and m ¢ 0. 

By  2.5, [0, 1]~ ~ [m,  0]~. We shall show t h a t  Ira, 0]~A[0, 1]~---- 0. I f  (x, y) lies on 

bo th  lines, t hen  xm = 1 and so 0 ~ 1 ;  a contradic t ion.  Conversely, suppose there  

exist  ] and 1 such t h a t  ]~(l bu t  ]A1 ~- O. F r o m  2.5 and 2.6, ] ---- [m, n] and 1 ---- [u, v] 

are of the  same kind,  m,,~u, and m % u .  Hence  Je is proper.  

2.14.3. CO:KOLLARY. - -  ~] a , ~  O,  then the unique solution o] ax = 1 is 

x = kAL(XEAO(a,  1), g) .  

2.15. COY)lENT. - -  In  [10], Klingenberg in t roduced coordinates into an associated 

A.H. plane of a project ive  plane e~ in the  following manner .  A set {Po, g~ g'} is a 

basis of Jg if gag '=  Po. Geometr ic  notions of addi t ion ( -~ )and  mult ipl icat ion (.) 

were then  in t roduced into g, forming the algebraic s t ruc ture  R ~ <g,-~, .}. I f  Je 

satisfies the  minor  Desarguesian p rope r ty  D1, t hen  <g, -~ } is an abelian group and a. 

• (b + e) = a -  b -~ a.e.  Symmetr ica l ly ,  he ob ta ined  a second s t ruc tu re  R'  ~ <g', @, (D> 

on the  points  of gq Using R, he in t roduced  coordinates  (x, y) for an a r b i t r a r y  point  P,  

and [b, e] for a line 1 such t h a t / / ~  ~ / / ~ .  I f  J~ has the  p rope r ty  DI, then  (x, y) lies 

on [b, c] p rov ided  t h a t  by ~-x  = c. Symmetr ica l ly ,  we can use R '  to  coordinat ize 

points and lines m where  I I ~ I I ~ ,  such t h a t  (x', y')I[b', c'] when b ' ( 3 x ' @ y ' =  e' 

where  x'---- g'AL(x,  (1, 0) (0, 1)). I f  D~ holds, t hen  the  mapping  x-->x ~ f rom R to  

R'  is an addi t ive  abelian group isomorphism. Using this fact ,  i t  is possible to prove 

t h a t  the  transla.tions of JC are  the  maps  (x, y) -+ (x ~ a, y 47 b). Hence  we can show 

tha t  Je satisfies D1 if and only if the  t ransla t ions  form a t rans i t ive  group. At  this 

poin t  in the  construct ion,  one is eoordinat izing the  plane b y  two algebraic struc- 

tures  R and R'. I f  t he  plane is also Pappian ,  t h e n  R and R'  are commuta t ive  rings 

and the  mapping  x -~ x' is a r ing isomorphism. One can then  coordinat ize the  ent i re  

plane by  the elements of R only. 
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In  our approach,  using b i t e rna ry  rings, we have coordinat ized the plane with 

the single s t r l le ture  B. We shall now s tudy  the effects of the  minor  Desarguesian 

configurational  conditions on B and prove  t h a t  for Desarguesian planes, B and A(R) 

coincide; i.e:, T(a, b, e) = To(a, b, e) = a . b +  e. In  a for thcoming paper ,  the au thor  

has verified this resul t  for al terna*ive project ive  Hjelmslev planes; i.e., project ive 

H-planes which satisfy a project ive  (instead of an affinc) minor  Desarguesian con- 

f igurational  condition.  

3.  - T r a n s l a t i o n  p l a n e s .  

In  this section, we shall use algebraic propert ies  of b i t e rna ry  rings to derive two 

equivalent  conditions for an A.t t .  plane to be a t rans la t ion  plane. We generalize 

the  fac t  t h a t  an o rd ina ry  plane is a t rans la t ion  plane if and only if each t e r n a r y  r ing 

is l inear and forms a quasifield under  the associated addi t ion and multiplication. 

3.1. DE~I~ITI0~ (cf. [10], D 12). - A minor Desarguesian con/iguration 01 is a 

set of sic points ,  P~, Q~; i = 1 , 2 , 3 ,  and eight lines, p~, g~; i : 1 , 2 , 3 ;  ql, q~, sa- 

t isfying the  following conditions; gl, g2, and g3 belong to a pencil p~, Qslg,; i = 1 

2 , 3 ;  P~, Pj lpk ,  where ( i , j , k )  is a pe rmuta t ion  of (1 ,2 ,3 ) ;  QI, Qslq2; Q2, Q3Iql; 

p1!lqi, p~llq,; pl ,  p~ "~ vs; and p~ ~ P~. 

F r o m  [10], S 4.3, we have  the  following result. 

3.2. LE)I~A. - Let C1 be a minor Desarguesian con]iguration. Then 

(a) pt ~v2; p ~ v i ;  qi'~v~, vs; q~'~Vl, g3. 

(b) I] vl ~ v2, then Q~ ,~ Q2. I] v~,-~v~, then pa~v~ ,  v~; Pa ~,'p~, P2; P3 ~ P1, 

_P~; v s ~ g l ,  gs; Qs~Q~, Q2; p~ ~p2; q~ ~q2; and Q ~ Q ~ .  

We observe t ha t  3.2 (b) ensures tha t  there  exists a unique line qs through Q1 and Qs. 

3.3. LEI~[:~iA. - Let C1 be a minor Desarguesian con]iguration. Then Pa "~ gs. 

P~0OF. - F i r s t  suppose t ha t  gl ~ g2. I f  Pa ~ g3, then  (A7) implies t h a t  P3 ~ gl, 

g~, and so g ~ g ~ ;  a contradict ion.  ~ex t ,  assume t h a t  gl,~g~. Fro m 3.2, p a n g s ,  

g~ and gs ~ gl, g,. Hence ps ~ gs. 

3.4. D ~ i o ~ .  - J~ has the p rope r ty  DI if for each minor  Desarguesian confi- 

gura t ion C1, P3llq~. 

3.5. THEOREm. - The ]ollowing are equivalent. 

(1) Every ternary ring o] JC is linear. 

(2) JC has the property D~. 

(3) Je is a translation plane. 
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PROOF. - Assume tha t  every  t e r n a r y  r ing of JC is linear. Le t  C~ be a minor  Desar- 

guesian configuration. F r o m  3.3, g3 ~ P2, and so ga ~ L(Ps, Ps). Let  g -- L{Ps, Ps). 

Choose k such t h a t  P s l k  and k ~ gs, g, using Satz 2.3 of [14]. Thus gs, g, and /¢ 

m ay  be regarded  as the essential lines of a coordinate  system {0, X~ Iz}, where Ps 

-=0, gs= O Y = h ,  and  k =  OE. Le t  T be the  ~ssoei~ted t e rn u ry  opera tor  of 

{0, X ,  Y } .  Then we see t ha t  Q2 = (0, n), p2 = [m~, 0]3, p~ = [m2, 0]~ for some n~ 

m~, m2e k; and q2 = [ms, n]s and q~ = [ms, n]2. I t  follows t h a t  P~ = (x, xml), Q~ == 

= ( x ,  T(x,  ml,  n)), t)3 = (a, am~), and Q~ = (a, T(a, m~, n)). 

:Now Ps[Ig implies xm~= am2. Fro m the  l inear i ty  of T, we obta in  

T(x,  ml, n) ----- x'm1+ n = am2+ n = T(a, ms, n) . 

If Hence  Q~ and Q2 have  the  same y-coordinates ,  and so QIQ~,lg. 

I t  follows from [10] and [11] t h a t  (2) implies (3); cf. 2.16. Fina.lly, we show tha t  (3) 

implies (1). 

h 

%--0 

P2=(a'am) P3 P1 =(am,am] 

QZ =(am,am+n) 

Q3-(o,n) 
FIGURE 1. 

Choose a t e r n a r y  r ing <OE, T, O, 1} associated wi th  (0, X ,  Y}. P u t  / ) 3 =  0, 

Qs = (0, n), P.2 = (a, am), P1 = (am, am), Q,-~ (am, am-~ n), Q2 ~- (a, T(a, m, n)). Con- 

sider Pl = [m, 0]3, ql = [m, n]2, P2-- [1, 0]3, q2 = [1~ n]~, and Ps = L(P~, g). In  view 

of (~o) and (~61), we m a y  assume t h a t  m ¢ 0, 1 and n ¢ 0. 

Le t  ~ = T 2 . ~ .  F r o m  2.2, Pl ,P~ ~ h .  Hence P ~ = Q 2  and P ~ - Q 1 .  Now 

T(a, m, n) = am -t- n 

if and only if QIlL(Q2, g). But  P~IL(P~,  Ps), and so our resul t  follows. 

Our object ive now is to character ize  t rans la t ion  planes in terms of the i r  t e r n a r y  

rings. 

Before we begin this  task,  we require  the following general izat ion of an exercise 

found in [2] p. 74. 



182 J . W .  L O ~ ] ~ R :  Coordinate theorems /or a/line Hjelmslev planes 

3.6. DEfin i t ion ' .  - A configuration C~ consisting of eight lines l~ m, p~, p~, p~, 

p~,  p ~  p~ ,  and six points  P~ Q~; i =- 1, 2, 3, is culled ~ parallel Pappus con]igu- 

ration if the  following conditions are satisfied: 

(i) lltm and l ~ m. 

(ii) P~I1 and Q~Im; i = 1,2,  3. 

(iii) P~, Q~Ip~; i , j  = 1, 2, 3. 

(iv) P,~IIP~s ~nd P~IlIPa~: 

Q: Q2 Q~ 

FIGURE ,~. 

- m  

3.7. THEOI¢]~. - I] JC is a translation plane, then ]or any parallel Pappus con]i- 

guration Ca, we have p~ I!P3a: 

P~ooF. - Le t  ~ =  ~p~Q~ and v~= v o ~ .  By  (i) of 3.6 and Satz 2.5 of [14], we 

obta in  P ~ Q for each PI l  and QIm. Hence  P~ ~ Q~, p~. ~ l und P33 ~ m. Hence 

P~ = Q8 and Q[~ = P2. Thus Q1 '~' = Q~. Since the t rans la t ions  form an abelian group, 

we h~ve P ~ = Q a = Q ~ '  and P ~ = P ~ =  P3; cf. [14], Satz 3.7. Thus P~ .... 

"IL(Q~ "~', P~I), or P83 I!P~I. 

3.8. THE01CE~. - I] JC is a translation plane, then every biternary ring B 

<k, T~ To, O, 1} o/ JC has the ]ollowing properties, 

(a) <k, T, O, 1> and <k, To, O, 1> are linear. 

(b) <k, Jr-} is an abelian group. 

(c) ( a - ~ b ) . c = a . c - ~ b . e  and (aOb)  Q e = a Q e O b O c  /or all a,b, e ek .  

(d) T(1, a, b) = To(l, a, b). 

Moreover, i / a  single biternary ring o /an  A.H. plane JC has the properties (a), (b), (e), 

(d)~ then JC is a translation plane, and the translation group 5 consists o/the mappings 

(P(x, y))~ = P ( x  -~ a, y-~ b), /or a, b ~ k. Also, <k, -4:-> is isomorphic to 5H~, where 3 ~  

is group of t ranslat ions with the d i r ec t ion / /~ ;  cf. [14], p. 273. 

We prove  the first p a r t  of our theorem in the  following sequence of Lemmas  in 

which Je is assumed to be a t rans la t ion  plane. Tp~ or ~(P, Q) will denote  the  transla-  
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t ion m a p p i n g  P to Q; in pa r t i cu la r ,  for a given coordinate  sys t em of J~, ro~ is the t rans-  

l a t ion  m a p p i n g  0 to a. 

3.9. LEM)IA. - roaVob= to.a+ b. 

PROOF. - S i nce / / k  ~ / / ~ ,  Hh~ we read i ly  ver i fy  t h a t  ro~ = r(0b).(a.~+b)= rb.~+ b, Then 

" f0 .a+b  ~ Tb.a+bTOb ~ TOaTOb" 

3.10 LE:~IA. - I ]  be'~o, then b + l ,  b - - l ~ D o .  

PROOF. - Suppose b, b + 1 eDo.  Then v~ 1 nad  ~o.b+l are  neighbour  t rans la t ions  

b y  2.14. Also, robTol = Vo.b+l b y  3.9. Thus vol : v~1~o.~+1 is a neighbour  t rans la t ion ,  

and  so 0 ~ 1 ; a contradic t ion.  Similar ly ,  b - -  1 ~ Do. 

3.11. L]~)[]~IA. - <k, + )  is an abelian group and <k, + ) ~ 3 N ~ .  

PROO~ ~. - Clearly,  3H~ = (ro,la e k}. How consider  the  in ject ion ]: <k, + } -+ 5 ~  

defined b y  ](a)= ~o~. Then  3.9 implies  t h a t  ] (a+ b)= ](a)](b) and / ( 0 ) =  1. Since 

3n~ is an  abe l ian  group, i t  follows t h a t  <k, + ) also is ~n abe l ian  group and  ] is an 

isomorphism.  

3.12. ( L E ~ . ~ .  - For each ternary ring R, A(R) is right distributive. 

PROOF. - Suppose a t  first  t h a t  a ~ 0. Then  by  2.3, (0, b) ~, (a, a + b). B y  22.1 

and 3.11, b ~ a +  b. Hence  (0, be) ~ (a, ac+ be) ~nd (b~ be) ~ (a+ b, ac+ be). Thus 

h (a,ac + bc) 

(o,ac+loc) 

(o, bc} ( "/"o (a, bc) (b, bc) 

-C2 

b 

(a+b,ac÷bc) 

(a+b ,(a+b)c) 

a÷b 

FIGURE 3. 

g 
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to prove our claim, we need only to show tha t  (0, be) (a, ae 4- be)II (b, be) (a ~- b, ac -~- be) 

in Figure  3. Then, since (0, be)(a, ac ~- be) is the  tine [e, bc]~, we obtain  (0, 0)(b, be) = 

= (b, be)(a- /b ,  ac~- be) and our result  follows. 

Pu t  to- -  ~((0, be), (a, be)); vx = ~((a, be), (a, ac-~ be)); ~ = ~((0, a +  b), (0, b)); 

ra---- T((0, b), (a, a +  b)). Then it follows tha t  (0, a~-  b)~°= (a, a +  b); (b, a - / b )~*=  b; 

and b" = a -}- b. Clearly, ro = ~2 ~8, and thus (b, a q- b) ~° = a-~ b. Consequently, 

(b, bc)~°------(a+b, bc). Also, (a-~b,  b e ) ~ = ( a - ~ b ,  ac-~bc). Let  r=~:~vo. Then 

(0, be)~= (a, a c ~  be); and (b, bc)~= (a ~ b, a c ~  be). Since  (0, bc) .~ (a, ac--/ be), ~ is 

not  a neighbour t ranslat ion.  Hence  by  [11], S 12, 

(0, be)(a, ac + be)tt (b, be)(a-~ b, ac ~ be). 

~ext, suppose tha t  a~ / )o .  By  3.10, a - / 1  ~Do. Thus 

( a +  b ) c =  ((1-~ a ) +  ( - -1  ~ b) )c= (1 + a)c-~ (--1--~ b)c=  

= c-~- ac - - c -~  bc = a c ~  be. 

3.13. LEPTA. - T(1, a, b) = To(l, a, b), /or all a, bek .  

P~o0F. - By  3.5, each t e rna ry  ring of JC is linear. Hence (k, To, 0, 1} is linear 

and To(1, a , b ) = l Q a @ b = a @ b .  Thus it suffices to show tha t  a ~ - b = a @ b .  

:From 2.8.2, we obtain  a @ b = kAL(S ,  h), where 2 = :5((b, 0), k)AL(a,  g). F rom 3.11, 

we deduce tha t  Z((b, 0), k)/\h -- ( 0 , - - b )  and L((b, 0), k) = [1,--b]~.  ~ o w  S =  (x, a) 

~or some x a k .  But  SI_~((b, O), k) and hence a = x ~ b  and x = a ~ - b .  Thus 

a ®  b = ~AL((a + b, a), h) = a +  b. 

PROOF OF THEO~E~ 3.8. -- By  3.5 and the preceding sequence of lemmas, every 

b i te rnary  ring of a t ranslat ion plane has the propert ies  (a), (b), (c) and (d). 

Conversely, assume tha t  an A.H. plane J~ satisfies (a), (b), (e), and (d). We shall 

show tha t  the translat ions are exact ly  the  maps of the  form 

(x, y)~ = (x ~- a, y -~ b), for a, b a k. 

Firs t  we prove such a map is a t ranslat ion.  Let  (x, y), (u, v)I[m, n]2. Then 

Z((u + a, v ÷ b), [m, n]~) = Ira, v ÷ b - -  ( u +  a)m]~. 

I t  is easy to see tha t  (x, y)~IL((u, v) ~, Ira, n]~), by  using (c). Next,  suppose tha t  

(x, y), (u, v)I[m, n)~. Since To is linear, (c) and (d) yield 

L((u  + a, v + b), [m, ~]i) = Ira, ~ + a - - ( v  + b) Q m]l.  
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F r o m  (e) and  (d), (a+b)  Q c = a Q e - ~ b Q e .  I t  follows t h a t  (x, y)~IL((u, v) ~, 

[m~ n]~). I t  is clear t h a t  ~ ~ 1 or ~ has  no fixed points .  Again,  using (c) and  (d), 

we can show t h a t  eve ry  line para l le l  to a t r ace  of ~ is also a t r ace  of • and  so ~ is 

a t rans la t ion .  I t  is easi ly verif ied t h a t  each t r ans la t ion  has  the  above form,  and  so 

the  set  of t r ans la t ions  fo rms  a t r ans i t i ve  group. 

4. - Desarguesian A.H.  planes. 

I n  this  section, we generalize the  result  t h a t  an o rd ina ry  affine p lane  is Desar-  

guesian if and  only if A(R) is a division ring. I n  [10], Kl ingenberg  showed t h a t  if 

an  A.H. t r ans la t ion  p lane  is Papp ian ,  then  the  coordinate  r ing  which he in t roduced 

is a c o m m u t a t i v e  A.H.  ring. I n  t h a t  paper ,  no not ion of a Desargues ian  plane was 

given. This  was in t roduced  in [11]. t towever~ Lo r imer  and Lane  have  shown in [12] 

t h a t  the  defini t ion in [11] of a Desargues ian  p lane  is too s t rong  and  they  have  intro-  

duced a weaker  condition.  Several  equiva len t  definitions are  p resen ted  there ,  and  

one of these,  Axiom (A10){P) is the  charac te r i za t ion  of Desurguesian A.H.  planes 

which we shall  use in the  ensuing discussion. 

The following axioms refer  to a given poin t  P .  

(At0) (P) 

(AIO) (P, *) 

I f  P, Q, and R are  collinear,  and  1 ) ~ Q, t hen  t he r e  exists  a di la ta-  

t ion  a = a(PQP) which m a p s  P into P and  Q into R. 

I f  P ,  Q, and  R are  collinear,  P ~- Q and  P ~ R, t hen  the re  exists  a 

d i l a t a t ion  ~ = a(PQR) which maps  P into P and  Q into R. 

4.1. R ~ g I ; .  - Let (~ = a(PQR). I] S is any point such that S, PI]; 2, QIj, and 

] ~ j ,  then S"= ]A~(R, j ) .  

4.2. L E p t A .  - I] ~ is a translation plane satis]yi~g axiom (A10)(P, ~), then 

]or each ternary ring R, A(R) is le]t distributive. 

P~oot~. - F i r s t  we show t h a t  a(b "Jr c( = ab -F ae when a ~ Do. Consider F igure  4. 

Since a ~ 0, (A10) (0, ~)  implies t h a t  the re  exists ~ = 0(0, {1, c)~ (a, ae)). Since X/~ 

,~[b ~ e, 0]3 and  h ~ [0, e]~, we ob ta in  (1, b -~ c) ~ = (a, a(b-~ c)) and (0, c)" = (0, ac). 

Since Z((0, ac), [b, c]~) = [b, acid, we have  (a, a(b + c)) I[b, ac]2. Thus a(b + c) = 

= ab 4- ac. 

Next ,  suppose aeDo.  Thus a - - l ~ D o  b y  3.10, and  so b y  3.8 (c), 

a(b+ c) = ( a - - l - ~ -  1)(b~- c)---- ( a - - 1 ) ( b - ~  c)-~ b +  c 

= ( a - - 1 ) b ~ ( a - - 1 ) c ~ b - - ~ - c : a b - - b - - ~ - ~  ac--c-~-b--e  

= ab -~ ae. 
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,(°,°(b+c)) 

/ /rb+c,o]2 

(1,b+c) 

(o,ac, ~ ~ - - - . l  ~ ,  ( ° ,at )  

(o,c) , I , - - . / - - - . / - - - - -~ , (  t ,¢ ) 

0 
FIGURE 4. 

4.3. LE~)IA. - I]  JC is a 3-plane with (A10) (P, ~) ,  then in each A(R)  multiplica- 

tion is associative. 

k 

h (a,ab) 

/ l ~ o ' b o " -  . . . .  ~ . . . . .  --~,ob,,ob,o, 

,0o:'7 ~ _ / ( b , b c )  • 

~ (1,c) 

o g 
FIGURE 5. 

PROOF. - I t  is enough to show tha t  a(bc)-= a(bc)c when b ¢ Do. For  if b ~ Do, 

then  d = b - - l C D o  and 3.8 and 4.2 imply 

(ab)c = (a(d+ 1) )e  = (ad+ a ) v -  (ad)c+ ac 

= a(dc)+ ac = a (d e +  c) = a ( ( d +  1)c) ---- °(be) . 
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Assume b ~Do. 

Case 1: ad~Do. Consider Figure 5. 5Tow cr = a(O, b, ab) exists by  2.14 (7), since 

a, b ~ Do. Because iS(b, h) ~- [e, 012 ~nd [0, b]~_ ~ [b, 0]~, 4.1 yields (b, be) ~-~ (ab, (ab) e) 

and (1, b )"=  (a, ab). Since a = a(0, (1, b), (a, ab)) and X E  ~ [be, 0].,, we obtain 

(1, be) ~ = (a, a(be)). Hence (a, a(bc)) IL (  (ab, (ab)e), [0, bc]~. Thus (a, a(bc)) and (ab, 

(ab)e) have the same y-coordinate and so a(be)= (ab)e. 

Case 2: a e Do. Then a - - l ~ D o .  Hence 

(ab)e~-- ( (a - - l -~ -  1)b)c = ( ( a - - 1 ) b +  b)e 

= ( ( a - - l ) b ) e  q- be----- (a--1)(be)H- be 

= ( ( a - - l )  + 1)be : a(be) . 

4.4. LE)~_~rA. - Zet JC be a translation plane and let B be a biternary ring o] 3E. I] 

(i) A(R)  and A(Ro) are le]t distributive 

and 

(ii) A(R)  satis]ies the right inversive property (i.e., ab-----1 implies (ea)b-----e 

]or all c e R ) ,  then T(a, b, c) --- To(a, b, c). 

PBooP. - Since ~ is a t rans la t ion  plane, T and To are linear. In  view of (d) of 3.8. 

it  is sufficient to show t h a t  T(a, b, O) = To(a, b, 0). F rom 2.8.1 and 2.8.2, we have 

To(a, b, 0) = kAZ(S, h), where S = O(b, 1)A/~(a, g). 

F i r s t  we assume t h a t  b ~ Do. Then by 2.13, 0(b, 1) is a line of the  second kind. 

Hence O(b, l )  = [m, 0]~, where b .m  = 1. Thus S = (x, a), where a = x .m .  By (ii), 

we have ( a b ) m =  a = x m .  Since m~EDo, 2.14 (4) implies t ha t  ab = x .  Hence 

(To(a, b, 0), a) = S = (ab, a) = ( T(a, b, 0), a ) .  

Next,  suppose b e D0. Le t  e = b - -1 .  Thus e~Do.  Then (i) yields 

To(a, b, O) -= a Q b = a Q (e+  1) : a Qe-{- a 

= a . c +  a = a . ( e +  l ) : a . b .  

We m a y  now sta te  the main result of this section. 

4.5. THEORE~L -- The following are equivalent.  

(a) JE is Desarguesian. 

(b) At  least one b i te rnary  ring B = <R, T, To, 0, 1> has the properties:  (i) T 

and To are linear,  (ii) A(R) is an A.H. ring, (iii) T----To. 

(e) J~ is isomorphic to JE(H) for some A.H. r ing H;  cf. 3.10 of [12]. 

PROOF. - 2.14 and  Lemmas  4.1 to 4.4 show (a) implies (b). (b) clearly implies (e), 

and the  last  implication follows from 3.4 and 3.11 of [12]. 
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4.5.1. COROLLARY. -- _For any ternary ring R o] o~, A(R)_~ H, where H is the 

ring o] traee-preserving endomorphisms o] ~ .  Hence any two ternary rings of ~ are 

isomorphic. 

PRooF. - ~E may  be regarded  as the  ana ly t ic  model of an A.H. plane over A(R). 

The resul t  then  follows from 3.10 of [12]. 

4.5.2. COROLLARY. - I f  ~ is a translation plane~ then (A10) (P, .~) is equivalent 

to (A10) (P). 

PRoof .  - Le t  B be any b i t e rn~ry  ring of ~ .  Then R is l inear  and by  Lemmas  4.2 

and 4.3~ A(R) is an associative loeM ring. L e m m a  4.4 then  implies t h a t  T(a, b, c) = 

= T0(a, b, e). By  2.7 (e), (/~7) ~nd (fl13), A(R)is  an A.H. ring. Hence ;E is Desa.rguesian. 

5. - Pappian planes. 

In  [10], ~ Papp ian  eonfigurational  p rope r ty  was int roduced into an associated 

A.H. plane of a project ive  Hjelmslev plane. The A.H. plane was called Papp ian  if 

i t  satisfied the minor  Desarguesian configurational  p rope r ty  and  the Pappian  confi- 

gurat ional  p roper ty .  We shall say t h a t  ~E is Pappian if ;E is a t rans la t ion  plane ~nd 

s~tisfies the Pappi~n configurational  proper ty .  I t  was shown in [10] t h a t  the coordi- 

na te  r ing in t roduced  the re  is a commuta t ive  A.H. r ing if and only if the plane is 

P~ppian.  In  view of 4.5, we therefore  have  the  following result.  

5.1. THEOR]~[. - .Let J¢~ be an A.H. plane. 

(1) I] ~ is Pappian, then it is Desarguesian. 

(2) I f  ~ is Desarguesian~ then ~ is Pappian i] and only i] at least one ternary 

ring o] J~ is commutative. 

5.2. - The special Pappus configuration. 

Q 

pf 
7 

r 

S 

/ 

P~ 

FIGURE 6. 
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A special Pappus con]iguration is a set of four lines l, m, pl, p~, and five points P, 

P1, P2, Q~, Q~ sat isfying the conditions: 

(i) H~ ~ II~. 

(ii) P l ~  m; P ~ X for all X I m .  

(iii) P, P~, P211; Qj, Q~Im. 

(iv) p~ IIP2. 

Because of (ii) and (A7), we can define the addit ional  points S --- PQ~AL(P~, m) 

and / '  = PQIAL(P~, m). 

We say tha t  ~ has the special Pappus property P* if for each special Pappus con- 

figuration, TIL(S,  px). 

5.3. TH~Ol~]~sI. - Jg has the special Pappus property i] and only i] multiplication 

is commutative in each ternary ring R o/JC. 

S [a,ab) T(t ba) 

k 

g 

FIGURE 7. 

P~ooP. - Suppose t h a t  JC has proper ty  P*. Le t  R be the  t e rna ry  r ing of {0, X, IZ}. 

We shall show tha t  ab = ha. Now the lines /5(E, h)~ k, L(a, g), 25(b~ g), and the 

points O, a, b, (1~ a) and (1~ b) ~orm a special Pappus configuration, with S ---- (a~ ab) 

and T = (b~ ba). Then proper ty  P* implies t ha t  (a~ ab)IL((b~ ha), g) and so ab= ha. 

Conversely~ let l~ m, Pl, P~ and P, P1, P~, Q1, Q~ form a special Pappus configu- 

rat ion and assume tha t  mult iplication in each te rnary  ring is commutat ive.  Then 

conditions (i) and (ii) imply tha t  l, L{P, m), and L(P, Pl) are three mutual ly  non- 

neighbouring lines through P, and hence determine a tr iangle in which g = L(P, pl), 

h = L ( P , m ) ,  k - - l ,  P = 0  and E = I A m .  Let  R be the associated t e rna ry  ring. 

Then S = (a, ab) and T = (b~ ba). Since ab = ha, we conclude tha t  TIL(S,  g). 

1 3  - A n n a l i  d l  2~1atematica 
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5.3.1. COI¢OLLARY. -- I] J¢ is Desarguesian, then the special Pappus property is 

equivalent to the Pappus property. 
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