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Abstract We define scalable models and distributed

heuristics for the concurrent and coordinated movement of

multiple sinks in a wireless sensor network, a case that

presents significant challenges compared to the widely

investigated case of a single mobile sink. Our objective is

that of maximizing the network lifetime defined as the time

from the start of network operations till the failure of the

first node. We contribute to this problem providing three

new results. We first define a linear program (LP) whose

solution provides a provable upper bound on the maximum

lifetime possible for any given number of sinks. We then

develop a centralized heuristic that runs in polynomial time

given the solution to the LP. We also define a deployable

distributed heuristic for coordinating the motion of multi-

ple sinks through the network. We demonstrate the per-

formance of the proposed heuristics via ns2-based

simulations. The observed results show that our distributed

heuristic achieves network lifetimes that are remarkably

close to the optimum ones, resulting also in significant

improvements over the cases of deploying the sinks

statically, of random sink mobility and of heuristics pre-

viously proposed for restricted sink movements.

Keywords Wireless sensor networks �
Mobility management � Sink mobility �
Multi-sink mobile sensor networks

1 Introduction

One of the most promising recent research directions for

performance improvement in wireless sensor networks

(WSNs) [1] is exploiting the mobility of some of the net-

work components. This mitigates the so called sink

neighborhood problem, where many nodes send packets to

a few data collection points (the sinks), funneling data

through the network and placing increasing burdens on

sensors close to the sinks. If the sinks are statically

deployed, sensors near the sink expend energy at a rate

much faster than sensors far from the sinks. When these

nodes have drained their batteries, the sink cannot receive

any further packets. Moving network components—

whether the sensors or the sinks—can better balance energy

depletion among the nodes, prolonging network lifetime,

i.e., the time the network is able to perform its functions.1

Devices could move independently of the network status.
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1 Definitions of network lifetime vary, and depend on applications. In

this paper we adopt the widely used definition introduced in [2] and

used in many works (see [3, 4] and references therein) where lifetime

is defined as the time until the failure (here for energy depletion) of

the first node. This definition may seem too pessimistic, and many

advocate definitions based on the failure of a certain percentage of the

nodes. However, robust, energy-efficient protocols for WSNs tend to

balance energy consumption among the nodes. So when the first node

dies, many other nodes are also about to die.
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For instance, they can travel randomly through the nodes,

or in predetermined oblivious patterns (such as snaking or

in a spiral). Alternatively, the devices could choose to

move to specific locations based on key network param-

eters, such as the energy available at the nodes, energy

consumption patterns, traffic load, etc. This is called

controlled mobility.

In this paper we investigate network performance

improvement via controlled and coordinated sink mobility.

Appropriately scheduling sink movements can enable

applications where long network lifetime is critical. For

instance, structural health monitoring, as of a subway

tunnel, is naturally performed by embedding small sensors

into the structure. The sensors transmit data to small por-

table computers (sinks) which have high data rate con-

nections with the monitoring center. Moving these sinks

over time based upon evolving network conditions

remarkably prolongs sensor lifetime without seriously

impacting other metrics, as we show in this paper.

This paper provides clear evidence that controlled and

coordinated mobility of multiple sinks achieves signifi-

cantly better performance than uncontrolled movement or

static sinks. Our review of the initial research on this topic

(presented in details in the next section) found no analytical

solutions for controlled and coordinated mobility of mul-

tiple sinks. We have also found no distributed protocols for

coordinated and controlled mobility of sinks, which are

needed for realistic deployments. We begin to fill this gap

by making a threefold contribution. We provide a new

scalable mathematical model that provides a provable

upper bound on network lifetime. We give a centralized

heuristic to compute sink movement schedules. These

solutions are needed to provide provable bounds on the

best possible network performance (e.g., the best achiev-

able lifetime) as well as for benchmarking more realistic

protocols. The third contribution is a realistically deploy-

able distributed heuristic for the coordinated and controlled

movement of multiple sinks.

Our new mathematical model flexibly captures realistic

aspects of WSNs. It allows varying sensor deployment and

has several parameters to control data generation rate,

routing schemes, and energy costs for sensor tasks. The

mixed integer linear programming (MILP) model defined

for a single mobile sink [5] cannot be extended directly to

multiple sinks. The main challenge here is scaling to model

networks with hundreds of sensors or more. This is because

at any given time a suitable MILP model must choose an

active sink to receive the packets from each sensor. Natural

linear ways to propagate this choice for calculating energy

consumption yield weak linear programming (LP) relax-

ations and therefore long solve times. We achieve scala-

bility by defining an LP model that provides an upper

bound on the maximum lifetime possible for any given

number of sinks. The LP has an exponential number of

constraints, but we can compute the optimal solution effi-

ciently by iteratively generating and adding a violated

constraint and re-solving the LP a polynomial number of

times. Our solution is quite technical, but allows us to

compute an upper bound on the maximum lifetime for

WSNs that are quite realistic, e.g., made up of 400 nodes,

with 64 different positions where the sinks can sojourn

(called sink sites), and with 5 sinks concurrently roaming

throughout the network.

Starting from the output of the LP we define a new

polynomial-time centralized heuristic for finding a full

schedule for the movement of the sinks. Solutions provided

by our scalable heuristic (described in detail in Sect. 4)

obtain network lifetimes that are less than 1% below the

upper bound obtained from the LP-based relaxation.

A further contribution of this work is the definition of a

realistically deployable distributed protocol for controlling

and coordinating the motion of multiple sinks through the

network. The idea behind our protocol is to trigger the

movement of each sink depending on the expected lifetime

improvement that can be obtained by that move. Move-

ments are dictated by the nodes’ residual energy and by

energy consumption patterns. A sink moves if and only if

sojourning at a new position yields a longer (expected)

lifetime (controlled sink mobility). By gathering network

state information efficiently, sinks can make this decision

locally and share it with fellow sinks. So, sink deci-

sions take into account the decisions of others (sink

coordination).

We conclude the paper by showing the results of a

comparative performance evaluation of the proposed solu-

tions, namely, the LP-based upper bound, the centralized

heuristic, the distributed protocols for sink mobility, and

protocols where sink mobility is uncontrolled and random.

We also compare all these mobility schemes to the case

where the sinks are statically and optimally placed and

against the best performing solutions for multiple sink

mobility presented by Azad and Chockalingam [6]. The

experimental results show that our distributed heuristic

achieves network lifetimes that are remarkably close to

optimal. They were between 5.5 and 25.3% below the upper

bound in all the scenarios we considered. The improve-

ments over random sink mobility are also significant: up to

88.2%. The lifetime from our distributed algorithm can be

fourfold higher than the lifetime from optimally placed

static sinks and up to 40% higher than the lifetime from

Azad and Chockalingam’s heuristics Max-Min-RE and

MinDiff-RE [6]. These results show clearly that controlling

and coordinating the mobility of sinks remarkably prolongs

the lifetime of realistically deployable WSNs.

The rest of the paper is organized as follows. In the next

section we review previous works on the placement and
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exploitation of mobility of multiple sinks. We give prob-

lem formulation details in Sect. 3. In Sect. 4 we describe

the LP model that provides upper bounds on the optimal

network lifetime. The scalable centralized heuristic and the

distributed heuristic are described in Sects. 5 and 6,

respectively. In Sect. 7 we present ns2-based simulations to

validate our centralized and distributed schemes and to

compare them to the upper bound, the Max-Min-RE and

MinDiff-RE centralized heuristics, static sink placement

and random mobility. Section 8 concludes the paper.

2 Related works

Improving WSN lifetime by exploiting the mobility of

multiple sinks involves determining routes for the sinks

and their sojourn times at designated sites so that the

lifetime is maximized.

Gandham et al. [7] propose the first work on multi-sink

WSNs, improving lifetime indirectly by greedily mini-

mizing nodal energy consumption. They divide time into

rounds. At the beginning of each round they solve a static

sink placement problem to reposition the sinks based on the

current energy in the network nodes. Specifically, they

centrally gather the residual energy of all nodes. Then they

solve an integer linear program (ILP) to determine new

sink locations that minimize the maximum energy expen-

ded by any node in the next round, subject to the constraint

that no node expends more than an a fraction of its current

residual energy. The ILP also determines packet trans-

mission rates for each node to its neighbors. The sensors

then route packets to outgoing edges in a round robin based

on the proportions given by the ILP. Experiments show that

this algorithm with three sinks extends lifetime consider-

ably compared to deploying one static sink. This first effort

to address deployment of multiple sinks does not consider

many important characteristics of WSNs. For instance,

although the ILP models minimize nodal energy con-

sumption in each round, this greedy approach does not

guarantee a globally optimal lifetime. Moreover, the ILP

models do not consider energy spent for route manage-

ment, which is non-negligible, and is routing dependent.

Azad and Chockalingam [6] propose three centralized

heuristics for the models and setting of [7], where s � 1

sinks can sojourn only at v � s sites on the boundary of

the network deployment region. In the first heuristic,

Top-Kmax, the authors let the residual energy of a sink site

i be the residual energy of the sensor closest to i. At the

start of each round, they place the s sinks at the s sink sites

with the highest residual energy. The second heuristic is

called Max-Min-RE because it chooses a sink configuration

where the most heavily loaded node (the one with

minimum residual energy, Min-RE) will have the maxi-

mum energy at the end of the next round. To more evenly

drain the nodes, the third heuristic (MinDiff-RE), chooses

the configuration that minimizes (Min) the difference

(Diff) between the maximum and minimum residual

energy (RE) over all nodes. The latter two solutions require

the enumeration of all possible
v
s

� �
sink placements, and

are therefore viable only when the number of sinks is very

limited.

Ren et al. [8] investigate the impact of multiple mobile

sinks on end-to-end packet delay and energy consumption.

They consider trade offs for optimizing both. Specifically,

deploying sinks moving in an uncontrolled way (random

way-point), they investigate the impact of sink number,

speed, sink transmission radius, and data routing on per-

formance. Single-hop collection minimizes the energy but

results in higher latencies, so that in many applications

multi-hop communication is the only viable option. The

authors conclude that the number of sinks, their speed and

the routing can be tuned to provide acceptable delays and

energy consumption, i.e., to obtain a required network

lifetime. They also observe through simulations that

(uncontrolled) sink mobility yields more balanced energy

consumption compared to static sinks. Chen and Ma, with

Yu, continue to investigate this topic in [9], where rather

than mobile sinks, they explore a three-tier architecture

where cellular phones, whose mobility is uncontrolled, act

similarly to data MULEs and carry data to a single base

station.

Recently, Chatzigiannakis et al. [10] propose three

solutions for efficient data collection via mobile sinks.

They wish to move sinks to reduce nodal energy con-

sumption, prolong network lifetime, increase delivery rate,

and decrease packet latency with respect to the case with

one sink roaming through the network. Packet routing from

the sensors to the sinks is single hop, i.e., a sensor must be

visited by a sink in order to deliver its data. The first

protocol is centralized: The deployment area is partitioned

into equally sized regions, each of which is assigned a sink

that traverses it exhaustively in a snake fashion. This

solution is particularly suitable when the network is fairly

stable and homogeneous. No actual coordination is needed

among the sinks, since each region is an independent col-

lection problem. The second protocol requires some loose

coordination of the sinks. The s sinks are initially deployed

randomly. Each moves in a random walk through the entire

network area. Each sink transmits a beacon message con-

taining its ID, its position, speed and direction. This

information is stored at the sensors that receive it for a

predefined time t. If another sink comes by within t time

from the passing of a previous sink, the new one changes
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its direction, thus avoiding traversing an area visited

recently by some other sink. The third protocol partitions

the network into small clusters and assigns clusters to

sinks. Clusters have weights that depend on critical cluster

parameters such as the traffic load, nodal residual energy,

etc. If there are s sinks, the protocol then combines clusters

into s groups with roughly equal weight. Every sink does a

random walk through its clusters, collecting data from

nodes in its group in a single-hop fashion. Experimental

results show that the proposed protocols achieve good

performance using only up to four sinks.

3 Problem formulation

We consider networks with a small number s of mobile sinks

that collect data from a large set N of deployed resource-

constrained sensor nodes. Sinks are allowed to sojourn at

any of a finite number v of designated sink sites from a set

V ; jVj ¼ v. At any time, a sink is either at a sink site or it is

moving. If it is at a sink site, it can be either active, i.e.,

available to receive sensor data, or inactive.2 A subset of

1 � k � s sites hosting active sinks is called a configuration,

and the set of all possible sink configurations is denoted by

C. A sink configuration changes whenever a sink becomes

active or inactive. A moving sink is always inactive, and

therefore it cannot receive packets. When a sink at a sink site

becomes active, it must broadcast its availability to the

sensors. Similarly, when it becomes inactive it must

broadcast that it is not available anymore. These broadcasts

consume energy from the sensors and are sink-site depen-

dent. We require that at least one sink is active at all times.

This design choice allows the sensors to always have a

destination for their packets. This has the benefit of avoiding

high packet end-to-end latencies because nodes do not need

to buffer packets while the sinks are moving.

Each sensor p [ N has initial energy3 ep. It generates

data at a rate of rp packets per second. These packets are

routed either directly or via a multi-hop path to a sink

(e.g., the one sojourning at a closest site) according to a

given routing protocol. Sensor p requires ap joules per

packet for sensing, creating, and transmitting its own

(i.e., locally generated) packets. It requires bp joules per

packet for receiving and relaying a packet for another

sensor.

Let 0 � ypwc � 1 be the fraction of traffic that sensor

p [ N sends to a sink at site w [ V when the sink config-

uration is c [ C. When sensor p [ N is sending some traffic

to sink site w [ V, let 0 � qpqw � 1 be the fraction of the

p-to-w traffic sent through sensor q [ N. Routing protocols

proposed for WSNs can use multiple routes between a

sensor and a sink. Our formulation allows arbitrarily

complex routing strategies provided each sensor decides

where to send data and how to route it based only on the

sink configuration.

Our objective is to find a schedule of sink movements

(i.e., a sequence of configurations) that maximizes the

network lifetime.

Some of the configurations of a schedule are selected

based on their energy efficiency and their ability, as a

group, to balance energy depletion among the network

nodes. These configurations are called major configura-

tions. We want to stay in them for the time necessary to

maximize the network lifetime. However, major configu-

rations may not be enough to compose a schedule. This is

because we require at least one active sink at all times and

traveling sinks to have enough time to move from one site

to the new selected one. Therefore, a schedule may need

one or two intermediate configurations to make the tran-

sition between two major configurations. Those configu-

rations used only to move between major configurations

are called transient configurations.

Figure 1 illustrates the need for transient configurations

in a scenario with six sinks. Moving from configuration ci

to configuration ci?1 by simply deactivating all sinks and

letting them move to their new sites would not leave any

sink active, as required. To go from ci to ci?1, we use 2

transient configurations ci
a and ci

b. From ci, we let the sinks

in the set M1 (boxed in the figure) move, while those in

sites v1; v3 and v5 stay active. Thus ca
i ¼ fv1; v3; v5g.

Moving from ci
a to ci

b, the sinks that left sites in M1 arrive

at their new locations in cb
i ¼ fv7; v9; v11g and simul-

taneously, those in ci
a deactivate to move. When sinks

from sites in ci
a arrive at their new locations in

ciþ1 � cb
i ¼ fv8; v10; v12g, they activate to put the system

into configuration ci?1. In ‘‘Appendix’’ we show that at

most two transient configurations are needed to move

between any pair of configurations.

Consider a sequence C ¼ c1; c2; . . .; cL of configura-

tions, either major or transient, that provide a schedule of

sink movements that solve our problem. Configuration ci

must hold for the time to broadcast the sink site

(de)activations necessary to move from ci into ci?1 plus

the time required to move sinks to new locations for ci?1.

For a given sequence C, we denote this minimum time for

configuration ci as sCðciÞ. We also require that major

configurations hold for at least a fixed time threshold

2 One might expect that an optimal schedule will use all stationary

sinks at all times. However, there may be times when it is best not to

use one even if it is available. This is because the extra sink will affect

packet routes, possibly affecting energy balance negatively.
3 If the protocol involves a training phase, i.e., a phase through which

the sensors and the sinks learn about parameters needed to start

protocol operations, ep is the energy after the training.
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tmin � maxi sCðciÞ seconds.4 By varying the length of tmin

we can explore trade-offs between sink mobility and

network lifetime.

Our problem is formally defined as follows.

Problem formulation. Determine an ordered set Cm ¼
fc0; c1; . . .; c‘g of major configurations and a time ti � tmin

for each selected configuration ci; i ¼ 0; . . .; ‘. Also

determine transient configurations Ct ¼ fca
0; c

b
0; c

a
1; c

b
1; . . .;

ca
‘�1; c

b
‘�1g and times ta

i ; t
b
i for i ¼ 0; . . .; ‘� 1. The ordered

pair of transient configurations ðca
i ; c

b
i Þ defines a most

direct transition between major configurations ci and ci?1.

Call the sequence of major configurations with appropri-

ately interleaved transient configurations C. If a transient

configuration c exists, then it differs from the preceding

configuration and lasts at least sCðcÞ seconds. If one or both

of the transient configurations do not exist, the configura-

tion lasts zero seconds and is equal to the configuration

preceding it. By convention, ta
i � tb

i , so the ‘‘b’’ configu-

ration exists only if moving between configurations ci and

ci?1 requires two transient configurations. For convenience,

let ta
‘ ¼ tb

‘ ¼ 0. We wish to maximize the network lifetime

K ¼
P

i20...‘ðti þ ta
i þ tb

i Þ.
Our definition of network lifetime requires every sensor

to have enough initial energy to support all the selected

configurations for the selected amount of time. This means

that the energy paid by each node p for generating, trans-

mitting, receiving and relaying packets while in each of the

selected configurations Cm [ Ct plus the energy spent by the

node for route maintenance operations associated with

configuration changes does not exceed the nodal initial

energy ep. (Our formulation accounts for all the energy

costs incurring at the network nodes during the network

operations.) After K seconds, at least one sensor dies.

4 A mathematical model for sink mobility

In this section we describe an LP whose solution provides

an upper bound on the maximum lifetime of a sensor net-

work with s mobile sinks. The LP is a relaxation of the

mobile sinks problem. It selects a set of (major) configu-

rations and the time for each configuration. It ignores the

ordering of configurations and the transitions between them,

minimum times for configurations to hold, and energy costs

for broadcasting sink (de)activations. Since any feasible

schedule for sink movements must obey these additional

configuration constraints and the required broadcasts con-

sume sensor energy, the lifetime of a real schedule can be no

longer than the lifetime of the optimal LP solution.

The LP has only one type of variable. Let tc be the time

configuration c [ C holds. There are
Ps

k¼1

v
k

� �
ways to

place at most s sinks on v sites, which is exponential in

s. However, we can solve this LP while explicitly including

the tc variables for only a polynomial number of configu-

rations c. The rest are implicitly 0.

The LP model is:

maximize
X
c2C

tc

subject to:

X
c2C

aprptc þ
X

q 6¼p2N;w2V

rqbpqqpwyqwctc

 !
� ep; 8p 2 N:

The objective function maximizes network lifetime. The

constraints require all sensors to be alive throughout the

network lifetime. Given a sensor p [ N and a configuration

c [ C, the expression in the parentheses on the left side of

the constraint for sensor p gives its energy consumption

while the system is in configuration c. More specifically,

aprp is the energy consumption per unit time for sensing,

creating and transmitting locally generated packets.

Therefore, aprptc is the total energy consumed by p in

configuration c for packets it generates. The second term

computes the energy that sensor p expends routing packets

for other sensors during configuration c. Each term in this

sum depends on the data rate rq of sensor q, which might

route through sensor p depending on sensor q’s choices of

sink and choice(s) of route. Recall that parameter yqwc

Fig. 1 Illustration of calculating a two-step transition between major

configurations ci and ci?1. The sinks in set M1 (one element from each

matched pair in ci) deactivate and move while the remaining sinks

stay in configuration ci
a. The sinks originally in M1 appear in

configuration ci
b at locations M2, which represent one element from

each matched pair in the new configuration ci?1

4 Holding major configurations for a longer time allows routes to

stabilize and run for enough time to justify the cost of changing the

configuration.
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indicates the fraction of sensor q’s traffic that goes to site

w in configuration c (choice of sink). We have yqwc [ 0

only if a sink sojourns at site w in configuration c and

sensor q sends packets to a sink at site w in configuration

c. Also recall parameter qqpw is the fraction of q’s traffic to

sink w that passes through sensor p (choice of route).

Therefore, rqbpqqpwyqwctc represents the energy consumed

at node p for relaying packets generated by q during the

time that configuration c holds.

4.1 Solving the LP

We will use a general method for solving LPs that have an

exponential number of constraints but a polynomial num-

ber of variables. Our LP has an exponential number of

variables, but a polynomial number of constraints. So we

will optimize our LP (the primal) by instead optimizing its

dual [11]. This is another LP, derived mechanically from

the primal, which switches the optimization direction (in

this case to a minimization). Each constraint in the primal

corresponds to a variable in the dual and each variable in

the primal corresponds to a constraint in the dual. So the

dual of our LP has an exponential number of constraints

rather than an exponential number of variables. The

objectives of the two LPs are equal at optimality. The dual

of our LP is:

minimize
X
p2N

epup

subject to:

P
p2N

up rpap þ
P

q 6¼p2N

P
w2V

rqbpqqpwyqwc

 !
� 1

8c 2 C;
up � 0 8p 2 N:

We can satisfy an exponential-size set of constraints by

only explicitly enforcing a polynomial number of them

provided we have a separation algorithm. Suppose we wish

to enforce a set of constraints X . A separation algorithm

accepts a solution vector for the LP that only explicitly lists

a subset of the constraints. It returns a constraint x 2 X that

is violated, or verifies all are satisfied. As a theoretical

results, such a separation procedure, when combined with

the ellipsoid algorithm, is guaranteed to converge to the

optimal LP solution in a polynomial number of iterations.

See [12–14] and especially [15, Chap. 14], for some of

many discussions of this technique.

Although it has good theoretical bounds, the ellipsoid

algorithm is not very fast. That is why linear programming

solvers use simplex or barrier methods rather than the

theoretically good ellipsoid algorithm for linear program-

ming. Similarly, we use a different, simple approach for

solving our linear program with separation. This method is

typically much better than using ellipsoid in practice.

To use a separation algorithm to solve a large LP, we

begin by explicitly listing a small (possibly empty) subset

of the constraints in X . We then solve the LP and pass the

solution to the separation algorithm. If all the constraints

are satisfied, we are done. The separation algorithm has

given a computational proof that all the constraints are

satisfied and thus all unlisted constraints are redundant at

optimality. Otherwise, we add the violated constraint it

returns, solve the new LP, and so on.

An efficient separation algorithm must exploit structure

of the constraint family; it does not enumerate the con-

straints. Thus, a separation algorithm is customized for

each problem, and there is no reason to believe a priori that

this computation is tractable. We now describe how we can

apply this approach to solving our dual LP.

Given a solution u* to the dual LP, we wish to find a

most violated constraint, or determine that all are satisfied.

One can separate by just finding any violated constraint,

but finding a most violated constraint has better conver-

gence properties. A violated constraint has the form

X
p2N

u�p rpap þ
X

q 6¼p2N

X
w2V

rqbpqqpwyqwc

 !
\1

for some configuration c. A most violated constraint

minimizes the value ofX
p2N

u�p
X

q6¼p2N

X
w2V

rqbpqqpwyqwc

over all configurations c. If this value is strictly less than

1�
P

p2N u�prpap, then the constraint is violated and

otherwise, all are satisfied.

Since we seek a configuration, the yqwc are now vari-

ables. We can drop the c in the subscript, since we are

computing a single configuration. Defining constant

hqw ¼ rq

X
p6¼q

u�pbpqqpw;

our objective becomes minimize
P

q2N

P
w2V hqwyqw.

To find the optimal configuration, we must place up to

s sinks. We use a decision variable xw, which is 1 if there is

an active sink at site w and 0 otherwise. As before, yqw [ 0

if sensor q sends to an active sink at site w for the con-

figuration we are building. Since there must be an active

sink at site w to receive traffic, we must ensure that yqw [ 0

only if there is a sink at site w. The full separation for-

mulation, which we call SEP, becomes:

minimize
X
q2N

X
w2V

hqwyqw

subject to:
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P
w2V

xw � sP
w2V

yqw ¼ 1 8q 2 N

yqw � xw 8q 2 N;w 2 V
xi 2 f0; 1g:

The first constraint enforces the sink limit. The second set

of constraints ensures that each sensor sends all its traffic to

a set of sinks. The third set of constraints ensures that

sensors send data only to a sink site that has an active sink.

That is, if xw = 0, then yqw = 0 for all sensors q.

This MILP is a classic formulation for the p-median

problem [16]. In the p-median problem, we wish to place

p facilities on any of n locations. Each of m customers must

be served by an open facility, or a mix of open facilities.

There is a service cost cij for facility i to serve customer

j. If facility i serves an xij fraction of customer j’s

requirement, this costs cijxij. The goal is to minimize the

total service cost. For our separation algorithm

p ¼ s; n ¼ jVj, and m = |N|. This separation algorithm

finds the configuration with the minimum total energy

drain (summed over all sensors) when the energy cost is

scaled by up
*.

The p-median problem is NP-complete. However, there

are exact algorithms based on math-programming formu-

lations that can effectively solve problems with ten thou-

sand or more nodes and hundreds of thousands of

customers [17]. This is well within or beyond the range of

current sensor network sizes. Thus, although we cannot

solve the LP in guaranteed polynomial time, we can solve

it in practice for the sizes of LP we require, i.e., we can

compute an upper bound on WSN lifetime.

The method above works for any possible assignment of

sensors to the sinks to which they send their data. For

instance, the network owner may decide to have the sensors

send their packets to the closest sink, may forbid a source

to send to a given sink due to latency constraints, or may

list the preferred sinks according to a given ranking.

For sensor q and sink site w, let Rqw be the set of sink

sites u = w that are lower priority choices for sensor

q than site w. For example, if we must ensure that sensor

q sends only to a closest active sink, we can let d(q, w) be

the minimum distance (in hops) from sensor q to sink site

w. Then Rqw includes the set of sink sites u such that

d(q, u) [ d(q, w), i.e., those that are farther away from

sensor q than site w is. If there are ties for closest sink site,

we can let the LP choose the best way to divide traffic

among those sinks for a particular configuration. Alterna-

tively, we can extend the Rqw sets to enforce a total order

by including sites u such that d(q, u) = d(q, w) where

w has a higher ID than u (u loses the tie breaker with w). In

order to enforce this sink selection strategy we add the

following constraint to the SEP mixed-integer program:

X
u2Rqw

yqu � 1� xw 8q 2 N;w 2 V :

This set of constraints enforces priority, for example to

require sensor q to send to a closest sink. If there is an active

sink at site w (i.e., xw = 1), then q cannot send to any sink in

Rqw. Thus all the sink selection variables corresponding to

sites in Rqw will be 0. Adding the constraints to select a

closest open facility preferentially leads to a more con-

strained p-median problem. Fortunately, this slightly-mod-

ified version appears to be quite tractable for our data sets.

We can also enforce any specific set of yqwc choices for

a tractably-sized set of configurations c [ C. Suppose the

separation algorithm returns a configuration c with choices

of yqwc that do not match those given by the network

owner. We first check to see if the constraint is still vio-

lated with the correct yqwc parameters. If so, we add the

new constraint using the correct y values. If it is not vio-

lated, we will try again, forbidding the separation MILP

from returning the same precise set of sinks. Suppose

configuration c has the s sinks in locations w1;w2; . . .;ws.

To forbid the SEP integer program from returning the same

configuration, add the following constraint:

Xs

i¼1

xwi
� s� 1:

This means at least one of the s variables representing this

set of sink sites must be 0 (not selected). This mechanism

could for instance be exploited to forbid configurations that

may overload some of the sinks.

5 Centralized heuristic

In this section, we describe a centralized heuristic that

begins with the solution to the LP described in Sect. 4 and

finds a feasible schedule for sink movements.

The heuristic chooses a subset of the configurations

chosen by the LP as major configurations. It must order

these major configurations and compute transitions

between neighboring major configurations. The centralized

heuristic must also determine the time each configuration

holds such that all sensors have enough energy to serve all

the configurations. Major configurations must hold for at

least tmin seconds and transient configurations must hold

long enough to complete the required broadcasts and sink

movements. The high-level operations of the centralized

heuristic are as follows:

1. Solve the LP to obtain a solution tc
*. Let B = tmin.

2. Let C � C ¼ fc 2 Cjt�c � Bg. That is, we select the set

of configurations for which the LP assigns a time of at

least B (initially tmin).
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3. Order the configurations in C, preferably with adjacent

configurations sharing some common sink sites. (This

decreases the number of transient configurations that

need to be added.)

4. Compute transient configurations between each pair of

adjacent configurations.

5. Solve another final LP (LPF) to adjust the times for

each configuration, enforce minimum times on con-

figurations, and account for sink-movement broadcast

costs.

6. If LPF is infeasible, increase B (e.g., to drop the

configuration(s) with the shortest time from C) and

return to step 2.

We now consider each step of the centralized algorithm,

starting with step 3. We use a simple traveling salesperson

(TSP) model on a graph where vertices represent the major

configurations from the LP and where there is an edge

between each pair of vertices. The edge ðci; cjÞ is weighted

by 1 plus the minimum number of transitions needed to

move from ci to cj or vice versa, since this relationship is

symmetric. The weights are 1, 2, or 3 given that at most

two transient configurations are needed to go from a major

configuration to the following one.5 We wish to find a

traveling salesman path (not a closed tour) among the

chosen configurations. The optimal TSP minimizes the

number of configurations we must add. These are tiny and

easy problems for the free TSP code Concorde [18]. If we

would like the heuristic to run in guaranteed polynomial

time, we can approximate the optimal path using Christo-

fides’ heuristic for the symmetric TSP [19].

We now give a high-level description of how to compute

the transient configuration(s) between two major configu-

rations in step 4. If there are no intermediate transitions

required, then we are done. If there is one intermediate

transition, then this usually is the (non-empty) intersection

of sites in the two major configurations. When the transi-

tion requires two transient configurations, there are many

possible choices for the transient configurations. The sink

movement schedule has the form ci;M 	 ci; L 	 ciþ1; ciþ1,

where ci and ci?1 are adjacent major configurations after

step 3. We must choose a set of sinks to move first, leaving

the remainder (M) behind to receive messages, and com-

pute which sites in the new configuration this set will

occupy (L). The way L and M are chosen ensures that

transient configurations induce an energy consumption

pattern similar to that of ci and ci?1. In this way, as a

whole, transient configurations show the same energy

balancing properties of major configurations. Details are

given in ‘‘Appendix’’.

We now consider the final LP. Because we have selected

the precise set of configurations (steps 2–4), we now no

longer have to allow for zero values of tc. So we can

enforce minimum times for configurations. Because we

know the order of the configurations, we can account for

route maintenance costs. Specifically, each sink in the

initial configuration c0 must broadcast its activation.

Moving between ci and ci?1, all sink sites in ci � ciþ1 must

broadcast their deactivation and all sinks in ciþ1 � ci must

broadcast their activation. Each broadcast from a sink site

w [ V has a potentially different energy cost for each

sensor. Let cp be the total energy cost for sensor p for all

route maintenance operations associated with the specific

sequence of configurations. This is a constant (a function of

the predetermined set of activations and deactivations).

Thus ep � cp is the energy sensor p has remaining for

handling packets during the network lifetime. Let Cm be the

last set of major configurations selected in step 2, let Ct be

the set of transient configurations computed in step 4, and

let C be the appropriately interleaved sequence of Cm and Ct

Then the final LP, called LPF, is as follows:

maximize
X

c2Cm[Ct

tc

subject to:

X
c2Cm[Ct

aprptc þ
X

q2N;w2V

rqbpqqpwyqwctc

 !
� ep � cp

8p 2 N

tc � tmin 8c 2 Cm

tc � sCðcÞ 8c 2 Ct:

This LP has a polynomial number of configurations so we

can solve it directly.

6 Distributed heuristics

In this section we introduce three distributed heuristics for

sink mobility. The first one takes into account the nodal

residual energy for deciding where to move the sinks. The

second and third instead move each sink randomly and

uniformly through the available sites. (The latter represent

protocols where mobility is uncontrolled and uncoordi-

nated. We will use them in the next section for

benchmarking.)

6.1 Controlled and coordinated sink mobility

The distributed heuristic for sink mobility, called DIS,

starts by placing s [ 1 sinks at any s of the v sites (initial

configuration). The sinks then broadcast a packet to the

nodes advertising their current position. Upon receiving

5 Note that these weights are a metric. Weighting only by the number

of transient states does not satisfy the triangle inequality.
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this packet, nodes set up routes to their preferred sink

according to a selected routing protocol. Each sink main-

tains estimates of the state of the network, such as energy

level of the sensors, current traffic from the nodes sending

to it, sink locations and travel information. Based on this

information each sink guesses the network lifetime if all

sinks remain in their current positions till the network dies.

Periodically (i.e., every tmin seconds) each sink decides

whether to move or not. Based on its current estimates of

the network information, it computes the expected change

in lifetime if it were to move to another site not currently

occupied or about to be occupied by another sink. If sites

exist such that moving to one of those sites would extend

the network lifetime more than dtmin seconds, the sink

performs the following operations: It chooses the new site

which induces the maximum expected network lifetime; It

communicates to all the other sinks that it has decided to

move to the selected new site; It tells the sensors currently

reporting to it that it is on the move, shutting down the

routes to its current site (sink deactivation), and moves to

the new site. Upon arriving at the new site the sink

broadcasts a packet advertising its new position thereby

triggering route construction from the nodes for which it is

the preferred sink (sink activation).

The sinks are aware of each other’s status. Therefore a

sink knows if all the other sinks are traveling. If a sink is

the last active sink, it will wait for an activation message

before moving. This ensures that there is always a sink to

receive packets, which enables low latencies.

A sink f’s periodic decision about whether to move or

not depends on information about the state of the network.

In order to determine whether the network lifetime will be

longer if it moves, f needs to know the nodal residual

energy, the nodal data rate and the energy needed to

communicate packets in the new configuration. Sink

f learns this information either by collecting it from its

nodes, or by receiving it from fellow sinks. Sinks collect

information about current nodal energy in the following

way. The energy is divided into a constant number of

levels. When the energy of a node decreases from a level to

a lower one, a node piggybacks this information to a data

packet. A sink also gathers information about its nodes’

data rate by counting packets. Sinks periodically share this

information with the other sinks. The energy costs incurred

by a node in the new configuration are based on knowing

which node will transmit to which sink in the new con-

figuration, and on the energy cost associated with these

transmissions. The first information depends on the rank of

a given sink site in the priority list of a sender node, and the

second on estimates of the qqpw (as defined in Sect. 4). Both

priority lists and qqpw estimates are obtained at network set

up, during a training phase. This phase can be performed

by one sink, which can then share the information with all

the others. The sink travels to each sink site and broadcasts

a packet to make the sensor nodes aware of its current

location. Upon receiving this packet the sensor nodes

transmit test packets to the sink according to the routing

protocol in use. Each test packet carries information about

the route followed from its source to the current location of

the sink. Each traversed hop is associated with the energy

necessary to forward the packet through it. After receiving

a few test packets from a node q, a sink sojourning at site

w is able to estimate, for each node p, the fraction of

packets generated by q that will be relayed by p when

q transmits to a sink at that site (i.e., the sink is able to

estimate qqpw). A sink at w knows the energy consumption

needed by node p to relay packets from q. During the

training phase, sensor nodes also decide how good a sink

site is for them, and return this information to the sink in

the test packets. Therefore, a node creates a priority list of

sink sites.

6.2 Random mobility: RND and ZRND

We define two sink mobility scheme intended to represent

uncontrolled mobility.

The first scheme, called RND (for random scheme),

works as follows. Every tmin seconds, a sink randomly and

uniformly decides the next site to visit among all unoccu-

pied sites and its current site. If the sink moves to a new

site, it communicates its decision to its peers, so that no two

sinks go to the same site. Sensor-to-sink multi-hop route

management and sink movement coordination happens as

for DIS.

In ZRND (for zone random scheme) instead, the

deployment area is divided into s zones, each associated to

a given sink (and only to it, i.e., the zones are non-over-

lapping). Every tmin seconds the sink randomly and uni-

formly selects the next site among the ones in its own zone.

7 Performance evaluation

In this section we discuss the results of a simulation-based

performance evaluation of the solutions proposed in this

paper. The section is organized into three parts. We first

introduce the simulators, the simulation scenarios and their

parameters. Then, we compare the performance of our

distributed heuristic DIS and of the centralized heuristic

(CEN in the following) defined in Sect. 4 to the upper

bound on the optimal network lifetime (OPT), and to

lifetimes for random sink mobility (RND and ZRND) and

for optimally placed static sinks (STATIC). Finally, we

compare the performance of our solutions to the perfor-

mance of the solutions for multiple sink mobility Max-

Min-RE and MinDiff-RE presented in [6].
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7.1 Simulators and simulation scenarios

The results for OPT have been obtained by solving the LP

model defined in Sect. 4 with the commercial solver

CPLEX [20] run on Linux-based 64bit dual-core comput-

ers. The various runs took from few hours to few days to

produce results. We considered the two cases where the

sensors send their data to the closest sink, or to the ‘‘best’’

sink, which is the one sending to whom maximizes network

lifetime. The first choice comes as a natural one in the

sense that is very easy to implement by all the heuristics,

and it is the default one in our experiments.

We implemented the centralized heuristic CEN (Sect. 5)

in a home-grown software framework made up of Perl

scripts [21], the freely available Concorde TSP solver [18],

and the solver for the maximum weight matching problem

based on the N-cubed weighted matching algorithm by

Gabow [22]. The latter is available through Mathprog at

DIMACS (http://www.dimacs.rutgers.edu). In all the con-

sidered scenarios steps two through four of CEN were

extremely fast, never lasting more than one second. The

more time consuming operation was running LPF which

however never took more than three hours on an Intel dual-

core 1.86 GHz workstation with Linux OS and 16 GB of

RAM. We implemented DIS, RND, ZRND, STATIC, and

Max-Min-RE and MinDiff-RE in ns2 [23] with the

parameters listed below. Our simulations also take into

account all the overhead generated by every possible pro-

tocol operation. We used simulations to derive the energy

costs for packet communication and route management, as

well as the estimates for the qqpw parameters that the

analytical frameworks for OPT and CEN require.

All our experiments consider realistic parameters of

WSNs. There are 400 wireless sensor nodes deployed over

a square area of side L. Each node transmission radius is

25 m. Each node has an initial energy of 50 J. It generates

512 B packets at the rate r ¼ 0:5 bps and sends them to

the selected sink according to a (hop-based or geographic)

shortest path routing. The channel data rate is 250 Kbps

(consistent with IEEE 802.15.4 [24]). The transmission

power and the receiving power are 0.0144 and 0.0125 W,

respectively, according to the specifications of the TR 1000

radio transceiver from RF Monolithics [25]. We do not

consider sleep or idle power consumption. We assume that

when not transmitting or receiving packets, node radios are

in sleep mode, i.e., consume a negligible fraction of the

energy required when the radio is up (we can use an

on-board wake-up low-power radio like that described in

[26–28], which wakes up a node from sleep mode only

when it has a packet to receive).

Sinks are free to move from any of the sites of a 4 
 4

and 8 
 8 grid to any other site of the grid. They are

resource-rich devices, and we assume that sinks can

communicate among themselves through high-data rate

reliable communications. We vary the number of sinks in

the range [2, 8]. Protocol related parameters are configured

as follows. The mandatory time sinks are forced to sojourn

at a site in a major configuration (tmin) varies in the set {50,

100, 250} Ks. The threshold d that governs a sink move-

ment decision is 0.1. Finally, nodal energy is partitioned

into 40 levels, each being 2.5% of the initial energy.

To test our solutions we have considered two different

nodal deployments: Nodes are either placed on a grid or

they are scattered randomly and uniformly throughout the

area. In the first case the 400 nodes are placed on a 20 

20 regular grid within a deployment area of side

L ¼ 475 m. The selected transmission radius (25 m)

ensures that every non-border node has exactly four

neighbors. In these scenarios the selected routing is shortest

path, and each node sends its packets to the closest sink. In

the second case, L is set to 300 m. This induces an average

network density of 8.15 neighbors per node. The two dif-

ferent deployments allow us to explore the effect of dif-

ferent densities and different energy consumption patterns

on our solutions (see Sect. 7.2.2)

The results we present here are obtained by running 100

experiments for each displayed value. (The 95% confi-

dence interval is depicted in the figures and displayed along

with the data on the tables.)

7.2 Performance evaluation of the proposed heuristics

7.2.1 Grid deployment of the sensor nodes

We start by considering 400 nodes deployed on a 20 
 20

grid. The nodal transmission range is 25 m and the side of

the square deployment area is 475 m.

Tables 1 and 2 show the network lifetime induced by the

various protocols when varying tmin, the number s of sinks,

and the number of sink sites v. The network lifetime is

defined here as the time till energy depletion of the first

sensor. Each table entry shows the absolute lifetime (in

millions of seconds) and the percentage decrease with

respect to OPT (in parentheses). For ZRND we show

results with 2k (0 \ k � 3) moving sinks because in this

case it is possible to divide the deployment area into 2k

identical square regions.

The centralized heuristic CEN achieves network life-

times that are remarkably close to the optimum: The gap

from OPT is always below 1%. CEN does so well because

it starts from the set of (good) configurations that are

produced by OPT. CEN uses these same configurations

adding intermediate ones and selecting the times the sinks

spend in each configuration by solving LPF (Sect. 5) This

forces each selected major configuration to last at least tmin,

and the transient ones the time needed for broadcasting
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sink activations and deactivations and for the sinks to

move. The time the sinks spend in each of these configu-

rations might, in principle, differ substantially from that

selected by OPT. However, we notice that the good con-

figurations where OPT sends the sinks for the most time are

also those selected by CEN. This is the natural conse-

quence of OPT and CEN being optimization formulations.

LPF in CEN optimizes the lifetime and deems it useful to

spend long times in those good configurations where traffic

is delivered with low energy consumption and the energy

toll is balanced among the nodes. These configurations are

the major configurations selected by OPT. The additional

configurations needed by CEN for transitioning from major

configurations are carefully selected to mimic the adjacent

major configurations. They also are short compared to

major configuration, with a limited impact on the overall

Table 1 Lifetime, in millions of seconds (and % gap from OPT), 4 
 4 grid

s tmin

(K)

OPT CEN DIS RND ZRND STATIC

2 50 46.71 46.71 (&0) 44.1 ± .06 (5.5) 29 ± .22 (37.9) 30.91 ± .21 (33.8) 11.1 (76.2)

100 46.71 46.71 (&0) 43.8 ± .12 (6.2) 28.8 ± .32 (38.3) 30.2 ± .33 (35.3) 11.1 (76.2)

250 46.71 46.7 (.02) 43.4 ± .12 (7) 27.4 ± .44 (41.3) 28.5 ± .41 (38.8) 11.1 (76.2)

3 50 61.14 61.1 (.01) 54 ± .2 (11.6) 38.2 ± .22 (37.5) 14.8 (75.8)

100 61.14 61.1 (.01) 53.3 ± .22 (12.8) 37.6 ± .33 (38.5) 14.8 (75.8)

250 61.14 61 (.07) 52.1 ± .33 (14.7) 35.4 ± .43 (42.1) 14.8 (75.8)

4 50 75.94 75.93 (.01) 58.5 ± .7 (22.9) 45.6 ± .24 (39.9) 50.6 ± .26 (33.3) 19.1 (74.8)

100 75.94 75.93 (.01) 57.9 ± .69 (23.7) 44.7 ± .27 (41.1) 49.9 ± .39 (34.3) 19.1 (74.8)

250 75.94 75.9 (.06) 57.8 ± .71 (23.8) 42.2 ± .46 (44.4) 48.1 ± .51 (36.6) 19.1 (74.8)

5 50 82.42 82.41 (.01) 62.9 ± .25 (23.6) 50.8 ± .27 (38.3) 22.3 (72.9)

100 82.42 82.41 (.01) 62.4 ± .32 (24.2) 50.2 ± .33 (39) 22.3 (72.9)

250 82.42 82.41 (.17) 61.5 ± .33 (25.3) 48.5 ± .48 (41.1) 22.3 (72.9)

6 50 84.97 84.96 (.01) 67.9 ± .31 (20) 55.6 ± .3 (34.5) 28.8 (66.1)

100 84.97 84.96 (.01) 67.5 ± .28 (20.5) 55 ± .4 (35.2) 28.8 (66.1)

250 84.97 84.96 (.01) 67.3 ± .36 (20.7) 53.7 ± .52 (36.8) 28.8 (66.1)

7 50 87.29 87.28 (&0) 73.2 ± .23 (16.1) 60.2 ± .26 (31) 33.7 (61.3)

100 87.29 87.28 (&0) 72.9 ± .28 (16.4) 59.7 ± .34 (31.6) 33.7 (61.3)

250 87.29 87.27 (.02) 72.4 ± .26 (17) 58.1 ± .44 (33.4) 33.7 (61.3)

8 50 88.96 88.9 (&0) 76.5 ± .31 (14) 63.4 ± .22 (28.7) 59.6 ± .23 (33) 45.2 (49.2)

100 88.96 88.9 (&0) 76.1 ± .32 (14.4) 63.1 ± .31 (29) 59.2 ± .3 (33.4) 45.2 (49.2)

250 88.96 88.9 (&0) 75.4 ± .41 (15.2) 61.6 ± .45 (30.7) 59 ± .43 (33.6) 45.2 (49.2)

Table 2 Lifetime, in millions of seconds (and % gap from OPT), 8 
 8 grid

s tmin

(K)

OPT CEN DIS RND ZRND STATIC

2 50 79.51 79.49 (.02) 68.5 ± .42 (13.8) 39.2 ± .28 (50.7) 47.4 ± .32 (40.3) 14.2 (82.1)

100 79.51 79.49 (.02) 67.8 ± .4 (14.7) 39.2 ± .37 (50.7) 46.5 ± .38 (41.4) 14.2 (82.1)

250 79.51 79.2 (.4) 64 ± .75 (19.5) 38 ± .62 (52.2) 43.9 ± .6 (45.2) 14.2 (82.1)

3 50 105.9 105.9 (.03) 90.1 ± .36 (14.9) 50.7 ± .36 (52.1) 20.8 (80.3)

100 105.9 105.9 (.03) 89.3 ± .32 (15.6) 50.7 ± .54 (52.1) 20.8 (80.3)

250 105.9 105.8 (.05) 87.6 ± .36 (17.2) 49.3 ± .8 (53.4) 20.8 (80.3)

4 50 131.4 131.4 (.03) 106.4 ± .33 (19) 63.4 ± .47 (51.7) 88 ± .26 (33) 27.7 (78.9)

100 131.4 131.4 (.04) 105.7 ± .43 (19.5) 63.6 ± .5 (51.6) 86.9 ± .41 (33.8) 27.7 (78.9)

250 131.4 131.3 (.1) 102.5 ± .64 (22) 61.5 ± .81 (53.2) 83.8 ± .63 (36.2) 27.7 (78.9)

5 50 150.1 150 (.04) 120 ± .66 (20) 75.6 ± .46 (49.6) 34.3 (77.1)

100 150.1 150 (.04) 118.8 ± .77 (20.8) 75.9 ± .62 (49.4) 34.3 (77.1)

250 150.1 149.9 (.1) 117 ± .51 (22) 73.9 ± .93 (50.7) 34.3 (77.1)
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energy consumption. This explains the near-optimal per-

formance of the centralized heuristic (as mentioned, just

\1% from OPT).

One may wonder how much OPT and CEN loose

making nodes sending their packets to the closest sink

rather than to the best one. To answer this question we have

run the model by setting this option, and observed that the

loss (in lifetime) is quite limited ranging from 3.8 to 8.7%.

The distributed heuristic DIS is aware of the residual

energy at the network nodes because of the exchange of

information among the sinks. Based on this (approximate)

knowledge as well as on the estimate of the nodal data rate

and of the energy consumption pattern, DIS can move the

sinks to configurations that are expected to improve net-

work lifetime. Traffic and energy-awareness pay off in

terms of network lifetime, which is always within 25.3%

from the OPT lifetime. Equally important, the improve-

ment with respect to STATIC is as high as fourfold. This

confirms the goodness of exploiting controlled, energy-

aware sink mobility, especially for multiple sinks.

Sink mobility is advantageous even when uncontrolled,

i.e., even when sink movements do not depend on the

network state (nodal residual energy, energy consumption

patterns, etc.). With RND the random movements of the

sinks almost triples the network lifetime with respect to

STATIC. ZRND offers similar performance.

We also observe that OPT and the other heuristics

induce longer lifetimes when the number of sinks increa-

ses. This is because the network traffic is partitioned

among a larger set of sinks, sink neighbors receive fewer

packets, routes are shorter and the overall energy con-

sumption is lower. However, we notice lifetime improve-

ments which are not linear in the number of sinks. In other

words, having two sinks does not double lifetime compared

to one sink. Having three sinks does not triple lifetime, and

so on. This is evident in Table 1, which shows that

deploying 8 sinks only leads to a 17% improvement in

OPT lifetime with respect to scenarios with 4 sinks. Given

our set of sink sites, we do not expect that linear

improvement is possible. The route length and the overall

energy consumption do not halve when we double the

number of sinks. In addition, achieving linear improve-

ments would require sinks to be assigned (on average) to

configurations which perfectly partition data sources to the

sinks. Such perfect configurations are rare, if possible at

all. Moreover, if it were possible for sinks to transition only

among this kind of node-balanced configurations it would

be challenging to obtain good energy balancing. Energy

balancing is in fact the consequence of the fine tuning of

the time spent by the sinks in different configurations

(including unbalanced ones) so that all the nodes relay a

similar amount of traffic over time and the energy con-

sumption is minimized.

For all protocols, remarkably higher lifetime is obtained

by increasing the number of sink sites v. For example,

when 5 sinks may visit 64 sites the lifetime is 150.1 Ms for

OPT. When restricted to 16 sink sites the lifetime is

82.42 Ms. A higher number of sites allows the protocol to

choose among a higher number of configurations. Denser

sink sites allow the sinks to drain energy from all the dif-

ferent areas in the network.

We finally observe that both DIS, RND and ZRND

produce higher lifetime increases as tmin decreases. The

reason is that higher tmins result in a coarser selection of the

times spent in the various configurations, and therefore in a

worse energy balancing. In addition, the price to pay for

having entered an ‘‘energy undesirable’’ configuration is

paid for a longer time.

As a final remark, we observe that our mobility schemes

not only improve the average network lifetime, but also

consistently perform well in every single run we consid-

ered. For instance, in the case with 4 sinks moving among

16 sites and tmin = 50,000 s the minimum network lifetime

for DIS is 54.6 Ms, a mere 7% from the observed average.

In the case with 5 sinks moving over 64 sink sites, and

tmin = 50,000 s, the average lifetime is 11% greater than

the observed minimum. These two cases are those with the

greatest standard deviation of network lifetime for the 16

and 64 scenarios, respectively (in all other scenarios the

variance is even smaller).

Beyond achieving improved network lifetime CEN and

DIS also result in a more even distribution of the nodes

residual energies with respect to RND, ZRND and STATIC

(confirming they are able to more evenly distribute the

traffic load over different nodes throughout the network

lifetime). Ideally, we would like the sinks to coordinately

move, changing their positions over time so that the energy

is evenly drained from all the areas in the networks. CEN

and DIS satisfactorily achieve our goal. This is clearly

shown in Fig. 2 which displays the residual energy of the

nodes at network lifetime. The figure shows the results of a

run on a typical scenario where 5 sinks can select among 64

sites (performance does not significantly change when

considering different runs). A lighter color means a lower

percentage of residual energy in that area of the network.

We observe that CEN results in better energy balancing

that DIS, which in turn outperforms RND, ZRND and

STATIC. More precisely, at lifetime OPT and CEN show

an impressive percentage of nodes with very little energy

left, a witness of its good energy drainage balancing

property. The fraction of nodes with less than 20% (40%)

residual energy at network lifetime is 52.5% (80%). This

means that at network lifetime, i.e., when the first sensor

dies, many more sensors are also about to cease their

operations, which comprises the functioning of the whole

network. Specifically, in all considered scenarios we
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observed that from 73 to 96% of the nodes around all sink

sites (the only ones that can relay packets to the sinks) are

left with no more than 3% of their initial energy, which

makes communications very limited if not impossible.

In DIS the percentage of nodes with less than 20% of the

initial energy at lifetime is around 36.7%. The percentage

of nodes with less than 40% of the initial energy is 57.2%.

These figures reduce to 12.75 and 39.75% for RND-

induced residual energy, and to 1.75 and 3.5% for STA-

TIC. In a scenario with 4 moving sinks, these figures for

ZRND equates 16 and 52.5%.

The other WSN-relevant metric we have investigated is

the end-to-end packet latency (Tables 3, 4). For all proto-

cols, latencies are quite low, never exceeding 200 ms (the

worst case is RND, 16 sinks site, 2 sinks scenario).

Latency performance mostly depends on the average

length of the routes traveled by packets. Increasing the

number of sinks results in lower route length, and therefore

in lower latencies.

When comparing the end-to-end latency experienced by

the different schemes, we observe that STATIC achieves

the shortest routes almost always because it places the

sinks in a well balanced way resulting in short source-to-

sink routes. CEN and DIS select configurations which

spread sinks over different areas in the network, more or

less evenly associating nodes to the different sinks. The

increase of route length and end-to-end latency of CEN and

DIS over STATIC is therefore quite limited, never more

than 18% (for 16 sink sites) or more than 20% (for 64 sink

sites). Both heuristics have comparable performance,

interchangeably outperforming each other depending on

the specific scenario. RND can produce configurations

where the sinks are all on one side of the network, thus

inducing sensor-to-sink routes that can be long, and thus

again longer latencies. In our scenarios we measured an

increase of end-to-end latency of up to 12% with respect to

CEN and DIS. ZRND mitigates the unbalanced effects

observed for RND, producing latencies that are similar to

DIS.

We notice that the above end-to-end packet latency

increases/decreases have very limited impact on perceived

performance (we are speaking of latencies of few hundred

milliseconds) while the increases in network lifetime

obtained by energy-aware solutions like DIS (over RND,

ZRND and STATIC) make a remarkable difference in

terms of the monitoring capability of the network. For

instance, in the 16 sink site scenario with 2 sinks (see

Table 1), DIS is able to successfully deliver over two

million packets during the network lifetime vs. the half a

million packets that are delivered in STATIC scenarios.

The number of DIS-delivered packets is 3.7 millions and

those delivered in STATIC scenario are 2.2 when 8 sinks

roam through the network.

Finally, we have run experiments where packets are

routed to the sinks through geographic routing (namely,

geographic greedy forwarding). We observed trends and

values similar to those obtained with shortest path routing.

For instance, in scenarios with 8 (4) sinks traveling through

16 sink sites, OPT achieves a lifetime of 89.5 Ms

(78.7 Ms) when using geographic routing vs. a lifetime of

88.96 Ms (75.93 Ms) obtained by routing packets via

shortest paths.
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Fig. 2 Residual energy at lifetime for CEN (a), DIS (b), RND (c),

and STATIC (d), 5 sinks in a 8 
 8 grid

Table 3 End-to-end packet latency, in seconds (4 
 4 grid)

s CEN DIS RND ZRND STATIC

2 .189 .19 .2 .19 .166

3 .153 .15 .166 .129

4 .129 .131 .141 .13 .123

5 .117 .112 .124 .105

6 .107 .103 .112 .105

7 .097 .096 .103 .091

8 .089 .09 .094 .09 .082

Table 4 End-to-end packet latency, in seconds (8 
 8 grid)

s CEN DIS RND ZRND STATIC

2 .179 .177 .196 .18 .154

3 .139 .138 .16 .117

4 .116 .112 .137 .122 .096

5 .102 .102 .122 .087
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7.2.2 Random and uniform sensor deployment

In this section we explore the performance of the solutions

we proposed when nodes are randomly and uniformly

deployed. We consider scenarios where 400 nodes are

scattered randomly and uniformly throughout a square area

of side L ¼ 300 m. As previously considered, the sensor

node transmission radius is 25 m and the sink sites are

deployed in a grid pattern. Packet are routed to the closest

sink via shortest paths. We tested 12 different connected

topologies, running multiple experiments on each one. The

average nodal degree of the considered topologies varies

from 7.51 to 8.46 (doubling that of the grid case). We

investigated scenarios where 2, 3 and 4 sinks roam through

the network nodes, sojourning at v sink sites, with v ¼ 16

and 36.

A different deployment and different (i.e., higher) den-

sities considerably affect nodal energy consumption. In

particular, the average energy consumed by a node is

considerably reduced. For instance, while the nodal aver-

age consumption per second is 4.53E-7J in the case of grid

deployment, when nodes are scattered randomly and uni-

formly the same metric averages to 2.81E-7J (with 2 sinks

roaming over a 4 
 4 sink-site grid). The averages become

3.3E-7 and 2.05E-7, respectively, when we deploy four

mobile sinks. Nodal deployment also affects routing, thus

inducing different energy consumption patterns. Figure 3

shows the different patterns of energy consumption

imposed by routing over different types of nodal deploy-

ment when two sinks (red circles) are positioned at two

opposite corners of the network. The squares represent

sensor nodes. Different shades of gray indicate different

energy consumption rates per node (J/s): The darker the

node the higher the energy consumed per second.

Figure 3 demonstrates that in the grid deployment the

nodes that are stressed the most are the immediate neigh-

bors of a sink, and the energy consumption rate is quite

regular (Fig. 3(a)). When nodes are scattered randomly and

uniformly throughout the area (Fig. 3(b)), critical nodes are

bottlenecks in the (non-necessarily radio) vicinity of the

sink, and the energy consumption patterns are more

irregular. (We have observed similar trends with different

configurations.)

Despite these significant differences, our experiments

show that the relative trends of the different protocols in

terms of the metrics of interest (network lifetime, packet

route length and end-to-end latency) are the same whether

the sensors are deployed on a grid or randomly and

uniformly.

This is clearly indicated by the results shown in Tables 5

and 6 for the lifetime and in Tables 7 and 8 for the end-to-

end packet latency.

We observe that the values obtained for network lifetime

are comparable to those observed for the grid deployment

scenario (e.g., Table 1). This is because, despite higher

density usually enables better balancing and lower per node

energy consumption, moving sinks so that energy con-

sumption is balanced and minimized is much more chal-

lenging, given the irregular nodal placement. This

motivates a more uneven distribution of nodal residual

energy at lifetime in all protocols, including CEN.

For instance, when 4 sinks move in a 6 
 6 grid, the

fraction of CEN nodes with less than 20% (40%) residual

energy at network lifetime is 19.64% (32.45%). The per-

centage of CEN nodes with less than 60% (80%) of the

initial energy is 49.54% (73.46%). In DIS the percentage of

nodes with less than 20% (40%) of the initial energy at

lifetime is 8.86% (19.29%). The percentage of nodes with

less than 60% (80%) of the initial energy is 35.39%

(62.84%). With the RND heuristic the percentage of nodes

with less than 20% (40%) of the initial energy at lifetime is

1.03% (4.14%). The percentage of RND nodes with less

than 60% (80%) of the initial energy is 14.35% (44.8%).

With ZRND, instead, the percentage of nodes with less

than 20% (40%) of the initial energy at lifetime is 0.84%

(2.21%). The percentage of ZRND nodes with less than

60% (80%) of the initial energy is 8.31% (29.37%).

Finally, these figures drop to 1.62, 3.81, 7.66 and 16.87%,

respectively, for STATIC.

7.3 Comparative performance evaluation

We compare the lifetime of our solutions to that induced by

the heuristics Max-Min-RE and MinDiff-RE, the best

among the three sink mobility schemes presented in [6].

This shows the differences between our approach to con-

trolled and coordinated mobility and schemes that limit

sinks to sites along the network perimeter. Previous

perimeter-based solutions have effectively improved life-

time for one sink [29].

MinDiff-RE is a centralized scheme where sinks sojourn

only at sites at the boundary of the deployment area. The

protocol proceeds in rounds. At the beginning of each

round, the sinks move to a configuration that minimizes the

difference between the maximum and minimum residual

energy of the nodes at the end of the round. This difference

is computed for all possible configurations. Considering

scenarios with s sinks and v sink sites, the number of

configurations to check at each round is
v
s

� �
, which

grows exponentially with s. This limits the applicability of

this method to networks with a limited number of sinks.

For instance, the 8 
 8 sink site grid scenario considered

above has 28 sink sites on the area perimeter, which force
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thousand of configurations to be checked each round even

for s as small as 3.

Max-Min-RE differs from MinDiff-RE only in the way

the new configuration is selected at the beginning of each

round. Max-Min-RE chooses the configuration which

maximizes the minimum residual energy over all nodes at

the end of the round.

Given the scalability problems of the two heuristics, in

the following performance comparison we consider only

the 4 
 4 sink site grid case. Packet are routed to the

closest sink via shortest paths. All relevant parameters are

set as described as in Sect. 7.2.1 (nodes deployed on a

grid). In particular, DIS, RND, Max-Min-RE and MinDiff-

RE decide whether to move or not, and where, every tmin.

Fig. 3 Per node energy

consumption with different

types of deployment

Table 5 Lifetime, in millions of seconds (and % gap from OPT), 4 
 4 grid

s tmin

(K)

OPT CEN DIS RND ZRND STATIC

2 50 46.9 ± 2.3 46.9 ± 2.3 (&0) 40.2 ± 2.4 (14.3) 25.8 ± 1.8 (45) 24.3 ± 2.2 (48.2) 15.3 (67.3) ± 1.1

100 46.9 ± 2.3 46.9 ± 2.3 (&0) 40.1 ± 2.5 (14.6) 25.5 ± 1.6 (45.5) 24.1 ± 2.1 (48.6) 15.3 (67.3) ± 1.1

250 46.9 ± 2.3 46.9 ± 2.3 (&0) 39.7 ± 2.4 (15.5) 24.6 ± 1.5 (47.5) 23.4 ± 1.9 (50) 15.3 (67.3) ± 1.1

3 50 64.1 ± 3.1 64.1 ± 3.1 (&0) 53.8 ± 3.2 (16) 32.6 ± 1.9 (49.1) 20.2 (68.4) ± 1.7

100 64.1 ± 3.1 64.1 ± 3.1 (&0) 53.4 ± 3.2 (16.6) 32.5 ± 1.8 (49.3) 20.2 (68.4) ± 1.7

250 64.1 ± 3.1 64.1 ± 3.1 (&0) 52.7 ± 3.3 (17.7) 31.6 ± 1.8 (50.7) 20.2 (68.4) ± 1.7

4 50 75.3 ± 3.4 75.3 ± 3.4 (&0) 63.7 ± 3.6 (15.4) 38.2 ± 2.3 (49.2) 36.7 ± 3 (51) 24.8 (67) ± 1.8

100 75.3 ± 3.4 75.3 ± 3.4 (&0) 63.4 ± 3.6 (15.8) 38.1 ± 2.3 (49.4) 36.8 ± 3 (51) 24.8 (67) ± 1.8

250 75.3 ± 3.4 75.3 ± 3.4 (&0) 62.5 ± 3.8 (16.9) 37.2 ± 2 (50.6) 36 ± 2.7 (52) 24.8 (67) ± 1.8

Table 6 Lifetime, in millions of seconds (and % gap from OPT), 6 
 6 grid

s tmin

(K)

OPT CEN DIS RND ZRND STATIC

2 50 56.5 ± 2.9 56.5 ± 2.9 (.01) 45.1 ± 2.6 (20.1) 25.5 ± 1.8 (54.8) 25.1 ± 2.6 (56) 17 (69.9) ± 1.3

100 56.5 ± 2.9 56.5 ± 2.9 (.01) 45 ± 2.7 (20.3) 25.4 ± 1.7 (55) 24.9 ± 2.6 (55.8) 17 (69.9) ± 1.3

250 56.5 ± 2.9 56.5 ± 2.9 (.06) 44.6 ± 2.6 (21) 24.8 ± 1.6 (56.1) 24.5 ± 2.4 (56.6) 17 (69.9) ± 1.3

3 50 82.2 ± 2.3 82.2 ± 2.3 (.01) 64.1 ± 3.2 (22) 33.1 ± 2.4 (59.7) 37 ± 2.5 (55) 23.6 (71.2) ± 1

100 82.2 ± 2.3 82.2 ± 2.3 (.02) 63.8 ± 3 (22.3) 33.1 ± 2.3 (59.7) 36.9 ± 2.4 (55) 23.6 (71.2) ± 1

250 82.2 ± 2.3 82.2 ± 2.3 (.03) 62.9 ± 3 (23.4) 32.6 ± 2.2 (60.3) 36.5 ± 2.3 (55) 23.6 (71.2) ± 1

4 50 105.2 ± 2.1 105.2 ± 2.1 (.02) 81.9 ± 2.2 (22.1) 40.2 ± 2.8 (61.7) 42.6 ± 2.7 (60) 30.5 (71) ± 1.6

100 105.2 ± 2.1 105.2 ± 2.1 (.02) 81.3 ± 2.2 (22.7) 40.2 ± 2.8 (61.7) 42.8 ± 2.7 (60) 30.5 (71) ± 1.6

250 105.2 ± 2.1 105.2 ± 2.1 (.03) 80.2 ± 2.2 (23.8) 40.1 ± 2.5 (61.8) 42.6 ± 2.6 (60) 30.5 (71) ± 1.6
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For fairness reasons, in the scenarios of Max-Min-RE and

MinDiff-RE the 16 sink sites are equally spaced along the

perimeter of the deployment area.

Figure 4 shows network lifetime results. We observe

that the lifetime values induced by Max-Min-RE and

MinDiff-RE mobility (the two curves are basically over-

lapping) are always remarkably worse than those of CEN

and DIS. However, Max-Min-RE and MinDiff-RE perform

comparably to RND.

The reason for the poor Max-Min-RE and MinDiff-RE

performance is limiting the sinks to move only to sites on

the boundary of the deployment area, and not within it. As

observed in scenarios where the nodes are deployed dif-

ferently (grid vs. random and uniform), combining con-

figurations that hold the sinks both on the perimeter and

inside the deployment area successfully obtains even

drainage of energy at the network node. This is a key

factor in prolonging network lifetime, which is the

objective function that we want to maximize by moving

the sinks. Following more geographic/geometric criteria as

in Max-Min-RE and MinDiff-RE and limiting through

these criteria the movement of the sinks inevitably

decreases the possibility of taking advantage of configu-

rations that help in balancing nodal energy consumption.

The values of the residual energy at lifetime confirms this

observation.

Finally, keeping the sinks on the perimeter results in

longer routes and longer latencies. In order to get to the

Table 7 End-to-end packet latency, in seconds (4 
 4 grid)

s tmin

(K)

CEN DIS RND ZRND STATIC

2 50 .134 ± .003 .125 ± .003 .151 ± .002 .145 ± .002 .106 ± .006

100 .133 ± .003 .125 ± .003 .15 ± .002 .145 ± .001 .106 ± .006

250 .133 ± .003 .125 ± .003 .151 ± .002 .143 ± .001 .106 ± .006

3 50 .108 ± .003 .104 ± .002 .125 ± .001 .091 ± .002

100 .108 ± .003 .104 ± .002 .124 ± .001 .091 ± .002

250 .108 ± .003 .104 ± .003 .123 ± .002 .091 ± .002

4 50 .093 ± .002 .091 ± .002 .107 ± .001 .094 ± .002 .079 ± .004

100 .094 ± .003 .091 ± .002 .106 ± .001 .095 ± .002 .079 ± .004

250 .093 ± .003 .091 ± .002 .106 ± .001 .095 ± .002 .079 ± .004

Table 8 End-to-end packet latency, in seconds (6 
 6 grid)

s tmin

(K)

CEN DIS RND ZRND STATIC

2 50 .124 ± .002 .118 ± .002 .144 ± .002 .136 ± .002 .102 ± .005

100 .124 ± .002 .118 ± .002 .143 ± .002 .136 ± .002 .102 ± .005

250 .124 ± .002 .118 ± .002 .142 ± .001 .137 ± .002 .102 ± .005

3 50 .099 ± .002 .096 ± .001 .118 ± .001 .112 ± .001 .086 ± .004

100 .099 ± .002 .096 ± .001 .118 ± .001 .112 ± .001 .086 ± .004

250 .099 ± .002 .096 ± .001 .117 ± .001 .112 ± .001 .086 ± .004

4 50 .085 ± .001 .083 ± .001 .102 ± .001 .09 ± .001 .076 ± .002

100 .085 ± .001 .083 ± .001 .102 ± .001 .09 ± .001 .076 ± .002

250 .085 ± .001 .083 ± .001 .102 ± .001 .09 ± .001 .076 ± .002
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sink closest to its source, a packet has to travel a potentially

high number of hops. This results in a higher nodal energy

consumption per second (which also explains the results

obtained for the network lifetime) and in higher latencies.

8 Conclusions

We have shown that controlled and coordinated mobility of

multiple sinks effectively improves the lifetime of a WSN.

By defining a mathematical model that takes into account

realistic parameters, we have provided a provable upper

bound on the lifetime of WSNs of realistic scale (OPT).

We also defined a centralized heuristic (CEN) for con-

trolled sink mobility. It determines routes and sojourn

times for multiple sinks that depend on the network state

and produces network lifetimes remarkably close to the

upper bound. We then defined a distributed protocol (DIS)

for controlled and coordinated sink movements based on

the expected lifetime improvements produced by a sink

moving to a new site. Comparative performance evaluation

among OPT, CEN, DIS, uncontrolled, random mobility,

optimal static sink placement and previously proposed

solutions for moving multiple sinks shows that coordinat-

ing and controlling the mobility of the sinks is always

advantageous, yielding remarkable lifetime improvements.
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Appendix: Computing transient configurations

A transition between configuration ci [ C to configuration

cj [ C is legal if jcj � cij � s� jcij. That is, in a legal

transition, the number of sites that receive new active sinks

in the new configuration does not exceed the number of

inactive sinks in the preceding configuration. The inactive

sinks can move to the new sites during the time configu-

ration ci holds. In addition we require that at least one sink

is active at all times.

We now show that we can transition between any pair of

major configurations using at most two transient

configurations.

Theorem 1 At most two transient configurations suffice

to move from any major configuration to the following one.

Proof Suppose we wish to transition from configuration

ci [ C to cj [ C where ci 6¼ cj. There are only three pos-

sible cases for the number of transient configurations

between ci and cj:

1. ci 	 cj or cj 	 ci. In this case, there are no transient

configurations necessary since moving from ci to cj or

vice versa satisfies our legal-transition criteria.

If ci 	 cj, then jcj � cij ¼ jcjj � jcij � s� jcij, since

jcjj � s. If cj 	 ci; jcj � cij ¼ 0 � s� jcij, since jcij � s.

2. ci 6	 cj and cj 6	 ci, and either ci \ cj 6¼ ; or |ci| \ s or

|cj| \ s. In this case, one transient configuration

suffices. If ci \ cj 6¼ ;, this intersection is a legal

transient configuration ci
a. From the argument for the

previous case, we can move directly from configura-

tion ci to ca
i ¼ ci \ cj because ci \ cj 	 ci. Similarly

we can move directly from configuration ci
a to cj

because ca
i ¼ ci \ cj 	 cj. If ci \ cj ¼ ; but |ci| \ s,

then let ci
a be any element of cj. Moving from ci

a to cj is

legal because ca
i 	 cj. Since |ci| \ s and configuration

sizes are integers, we have s� jcij � 1. Moving from

ci to ci
a is legal because jca

i � cij ¼ 1 � s� jcij. A

similar argument holds if |cj| \ s.

3. ci 6	 cj and cj 6	 ci; ci \ cj ¼ ; and jcij ¼ jcjj ¼ s. This

covers all the remaining cases. Two transient configu-

rations suffice. Let ci
a be any nonempty proper subset of

ci and let ci
b be any nonempty proper subset of cj such that

jca
i j þ jcb

i j ¼ s. We can move directly from configura-

tion ci to ci
a because ca

i 	 ci. Similarly, we can move

directly from ci
b to cj because cb

i 	 cj. We can move

directly from ci
a to ci

b because jca
i � cb

i j ¼ jca
i j ¼

s� jcb
i j. The first equality follows because ci \ cj ¼ ;

and ca
i 	 ci and cb

i 	 cj. Thus ca
i \ cb

i ¼ ;. The second

equality follows by construction.

h

In the part of the proof of Theorem 1 concerning the

case with one transient configuration, there were three

separate sufficient conditions: ci \ ciþ1 6¼ ; or |ci| \ s or

|ci?1| \ s. Our argument that one transient configuration

suffices used three different constructions for that transient

configuration, one for each condition. However, these

conditions and constructions are independent and fully

compatible. We can combine all the pieces to get a tran-

sient configuration with a maximal number of active sinks.

This heuristically minimizes the total energy the transient

configuration requires per unit time.

A maximal legal configuration ci
a for this case contains

the sites in ci \ ciþ1 plus s - |ci| elements of ciþ1 � ci and

s - |ci?1| elements of ci � ciþ1. For example, suppose ci ¼
fv1; v2; v3g and ciþ1 ¼ fv3; v4; v5g, with s ¼ 4. Then a

possible single transient state is ca
i ¼ fv2; v3; v4g. At the
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start of the transition, the one spare sink, not active during

configuration ci, has finished traveling to location v4. To

move to configuration ci
a, the sink waiting at site v4 acti-

vates while the sink at location v1 deactivates and begins

moving to location v5. When the traveling sink arrives at

v5, it activates, while the (now spare) sink at location v2

deactivates to put the system in configuration ci?1.

The specific way we construct a single transient con-

figuration between ci and ci?1 in step 4 of the centralized

heuristic is to include the entire intersection ci \ ciþ1 plus

s - |ci| randomly selected sites from ciþ1 � ci and s -

|ci?1| randomly selected sites from ci � ciþ1. There may be

some advantage to making more clever choices for the

spare sinks, but this case rarely arises. In practice, if a

configuration does not use all s sinks, it is almost always a

pure subset of at least one other configuration.

If configurations ci and ci?1 have no site in common and

both have size s, we compute two transient configurations

as in the proof of Theorem 1. That is, we will choose ci
a a

nonempty proper subset of ci and ci
b a nonempty proper

subset of ci?1 such that jca
i j þ jcb

i j ¼ s. For example, in

Fig. 1, both configurations ci and ci?1 use all 6 possible

sinks. ca
i ¼ fv1; v3; v5g and cb

i ¼ fv7; v9; v11g. To make the

transition, the sinks at sites in ci � ca
i move first to loca-

tions in ci
b while those in ci

a stay where they are to receive

data. Then the sinks in ci
a move to their final positions

while those in ci
b receive data. There are many possible

ways to choose ci
a as a subset of ci and ci

b as a suitably-

sized subset of ci?1. We now describe one way to pick

these sets and argue why heuristically we might expect it to

perform well compared to using an arbitrary pair of sets

that satisfy our constraints.

To create the transient configurations between major

configurations ci and ci?1, we first consider configuration

ci. We estimate the distance between each pair of sink sites

in ci. We then construct a complete graph that has a node

for each site in ci, and edges weighted by this pairwise

distance estimate. We find a minimum-weight maximum-

cardinality matching in this graph. We then pick an ele-

ment from each matched pair arbitrarily to form the set of

sink sites ci
a. For instance, in the upper left corner of Fig. 1,

lines show the matching for configuration ci. The config-

uration ca
i ¼ fv1; v3; v5g is the unboxed element of each

matched pair. The set of sink sites to move first is

M1 ¼ ci � ca
i ¼ fv2; v4; v6g. To move from ci to ci

a, the

sinks at sites in M1 deactivate and begin to move while

those in ci
a stay to receive traffic. We hope that if sites vi

and vj are matched and a sink at site vi deactivates to move,

the nodes sending to vi will be redirected to the nearby site

vj, maintaining an energy consumption pattern among

nodes that is similar to that of configuration ci. We then

compute a similar matching in ci?1 and use that to pick the

new locations M2 for the sinks from sites in M1 to move to.

Thus cb
i ¼ M2. We hope ci

b approximates the energy bal-

ance of configuration ci?1.
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