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Coordinated Control Method of Voltage and Reactive
Power for Active Distribution Networks

Based on Soft Open Point
Peng Li, Member, IEEE, Haoran Ji, Student Member, IEEE, Chengshan Wang, Senior Member, IEEE,

Jinli Zhao, Member, IEEE, Guanyu Song, Fei Ding, Member, IEEE, and Jianzhong Wu, Member, IEEE

Abstract—The increasing penetration of distributed generators
(DGs) exacerbates the risk of voltage violations in active distri-
bution networks (ADNs). The conventional voltage regulation
devices limited by the physical constraints are difficult to meet
the requirement of real-time voltage and VAR control (VVC) with
high precision when DGs fluctuate frequently. However, soft open
point (SOP), a flexible power electronic device, can be used as the
continuous reactive power source to realize the fast voltage regula-
tion. Considering the cooperation of SOP and multiple regulation
devices, this paper proposes a coordinated VVC method based
on SOP for ADNs. First, a time-series model of coordinated VVC
is developed to minimize operation costs and eliminate voltage
violations of ADNs. Then, by applying the linearization and
conic relaxation, the original nonconvex mixed-integer nonlinear
optimization model is converted into a mixed-integer second-order
cone programming model which can be efficiently solved to meet
the requirement of voltage regulation rapidity. Case studies are
carried out on the IEEE 33-node system and IEEE 123-node
system to illustrate the effectiveness of the proposed method.

Index Terms—Active distribution network (ADN), distributed
generator (DG), mixed-integer second-order cone programming
(MISOCP), soft open point (SOP), voltage and VAR control (VVC).

NOMENCLATURE

Sets

Ωb Set of branches without OLTC

ΩO Set of branches with OLTC

Variables

Pt,ij , Qt,ij Active/reactive power flow of branch ij

without OLTC at period t
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POTLC
t,ij , QOTLC

t,ij Active/reactive power flow of branch ij

with OLTC at period t

It,ij , lt,ij Current magnitude and its square of branch

ij at period t

Ut,i , vt,i Voltage magnitude and its square at node i

at period t

Pt,i , Qt,i Total active/reactive power injection at

node i at period t

PDG
t,i , QDG

t,i Active/reactive power injection by DG at

node i at period t

P SOP
t,i , QSOP

t,i Active/reactive power injection by SOP at

node i at period t

Kt,ij , kt,ij Number of the tap steps and turns ratio of

the OLTC connected to branch ij at period t

QCB
t,i Reactive power injection by CBs at node i

at period t

NCB
t,i Number of the CB units in operation at node

i at period t

P
SOP ,loss
t,i Active power losses of SOP at node i at

period t

K+
t,ij , K−

t,ij Auxiliary variables that indicate the posi-

tive/negative changes in the tap steps of the

OLTC connected to branch ij at period t

N+
t,i , N−

t,i Auxiliary variables that indicate the posi-

tive/negative changes in the number of CB

units connected to node i at period t

vc
t,ij,k Auxiliary variable that denotes vt,j bt,ij,k

bt,ij,k Binary variable associated with the binary

expansion scheme of Kt,ij

Parameters

NT Total periods of the time horizon

NN Total number of the nodes

∆t Duration of each time period

P L
t,i , QL

t,i Active/reactive power consumption at

node i at period t

P
DG ,re
t,i Forecasted active power generated by DG

at node i at period t

tanθDG
i cosθDG

i is the power factor of the DG at

node i

Q̄SOP
i , Qi−

SOP Upper/lower limit of reactive power pro-

vided by SOP at node i
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SSOP
i Capacity limit of SOP at node i

SDG
i Capacity limit of DG at node i

rij , xij Resistance/reactance of branch ij

Ū , U− Upper/lower limit of statutory voltage

range

Ūthr , U thr Upper/lower limit of desired voltage range

Ī Upper current magnitude limit of branch

ASOP
i Loss coefficient of SOP at node i

kij,0 , ∆kij Initial turn ratio and increment per step of

OLTC connected to branch ij

K̄ij Total steps of OLTC connected to branch

ij

qCB
i Reactive power capacity of each unit of

the CBs at node i

N̄CB
i Total number of CBs at node i

WL , WV Weight coefficients associated with total

operation costs and voltage deviation

Closs , Ctap , Ccap Cost coefficients associated with total

losses, operation of OLTC and CBs re-

spectively

∆̄OLTC Maximum variation of tap steps of the

OLTC in the considered time horizon

∆̄CB Maximum variation of the CB units in the

considered time horizon

I. INTRODUCTION

R
ENEWABLE energy resources, in the form of distributed

generators (DGs), have been integrated into distribution

networks dramatically in recent years [1]. With the increasing

penetration of DGs, the distribution networks have undergone a

tremendous change ranging from the structure to operation mode

[2], [3]. The distribution networks are gradually transforming

from passive networks to active distribution networks (ADNs)

comprising the role of energy collection, transmission, storage

and distribution [4]. The volatile DGs and various demand-

side resources begin to participate in the management of ADNs,

making the operation more complex and challenging [5]. Specif-

ically, the intermittent resources comprising wind turbines and

solar photovoltaics, and controllable loads such as electric vehi-

cles have significant uncertainties in spatial and temporal distri-

bution, frequently leading to a sharp fluctuation of feeder power

and voltage violation [6]. These disturbances cause more voltage

and VAR control (VVC) problems [7], increase the operating

losses and even result in stability issues of ADNs [8].

The voltage violations can be mitigated by dispatching vari-

ous VAR devices. In the current distribution networks, the VVC

is mainly accomplished by the regulation of primary equipment

such as the on-load tap changer (OLTC), switchable capacitor

banks (CBs) and tie switches, as well as the direct scheduling of

the dispatchable DGs [9]. As the conventional tap adjustment of

OLTC, switching of CBs and reconfiguration of tie switches are

limited by the slow response and discrete voltage regulation, it

is difficult to meet the requirement of real-time VVC with high

precision when DGs and loads fluctuate frequently in ADNs

[10]. Besides, limited by the volatile outputs and ownerships,

many dispersed DGs are still in the uneasily controllable state

for the distribution system operator (DSO). The regulating ca-

pability of DGs is unable to support the centralized operation

optimization.

The rapid development of power electronic technologies pro-

vides opportunities for the further optimization of ADNs oper-

ation. At distribution level, soft open point (SOP) is a power

electronic device with high controllability installed to replace

normally open point (NOP), realizing the flexible connection be-

tween feeders [11]. Compared to the conventional VAR regula-

tion devices with slow response time, SOP can accurately realize

the real-time active and reactive power flow control and continu-

ous voltage regulation in the normal operation [12]. Meanwhile,

due to the isolation of DC link and instantaneous control of cur-

rents, SOP can effectively contribute to the fault isolation and

supply restoration of ADNs [13]. Considering the limited capa-

bility and relatively high investment of SOP, the conventional

VAR regulation devices may not be completely replaced in a

short term. Thus, it is of significance to realize the coordination

between SOP and the other regulation devices in ADNs [14].

Previous studies have investigated the VVC problems based

on the multiple regulation devices. Reference [15] developed a

hybrid algorithm for the joint optimization of OLTC adjusting

and CBs switching to minimize the power losses and voltage

violation of distribution networks. The authors in [16] proposed

a coordinated OLTC and SVC control algorithm to improve op-

erational efficiency and a two-stage method was adopted. The

problems in [15] and [16] were solved by artificial intelligence

algorithms and only non-optimal solutions could be obtained in

most cases. References [17] and [18] built a VAR optimization

model to minimize power losses of ADNs based on second-

order cone relaxation technology, which obviously improved

the computation efficiency. The coordination of regulation de-

vices on different time scales and voltage profile improvement

could be further considered in this model. In [19], the active and

reactive optimization involving DGs and energy storage sys-

tem was conducted to achieve the minimum network loss and

maximum utilization of DGs in a period of time. It was shown

in [20] that SOP facilitated the economic operation of ADNs,

and network performance was improved by considering both

SOP and network reconfiguration. Reference [21] proposed a

planning model that considers optimal investment of SOP as

well as various smart technologies to alleviate the network con-

straints violation due to DG penetration. Considering the high

investment of SOP, it is of significance to optimize the siting

and sizing of SOP to realize maximum benefits in ADNs [22].

The above studies all showed that the coordination of multiple

regulation devices contributed to the power losses reduction and

voltage violation mitigation.

As the voltage violation frequently occurs with the fluctuation

of DGs and loads, SOP rapidly adjusts the reactive power output

to regulate voltage in real time. On the other hand, the switch-

based devices comprising OLTC and CBs limited by security

risks regulate the VAR in a long time scale. The above regulation

devices can cooperate to maintain the voltage at a desired level

and minimize the operation costs of ADNs.
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The coordinated VVC problem not only involves the continu-

ous transmitted active power and reactive power outputs of SOP,

but also involves the discrete tap steps of OLTC and switch-

able units of CBs. Considering the coordination of multiple

regulation devices on different time scales, the time-series opti-

mization model is needed to be built and the real-time voltage

regulation of SOP puts forward to a high requirement of opti-

mization rapidity. But the coordinated VVC problem essentially

belongs to a large-scale mixed-integer nonlinear programming

(MINLP) and cannot be solved efficiently.

This paper proposes a coordinated VVC method based on

SOP, improving the voltage profile while enhancing the opera-

tional efficiency of ADNs. The main contributions of this paper

are summarized as follows:

1) A time-series optimization model for coordinated VVC

based on SOP is developed in this paper. The proposed

model considers the cooperation of SOP and multiple

regulation devices to eliminate voltage violations while

minimizing the operation costs of ADNs.

2) By applying the linearization and conic relaxation, the

original MINLP model is converted into the mixed-

integer second-order cone programming (MISOCP)

model, which can be efficiently solved to meet the de-

mands of optimization rapidity with the real-time voltage

regulation of SOP.

The remainder of the paper is organized as follows. Section II

builds the coordinated VVC model based on SOP of ADNs.

The original problem is converted into an MISOCP model by

using the linearization and conic relaxation in Section III. Case

studies are given in Section IV to verify the effectiveness of

the proposed method using two IEEE test systems. Section V

concludes this paper with a discussion.

II. COORDINATED VVC PROBLEM FORMULATION

BASED ON SOP

Considering the cooperation of multiple VAR regulation de-

vices, the SOP-based coordinated VVC model is built in this

section. SOP adjusts the active and reactive power flow in real

time, rapidly responding to the voltage volatility caused by

DGs. Accounting for the response rate and security reasons,

the switching devices comprising OLTC and CBs regulate the

VAR in a long time scale to avoid frequent actions. The multiple

VAR regulation devices are coordinated to maintain the system

voltage within a desired range while improving the operational

efficiency of ADNs by using the voltage interval control strategy.

When the voltage violation occurs, it is effectively mitigated by

the coordination of above VAR regulation devices, ensuring the

secure operation level of system.

A. Principle and Modelling of SOP

SOP is installed between the adjacent feeders to replace NOP

in ADNs [11], as shown in Fig. 1. Compared with traditional

switching operation, SOP can precisely control the active and

reactive power flow with lower operation costs, and avoid the

risk caused by the frequent switching actions. In this paper, the

Fig. 1. Schematic of SOP installation.

active power and reactive power of SOP are scheduled by a cen-

tralized manner and the control signals of SOP are transmitted

by the fast telecommunications, such as fiber-optic communi-

cation or private wireless network communication.

SOP is mainly based on fully controlled power electronic

devices. This paper uses back-to-back voltage source converters

(B2B VSC) to analyze the optimization model for SOP in the

steady state [12], and PQ − VdcQ control is selected as the

SOP control mode. The controllable variables for SOP comprise

the active and reactive power outputs of the two converters.

Although the efficiency of B2B VSC is sufficiently high, it

inevitably produces losses when the large-scale power transfer

occurs. As for the reactive power outputs, the two converters

are independent of each other because of DC isolation, only

required to meet its own capacity constraints. Then the model

of SOP is obtained, containing the following constraints.

1) SOP active power constraints:

P SOP
t,i + P SOP

t,j + P
SOP ,loss
t,i + P

SOP ,loss
t,j = 0 (1)

P
SOP ,loss
t,i = ASOP

i

√

(

P SOP
t,i

)2
+

(

QSOP
t,i

)2
(2)

P
SOP ,loss
t,j = ASOP

j

√

(

P SOP
t,j

)2
+

(

QSOP
t,j

)2
(3)

2) SOP reactive power constraints:

Q
−

SOP

i

≤ QSOP
t,i ≤ Q̄SOP

i (4)

Q
−

SOP

j

≤ QSOP
t,j ≤ Q̄SOP

j (5)

3) SOP capacity constraints:
√

(

P SOP
t,i

)2
+

(

QSOP
t,i

)2 ≤ SSOP
i (6)

√

(

P SOP
t,j

)2
+

(

QSOP
t,j

)2 ≤ SSOP
j (7)

B. Modelling of the Coordinated VVC Based on SOP

1) Objective Function: Accounting for the operational effi-

ciency and voltage profile of ADNs, the linear weighted combi-

nation of minimum total operational cost and minimum voltage

deviation is proposed as the objective function in this paper,

which is formulated as:

min f = WL (floss + fswitch) + WV fV (8)
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Where the weight coefficients WL and WV of each term in

(8) can be determined by using the analytic hierarchy process

(AHP) in [23]. The total system operational costs consist of two

parts, namely the cost of power losses floss and the cost of

switching operation fswitch .

The overall costs of active power losses involve the network

losses and the power losses caused by the power transmission

of SOP.

floss = Closs

(

NT
∑

t=1

∑

ij∈Ω b

rij I
2
t,ij∆t +

NT
∑

t=1

NN
∑

i=1

P
SOP , loss
t,i ∆t

)

(9)

The overall costs of switching operation are composed of the

adjusting cost of OLTC and the switching cost of CBs.

fswitch =
∑

ij∈ΩO

NT
∑

t=1

(Ctap |Kt,ij − Kt−1,ij |)

+

NN
∑

i = 1

NT
∑

t=1

(

Ccap

∣

∣NCB
t,i − NCB

t−1,i

∣

∣

)

(10)

The extent of voltage deviation fV are formulated as follows.

fV =

NT
∑

t = 1

NN
∑

i = 1

∣

∣

∣U 2
t,i − Ũ 2

∣

∣

∣ : (Ut,i ≥ Ūthr ||Ut,i ≤ U thr)

(11)

Where Ũ denotes the desired range of voltage magnitude.

Equation (11) indicates the threshold function reflecting the

extent of voltage deviation [24]. The voltage interval control

strategy is adopted to maintain the voltage at the desired level.

First of all, it is essential to maintain the voltage within the statu-

tory range [U− , Ū ]. If the voltage magnitude Ut,i is within the

desired range [U thr , Ūthr], namely the margin of threshold, the

objective function only involves minimization of total operation

costs. While the voltage magnitude is going out of the desired

range, the term fV will take effect to minimize the extent of

deviation from the desired range.

The constraints mainly include the operation constraints of

distribution networks and the operation constraints of VAR reg-

ulation devices, as described next.

2) System Operation Constraints: The Distflow branch

model, proposed in [25], is used for modelling the distribution

networks. It can be described mathematically as the following

constraints:
∑

j i∈Ω b

(

Pt,j i − rj iI
2
t,j i

)

+ Pt,i +
∑

j i∈ΩO

POTLC
t,j i

=
∑

ik∈Ω b

Pt,ik +
∑

ik∈ΩO

POTLC
t,ik (12)

∑

j i∈Ω b

(

Qt,j i − xj iI
2
t,j i

)

+ Qt,i +
∑

j i∈ΩO

QOTLC
t,j i

=
∑

ik∈Ω b

Qt,ik +
∑

ik∈ΩO

QOTLC
t,ik (13)

U 2
t,i − U 2

t,j − 2 (rijPt,ij + xijQt,ij ) +
(

r2
ij + x2

ij

)

I2
t,ij = 0

(14)

I2
t,ij U 2

t,i = P 2
t,ij + Q2

t,ij (15)

Pt,i = PDG
t,i + P SOP

t,i − P L
t,i (16)

Qt,i = QDG
t,i + QSOP

t,i + QCB
t,i − QL

t,i (17)

Constraints (12) and (13) represent the active and reactive

power balance of node i at period t, respectively. The Ohm’s

law over branch ij at period t is expressed as (14). The current

magnitude of each line can be determined by (15). Constraints

(16) and (17) indicate the total active and reactive power injec-

tion of node i at period t, respectively.

The security constraints of ADNs are expressed as follows:

(U)2 ≤ U 2
t,i ≤

(

Ū
)2

(18)

I2
t,ij ≤ (Ī)2 (19)

Constraint (18) denotes the system voltage limits. The maxi-

mum line current capacity is formulated as (19).

3) DG Operation Constraints:

PDG
t,i = P

DG ,re
t,i (20)

QDG
t,i = PDG

t,i tanθDG
i (21)

√

(

PDG
t,i

)2
+

(

QDG
t,i

)2 ≤ SDG
i (22)

Constraint (20) assumes that the active power generated by

DGs is equal to the forecasted value. Constraint (21) denotes

the reactive power constraint of DGs and the capacity constraint

of DGs is expressed as (22).

4) OLTC Operation Constraints:

Ut,i = kt,ij Ut,j (23)

kt,ij = kij,0 + Kt,ij∆kij (24)

NT
∑

t=1

|Kt,ij − Kt−1,ij | ≤ ∆̄OLTC (25)

− K̄ij ≤ Kt,ij ≤ K̄ij , Kt,ij ∈ Z (26)

Constraints (23) and (24) define the relationship between

the regulated voltage and the tap steps of OLTC. Constraint

(25) limits the maximum variation of the tap steps during the

considered time horizon. Constraint (26) represents the variation

range of the discrete tap steps.

5) CBs Operation Constraints:

QCB
t,i = NCB

t,i × qCB
i (27)

NT
∑

t=1

∣

∣NCB
t,i − NCB

t−1,i

∣

∣ ≤ ∆̄CB (28)

0 ≤ NCB
t,i ≤ N̄CB , NCB

t,i ∈ Z (29)
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Constraint (27) denotes the total reactive power injected by

CBs. Constraint (28) limits the maximum variation of CB units

in operation during the considered time horizon.

The variables in this model not only involve the continu-

ous active and reactive power outputs of SOP, but also in-

volve the discrete tap steps of OLTC and switchable units of

CBs. As a consequence, (1)–(29) form the coordinated VVC

model based on SOP. Accounting for the time-series character-

istics of the model, the dimension of VVC problem has a rapid

increasing with more time periods. It is essentially a large-

scale MINLP problem, requiring to be solved accurately and

efficiently.

III. MISOCP MODEL CONVERSION

The aforementioned SOP-based coordinated VVC problem

cannot be solved by the existing method efficiently. In this sec-

tion, using the linearization and conic relaxation, the original

model is transmitted into an MISOCP model to realize a rapid

and accurate calculation.

A. Standard Form of Conic Programming

Second-order cone programming (SOCP) mathematically

belongs to convex programming, which can be regarded as

the generalization of both linear and nonlinear programming

[26]. As SOCP has excellent performance of global optimal-

ity and computation efficiency, it has been widely used in

solving MINLP problems. The standard form can be written

as [27]:

min{cT
x|Ax = b,x ∈ K} (30)

Where x is the decision variables. c, b and A are the con-

stant vectors and matrix. K denotes the Cartesian product of

a nonempty-pointed convex cone, which is generally expressed

as the quadratic cone (31) or rotated quadratic cone (32).

K1 =

{

x ∈ Rn : x1 ≥
√

∑n

j=2
x2

j , x1 ≥ 0

}

(31)

K2 =

{

x ∈ Rn : 2x1x2 ≥
√

∑n

j=3
x2

j , x1 , x2 ≥ 0

}

(32)

As shown above, SOCP has notably strict demands on the

mathematical formulation. The objective function must be a lin-

ear function of the decision variables x, and its feasible region

is composed of linear equality constraints and convex cone con-

straints. Therefore, the original nonconvex MINLP model must

be reformulated in advance before applying SOCP.

B. Conversion to an MISOCP Model

Constraints (9), (12)–(15) and (18) and (19) have the square

representation of the voltage magnitude and current amplitude.

Firstly, it needs to use variable substitution to realize the lin-

earization, namely let vt,i and lt,ij denote the U 2
t,i and I2

t,ij .

Linearized constraints are expressed as follows:

floss = Closs

(

NT
∑

t=1

∑

ij∈Ω b

rij lt,ij∆t +

NT
∑

t=1

NN
∑

i=1

P
SOP,loss
t,i ∆t

)

(33)
∑

j i∈Ω b

(Pt,j i − rj i lt,ij ) + Pt,i +
∑

j i∈ΩO

POTLC
t,j i

=
∑

ik∈Ω b

Pt,ik +
∑

ik∈ΩO

POTLC
t,ik (34)

∑

j i∈Ω b

(Qt,j i − xj i lt,ij ) + Qt,i +
∑

j i∈ΩO

QOTLC
t,j i

=
∑

ik∈Ω b

Qt,ik +
∑

ik∈ΩO

QOTLC
t,ik (35)

vt,i − vt,j − 2 (rijPt,ij + xijQt,ij ) +
(

r2
ij + x2

ij

)

lt,ij = 0

(36)

(U− )2 ≤ vt,i ≤ (Ū)2 (37)

lt,ij ≤ (Ī)2 (38)

After substituting the variable, (15) continues to be nonlinear

due to the quadratic term. It can be relaxed to the following

second-order cone constraint [28], [29]:
∥

∥

∥[2Pt,ij 2Qt,ij lt,ij − vt,i ]
T
∥

∥

∥

2
≤ lt,ij + vt,i (39)

The operation constraints of SOP in (2)–(3) and (6)–(7) as

well as capacity constraint of DGs in (22) are all quadratic non-

linear constraints, which can be transformed into the following

rotated quadratic cone constraints:

(

P SOP
t,i

)2
+

(

QSOP
t,i

)2 ≤ 2
P

SOP ,loss
t,i√
2ASOP

i

P
SOP ,loss
t,i√
2ASOP

i

(40)

(

P SOP
t,j

)2
+

(

QSOP
t,j

)2 ≤ 2
P

SOP ,loss
t,j√
2ASOP

j

P
SOP ,loss
t,j√
2ASOP

j

(41)

(

P a
t,i

)2
+

(

Qa
t,i

)2 ≤ 2
Sa

i√
2

Sa
i√
2
, a ∈ {SOP,DG} (42)

As for the nonlinear threshold function in (11), auxiliary vari-

able Auxt,i is introduced to express the extent of voltage devi-

ation. Constraint (11) can be linearized as:

fV =

NT
∑

t=1

NN
∑

i=1

Auxt,i (43)

And some equivalent constraints are added as follows [23].

Auxt,i ≥ vt,i −
(

Ūthr

)2
(44)

Auxt,i ≥ − vt,i + (U thr)
2

(45)

Auxt,i ≥ 0 (46)
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As a result of the variable substitution, the OLTC operation

constraint (23) can be expressed as:

vt,i = k2
t,ij vt,j (47)

The number of tap steps Kt,ij is an integer variable, which

can be represented by a set of binary variables as follows [30]:

Kt,ij =

2K̄ i j
∑

k=0

[(

k − K̄ij

)

bt,ij,k

]

(48)

2K̄ i j
∑

k=0

bt,ij,k = 1, bt,ij,k ∈ {0, 1} (49)

Then, substituting constraints (24) and (48) into (47), it will

yield:

vt,i =

2K̄ i j
∑

k=0

[

(

kij,0 +
(

k − K̄ij

)

∆kij

)2
vt,j bt,ij,k

]

(50)

The nonlinear product vt,j bt,ij,k is represented by the variable

vc
t,ij,k . And the additional constraints are added as follows.

vt,i =

2K̄ i j
∑

k=0

[

(

kij,0 +
(

k − K̄ij

)

∆kij

)2
vc

t,ij,k

]

(51)

(U j )
2bt,ij,k ≤ vc

t,ij,k ≤ (Ūj )
2bt,ij,k (52)

(U j )
2 (1 − bt,ij,k ) ≤ vt,j − vc

t,ij,k ≤ (Ūj )
2 (1 − bt,ij,k ) (53)

As for the absolute term denoting the changes of tap steps in

(10) and (25), auxiliary variables K+
t,ij and K−

t,ij are introduced

to represent and linearize it as follows [31]:

NT
∑

t=1

(

K+
t,ij + K−

t,ij

)

≤ ∆̄OLTC (54)

Kt,ij − Kt−1,ij = K+
t,ij − K−

t,ij (55)

K+
t,ij ≥ 0, K−

t,ij ≥ 0 (56)

Similarly, constraints (57)–(59) represent a linear equivalent

to the absolute term in (10) and (28), which denotes the variation

of CB units in operation.

NT
∑

t=1

(

N+
t,i + N−

t,i

)

≤ ∆̄CB (57)

NCB
t,i − NCB

t−1,i = N+
t,i − N−

t,i (58)

N+
t,i ≥ 0, N−

t,i ≥ 0 (59)

And the (10) is expressed in a linear form:

fact =
∑

ij∈ΩO

NT
∑

t=1

(

Ctap

(

K+
t,ij + K−

t,ij

))

+

NN
∑

i=1

NT
∑

t=1

(

Ccap

(

N+
t,i + N−

t,i

))

(60)

Now, after the linearization and conic relaxation, the original

MINLP model is converted into the following MISOCP model.

min f = WL (floss + fswitch) + WV fV

s.t.

{

(1) , (4) , (5) , (16) , (17) , (20) , (21) , (24) , (26) ,

(27) , (29) , (33) – (46) , (48) , (49) , (51) – (60)

(61)

As for the above MISOCP model, the key inputs consist

of the network topology, locations and capacities of the loads

and DGs, and parameters of the VAR regulation devices. The

objective function and constraints of the model are shown in

(61). The decision variables in this model involve not only the

continuous active and reactive power outputs of SOPs, but also

involve the discrete tap steps of OLTCs and switchable units of

CBs. The outputs include the overall system operational cost,

voltage deviation, operation strategies of the VAR regulation

devices, and the power flow results of ADNs.

By linearization and conic relaxation, the coordinated VVC

problem is converted into an MISOCP model which can effi-

ciently obtain the global optimal solution of the proposed for-

mulation [28]. It should be noted that there exists a relatively

small gap between this solution and the solution to the original

MINLP model, which is mainly caused by the conic relaxation

deviation. Reference [32] has proved that the conic relaxation

is exact with no gap if the objectives strictly increase in power

injection or branch current. As this paper considers a com-

prehensive objective function of the minimum total operational

cost and voltage deviation, the conic relaxation results in a small

gap between the two models. However, previous studies have

shown that the conic relaxation still has sufficient accuracy for

distribution networks under some mild conditions [33], which

are satisfied in the proposed MISOCP formulation. And the

conic relaxation has been applied and validated in many works,

i.e., optimal power flow [34], total supply capability evaluation

[35], and supply restoration [36]. Thus, through the proposed

MISOCP formulation, a good quality solution with a relaxed

optimality gap can be efficiently obtained [37].

As the equality constraint (15) is relaxed to inequality con-

straint (39), the infinite norm of relaxation deviation [35] is

defined to evaluate the accuracy of the conic relaxation.

gap =

∥

∥

∥

∥

∥

lt,ij −
P 2

t,ij + Q2
t,ij

vt,i

∥

∥

∥

∥

∥

∞
(62)

If the gap value is small enough, the conic relaxation can

be regarded as accurate for model conversion. Otherwise, the
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Fig. 2. Structure of the modified IEEE 33-node system.

TABLE I
BASIC INSTALLATION PARAMETERS OF DGS

Parameters Wind turbines Photovoltaics

Location 13 30 7 10 24 27
Capacity (kVA) 1000 1000 500 500 300 400

gap can also be constrained to the predefined error precision by

adding the increasingly tight cuts to the conic relaxation [38].

IV. CASE STUDIES AND ANALYSIS

In this section, the modified IEEE 33-node and 123-node sys-

tems are used to demonstrate the effectiveness and efficiency of

the coordinated VVC method based on SOP. Firstly, the perfor-

mance of the VVC method involving the coordination of multi-

ple regulation devices is analyzed on the modified IEEE 33-node

system. Then, the test cases are carried out on the IEEE 123-

node system to verify the scalability of the proposed method.

By comparing with the algorithm packages in GAMS, the com-

putation efficiency of the coordinated VVC method based on

MISOCP model is verified.

The proposed method in this paper was implemented in the

YALMIP optimization toolbox [39] with MATLAB R2013a,

and solved by IBM ILOG CPLEX 12.6. The computation is

performed on a PC with an Intel Xeon CPU E5-1620 @3.70 GHz

processor and 32 GB RAM.

A. Modified IEEE 33-Node System

The modified IEEE 33-node test system is presented in Fig. 2,

of which the rated voltage level is 12.66 kV. And the detailed

parameters are provided in [40].

In order to consider the impact of high penetration of DGs

on ADNs, two wind turbines and four photovoltaic generators

are integrated into the networks, of which the total active power

reaches to a 100% DG penetration level. All the DGs are op-

erated at a unit power factor without considering the localized

reactive power support of DGs [41]. The basic installation pa-

rameters are shown in Table I.

Taking hourly time step over a day, the daily DGs and loads

operation curves are obtained by forecasting, as shown in Fig. 3.

Fig. 3. Daily operation curves of DGs and loads.

Two groups of SOP with a capability of 500 kVA are installed

between the nodes 12 and 22, as well as the nodes 25 and 29,

of which the upper reactive power limits are 300 kVar. It is

assumed that the loss coefficient of each inverter for SOP is

0.02 [20], [42]. There is an OLTC with ten tap steps and a

regulation of 1% per tap between the node 1 and 2. Besides,

the switchable CBs of 150 kVar with five units are connected

to node 33. Considering that frequent switching actions bring

security risks to the operation, it is assumed that ∆̄OLTC for

OLTC and ∆̄CB for CBs are all set as 4 times per day.

The weight coefficients WL and WV are determined as 0.833

and 0.167 by AHP [23]. The cost coefficient associated with

active power losses Closs , namely the basic cost of electricity

buying from the upper grid, is assumed as 0.08$/kWh [43], [44]

in this paper. The cost coefficients associated with variation

of the tap steps Ctap and the CB units Ccap are set as 1.40

$/time and 0.24 $/time respectively [45], [46], which can be

adjusted according to the switching risk assessment of DSO. It

is assumed that the upper/lower limits of statutory voltage range

Ū = 1.05 p.u and U− = 0.95 p.u. And the desired voltage range

is set from 0.97 p.u. to 1.03 p.u., which is also the margin of

threshold in the voltage interval control strategy.

B. Optimization Results Analysis

Considering the coordination of multiple VAR regulation de-

vices, the system voltage can be maintained at the desired level,

while improving the operational efficiency of ADNs. Three sce-

narios are used to compare and analyze the performance of the

coordinated VVC method based on SOP, and the optimization

results are shown from Figs. 4 to 6.

Scenario I: Considering the cooperation of multiple VAR

regulation devices, the coordinated VVC is conducted.

Scenario II: Only based on the conventional adjusting of

OLTC and switching of CBs, the VVC is conducted.

Scenario III: Without the VVC in the system.

It can be seen from Fig. 4 that the operation strategies of

SOP are accordance with the power supply and demand of

ADNs in Scenario I. The high penetration of DGs makes a wide

fluctuation of power flow. During the hours 6:00–10:00 and

14:00–20:00, DGs can’t supply the high electricity demand.

The two groups of SOP transmit the active power into node

12 and node 29 to alleviate the power demand of the system.
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Fig. 4. Scheduling strategies of SOP in Scenario I. (a) Active power trans-
mission of SOP. (b) Reactive power compensation of SOP.

Fig. 5. Tap movements of the OLTC in Scenario I and II.

However, as the abundant outputs of DGs are far more than

the load demands in the hours 11:00–13:00 and 21:00–5:00, the

two groups of SOP are scheduled to inversely transmit the active

power into node 22 and node 25 in order to smooth the power

fluctuations as much as possible.

SOP cooperates with multiple VAR regulation devices in

Scenario I. SOP adjusts the active and reactive power flow and

timely responds to the voltage volatility caused by DGs. Com-

pared to Scenario II, the switching devices comprising OLTC

and CBs regulate the VAR in the long time scale to avoid fre-

quently actions, which effectively lower the security risks of

system operation, as shown in Figs. 5 and 6.

Taking a time period 11:00–12:00 in one day as example, the

fluctuation curves of DG outputs and loads are shown in Fig. 7,

and the time interval is assumed as 5 min.

The tap position of OLTC is kept unchanged at –1 and the

number of CB units in operation remains 4 in this time period.

Fig. 6. Total reactive power injected by CBs in Scenario I and II.

Fig. 7. DG outputs and loads fluctuation in one hour.

TABLE II
OPTIMIZATION RESULTS OF EACH SCENARIO

Optimization results Scenario I Scenario II Scenario III

Cost of active power losses ($/day) 50.17 87.93 111.27
Cost of switching operation ($/day) 2.36 32.28 0
Total system operational cost ($/day) 52.53 120.21 111.27
Extent of voltage deviations (p.u.) 0.01 0.02 3.43

SOP dynamically controls its active and reactive power flow in

every 5 min to rapidly respond to the fluctuations caused by

DGs and loads, as shown in Fig. 8. Thus the VAR regulation

can be carried out in the short time scale, effectively alleviating

the voltage volatility in ADNs, as shown in Fig. 9.

Compared with the other two scenarios, the coordinated VVC

is implemented in Scenario I based on SOP. The voltage is con-

trolled within the desired range of 0.97–1.03 p.u., flattening

the voltage profile of feeders. When the voltage violation oc-

curs, various VAR regulation devices cooperate to eliminate it

effectively. The voltage profiles of node 18 and the maximum

and minimum system voltages are shown in Figs. 10 and 11,

respectively.

The optimization results of three scenarios are listed in

Table II. It shows that the improvements of operation costs

reduction are much more significant in Scenario I.

Based on the above analysis, the proposed coordinated

VVC method using SOP eliminates the voltage violations and

decreases the system operation costs, ensuring the operational

security and economy of ADNs simultaneously.

The gap values in each time period of Scenario I and II are

shown in Fig. 12. It can be seen that the maximum gap values
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Fig. 8. Scheduling strategies of SOP in one hour. (a) Active power transmis-
sion of SOP. (b) Reactive power compensation of SOP.

Fig. 9. Voltage profiles of node 18 with and without SOP in one hour.

in both scenarios are all with a 1.0e–6 level, which are small

enough to be regarded as accurate. So the proposed MISOCP

model calculates the coordinated VVC problem with acceptable

accuracy.

The main motivation for using the MISOCP model is to obtain

the optimal solution of MINLP model as close as possible with

a high computational efficiency.

C. Cost-Benefit Analysis of SOP

The application of SOP will significantly facilitate the oper-

ation of ADNs, including power loss reduction, voltage profile

improvement, increasing the DG hosting capacity, as well as

fault isolation and supply restoration under abnormal condition

[13], [20]. The cost-benefit analysis of SOP is briefly and simply

addressed from the economic perspective in Scenario I.

Fig. 10. Voltage profile of node 18 in three scenarios.

Fig. 11. Maximum and minimum system voltages in Scenario I and III.

Fig. 12. Maximum gap values in each time period of Scenario I and II.

The costs associated with SOP include the equipment invest-

ment cost and maintenance cost. The benefits brought by SOP

are mainly from saving the system operational cost by the re-

duction of active power losses and the switching operation cost.

The model of cost-benefit analysis shows from (63) to (66).

1) CINV : SOP fixed investment cost

CINV =

NN
∑

i=1

cSOPSSOP
i (63)

Where cSOP is the investment cost per unit capacity and SSOP
i

denotes the installed SOP capacity connected to node i.

2) CMAI: SOP annual maintenance cost

CMAI = η

NN
∑

i=1

cSOPSSOP
i (64)
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TABLE III
PARAMETERS OF COST-BENEFIT ANALYSIS

Parameters Value

SOP economical service life (year) 20
SOP unit capacity investment ($/kVA) 308.8
Installation of SOP capacity (kVA) 1000
Coefficient of annual maintenance cost 0.01

TABLE IV
RESULTS OF COST-BENEFIT ANALYSIS

Cost-benefit analysis Scenario I Scenario II Reduction

Annual cost of power losses ($) 18 312.05 32 094.45 13 782.40
Annual cost of switching operation ($) 861.40 11 782.20 10 920.80
Annual SOP maintenance cost ($) 3088.00 0.00 –3088.00
Annual total cost of system operation ($) 22 261.45 43 876.65 21 615.20

Where η is the coefficient of the annual maintenance cost.

3) BLOSS: Annual cost of the active power losses

BLOSS = 365 · Closs ·
(

NT
∑

t=1

∑

ij∈Ω b

rij I
2
t,ij∆t

+

NT
∑

t=1

NN
∑

i=1

P
SOP,loss
t,i ∆t

)

(65)

4) BOPE : Annual cost of the switching operation

BOPE = 365 ·

⎛

⎝

∑

ij∈ΩO

NT
∑

t=1

(Ctap |Kt,ij − Kt−1,ij |)

+

NN
∑

i=1

NT
∑

t = 1

(

Ccap

∣

∣NCB
t,i − NCB

t−1,i

∣

∣

)

)

(66)

As for the modified IEEE 33-node system, the parameters of

cost-benefit analysis [22] are shown in Table III.

Compared with the optimization results of Scenario II in

Table II, the cost-benefit analysis under Scenario I are shown in

Table IV.

Table IV shows that the application of SOP in Scenario I has

better economic benefits. Compared with Scenario II, the annual

system operational cost of Scenario I is reduced by $21 615.20

(reduction of 49.3 percent). It will take 14.29 years to cover the

SOP investment cost in Scenario I. With the decreasing in the

price of power electronic devices, the economic benefits brought

by SOP will become more obvious.

D. Modified IEEE 123-Node System

The modified IEEE 123-node system is adopted to verify

the scalability of proposed method on the large-scale ADNs, as

shown in Fig. 13. The detailed parameters can refer to [36].

Three wind turbines and six photovoltaic generators are inte-

grated into the networks, of which the basic installation param-

eters are shown in Table V. Two groups of SOP are installed be-

Fig. 13. Structure of the modified IEEE 123-node system.

TABLE V
BASIC INSTALLATION PARAMETERS OF DGS

Parameters Wind turbines Photovoltaics

Location 28 92 108 33 42 86 97 111 116
Capacity (kVA) 1000 1000 1000 300 300 200 200 500 500

Fig. 14. Maximum and minimum system voltages in Scenario I and III.

tween the nodes 55 and 95, as well as nodes 117 and 123. There

is an OLTC between the node 1 and 2. Besides, the switchable

CBs are installed at node 121. The parameters of above regu-

lation devices are set to the same value as the IEEE 33-node

system.

Based on the coordination of various VAR regulation de-

vices, the voltage is maintained within the desired range and

the voltage deviation is effectively reduced. The maximum and

minimum voltages of the whole system in Scenario I and III

adopted in Section IV-B are shown in Fig. 14.

Similar to the conclusions in Section IV-B, by the coordina-

tion of SOP and multiple VAR regulation devices, the voltage

fluctuations caused by high penetration of DGs are effectively

mitigated and the economic performance of the ADNs is im-

proved simultaneously.
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TABLE VI
PERFORMANCE COMPARISON OF THE PROPOSED MODEL AND KNITRO

Test case Scale of problem Optimization model/Solver Time (s) Operational costs ($/day) Voltage deviation

IEEE 33-node Variables: 4656 MISOCP/CPLEX 62.76 52.53 0.01
Constraints: 10 298 MINLP/KNITRO 364.21 52.51 0.01

IEEE 123-node Variables: 13 512 MISOCP/CPLEX 1207.14 75.61 0.04
Constraints: 27 866 MINLP/KNITRO Divergent – –

Fig. 15. Optimal strategies of SOP with the MISOCP and MINLP models.
(a) Optimal active power transmission of SOP. (b) Optimal reactive power
compensation of SOP.

E. Algorithm Validation

To verify the effectiveness and accuracy of the proposed

method based on MISOCP, MINLP solver KNITRO [47] in

GAMS is used to solve the original MINLP model com-

prising (1)–(29) as a reference. KNITRO is an optimization

package based on KKT algorithm and interior point method,

which ensures a high quality solution and has been widely

applied in solving the MINLP problem. Table VI compares

the results and performances of the proposed model and

KNITRO.

Table VI shows that compared with KNITRO, the proposed

MISOCP model promotes the computing speed while solving

the problem accurately because of the linearization and convex

relaxation of the original model. With a sharp increasing in

problem scale caused by more time periods and larger system,

KNITRO package may bring the curse of dimensionality in

solving large-scale MINLP problem, and even can’t guarantee

the convergence. The MISOCP model proposed in this paper

Fig. 16. Active power losses in each time period.

still shows improved convergence and efficiency by reducing

the complexity of the problem.

To further illustrate the effectiveness and accuracy of the

proposed MISOCP model, time-series power flow simulations

are conducted based on the operation strategies from the both

models. And the time-series simulation results for the modified

IEEE 33-node system are shown in Figs. 15 and 16.

As shown in Figs. 15 and 16, the optimization results ob-

tained by the two models keep nearly the same, verifying the

effectiveness of the proposed MISOCP model.

V. CONCLUSION

This paper presents a coordinated VVC method based on

SOP to minimize the operation costs and improve the voltage

profile of ADNs. Considering the cooperation of SOP and mul-

tiple VAR regulation devices, a time-series optimization model

of coordinated VVC is developed, in which the SOP, OLTC

and switchable CBs are all formulated as controllable devices.

Then the original large-scale MINLP model is converted into

the MISOCP model via the linearization and conic relaxation.

The optimization results show that by applying the SOP-based

coordinated VVC method, the system voltage is maintained at

the desired level while the operational efficiency is significantly

improved. Based on MISOCP, the proposed method guarantees

global optimality and has a moderate computational burden, and

it is suitable for the efficient VVC of large-scale ADNs with high

penetration of DGs.

Taking the characteristics of DGs and network topology

changing into account, the determination of optimal siting and

sizing for SOP needs to be further considered due to its rela-

tively high investment. Besides, facing a larger-scale compli-

cated ADN, a completely centralized approach may not be

applicable because of its computation and communication
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burden. Regulating the voltage and VAR based on SOP in a

partly distributed manner is also worthy of further research.
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