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Abstract

Large-scale content delivery systems such as the web of-
ten deploy multiple caches at different locations to reduce
access latency and network traffic. These caches are usually
organized in a cascaded fashion where requests not hitting
a lower level cache are forwarded to a higher level cache.
The performance of cascaded caching depends on how the
cache contents are managed, including object placement
and replacement schemes. This paper presents a general
analytical framework for coordinated management of cas-
caded caches. The object placement problem is formulated
as an optimization problem and the optimal locations for
caching objects are computed by a dynamic programming
algorithm. Based on the framework, we propose a novel
caching scheme that incorporates both object placement
and replacement strategies. The proposed scheme makes
caching decisions for the set of caches lying on the delivery
path of a request in a coordinated fashion. Simulation ex-
periments based on real traces from web caches have been
conducted under two different cascaded caching architec-
tures: en-route caching and hierarchical caching. The re-
sults show that for both architectures, the proposed scheme
significantly outperforms existing schemes that consider ob-
ject placement or replacement at individual caches only.

1 Introduction

Caching is an important technique to improve the perfor-
mance of large-scale content delivery systems such as the
web [7, 22]. Due to the growing volume of concurrent web
accesses, the Internet is becoming increasingly congested
and many popular web sites are suffering from overload
conditions. As a result, considerable latency is often ex-
perienced in retrieving web objects. The caches are located
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between the origin servers and the clients, often physically
close to the target users. They maintain local copies of fre-
quently accessed objects so that the requested contents have
a shorter distance to travel, thereby reducing both the ac-
cess latency and wide area network traffic. Moreover, with
caching, the load on the origin servers is also alleviated, sav-
ing hardware and support costs for the content providers.

To obtain the full benefits of caching, multiple caches
are often deployed in the network. They are usually struc-
tured in a cascaded fashion where requests are forwarded by
a lower level cache to a higher level cache in case of cache
miss. We refer to this type of cache organization as cas-
caded caching architecture. Examples of cascaded caching
architectures include hierarchical caching [6, 21] and en-
route caching [10, 15]. In hierarchical caching, the caches
are arranged in a tree structure (see Figure 1). Each bot-
tom level cache is associated with a set of clients. A client
request is first sent to the bottom level cache and then iter-
atively forwarded up the hierarchy until the request is sat-
isfied. If the root cache does not have the target object, the
request is finally directed to the origin server. The emerging
en-route caching architecture (see Figure 2) is motivated by
recent advances in transparent caches [1] and their support-
ing techniques [14, 15, 18]. In this architecture, the caches
are associated with routing nodes in the network and are
called en-route caches. An en-route cache intercepts all
client requests passing through the associated routing node.
If the requested object is in the cache, the object is sent
to the client and the request is not propagated further up-
stream. Otherwise, the routing node forwards the request
along the regular routing path towards the origin server. If
no en-route cache has the target object, the request is even-
tually serviced by the origin server. En-route caching has
the advantage that it is transparent to both the origin servers
and the clients. Moreover, since no request is detoured off
the regular routing path, the additional bandwidth consump-
tion and network delay for cache misses are minimized.

The overall performance of cascaded caching depends

1



origin server

cache

propagation path of requests
for contents on origin
server 1 under cache miss
propagation path of requests
for contents on origin
server 2 under cache miss

root cache

origin server 1 origin server 2

Figure 1. Hierarchical Caching

origin server 2

origin server

cache

propagation path of requests
for contents on origin
server 1 under cache miss
propagation path of requests
for contents on origin
server 2 under cache miss

origin server 1

Figure 2. En-Route Caching

on how the cache contents are managed, including object
placement and replacement algorithms. From the above ex-
amples, it can be seen that normally more than one cache
is located between the origin servers and the clients. Dy-
namically determining the appropriate number of object
copies and placing them in suitable caches are challeng-
ing tasks. Allocating too many copies of unpopular objects
in the network is wasteful of cache space while assigning
too few copies of popular objects may not reduce their ac-
cess latency sufficiently. As the cascaded caches are often
geographically distributed, the network distance between
caches should be taken into consideration. Moreover, when
a new object is inserted into a cache, other objects may need
to be removed in order to create room. The interaction ef-
fect between object placement and replacement in the set
of candidate caches further complicates the problem. Ex-
isting caching schemes consider either object placement or
replacement at individual caches only [3, 17] and hence are
not able to produce the best possible performance.

This paper presents a general analytical framework for
coordinated management of cascaded caches. We formulate
the object placement problem as an optimization problem
and compute the optimal locations for caching objects using
a dynamic programming algorithm. Based on the frame-
work, we propose a novel caching scheme that integrates
both object placement and replacement strategies. In our
approach, the objects are dynamically placed in the caches
lying on the delivery path from the server to the client in
a coordinated fashion. The performance of the proposed

scheme has been studied by simulation experiments with
two different cascaded caching architectures. Real traces
collected from web caches were used in the experiments.
The results show that the proposed scheme significantly
outperforms existing schemes that try to optimize the place-
ment or replacement algorithm at individual caches only.

The rest of the paper is organized as follows. Section 2
presents the analytical framework and proposes a new co-
ordinated caching scheme. Section 3 describes the exper-
imental setup for performance evaluation. The simulation
results are presented and discussed in Section 4. Section 5
summarizes the related work, and finally, Section 6 con-
cludes the paper.

2 Coordinated Cache Management

As seen from the examples in Section 1, the propaga-
tion mechanism of cache misses can be deployed at either
the application level or the network level. Without loss of
generality, we model the cascaded caching architecture as a
graph G = (V,E), where V is the set of nodes represent-
ing the origin servers and caches, and E is the set of links
(logical and/or physical) between the nodes over which the
requests are forwarded in case of cache miss. Each origin
server hosts a collection of objects and the object sets asso-
ciated with different servers are disjoint. For each object O,
a non-negative cost c(u, v,O) is associated with each link
(u, v) ∈ E. It represents the cost of sending a request for
object O and the associated response over the link (u, v). If
a request has to travel through multiple links before reach-
ing the target object, the access cost of the request is simply
the sum of the corresponding costs on all these links. Note
that our model is independent of the cost function. The term
“cost” in our analysis is used in a general sense. It can be
interpreted as different performance measures such as net-
work latency, bandwidth consumption and processing cost
at the cache, or a combination of these measures. Specific
cost functions may depend on factors including the size of
object O and/or the speed of link (u, v).

Regardless of the underlying propagation mechanism
used, the propagation paths of cache misses for a given ori-
gin server are represented by a tree topology [6, 11, 15] (see
Figures 1 and 2) which we shall refer to as the distribution
tree. The distribution trees for different origin servers can
be almost identical (e.g., in the case of hierarchical caching)
or very different (e.g., in the case of en-route caching).
Throughout this paper, the terms “delivery path” and “re-
quest path” (or “path” in short) between an origin server
and a client/cache always refer to the distribution tree asso-
ciated with the origin server.

Clients issue requests for objects maintained by the ori-
gin servers. Under a cascaded architecture, multiple caches
are often located on the request path from the client to the
origin server. Note that the access cost from a client to the
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first cache on the path is independent of the cache manage-
ment scheme. For simplicity, this cost is not included in
the analytical model and we shall assume the request origi-
nates from the first cache. Moreover, it is known that most
web objects are relatively static i.e., the access frequency is
much higher than the update frequency [13]. We shall as-
sume the objects stored in the caches are up-to-date (e.g.,
by using a cache coherency protocol [9] if necessary). Fig-
ure 3 shows a request originating from cache c going along
a path (represented by solid edges) to the origin server s.
For any pair of nodes v1 and v2 on the path, we say v2 is
at a higher level than v1 if v2 is closer to s. With cascaded
caching, the request is satisfied by the node at the lowest
level (denoted by w) containing the target object. Notice
that w is the same as s if the requested object is not in any
cache along the path between c and s. After the request
reaches w, the target object (denoted by R) is sent along the
same path back to the client. To reduce the cost of future ac-
cesses to object R, a copy of R can be dynamically placed
in some of the caches along the path between w and c as
R is being sent to the client. The issues to be investigated
include: (i) which caches (if any) should object R be placed
(object placement problem); and (ii) which objects to be re-
moved from a cache if there is not enough free space (object
replacement problem).

2.1 Problem Formulation

The object placement problem is trivial if cache sizes are
infinite, in which case all available objects can be stored
in every cache to minimize the total access cost. However,
infinite cache sizes are impractical for very large content
delivery systems such as the web. Due to limited cache
space, one or more objects may need to be removed from the
cache when a new object is inserted. Removing an object
increases its access cost (referred to as cost loss) while in-
serting an object decreases its access cost (referred to as cost
saving). The object placement problem under the cascaded
caching architecture is further complicated by caching de-
pendencies, i.e., a placement decision at one node affects
the performance gain of caching the same object at other
nodes. The optimal locations to cache an object depends on

the potential cost loss and cost saving at every node along
the delivery path. Our objective is to minimize the total ac-
cess cost of all objects.

We start by computing the cost saving and the cost loss
of caching an object at individual nodes. Consider a node
v. Let f(O) be the access frequency of object O observed
by node v, i.e., the rate of requests passing through v and
targeting for O. Let m(O) be the miss penalty of object
O with respect to v. The miss penalty is defined as the
additional cost of accessing the object if it is not cached
at v. In our cascaded caching model, m(O) is given by

m(O) =
∑

(u1,u2)∈PATH(v,v′)

c(u1, u2, O),

where v′ is the nearest higher level node of v that caches O,
and PATH(v, v′) is the set of links on the path between v
and v′ (see Figure 3).

Let R be the requested object. Clearly, the cost saving of
caching R at v is f(R) · m(R).

Computing the cost loss of caching R at v is a bit more
complicated. Let O1, O2, . . . , Ok be the objects currently
cached at v. The cost loss introduced by removing object
Oi from the cache is given by f(Oi) · m(Oi). Obviously,
the purged objects should introduce the least total cost loss
while creating enough space to accommodate R. This is
equivalent to the knapsack problem and is NP-complete. A
fast greedy heuristic of the knapsack problem that works
well in practice is as follows. Notice that the normalized
cost loss (NCL, i.e., the cost loss introduced by creating
one unit of free space) of purging Oi is f(Oi)·m(Oi)

s(Oi)
, where

s(Oi) is the size of object Oi. The objects in the cache
are ordered by their NCLs, and the replacement candidates
are selected sequentially starting from the object with the
smallest NCL until sufficient space is created for R. The
cost loss of caching R at v is computed by summing up the
cost losses introduced by all selected objects.

We now formulate the object placement problem on the
path between w and c. Consider the snapshot when a re-
quest for object R is being served (see Figure 4). Let
A0 = w be the origin server or the high level cache satisfy-
ing the request, An = c be the node where the request origi-
nates, and A1, A2, . . . , An−1 be the intermediate caches on
the path from A0 to An.

A0
f1 A1

f  −f1
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2f fn−2f

n−2A n−1 f
n−1A An

l1 l2 ln−2 f    −fn−2 ln−1 ln

m 1

m
n−1m

m n

2

f    −fn−1

n

nn−12

Figure 4. System Model

Let mi denote the miss penalty of object R with respect
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to Ai, then mi =
∑i

j=1 c(Aj−1, Aj , R). Let fi be the ac-
cess frequency of object R at Ai. Since requests for R that
go through Ai must also pass through Ai−1, Ai−2, . . . , A1,
we have f1 ≥ f2 ≥ · · · ≥ fn. Suppose R is cached at
r intermediate nodes Av1

, Av2
, . . . , Avr

where r ≥ 0 and
1 ≤ v1 < v2 < · · · < vr ≤ n. Taking into considera-
tion the caching dependencies of R along the path, the total
cost saving is given by

∑r

i=1((fvi
− fv(i+1)

) · mvi
), where

fv(r+1)
is set to 0. Now let li be the cost loss of evicting

objects at node Ai to create enough space for R, then the
total cost loss is

∑r

i=1 lvi
. Therefore, the overall reduction

in the total access cost of all objects is given by

r
∑

i=1

((fvi
− fv(i+1)

) · mvi
− lvi

). (1)

Our objective is to place object R in a subset of the caches
{A1, A2, . . . , An} that maximizes the cost reduction (1),
thereby minimizing the total access cost.

2.2 Dynamic Programming Solution

For the purpose of analysis, we first provide a general-
ized definition of the problem.

Definition 1 Given f1, f2, . . . , fn, fn+1; m1,m2, . . . ,mn;
and l1, l2, . . . , ln (n > 0), where f1 ≥ f2 ≥ · · · ≥ fn ≥
fn+1 = 0, mi ≥ 0 and li ≥ 0 (i = 1, 2, . . . , n). Let k be
an integer such that 0 ≤ k ≤ n, and v1, v2, . . . , vr be a set
of r integers such that 1 ≤ v1 < v2 < · · · < vr ≤ k. The
objective function ∆cost(k : v1, v2, . . . , vr) is defined as

∆cost(k : v1, v2, . . . , vr) =

r
∑

i=1

((fvi
−fv(i+1)

)·mvi
−lvi

),

where fv(r+1)
= fk+1. If r = 0, define ∆cost(k : φ) = 0.

Finding r and v1, v2, . . . , vr that maximize ∆cost(k : v1,
v2, . . . , vr) is referred to as the k-optimization problem. 2

The object placement problem formulated in Section 2.1
is simply an n-optimization problem i.e., maximizing
∆cost(n : v1, v2, . . . , vr). In the following, we develop
a dynamic programming algorithm to solve the problem.
Theorem 1 proves that the optimal solution to the problem
must contain optimal solutions to some subproblems.

Theorem 1 Let 1 ≤ k ≤ n and r > 0. Suppose
v1, v2, . . . , vr is an optimal solution to the k-optimization
problem, and u1, u2, . . . , ur′ is an optimal solution to the
(vr − 1)-optimization problem, then u1, u2, . . . , ur′ , vr is
also an optimal solution to the k-optimization problem.

Proof: By definition,

∆cost(vr − 1 : u1, u2, . . . , ur′)

≥ ∆cost(vr − 1 : v1, v2, . . . , v(r−1)).

Therefore,

∆cost(k : u1, u2, . . . , ur′ , vr)

= (fu1
− fu2

) · mu1
− lu1

+ (fu2
− fu3

) · mu2
− lu2

+ · · · + (fu
r′
− fvr

) · mu
r′
− lu

r′

+(fvr
− fk+1) · mvr

− lvr

= ∆cost(vr − 1 : u1, u2, . . . , ur′)

+(fvr
− fk+1) · mvr

− lvr

≥ ∆cost(vr − 1 : v1, v2, . . . , v(r−1))

+(fvr
− fk+1) · mvr

− lvr

= (fv1
− fv2

) · mv1
− lv1

+ (fv2
− fv3

) · mv2
− lv2

+ · · · + (fv(r−1)
− fvr

) · mv(r−1)
− lv(r−1)

+(fvr
− fk+1) · mvr

− lvr

= ∆cost(k : v1, v2, . . . , v(r−1), vr). (2)

On the other hand, since v1, v2, . . . , vr is an optimal so-
lution to the k-optimization problem,

∆cost(k : u1, u2, . . . , ur′ , vr)

≤ ∆cost(k : v1, v2, . . . , v(r−1), vr). (3)

Combining (2) and (3), we have

∆cost(k : u1, u2, . . . , ur′ , vr)

= ∆cost(k : v1, v2, . . . , v(r−1), vr).

Hence, the theorem is proven. 2

We need the following definitions before presenting the
recurrences for dynamic programming.

Definition 2 Let 0 ≤ k ≤ n. Define OPTk to be the
maximum value of ∆cost(k : v1, v2, . . . , vr) obtained in
the k-optimization problem, and Lk is the largest index in
the optimal solution. If the optimal solution is an empty set,
define Lk = −1. 2

Obviously, OPT0 = 0 and L0 = −1. From Theorem 1,
we know that if Lk > 0,

OPTk = OPT(Lk−1) + (fLk
− fk+1) · mLk

− lLk
.

Hence, we can check all possible locations of Lk and select
the one that maximizes the objective function when calcu-
lating OPTk. Therefore, we have






OPT0 = 0
OPTk = max{0, OPTi−1 + (fi − fk+1) · mi − li

(i = 1, 2, . . . , k)}, for 1 ≤ k ≤ n,

and














L0 = −1

Lk =







v if index v (1 ≤ v ≤ k) satisfies OPTk

= OPTv−1 + (fv − fk+1) · mv − lv,
−1 if OPTk = 0.
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The original object placement problem (i.e., the n-
optimization problem) can be solved using dynamic pro-
gramming with these recurrences. After computing OPTk

and Lk (0 ≤ k ≤ n), we can start from vr = Ln

and obtain all indices in the optimal solution by setting
vi = L(v(i+1)−1) iteratively for all 1 ≤ i < r. Theorem 1
ensures the correctness of this calculation procedure.

2.3 Coordinated Caching Scheme

In this subsection, we present a new coordinated caching
scheme based on the previous analysis.

Every cache maintains some meta information on the ob-
jects in the form of object descriptors. An object descrip-
tor contains the object size, the access frequency (and/or
the timestamps of recent accesses) and the miss penalty of
the object with respect to the associated node. When a re-
quest is issued at node An for object R, each node Ai on
the path between A0 and An piggybacks the correspond-
ing information fi, mi and li on the request message as it
passes through the node. When the request arrives at A0,
A0 computes the optimal locations to place the requested
object based on the piggybacked information using the dy-
namic programming algorithm, and sends the decision to-
gether with the object back to node An. Along the way to
An, the intermediate nodes on the path adjust their cache
contents according to the caching decision. If the object is
instructed to be cached at Ai, Ai executes the greedy heuris-
tic given in Section 2.1 to select replacement candidates and
updates its cache accordingly.

Since the contents of the caches change over time, the
access frequency and miss penalty of an object with respect
to a node need to be updated from time to time. The ac-
cess frequency can be estimated based on recent request
history which is locally available (e.g., by using a “slid-
ing window” technique [17]). The miss penalty is updated
by the response messages. Specifically, a variable with an
initial value of 0 is attached to each object in the response
message sent through a delivery path. At each intermedi-
ate node along the way, the variable is increased by the cost
of the last link the object has just traversed. This value is
then used to update the miss penalty of the object main-
tained by the associated cache. If the object is inserted
into the cache, the variable is reset to 0 before the object
is forwarded downstream. In this way, the miss penalties
of the requested object are updated at all caches on the
delivery path. To avoid unnecessary communication over-
head, the miss penalty changes of the requested object at
caches not along the path are not updated immediately. The
same is true for miss penalty changes caused by object re-
movals that may result from the insertion of the requested
object. These changes would be discovered by the asso-
ciated caches upon subsequent object requests/responses.
Note that no additional message exchange or probing op-

eration is used for information update. Therefore, the com-
munication overhead in deploying coordinated caching is
small.

2.4 Discussion

The size of an object descriptor is typically a few tens
of bytes and is negligible compared to the average size of
objects. Hence, the storage overhead of maintaining the de-
scriptors of cached objects is very small. However, the de-
scriptors of objects not stored in the cache are also needed
for the purpose of evaluating their cost savings. Fortunately,
it is not necessary to keep all of these descriptors in the
cache as discussed below. The following theorem presents
an important property of the coordinated caching scheme.

Theorem 2 The optimal solution {v1, v2, . . . , vr} of the
n-optimization problem satisfies the following inequalities:

fvi
· mvi

≥ lvi
, i = 1, 2, . . . , r.

Proof: Assume on the contrary that vi is an index in the
optimal solution of the n-optimization problem such that
fvi

· mvi
< lvi

.
If i = 1, we have

∆cost(n : v1, v2, . . . , vr)

= (fv1
− fv2

) · mv1
− lv1

+ ∆cost(n : v2, v3, . . . , vr)

≤ fv1
· mv1

− lv1
+ ∆cost(n : v2, v3, . . . , vr)

< ∆cost(n : v2, v3, . . . , vr).

If i > 1, we have

∆cost(n : v1, v2, . . . , vr)

= ∆cost(v(i−1) − 1 : v1, v2, . . . , v(i−2))

+(fv(i−1)
− fvi

) · mv(i−1)
− lv(i−1)

+ (fvi
− fv(i+1)

) · mvi

−lvi
+ ∆cost(n : v(i+1), v(i+2), . . . , vr)

≤ ∆cost(v(i−1) − 1 : v1, v2, . . . , v(i−2))

+(fv(i−1)
− fvi

) · mv(i−1)
− lv(i−1)

+ (fvi
· mvi

− lvi
)

+∆cost(n : v(i+1), v(i+2), . . . , vr)

< ∆cost(v(i−1) − 1 : v1, v2, . . . , v(i−2))

+(fv(i−1)
− fvi

) · mv(i−1)
− lv(i−1)

+∆cost(n : v(i+1), v(i+2), . . . , vr)

≤ ∆cost(v(i−1) − 1 : v1, v2, . . . , v(i−2))

+(fv(i−1)
− fv(i+1)

) · mv(i−1)
− lv(i−1)

+∆cost(n : v(i+1), v(i+2), . . . , vr)

= ∆cost(n : v1, v2, . . . , v(i−1), v(i+1), . . . , vr).

This implies that vi can be removed from the solution
{v1, v2, . . . , vr} to obtain a higher value of function ∆cost
in the n-optimization problem, which contradicts with
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the optimality of {v1, v2, . . . , vr}. Hence, the theorem is
proven. 2

Theorem 2 implies that the coordinated caching scheme
only needs to consider placing objects in the caches where
the replacement operation is locally beneficial (i.e., the cost
saving outweighs the cost loss with respect to the single
cache). Since both the miss penalty and the cost loss gener-
ally increase with the size of the requested object, it implies
that the descriptors of objects with low access frequencies
are less important for computing the optimal caching loca-
tions. Based on this observation, we propose to allocate a
small auxiliary cache (we shall call it the d-cache) at each
node to keep the descriptors of the most frequently accessed
objects not in the main cache. The size of the d-cache is
negligible compared to the main cache which stores the ob-
jects. If the requested object is not instructed to be cached
at Ai and its descriptor is not in the d-cache, the descrip-
tor is inserted into the d-cache at Ai when the object passes
through. Simple LFU replacement policy can be used to
manage the object descriptors in the d-caches.

If an intermediate node does not have the descriptor of
the requested object in its d-cache, it would indicate this
fact by attaching a special tag to the request message going
upstream. Based on the attached information, A0 removes
nodes from the candidate set whose d-caches do not contain
the object descriptor. The dynamic programming algorithm
is then applied to the remaining nodes to compute the opti-
mal locations for caching. The rationale behind this strategy
is that the requested object is not frequently accessed at the
excluded nodes compared to the other objects, and hence
removing them from the candidate set would not affect the
computation of optimal caching locations significantly.

It is easy to see that the time complexity of the dynamic
programming algorithm is O(k2), where k is the number of
nodes on the path that have the descriptor of the requested
object in their d-caches (k ≤ n). We expect that k is not
very large in practice. This is because n is small for pop-
ular objects as they would be cached in the network with
high density. On the other hand, the descriptors of unpopu-
lar objects would not be cached by most intermediate nodes
resulting in small k. Therefore, the cost of computing the
optimal locations to cache a requested object is low. More-
over, the overhead in maintaining object descriptors can be
kept small by using judicious data structures. For exam-
ple, descriptors of cached objects can be organized as a
heap based on their normalized cost losses. In this way,
the time complexity for each adjustment (e.g., insertion and
removal) is O(log m), where m is the number of cached
objects. Object descriptors in the d-cache can be organized
into one or more LRU stacks if the access frequencies of
objects are estimated using a “sliding window” technique
(see Section 3.2). As a result, the time complexity for each

insertion and removal in the d-cache is O(1).

3 Experimental Setup

We have performed simulation experiments based on
real traces collected from web caches. The objective of the
experiments is to compare the relative performance of dif-
ferent caching schemes. This section outlines the traces,
system architectures and caching schemes used in our sim-
ulation.

3.1 Traces

We made use of the Boeing proxy traces [12] to simulate
the request streams generated by the clients in our experi-
ments. The traces were collected between 3-1-1999 and 3-
5-1999. As the Boeing network contains a set of 5 proxies,
complete daily traces (five traces, one per day) were first ob-
tained by merging the traces collected at individual proxies
based on the request timestamps. The number of requests
logged in each daily trace was around 22 million and they
were issued by more than 60,000 clients. Each trace entry
includes the request time, the client, the target URL as well
as the associated origin server, the size of the target object,
and other information about the requests. The target URLs,
origin servers and clients have been mapped to unique ID
numbers to protect privacy1. However, performing the sim-
ulation experiments using the original traces far exceeds the
memory capacity of our workstations (Sun Ultra-SPARC 5
with 256 MB memory). To overcome this, we extracted a
subtrace from each daily trace to drive our simulation. The
subtrace consists of requests for the most popular 100,000
objects, covering more than 50% of the requests in the orig-
inal daily trace. Note that the extraction would not change
the relative access frequencies of the objects. It is known
that the access pattern of web objects follows Zipf-like dis-
tributions [4]. That is, the access frequency of the ith most
popular object is proportional to 1/iθ, where θ > 0 is the
Zipf parameter. Obviously, the requests in the subtraces fol-
low the Zipf-like distribution with the same Zipf parameter
as that of the original traces. Therefore, we believe that the
results are valid for the purpose of comparing the relative
performance of different caching schemes.

Each simulation run started with all caches being empty.
The first half of the trace was considered the start up pe-
riod and was run to bring the system into a relatively steady
state. Statistics were collected for the second half of the
trace only. Similar performance trends have been observed
for different daily traces. Due to space limitation, we shall
report only the experimental results of the 3-1-1999 trace in
this paper.

1Since the mappings are not consistent from day to day, the duration of
simulation runs is limited to one daily trace only.
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3.2 System Architectures

Our experiments were conducted under two different
cascaded caching architectures: en-route caching and hier-
archical caching (see Section 1).

In the en-route architecture, the network topology was
randomly generated using the Tiers program [5]. The net-
work topology consisted of a wide area network (WAN) and
a number of metropolitan area networks (MAN2), in Tiers
terminology. We have performed experiments for a wide
range of different network topologies. Although the abso-
lute behavior changes somewhat for various topologies, the
relative performance trends described in this paper hold for
all experiments conducted. Due to space limitation, only
the results of one sample topology are reported in Section 4.
The characteristics of this topology are listed in Table 1.

Parameter Value
Total number of nodes 100
Number of WAN nodes 50
Number of MAN nodes 50

Number of network links 173
Average delay of WAN links 0.146 second
Average delay of MAN links 0.018 second

Table 1. System Parameters for En-Route Architecture

The WAN is regarded as the backbone network, and no
origin server or client is directly attached to the WAN nodes.
The origin servers and clients are assumed to be co-located
with the MAN nodes. In our experiments, the origin servers
seen in the traces are randomly allocated to the MAN nodes
in the simulated network. Moreover, the clients are also
randomly assigned to the MAN nodes, and the requests is-
sued by a client are assumed to originate from the associ-
ated MAN node. An en-route cache is associated with ev-
ery WAN and MAN node in the network. Each network
link connects two nodes and represents one hop in the net-
work. For simplicity, the delay caused by sending a request
and the associated response over a network link is set pro-
portionally to the size of the requested object. The delays
generated by the Tiers program for the network links are
taken to be the delays of an average size object. The ratio
of the average delays of WAN links and MAN links for the
sample topology is approximately 8:1 (see Table 1). Rout-
ing paths from all nodes to a given origin server are set to
the shortest-path tree rooted at the server (i.e., the associ-
ated MAN node). The average length of the routing path
between an origin server and a client is about 12 hops.

In the hierarchical architecture, the network topology is
represented by a full O-ary tree where every internal node
has a fanout degree of O (see Figure 5). A cache is asso-
ciated with every node in the tree. The origin servers are

2The term “MAN” is used in Tiers [5]. Essentially it applies to any
high-speed interconnected local area networks.

connected to the root of the tree while the clients are asso-
ciated with the leaf nodes. In our experiments, the clients
seen in the traces are randomly allocated to the leaf nodes
in the tree. The default depth of the tree is set to 4 and the
default fanout degree O is set to 3. Similar to the en-route
architecture, the delay of sending a request and the associ-
ated response over a link is set proportionally to the object
size. Suppose the level of the root node is 3 and the level
of the leaf nodes is 0 (see Figure 5). The average delay of
a network link is assumed to grow exponentially with the
level of its lower end. Specifically, let d be the base delay
and g be the growth factor. The average delay between a
level-i node and its parent (located at level-(i + 1)) is given
by gi · d (i = 0, 1, 2). Moreover, the average delay be-
tween the root node and an origin server is set to g3 · d. The
default values of d and g are set to 0.008 second and 5 re-
spectively. We have tested a wide range of d and g values
and observed similar trends in the relative performance of
different caching schemes.

d

g d

3

2

g  d

g  d

level 0

origin servers

level 3

level 2

level 1

Figure 5. Network Topology for Hierarchical Architecture

Similar to other studies [4, 8, 17], the main cache size at
each node is described relative to the total size of all objects
(we shall call it the relative cache size). The d-cache size
at each node is measured in terms of the number of object
descriptors. We have performed experiments for different
d-cache sizes relative to the main cache size and found that
the results were similar when the main cache and d-cache
were capable of accommodating the same order of objects
and object descriptors respectively. By default, the d-cache
size is set to 3 times the average number of objects the main
cache can hold3.

To make the caching schemes less sensitive to transient
workload, a “sliding window” technique is employed to dy-
namically estimate the access frequency of an object [17].
Specifically, for each object, up to K most recent refer-
ence times are recorded in the descriptor and the access fre-
quency is computed by f(O) = K

t−tK
, where K ≤ K is the

number of references recorded, t is the current time and tK
is the Kth most recently referenced time. K is set to 3 in
our simulation experiments [17]. To reduce the overhead,

3Note that this ratio is not equal to the ratio of their physical storage
capacities. The capacity of the d-cache is much smaller than that of the
main cache.
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Figure 6. Access Latency and Response Ratio vs. Cache Size (En-Route Architecture)

the access frequency estimate of an object is only updated
when the object is referenced, and at reasonably large inter-
vals (currently set at 10 minutes) to reflect aging.

3.3 Caching Schemes

In our experiments, the access cost function in the coor-
dinated caching scheme is taken to be the link delay. This
implies the generic cost in the analytical model (see Sec-
tion 2) is interpreted as the access latency. To study the
performance of the coordinated caching scheme, the follow-
ing existing algorithms were included in the experiments for
comparison purposes. Note that none of these schemes opti-
mize placement and replacement strategies in an integrated
fashion.

• LRU: This is a standard caching algorithm. The re-
quested object is cached by every node through which
the object passes. If there is not enough free space, the
cache purges one or more least recently referenced ob-
jects to make room for the new object. No d-cache is
used in this scheme.

• MODULO [3]: This is a modified LRU scheme that
employs a simple placement optimization. On the de-
livery path from the origin server (or the high level
cache) to the client, the object is cached at the nodes
that are a fixed number (called cache radius) of hops
apart. The caches use LRU replacement policy to re-
move objects when necessary. Similar to LRU, no d-
cache is used in this scheme. Note that a cache radius
of 1 degenerates the MODULO scheme to the LRU
scheme.

• LNC-R [16]: This is a cost-based caching algorithm
shown to be effective in the context of a single web
cache. It optimizes cache replacement by remov-
ing objects with the least normalized cost losses (i.e,

f(O)·m(O)
s(O) ). Similar to LRU, the requested object is

cached by all nodes along the delivery path and accord-
ingly, for each intermediate cache, the miss penalty of
the object is set to the delay associated with the imme-
diate upstream link. Similar to the coordinated caching
scheme, the descriptors of the objects not in the main
cache are maintained in the d-cache to allow better es-
timation of access frequencies.

4 Performance Results

4.1 En-Route Caching Architecture

First, we compare the performance of different caching
schemes under the en-route architecture. Figure 6(a) shows
the average access latency as the relative cache size at each
node increases from 0.1% to 10%. Since the objects have
very different sizes, we also plotted in Figure 6(b) the aver-
age response ratio. The response ratio of a request is defined
as the ratio of its access latency to the size of the target ob-
ject. The lower the average response ratio, the better the
performance. This metric is more objective as the effect of
object size is eliminated. Moreover, users are likely to ex-
pect short delays for small objects and willing to tolerate
longer delays for larger objects. We have conducted exper-
iments with different cache radii for the MODULO scheme
and found that a cache radius of 4 gives the best perfor-
mance under our experimental settings. Thus, a cache ra-
dius of 4 was used in the experiments reported in this sec-
tion for MODULO.

As can be seen, all caching schemes provide steady per-
formance improvement as the cache size increases. The co-
ordinated scheme significantly reduces the average access
latency and response ratio compared to the other schemes
examined. This shows the importance of managing object
placement and replacement strategies in an integrated fash-
ion. To achieve the same access latency, the schemes that
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Figure 7. Hit Ratio and Network Traffic vs. Cache Size (En-Route Architecture)

do not optimize placement decisions (LRU and LNC-R)
would require 3 to 10 times the cache space of the coor-
dinated scheme (note that the cache size axis is in logscale).
Although LNC-R incorporates various cost factors to opti-
mize cache replacement decisions, its performance is simi-
lar to or sometimes even worse than that of LRU. This is not
surprising because cache contents change very frequently
due to frequent replacements if the requested objects are
inserted into all intermediate caches on the delivery path.
Therefore, the miss penalties of cached objects change very
frequently under LNC-R and are less helpful in optimizing
replacement decisions. The relative improvement of coor-
dinated caching over LRU and LNC-R increases with cache
size. Coordinated caching outperforms LRU and LNC-R
by more than 60% and 50% respectively in average ac-
cess latency at a relative cache size of 10%. On the other
hand, even though MODULO utilizes cache space more ef-
ficiently than LRU and LNC-R by storing the same object
at fewer locations, Figures 6(a) and (b) show that it still per-
forms much worse than coordinated caching over a wide
range of cache sizes. This is because the placement deci-
sion of MODULO is not based on the access frequencies
of objects so that popular and unpopular objects are cached
with the same density in the network. The impact of MOD-
ULO’s disadvantage is less significant as the cache size in-
creases. Therefore, the absolute performance difference be-
tween coordinated caching and MODULO decreases with
increasing cache size. However, the relative improvement
of coordinated caching remains significant for large cache
sizes. From Figure 6, at a cache size of 10%, the coor-
dinated scheme outperforms MODULO by about 25% in
terms of average access latency and response ratio. It is
worthwhile pointing out that the performance of MODULO
with cache radii other than 4 could be much worse than that
reported here. Moreover, from our experiments with many
other system configurations, the cache radius to achieve
the best possible performance of MODULO is different for

different system configurations, making automated deploy-
ment difficult. This will be made clear in Section 4.2.

Figure 7(a) plots the byte hit ratio curves as a function of
relative cache size for different caching schemes. To cap-
ture the system’s caching behavior, the byte hit ratio is de-
fined as the ratio of the number of bytes served by the caches
as a whole (as opposed to those served by the origin servers)
to the total number of bytes requested. It provides an indi-
cation on the amount of load reduction at the origin servers.
By making optimal caching decisions along delivery paths,
the coordinated scheme greatly improves the byte hit ra-
tio over the other schemes examined, especially for smaller
cache sizes. This implies substantial load reduction at the
origin servers. In contrast, MODULO and LNC-R, which
optimize object placement or replacement only, have simi-
lar and/or worse performance compared to LRU. When the
cache size is very large, all schemes are capable of caching
popular objects somewhere in the network. Therefore, as
shown in Figures 7(a), the relative improvement of the co-
ordinated scheme in byte hit ratio decreases with increas-
ing cache size. At large cache sizes, the main advantage
of coordinated caching is to bring popular objects closer to
the clients by judicious placement of objects in the caches.
Figures 7(b) shows the average network traffic (measured
in byte×hops) required to satisfy a request. It can be seen
that the coordinated caching scheme results in considerably
lower network traffic than the other schemes. Coordinated
caching reduces the network traffic by 44%, 31% and 35%
compared to LRU, MODULO and LNC-R respectively at a
cache size of 10%.

The workload of the caches consists of two parts: (i)
looking up the requested objects and forwarding requests
in case of cache miss; and (ii) reading/writing objects
from/into the cache. It is obvious that the lower the cache
load, the more scalable the caching scheme. Under the en-
route caching architecture, the overhead of object look-up
and request forwarding is proportional to the number of
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Figure 8. Number of Hops Traveled and Cache Load vs. Cache Size (En-Route Architecture)

0

0.2

0.4

0.6

0.8

1

0.1% 0.3% 1.0% 3.0% 10.0%

A
ve

ra
ge

 A
cc

es
s 

L
at

en
cy

 (
se

c)

Relative Cache Size Per Node (in logscale)

LRU
MODULO

LNC-R
Coordinated

0

50

100

150

200

0.1% 0.3% 1.0% 3.0% 10.0%

A
ve

ra
ge

 R
es

po
ns

e 
R

at
io

 (
se

c/
M

B
)

Relative Cache Size Per Node (in logscale)

LRU
MODULO

LNC-R
Coordinated

(a) Average Access Latency (b) Average Response Ratio

Figure 9. Access Latency and Response Ratio vs. Cache Size (Hierarchical Architecture)

hops a request travels before hitting the target object. Fig-
ure 8(a) shows that on average, a request goes through fewer
hops in the coordinated caching scheme than in the other
schemes. This further demonstrates the advantage of co-
ordinated caching in placing popular objects closer to the
clients. An additional benefit is the lower look-up and for-
warding load on the caches. Reading and writing objects
occur in the following situations. A request causes a read
operation on an en-route cache if the request leads to a cache
hit, and a decision to insert an object into the cache intro-
duces a write operation. The read load is necessary in serv-
ing requests while the write load represents an overhead for
caching. To compare the overall read/write load, we cal-
culated the mean aggregate read and write load (measured
in bytes) introduced by each request on all the caches. As
shown in Figure 8(b), coordinated caching has the lowest
read/write load among all the schemes studied. By contrast,
LRU and LNC-R introduce 3 to 24 times the read/write load
of coordinated caching because they do not consider object
placement optimization. MODULO has lower read/write
load compared to LRU and LNC-R, but its load is still much

higher than that of the coordinated scheme. Experimental
data show the read load takes up 75% to 80% of the overall
read/write load in coordinated caching. Since the read load
of coordinated caching is higher than the other schemes due
to its higher cache hit ratio (see Figure 7(a)), the results pre-
sented in Figure 8(b) suggest that the coordinated scheme
involves substantially lower write load (i.e., overhead) on
the caches.

4.2 Hierarchical Caching Architecture

Figures 9(a) and (b) show the average access latency
and response ratio for different caching schemes under the
hierarchical architecture. Similar to the case of en-route
architecture, the coordinated caching scheme consistently
provides the best performance over a wide range of cache
sizes. For example, at a cache size of 3%, it outperforms
LRU, MODULO and LNC-R by 22%, 37% and 23% in
response ratio respectively. This further verifies the im-
portance of coordinating object placement and replacement
strategies. Similarly, for the same reason discussed in Sec-
tion 4.1, LNC-R generally performs worse than LRU. On
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Figure 10. Hit Ratio and Cache Load vs. Cache Size (Hierarchical Architecture)

the other hand, different from the case of en-route architec-
ture (Section 4.1), MODULO with a cache radius of 4 per-
forms much worse than LRU as shown in Figures 9(a) and
(b). This is because the distribution trees for different origin
servers are almost identical under the hierarchical architec-
ture, differing only in the link between the origin server and
the root cache. As a result, by placing the requested objects
in caches every 4 hops apart, the MODULO scheme leaves
the caches at levels 1, 2 and 3 completely unused (see Fig-
ure 5), leading to significant performance degradation. In
fact, MODULO with any cache radius greater than 1 would
result in some caches unused. Under our hierarchical ar-
chitecture, the best possible performance of MODULO is
achieved with a cache radius of 1 in which case MODULO
degenerates to LRU. In contrast, under the en-route archi-
tecture, the distribution trees for various origin servers are
very different. Therefore, as shown in Section 4.1, MOD-
ULO makes more efficient use of cache space and outper-
forms LRU in the en-route environment.

Figures 10(a) shows the results of byte hit ratio as a func-
tion of relative cache size. It can be seen that the coor-
dinated caching scheme achieves the highest byte hit ratio
among all the schemes studied. MODULO does not make
full use of the available caches and shows much lower byte
hit ratio than that of LRU. On the other hand, similar per-
formance trends in the aggregate read and write cache load
have been observed for both en-route and hierarchical archi-
tectures. Even though the coordinated scheme has higher
read load than the other schemes, Figure 10(b) shows that
it generally results in the lowest total read/write load. This
implies substantial reduction in the write load (i.e., the over-
head) by the coordinated scheme. It is interesting to note
that the overall read/write load of MODULO is the same
for different cache sizes. This is because under the MOD-
ULO scheme with a cache radius of 4, only one cache (i.e.,
the leaf cache) is used between each origin server and its
clients. A request introduces an amount of read load equal

to the object size in case of a cache hit and involves the
same amount of write load for a cache miss. Thus, the ag-
gregate read and write load introduced by each request is
independent of the cache size.

5 Related Work

Not much work has been done on coordinated manage-
ment of cascaded caches. Bhattacharjee et al. [3] stud-
ied the benefits of the en-route caching architecture. They
proposed an object placement strategy called MODULO,
where requested objects are cached at the nodes that are a
fixed number of hops apart along the delivery path from the
server to the client. MODULO was shown to outperform
the simple ”caching everywhere” strategy which places the
object at every intermediate node. However, the object ac-
cess frequency and the network distance between caches
were not considered. Furthermore, all objects were as-
sumed to have the same size and the simple LRU policy was
used for cache replacement. The interaction between place-
ment and replacement strategies was not investigated. Yu et
al. [21] discussed collaboration between parent and children
caches in the hierarchical caching architecture. However,
no analytical modeling was provided. To the best of our
knowledge, there has been no unified analytical framework
on coordinated cache management for general cascaded ar-
chitectures.

Early work on single web cache management had in-
vestigated simple extensions of traditional page replace-
ment algorithms such as LRU and LFU [19]. More recent
work has focused on cost-based cache replacement algo-
rithms [16, 20]. The idea is to design a cost function to
estimate the caching benefits of different objects and de-
termine their removal order when there is not enough free
space. A typical example is the LNC-R algorithm proposed
by Scheuermann et al. [16]. LNC-R incorporates multiple
factors in the cost function including the object size, the ac-
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cess frequency and the retrieval delay. The authors further
proved that the suggested function is optimal (i.e., maxi-
mizing delay reduction for a single cache) in a simplified
model [17]. However, like most other replacement policies
for web caches, the LNC-R scheme automatically places
a newly referenced object in the cache without evaluating
whether it is beneficial to do so. As shown in our experi-
mental study, optimizing replacement decisions alone (i.e.,
without appropriate placement optimization) does not lead
to more effective use of cache space and improved access
latency when there are a large number of interconnected
caches. Object placement and replacement should be opti-
mized in an integrated fashion to produce the best possible
performance. Aggarwal et al. [2] proposed a generalized
LRU scheme and used an admission control policy to decide
whether or not caching an object is worthwhile. However,
they did not consider cooperation among different caches.

6 Conclusion

Object placement and replacement are two important is-
sues in cascaded cache management. In this paper, we have
presented a general analytical framework for coordinated
management of cache contents under cascaded caching ar-
chitectures. The optimal placement decisions of objects are
computed by a dynamic programming algorithm. Based
on the framework, a novel coordinated caching scheme
that integrates object placement and replacement strategies
has been proposed. We have performed simulation exper-
iments using real traces to compare the proposed scheme
with a number of existing algorithms. The results show
that the coordinated scheme effectively reduces access la-
tency and improves cache hit ratio under different cascaded
caching architectures. The proposed scheme considerably
outperforms existing algorithms which consider either ob-
ject placement or replacement at individual caches only.
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