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Abstract— This paper addresses the problem of how to plan
optimal motion for a swarm of on-orbit servicing (OOS) small-
spacecraft remotely inspecting a non-cooperative client space-
craft in Earth orbit. With the goal being to maximize the infor-
mation gathered from the coordinated inspection, we present an
integrated motion planning methodology that is a) fuel-efficient
to ensure extended operation time and b) computationally-
tractable to make possible on-board re-planning for improved
exploration. Our method is decoupled into first offline selection
of optimal orbits, followed by online coordinated attitude plan-
ning. In the orbit selection stage, we numerically evaluate the
upper and lower bounds of the information gain for a discretized
set of passive relative orbits (PRO). The algorithm then sequen-
tially assigns orbits to each spacecraft using greedy heuristics.
For the attitude planning stage, we propose a dynamic pro-
gramming (DP) based attitude planner capable of addressing
vehicle and sensor constraints such as attitude control system
specifications, sensor field of view, sensing duration, and sensing
angle. Finally, we validate the performance of the proposed
algorithms through simulation of a design reference mission
involving 3U CubeSats inspecting a satellite in low Earth orbit.
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1. INTRODUCTION
On-orbit servicing (OOS) technology has been rapidly ad-
vancing in recent years as the growing commercial space
sector has developed a market for services that extend the
lifetime of satellites in Earth orbit. These services include
the use of at least one servicing spacecraft for inspecting,
repairing, refuelling, assembling, or upgrading a client (or
target) satellite in Earth orbit [1]. Most on-orbit servicing
concepts involve a single servicing spacecraft. The first
demonstration of this technology was the DARPA Orbital Ex-
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Figure 1: Spacecraft swarms can provide complete
and frequent sensor coverage of a client satellite in
Earth’s orbit, presenting significant advantages over
single-spacecraft remote inspection. [S/C model credit:
Northrop Grumman, EnduroSat]

press in 2007. During this mission, the servicing spacecraft
ASTRO (Autonomous Space Transfer and Robotic Orbiter)
performed autonomous rendezvous, capture and berthing,
propellant and electronics transfer, and visual inspection of
the client satellite, NextSat [2]. Recent developments in OOS
include a Northrop Grumman servicing spacecraft, called
Mission Extension Vehicle (MEV), that launched in October
of 2019. MEV is designed to dock with a client satellite
and provide orbital station-keeping and attitude control [3].
More recently, NASA Johnson Space Center demonstrated
single spacecraft remote inspection of the Cygnus spacecraft
during the Seeker-1 technology demonstration in September
of 2019 [4]. Likewise, many other single-spacecraft OOS
capabilities are being developed and are detailed in [1, 5]
and the references therein. However, while single-spacecraft
OOS technology has been successful, utilizing a swarm (or
team) of small-spacecraft has the potential to provide more
capable and time-effective on-orbit services.

There are many OOS capabilities that spacecraft swarms
may enable, such as autonomous on-orbit assembly [6, 7] or
collaborative manipulation [8]. Yet, in this paper, we focus
on the prospect of using a swarm of small-spacecraft for
on-orbit inspection, an essential first step towards enabling
future multi-spacecraft OOS capabilities. The benefits of
using swarms for on-orbit inspection are analogous to the
benefits associated with using multi-spacecraft systems for
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Earth observation. Using multiple satellites allows for com-
plete and sustainable distributed sensor coverage of the client
with frequent updates. This removes the need to expend fuel
for orbit transfers and provides a means for monitoring the
client satellite during time-sensitive situations. Moreover,
with the use of heterogeneous swarms, multiple types of
data can be collected simultaneously at different locations
of the client. To realize these benefits, we present a set of
integrated algorithms for optimal orbit selection and real-
time attitude planning that maximize the amount of scientific
data collected by the swarm while minimizing control effort,
ensuring collision avoidance, and reacting to new areas of
interest on the target.

Prior Work

For Earth-targeted remote sensing and other applications,
distributed small-spacecraft systems are already being im-
plemented to create unique sensing capabilities, as detailed
in [9]. Furthermore, improved Earth remote sensing tech-
niques using multiple spacecraft are being developed that
take advantage of the agility and accuracy of new small-
spacecraft attitude control systems (ACS). In [10], small-
satellites are used in formation flight to make multi-angle
observations of aerosols by directing multiple satellites to
point at the same location at the same time. In [11] and [12],
the authors develop an algorithm for scheduling attitude slew
manoeuvres, such that the number of unique images taken by
each satellite is maximized. These proposed algorithms are
reliant upon modern ACS technology for small-satellites. As
reported by NASA Ames Research Center in 2018, state-of-
the-art ACS are small enough and accurate enough to be used
in CubeSats to provide efficient slewing and pointing [13]. In
a notable demonstration of the performance of these control
systems, a 6U CubeSat called ASTERIA used the Blue
Canyon Technologies fleXible Attitide Control Technology
(XACT) to achieve pointing accuracy that drifted only 20
arcseconds over a 20-minute observation [14].

A swarm of distributed small-spacecraft presents the opportu-
nity to provide enhanced OOS that is highly re-configurable,
scalable, resilient to failure, and low-cost beyond its mono-
lithic counterpart [15]. The multi-agent autonomy technolo-
gies required are maturing quickly, and a review paper on
aerial swarm robotics [16] provides an overview of the state-
of-the-art autonomy technologies that enable swarm opera-
tion. Furthermore, NASA is pushing towards augmenting
OOS capabilities [17] with novel space system architectures
such as SWIFT [18], a proposed architecture that would
enable small-scale (100g) spacecraft to be flown as swarms.

However, the benefits of swarm operation come with the chal-
lenge of coordinating the motion of a large number of agents
to collectively achieve a given objective [15]. Multi-agent
motion planning is fundamentally a PSPACE-hard problem
[19] that can quickly become NEXP when system dynamics
are complex [20]. A recent survey paper [9,21] that surveyed
39 multi-agent missions composed of small satellites shows
that missions involving closely coordinated formation flying
are limited to two or three satellites. This indicates the
inherent difficulty and technology gap that exists in planning
coordinated motion for a large swarm of spacecraft. Recent
work [22–25] addresses this challenge by utilizing passive
relative orbits (PROs) and sequential convex programming
(SCP) to provide collision-free, re-configurable formation
flying for a swarm of spacecraft. This paper presents related
work that contributes to the technology gap with specific
focus on coordinated inspection of a target object using a
swarm of spacecraft.

The paper is organized as follows: The problem statement
that defines the problem objective, definitions, and notation
is given in Section 2. An overview of the coordinated motion
planning architecture is presented in Section 3. Then, optimal
orbit design for a swarm of spacecraft is detailed in Section 4,
followed by a description of a dynamic programming based
attitude planner in Section 5. Finally, we show numerical
simulation results for the design reference mission in Section
6, with a conclusion in Section 7.

2. PROBLEM STATEMENT
Our objective is to develop a collaborative swarm motion
planning methodology that autonomously plans optimal mo-
tion for a swarm (or team) of small-spacecraft performing an
on-orbit inspection. The planned motion should maximize in-
formation collectively gathered from the coordinated inspec-
tion while minimizing the aggregated fuel cost and ensuring
collision avoidance. The planner should be computationally
efficient to make possible real-time, on-board computation
and should be suitable for re-planning with updates from
estimation. In this paper, we adopt the following definitions
and assumptions for each component.

Definitions and Assumptions

Target Object: Let Xo be the state of the target object under
inspection. We assume that the target object is undergoing
pure rotation under its principal axis, and its motion Xo(t)
is known. Let Mo be the surface of the target object and
mi be a surface partition of the target object s.t. mi ⊂
Mo,

⋃
mi =Mo,mi ∩ mj = ∅. We assume that geometry

Mo is known prior, with its surface mesh given as partitions
mi.

Spacecraft: Let S be a swarm of on-orbit servicing spacecraft
with cardinality |S| = Nsc. Let s ∈ S be a spacecraft in
the swarm, with xs representing the state of the spacecraft.
We assume that each spacecraft is homogeneous in size and
actuation (but may differ in sensing capability). It is assumed
that the spacecraft is capable of producing thrusting force
in a desired direction, but total delta-v budget is heavily
constrained. In contrast, we assume the spacecraft can orient
itself at relatively low-cost to point a sensor in a desired
direction using reaction wheels.

Attitude Control System: Let ωslew be the slew rate achiev-
able by the attitude control system (ACS), and τsettle be the
time it takes for the ACS to settle at a given pointing direction
after a slew maneuver. The design of the attitude control
system itself is outside the scope of this work, so we make
the simplifying assumption that ωslew and τsettle are fixed
parameters.

Figure 2: A spacecraft’s pointing direction is bounded
by the maximum off-nadir angle to account for sensor
distortion at large angles of incidence.
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Figure 3: The proposed motion planning approach is decomposed into 1) a swarm orbit design stage that selects optimal
orbits for a team of spacecraft, and 2) an optimal attitude planning stage that coordinates sensor pointing of multiple
spacecraft to maximize the collective information gain from the inspection.

Sensing: Let ds be the maximum sensing distance and Tsense
be the minimum time required for sensing to be effective
for the sensor on the spacecraft s ∈ S. Let φs define
the conical field of view (FoV) of the sensor and θs be the
maximum allowed deviation angle from the surface normal.
This establishes a conical FoV boundary with angle Φs that
is illustrated in Fig. 2. For each sensor, we assume ds,
Tsense, φs, and θs are specified based on the desired sensing
resolution and sensor characteristics. Last, we assume that
the sensor is fixed relative to the spacecraft.

Coverage: Let C(mi) ∈ {0, 1} be coverage index of the
target object’s i-th surface partition. C(mi) = 1 if the surface
partition mi is effectively viewed by a spacecraft’s sensor for
more than Tsense consecutively and C(mi) = 0 otherwise. A
surface partition mi is effectively viewed if mi is within the
FoV of the sensor, and the angle between the sensor pointing
direction and surface normal of mi is within θs.

Science Target: Let S(mi) ∈ {0, 1} be the science index
of i-th surface partition mi of the target object surface Mo.
S(mi) = 1 if the surface partition mi is categorized as a
science target of interest and S(mi) = 0 otherwise. Science
targets represent areas of the target object that hold higher
information value and need to be prioritized for inspection
(e.g., a valve that is suspected to be malfunctioning). We
assume science targets are specified and frequently updated
online by a human operator evaluating the mission data.

Information Gain: Let Cu−(mi) and Cu+(mi) be the cov-
erage index before and after an inspection action u is per-
formed. Science gain SG(u) and coverage gain CG(u) from
the inspection action u are defined as

SG(u) =

∑
i

S(mi)[Cu+(mi)− Cu−(mi)]

∑
i

S(mi)
(1)

CG(u) =

∑
i

A(mi)[Cu+(mi)− Cu−(mi)]

∑
i

A(mi)
(2)

where A(mi) is area of the surface partition mi. Information
gain IG(u) from an inspection action u is defined as

IG(u) = αSG(u) + (1− α)CG(u) (3)

where α ∈ [0, 1] is a parameter that balances exploitation
and exploration represented by the science gain and coverage
gain, respectively. Note that science gain SG(u), coverage
gain CG(u), and information gain IG(u) are normalized
indices that take on values between 0 and 1.

Based on the above definitions and assumptions, we develop
a collaborative swarm motion planning methodology that
achieves the described problem objective.

3. MOTION PLANNING SYSTEM OVERVIEW
Achieving fuel efficient inspection requires multiple servic-
ing spacecraft to cooperatively explore all areas of the target
object and exploit areas of high interest through limited
orbit and attitude adjustments. Considering the high cost of
orbit transfer using thrusters and the relatively low cost of
attitude control using reaction wheels, our motion planning
approach encompasses performing a single orbit transfer for
each spacecraft in the swarm to a set of designed orbits
around the target object and then continuously adjusting
attitude to follow planned pointing directions to maximize the
information gain. To this end, our motion planning method-
ology is decoupled into first selection of optimal orbits for a
team of servicing spacecraft, followed by coordinated attitude
planning based on the optimal orbits selected, as shown in
Fig. 3.

In the orbit design stage, an optimal set of orbits for a swarm
of servicing-spacecraft is designed that collectively maxi-
mizes information gain in a fuel-efficient and collision-free
manner. First, a set of orbit candidates, OC, is generated from
the specified sensing parameters (ds, φs, θs) and planning
horizon, which represents the total duration of coordinated
inspection. Then each orbit oi,t ∈ OC is evaluated for the
information gain from the orbit and fuel cost of transferring
the spacecraft from its initial pose to the orbit. Based on the
evaluation, an optimal orbit is assigned to each spacecraft in
the swarm.
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In the coordinated attitude planning stage, an optimal attitude
plan is generated that guides the pointing direction of each
spacecraft on its assigned orbit to collectively maximize in-
formation gain while minimizing actuation cost. The attitude
planner takes into account sensing constraints (ds, φs, θs,
Tsense), attitude control system specifications (ωslew, τsettle),
and current science targets and generates a finite horizon
attitude plan. The science targets are updated online by
a human operator evaluating the data from the inspection,
and re-planning is performed at a given frequency to take
into account the changes in the science target for improved
inspection.

The motion planning algorithms strive towards optimality to
maximize information gain and computational efficiency to
make on-board computation of the plan possible. However,
there exists a trade-off between the optimality and computa-
tional efficiency that makes it difficult to achieve both at the
same time. This is especially true for swarm motion planning,
which is a PSPACE-hard problem [19] that suffers from the
curse of dimensionality due to sheer size of the state-space
that increases with the number of agents involved. In our
motion planner, we leverage upon a multi-agent prioritized
planning approach [26, 27] that treats multi-agent planning
as a sequence of single-agent planning with problem-specific
heuristics governing the order. This approach has no guaran-
tee of global optimality but can generate near-optimal solu-
tions with computation time that is quick and scales linearly
with the number of spacecraft in the swarm.

4. SWARM ORBIT DESIGN

Orbital Dynamics

Given that the spacecraft performing inspection will be within
close proximity of the target object, the Clohessy-Wiltshire-
Hill (CWH) equations can provide a good linear approxima-

Figure 4: Concentric passive relative orbits (PROs)
are utilized to provide a collision-free set of orbits for
the swarm of inspecting spacecraft. A small-spacecraft
swarm in concentric PROs is shown in the Earth centered
frame (above) and the CWH LVLH frame (below).

tion of the relative dynamics between the target object and
each agent in the swarm. To use this approximation, it must
also be assumed that the target is in a circular orbit and that
the Earth is perfectly spherical. The 3-DOF CWH equations,
originally developed in [28], describe the motion of a given
spacecraft in the Local-Vertical, Local-Horizontal (LVLH)
coordinate system. The target object is located at the origin of
this coordinate system, where the x-direction (R-bar) points
radially away from Earth toward the target, the y-direction
(V-bar) points in the direction of the orbital velocity of the
target object, and the z-direction points in the direction of the
angular momentum of the target. The CWH equations in this
coordinate system are given in Eq. (4) as

ẍ = 3n2x+ 2nẏ

ÿ = −2nẋ
z̈ = −n2z

(4)

The mean motion of the target object, n, is defined in Eq. (5)
as

n =

√
μ

r30
(5)

where μ is Earth’s gravitational constant and r0 is the radius
of the target object’s orbit. The closed form solution to the
CWH equations is well known and given in Eq. (6).

Careful selection of the initial conditions for each spacecraft
in the swarm results in a set of passive relative orbits (PROs).
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⎡
⎢⎢⎢⎢⎣

x(t)
y(t)
z(t)
ẋ(t)
ẏ(t)
ż(t)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

4− 3 cosnt 0 0 1
n sinnt 2

n (1− cosnt) 0
6(sinnt− nt) 1 0 − 2

n (1− cosnt) 1
n (4 sinnt− 3nt) 0

0 0 cosnt 0 0 1
n sinnt

3n sinnt 0 0 cosnt 2 sinnt 0
−6n(1− cosnt) 0 0 −2 sinnt 4 cosnt− 3 0

0 0 −n sinnt 0 0 cosnt

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

x0
y0
z0
ẋ0
ẏ0
ż0

⎤
⎥⎥⎥⎥⎦ (6)

PROs are thrust-free periodic relative spacecraft trajectories.
These orbits are ideal for use in fuel-constrained small-
spacecraft that perform inspection around a target object
[29, 30].

Orbit Selection

In particular, we utilize concentric PROs that provide a fuel-
efficient way of ensuring collision avoidance among the
swarm of spacecraft [22]. From [22], it has been shown
that setting the initial conditions as those given in Eq. (7)
will provide PROs with concentric projections in the x-y
plane. Fig. 4 shows an example of three CubeSats following
concentric PROs. In this configuration, no spacecraft will
collide. When two spacecraft are on different PROs, one
orbit will be completely inside or outside of the other orbit.
When two spacecraft are on the same PRO, the spacecraft will
follow each other with a phase difference. Using linearized
concentric PROs, it has been shown that a concentric PRO
swarm consisting of 500 spacecraft is nearly collision-free for
the first 60 orbits, even with the nonlinear dynamics including
J2 perturbations [22]. For an on-orbit inspecting swarm that
will operate with fewer spacecraft and require fewer orbits
to achieve full coverage, a set of concentric PROs using
Eq. (7) provides fuel-efficient collision-free orbits to perform
inspection.

ẋ0 =
1

2
ny0, ẏ0 = −2nx0, ż0 = 0 (7)

In the orbit selection stage, selectOrbitIC (Alg.1 line
8) first generates a set of initial conditions corresponding to
the total number of orbit candidates (norbit) to be considered
in the orbit design. Different sampling schemes can be
employed to select norbit samples (e.g., regular lattice or
random sampling) from the independent variables that suit
needs of the orbit design. In this process, initial positions are
sampled with a constraint that enforces the resulting PROs to
comply with the distance requirement (dreq) of the sensor.
The initial velocities are then set following Eq. (7) based
on the initial positions. The cardinality of orbit candidates,
norbit, is a design parameter that is to be changed depending
on whether orbit candidates need to be dense or sparse and
whether computation will be done off-line or on-line.

Once a set of initial conditions is generated,
generateOrbitIC (Alg.1 line 9) then propagates forward
each initial condition according to the orbital dynamics to
orbit trajectories up to a time horizon set by tplan. These
orbit trajectories are stored as oi,t for evaluation.

Orbit Evaluation

In the orbit evaluation stage, each PRO candidate generated in
the orbit selection stage is assessed for the Information Gain
(IG) it brings and fuel cost of transferring to the particular
PRO. First an estimate of information gain from each PRO
candidate is computed by estimateInformationGain
(Alg.1 line 10). Computing an exact information gain from

a PRO requires running the attitude planner on the given
orbit trajectory, which is computationally expensive. Instead,
upper and lower bounds of information gain are computed to
provide an estimate.

Figure 5: Information gain from each orbit candidate is
estimated based on the upper and lower bounds of the
information gain, which can be computed efficiently.

As shown in Fig. 5, an orbit trajectory oi,t can be projected
down to the surface of the target object, and the area covered
from the orbit will form a strip around the projected curve
that depends on the field of view and pointing direction of
the sensor. A lower bound of the information gain, IGl

i,
is computed assuming that sensor is pointed in the nadir
direction throughout the orbit trajectory. An upper bound
of the information gain, IGu

i , is computed assuming that
the attitude planner is able to cover all areas between nadir
and the maximum angle for effective viewing, φi. The exact
information gain from a given PRO lies in between IGl

i and

IGu
i . An estimate of information gain, ˆIGi, is set based on

the computed upper and lower bounds, with the value nearing
to the lower bound if orbit design needs to be conservative.
Note that due to the eccentricity, a given PRO may have large
variation in its distance to the science target, and coverage
can be filtered out when the distance exceeds the maximum
sensing distance, ds.

Once an information gain estimate of each orbit candidate is
established, then fuel cost of transferring a spacecraft from its
initial pose, xj,0, to each orbit candidate, oi,t, is computed by
orbitTranferCost (Alg.1 line 12). Many methodolo-
gies exist in the literature that address computation of such
orbit transfer [25, 31–34], and an algorithm that suits the
orbit design objectives can be adapted. In particular, MPC-
SPC [25] provides optimal transfer from one J2 invariant
orbit to another that minimizes fuel-cost in a computationally
efficient manner. Note that a broader fuel cost analysis of
transferring multiple spacecraft in the mission design [35] can
also be utilized.

Orbit Assignment

In the orbit assignment stage, each spacecraft, si, in the
swarm (of cardinality Nsc) is assigned an optimal PRO,
oi∗,t, from the set of PRO candidates (of cardinality norbit)
evaluated. The objective of the assignment is to generate a set
of optimal PROs that collectively maximize the information
gain while minimizing the fuel cost and balancing the fuel
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budget of the swarm.

The orbit assignment becomes challenging when 1) a large
number of spacecraft are involved in a swarm, and 2) there
is overlap of coverage from multiple PROs that needs to be
singled out. This is a combinatorial optimization problem
whose time complexity for an optimal solution scales poorly
with the size of the swarm. In our approach, we adopt a
prioritized planning methodology [26,27] that favors compu-
tational efficiency in a sacrifice of optimality for multi-agent
planning.

The orbit assignment is performed sequentially to as-
sign a PRO to each spacecraft in the order given by
heuristicOrdering (Alg.1 line 15). The heuristic used
to decide the sequence in which a spacecraft is assigned to
a PRO is based on remaining fuel budget (delta-v). The
spacecraft that has the lowest fuel budget within the swarm
is assigned an orbit first, followed by the spacecraft with next
lowest fuel budget and so forth. This heuristic is utilized to
balance the fuel budgets of spacecraft in the swarm, ensuring
that no one spacecraft becomes non-functional with its fuel
exhausted while others have sufficient fuel budget to maneu-
ver. The rationale is that, initially, each PRO candidate carries
similar coverage of the target object and hence a spacecraft
can be assigned to a PRO that has minimum transfer cost
and still has high information gain from it. As assignment
continues, each PRO candidate holds vastly different cover-
age due to overlap of covered area from previously assigned
PROs, and a spacecraft may have to be assigned PRO with
high transfer cost to have a meaningful information gain from
it.

In each assignment step, the orbit oi∗,t that has the maximum
ratio of information gain over transfer fuel cost (Alg.1 line 17)
is found from the set of orbit candidates. To ensure safety, the
selected orbit is then checked for collision using a set buffer
distance to the previously assigned set of orbits. Once the
orbit oi∗,t is verified to be collision-free, it is assigned to the
current spacecraft sh(k) in the heuristic order (Alg.1 line 22).
Then, the information gain of each orbit candidate is updated
by taking into account the overlap in coverage of the assigned
orbit oi∗,t and other orbit candidates (Alg.1 line 24). The
assignment continues until each spacecraft in the swarm has
an assigned PRO.

5. ATTITUDE PLANNING
The swarm attitude planning stage is designed to act indepen-
dently of the orbit selection stage. Thus, given any arbitrary
set of orbits, the proposed method attempts to optimize each
agent’s attitude trajectory on the orbit to maximize informa-
tion gain while minimizing the control effort of the attitude
control system. Unlike the orbit selection algorithm, the
attitude planning algorithm must be computationally tractable
for real time planning on-board each servicing spacecraft.
So, we structure our attitude planning algorithm in a similar
way to the dynamic programming algorithm proposed for
Earth remote sensing in [11] and [12]. That is, we treat
each attitude trajectory as a path of pointing directions and
use dynamic programming to find the path of highest reward.
Our primary contribution to spacecraft pointing planning is
the proposed algorithm’s ability to satisfy constrained sensing
time requirements, consider the trade-off between actuation
cost and sensor coverage, and periodically re-plan online for
updated science targets.

Dynamic Programming Formulation

We define the global set of pointing options, P , to be the set of
vertices of the surface partitions mi ∈ Mo. At each point in
time, we restrict the pointing options of each satellite, s ∈ S,
to the local set, Ps,t ⊂ P , of points within the sensor’s conical
FOV limit with angle Φs. The discrete time interval is defined
to be the sum of travel time and sense time,

Tint = Tslew + Tsense (8)

where Tslew is a fixed value that defines the amount of time
in which a spacecraft must slew and settle at the next pointing
direction. We define the sequence of pointing directions,
{pt0 , pt0+Tint

, ..., pTplan
}, for a spacecraft, s, as the policy

πs. The goal is to find the optimal policy, π∗s , for each
spacecraft. To accomplish this, we utilize the principle of
optimality as follows:

J∗s,t+Tint
(j) = max

i
[r(pi,t, pj,t+Tint

) + J∗s,t(i)] (9)

where J∗s,t(i) is the optimal reward up to time t for spacecraft
s under policy πs that ends at the pointing direction pi,t ∈
Ps,t. The reward going from pi,t to pj,t+Tint

is defined as

r(pi,t, pj,t+Tint) =βf(pi,t, pj,t+Tint)

− (1− β)g(pi,t, pj,t+Tint
)

(10)

where f(pi,t, pj,t+Tint
) is simply the new information gain

acquired from inspection action uij , as defined in Eqs. (3)
and (11). In this case, uij is the inspection action from time t
to t+ Tint that moves from pointing at pi and settles at pj .

f(pi,t, pj,t+Tint
) = IG(uij) (11)

In Eq. (11), we are making an assumption that Ps,ti ∩Ps,tj =
∅ for all s ∈ S and |ti − tj | ≥ 2Tint. That is, the pointing
options Ps,t+Tint

of a satellite s at time t + Tint can only
overlap with pointing options Ps,t at its adjacent time step.
This assumption holds when Φs is comparably small for
the given Tint, and the planning time horizon Tplan is less
than the orbit period. It ensures that the reward function r
only depends on the current and previous pointing directions,
which is necessary to guarantee optimality. However, even
when the assumption does not hold, the DP formulation
generates a computationally efficient solution that is near-
optimal.

The actuation cost function, g(pi,t, pj,t+Tint), returns the cost
associated with slewing from pi,t to pj,t+Tint

and maintaining
the pointing direction pj for Tsense. We define actuation cost,
AC, to simply be the total change in attitude angle associated
with changing or maintaining a pointing direction.

AC(pi,t, pj,t+dt) =

arctan
‖(xt − pi,t)× (xt+dt − pj,t+dt)‖
(xt − pi,t) · (xt+dt − pj,t+dt)

(12)

The cost for attitude keeping is then the case when i = j,
and the cost for attitude slewing is the case when i �= j.
This leads to a definition of the actuation cost function for
each combination of transitioning to and inspecting at a given
pointing direction.

g(pi,t, pj,t+Tint) =

AC(pi,t, pj,t+Tslew
) +AC(pj,t+Tslew

, pj,t+Tint
)

(13)
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Swarm Attitude Planning Algorithm

Algorithm 2 is a computationally efficient way of implement-
ing the DP formulation. First, it initializes the spacecraft
state, xs,t0 , the set of possible initial pointing directions,
Ps,t0 , the target coverage map, Mt0 , and the set of optimal
policies up to each pj,t0 ∈ Ps,t0 , denoted Πs,t0 . The algo-
rithm achieves efficient computation by dividing the planning
horizon into discrete time intervals of duration Tint, at which
times each spacecraft is scheduled to initiate a change of
attitude. At each of these intervals, for a given servicing
spacecraft, s ∈ S, the algorithm first uses the spacecraft’s
state at t to predict its state at future times t + Tslew and
t+Tint. This prediction is computed using the known orbital
mechanics of the system and is denoted by orbit (Alg.2
lines 7-8). Then, the spacecraft’s options for the next pointing
direction in its attitude trajectory are restricted to the subset
Ps,t+Tint

⊂ P of pointing directions that will be within
its sensor FOV boundary (cone with angle Φs) from time
t + Tslew until t + Tint. These pointing directions are a
function of the spacecraft’s ACS and sensor capabilities, and
this function is denoted by range (Alg.2 lines 9-10). Next,
the algorithm searches for the best previous pointing direction
leading up to each pj ∈ Ps,t+Tint

. This search is restricted to
the set of pointing directions from which the spacecraft ACS
can slew to and settle at the next pointing option within the
time Tslew. If the ACS slew rate, ωslew, is fast enough to
make this transition and settle within τsettle, all before Tslew
expires, then the function slew (Alg.2 line 14) returns 1.
Then, the reward corresponding to the transition from pi to pj

is computed using Eq. (10), denoted by reward (Alg.2 line
15). After evaluating the reward for all feasible transitions
from pi ∈ Ps,t to pj ∈ Ps,t+Tint

, the best policy, πj , leading
up to each pointing direction, pj , becomes the optimal policy
ending in the previous pointing direction with the maximum
reward, denoted πi∗j . The set of best policies for each pj is

saved along with its corresponding reward, which are then
used at the next time interval as the initial conditions. The
optimal policy for a given satellite s, up to time t, is denoted
π∗s,t+Tint

, and is defined as the policy, πj , that ends in the

pointing direction pj with the highest cumulative reward.

After a period of Tcomm, each spacecraft shares its optimal
attitude trajectory with the rest of the swarm through inter-
satellite communication, denoted ISC (Alg.2 line 30). Each
spacecraft assumes that these communicated paths are im-
plemented and updates its surface coverage map, Ms,t, ac-
cordingly. When the end of the planning horizon is reached,
each spacecraft follows its trajectory until the end of the re-
planning period, Treplan. Then, Algorithm 2 is repeated.

Figure 6: The swarm attitude planning DP algorithm
optimizes the sequence of pointing directions to maximize
information gain.

Fig. 6 illustrates a simple implementation of Algorithm 2.
In this example, the sensing time constraint Tsense is three
discrete time steps, and the slewing period Tslew is one
discrete time step. In the figure, the algorithm is evaluating
the best policies leading up to each feasible point at t8. At
times t3 and t6, the figure shows the optimal transitions to
each pointing direction in the ‘next’ set of pointing directions.
Infeasible pointing directions are those that were outside of
the FOV bounds Φs at the corresponding time step tn.

6. SIMULATION RESULTS
Swarm Orbit Design

The swarm orbit design algorithm makes orbit selection based
on the information gain and transfer fuel cost associated with
orbit candidates. To better demonstrate the effects of orbit
design parameters on the optimal set of orbits, we fix the
number of orbit candidates norbit = 650 and required sensor
distance ds = 50m. The target object is chosen as a sphere
of radius 10m in a circular orbit in LEO and assumed to be
not rotating in the relative coordinate frame. Moreover, we
assume that the initial pose of each spacecraft is equal to
the initial pose of its PRO. This way, the transfer fuel cost
is independent of the initial pose of the swarm.

The information gain metric, Eq. (3), used to represent
the amount of scientific data collected from inspection has
α ∈ [0, 1] as a parameter that determines balance between
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Figure 7: The parameter α can be adjusted to generate
a set of orbits that focuses purely on exploration (α = 0,
maximizes coverage gain) or exploitation (α = 1, max-
imizes science gain). It acts as a dial whose value can
be set between 0 and 1 to balance the exploration and
exploitation behavior of the generated orbits.

Figure 8: Orbit assignment is performed sequentially
using heuristic ordering based on the fuel budget of each
spacecraft in the swarm. The assignment has no guaran-
tee of global optimality but can quickly generate a near-
optimal set of orbits that scales linearly with the size of
the swarm Nsc.

exploration and exploitation. Fig. 7 shows the optimal set of
orbits generated for two extremes, α = 0 and α = 1, for three
spacecraft. In the figure, black areas are surface partitions
of the target object that is covered, and green dots represent
science targets that are covered. Setting α to 0 forces the
orbit design algorithm to maximize the surface area covered
from the set of orbits as shown by the left plot in Fig. 7. On
the other hand, setting α to 1 results in a set of orbits that
collectively maximizes the science targets covered.

The swarm orbit design algorithm sequentially assigns an
optimal PRO to each spacecraft in the swarm in an order
that is set by minimum fuel budget heuristics. Fig. 8 shows
the optimal set of PROs generated for a varying number of
spacecraft in the swarm. The sensor FoV is set to 6 degrees,

Figure 9: Sensor field of view (FoV) plays an important
role in determining the number of spacecraft required to
completely cover a given target object from the optimal
set of PROs.

Figure 10: An optimal set of orbits has increased informa-
tion gain due to drift when J2 effect is considered for the
orbit trajectories.

and the estimate of the information gain is based on the
lower bound established to be on the conservative side for
the simulation. Due to the sequential nature of the greedy
assignment approach taken, the set of PROs generated scales
in its computation linearly to the size of the swarm (Nsc).
Although this computational efficiency comes at the cost of
losing the guarantee of global optimality, a near-optimal set
of PROs that collectively maximizes information gain can be
generated quickly.
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(a) (b)

Figure 11: Optimized attitude planning achieves higher information gain with less fuel used when compared to the
trivial greedy solution.

(a) (b)

Figure 12: Coverage and ACS actuation per unit time decrease as the required sensing time increases.

The size of swarm required to completely cover the target
object depends significantly on the specified sensor field of
view. Fig. 9 shows minimum number of spacecraft and
its corresponding set of PROs needed to ensure complete
coverage of the target object. As expected, increasing the
sensor FoV dramatically reduces the required size of the
swarm to a point where two spacecraft can fully cover the
object when FoV is increased to 20 degrees.

The swarm orbit design algorithm is not tied to specific
orbital dynamics. Since it numerically integrates forward
each orbit trajectory from a set of initial conditions (Alg.1
line 9), orbital dynamics with higher order terms can be used
in place of the linearized dynamics. Fig. 10 shows set of

PROs generated when the J2 effect is included in the orbital
dynamics compared to its linearized counterpart. The result
indicates that J2-perturbed orbits have increased information
gain due to drift that does not exist in the orbits computed
with CWH equations.

Attitude Planning

To study the various trade-offs in the attitude planning algo-
rithm, we isolate significant parameters in simulation. Ini-
tially, we consider the information gain simply to be the
cumulative sensor coverage of the swarm on the target (α =
0). So, in the Figures 11 and 12 below, let 1 and 0 be 100%
and 0% coverage of the target, respectively. Then, in Figures
13 and 14, we consider the information gain to be a weighted

9
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(a) (b)

Figure 13: Information transfer between spacecraft improves efficiency of the attitude planning.

(a)
(b)

Figure 14: The attitude planning algorithm adapts to updated target locations of interest.

sum of the coverage gain and science gain, as defined in Eq.
(3). In all plots, the ACS actuation cost is defined to be the
cumulative attitude angle change measured in degrees and
given in Eq. (12).

First, we examine the trade-off between maximizing sensor
coverage and minimizing ACS actuation cost. Fig. 11
shows that, when the reward function only maximizes sensor
coverage, the optimal attitude trajectory performs almost
equally as well as a simple greedy solution. However, when
ACS actuation cost is considered in the reward function, the
optimal solution covers significantly more of the target than
the greedy solution with approximately the same amount of
ACS actuation.

We also look at the simple trade-off of changing the con-
strained sensing time. As expected, the results in Fig. 12

show that, in each case, the same final coverage value is
approached but at a slower rate for longer sensing times.

The use of information transfer during the attitude planning
stage has its greatest effect when there is significant overlap
between each spacecraft’s field of view boundary. This occurs
when PROs are closer together, either due to a high number
of spacecraft or due to concentration around particular areas
of interest. To obtain the simulation results shown in Fig. 13,
we simulated four spacecraft in orbit, comparing the use of
periodic information transfer to no information transfer. For
these simulations, we also randomly selected fixed science
target partitions that cover 1% of the target surface, and we
give each spacecraft a map of these targets. The results show
that information transfer allows for more efficient sensing,
from which full sensor coverage is obtained at a lower ACS
actuation cost. In other cases, when overlap is even greater,
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information transfer should prove to be even more valuable.

Last, we study the attitude planning algorithm’s ability to
adapt when the science targets are periodically updated by a
human operator. In these simulations, the science targets are
randomly re-selected at the beginning of each orbit. In each
case, all spacecraft have a map of the initial science target
locations, but only in one case is the spacecraft’s map updated
every orbit. In the orbit selection stage of the motion planner,
we still select PROs to maximize only coverage (i.e. initially,
α = 1). This way, the swarm can adapt to updated locations
of science targets. Fig. 14 shows the benefit of updating each
spacecraft’s knowledge of the locations, where the science
target partitions cover roughly 5% of the target surface.

7. CONCLUSION
On-orbit servicing (OOS) is a sought-after capability both
by NASA and the commercial space sector. Utilizing a
swarm of small-spacecraft has the potential to provide more
versatile, robust, and cost-effective servicing. In particular,
on-orbit remote inspection would greatly benefit from swarm
technology. This paper addresses the challenge of coordi-
nating the motion of a spacecraft swarm for an effective
on-orbit inspection. The proposed motion planner selects
optimal orbits and plans attitude pointing directions for a
swarm of spacecraft that maximizes the amount of scientific
data gathered from on-orbit inspection of an Earth-orbiting
satellite. The orbit selection algorithm takes a prioritized
planning approach with heuristics to efficiently generate a
near-optimal set of orbits and scales linearly with the size of
the swarm. The attitude planning algorithm achieves compu-
tational tractability by discretizing the target surface into a set
of pointing directions and optimizing the attitude trajectory
along these pointing directions using dynamic programming.
Both algorithms have explicit parameters that can be adjusted
to balance the competing mission objectives of maximizing
information gain and minimizing actuation cost. Simulation
results show the planner to be effective in planning spacecraft
motion for varying design parameters involved with on-orbit
inspection. The results also demonstrate the planner’s ability
to adapt to updates in the science target through re-planning
of the attitude online.

Future research will address more aspects of the remote
inspection. For instance, the full dynamics of the attitude
control system should be accounted for in the attitude plan-
ning stage, rather than treating the ACS as a set of constant
parameters. The information gain model also has significant
room for improvement, and a more realistic model should be
developed. Additionally, the constraints related to the inter-
satellite communication link should be considered. More-
over, future research will involve more phases of the remote
inspection mission, such as the fuel cost and motion plan-
ning required to bring each spacecraft into its optimal orbit.
Ultimately, further research should incorporate these motion
planning algorithms into a unified remote inspection system.
Such a system might involve storing small-spacecraft aboard
the target satellite. Then, each small-spacecraft would be
deployed into optimal PROs to inspect the target. Upon com-
pletion of the inspection, each OOS spacecraft would then
rendezvous with the target and prepare for future inspections.
This hypothetical system would have potential applications
in high-value satellites or even crewed spacecraft, such as the
ISS or Lunar Gateway.
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