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Abstract

We study the problem of imitation learning from

demonstrations of multiple coordinating agents.

One key challenge in this setting is that learn-

ing a good model of coordination can be difficult,

since coordination is often implicit in the demon-

strations and must be inferred as a latent vari-

able. We propose a joint approach that simulta-

neously learns a latent coordination model along

with the individual policies. In particular, our

method integrates unsupervised structure learn-

ing with conventional imitation learning. We il-

lustrate the power of our approach on a difficult

problem of learning multiple policies for fine-

grained behavior modeling in team sports, where

different players occupy different roles in the co-

ordinated team strategy. We show that having a

coordination model to infer the roles of players

yields substantially improved imitation loss com-

pared to conventional baselines.

1. Introduction

The areas of multi-agent planning and control have wit-

nessed a recent wave of strong interest due to the practical

desire to deal with complex real-world problems, such as

smart-grid control, autonomous vehicles planning, manag-

ing teams of robots for emergency response, among others.

From the learning perspective, (cooperative) multi-agent

learning is not a new area of research (Stone & Veloso,

2000; Panait & Luke, 2005). However, compared to the

progress in conventional supervised learning and single-

agent reinforcement learning, the successes of multi-agent

learning have remained relatively modest. Most notably,

multi-agent learning suffers from extremely high dimen-

sionality of both the state and actions spaces, as well as

relative lack of data sources and experimental testbeds.
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Figure 1. Our motivating example of learning coordinating be-

havior policies for team sports from tracking data. Red is the

attacking team, blue is the defending team, and yellow is the ball.

The growing availability of data sources for coordi-

nated multi-agent behavior, such as sports tracking data

(Bialkowski et al., 2014), now enables the possibility of

learning multi-agent policies from demonstrations, also

known as multi-agent imitation learning. One particularly

interesting aspect of domains such as team sports is that the

agents must coordinate. For example, in the professional

soccer setting depicted in Figure 1, different players must

coordinate to assume different roles (e.g., defend left field).

However, the roles and role assignment mechanism are un-

observed from the demonstrations. Furthermore, the role

for a player may change during the same play sequence. In

the control community, this issue is known as “index-free”

multi-agent control (Kingston & Egerstedt, 2010).

Motivated by these challenges, we study the problem of

imitation learning for multiple coordinating agents from

demonstrations. Many realistic multi-agent settings require

coordination among collaborative agents to achieve some

common goal (Guestrin et al., 2002; Kok et al., 2003). Be-

yond team sports, other examples include learning policies

for game AI, controlling teams of multiple robots, or mod-

eling collective animal behavior. As discussed above, we

are interested in settings where agents have access to the

outcome of actions from other agents, but the coordination

mechanism is neither clearly defined nor observed, which

makes the full state only partially observable.

We propose a semi-supervised learning framework that in-

tegrates and builds upon conventional imitation learning

and unsupervised, or latent, structure learning. The latent
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structure model encodes a coordination mechanism, which

approximates the implicit coordination in the demonstra-

tion data. In order to make learning tractable, we develop

an alternating optimization method that enables integrated

and efficient training of both individual policies and the

latent structure model. For learning individual policies,

we extend reduction-based single-agent imitation learn-

ing approaches into multi-agent domain, utilizing powerful

black-box supervised techniques such as deep learning as

base routines. For latent structure learning, we develop a

stochastic variational inference approach.

We demonstrate the effectiveness of our method in two set-

tings. The first is a synthetic experiment based on the pop-

ular predator-prey game. The second is a challenging task

of learning multiple policies for team defense in profes-

sional soccer, using a large training set1 of play sequences

illustrated by Figure 1. We show that learning a good la-

tent structure to encode implicit coordination yields signifi-

cantly superior imitation performance compared to conven-

tional baselines. To the best of our knowledge, this is the

first time an imitation learning approach has been applied to

jointly learn cooperative multi-agent policies at large scale.

2. Problem Formulation

In coordinated multi-agent imitation learning, we have K

agents acting in coordination to achieve a common goal (or

sequence of goals). Training data D consists of multiple

demonstrations of K agents. Importantly, we assume the

identity (or indexing) of the K experts may change from

one demonstration to another. Each (unstructured) set of

demonstrations is denoted by U “ tU1, . . . , UKu, where

Uk “ tut,kuTt“1
is the sequence of actions by agent k at

time t. Note that each set of demonstrations can have vary-

ing sequence length T. Let C “ tctu
T
t“1

be the context

associated with each demonstration sequence.

Policy Learning. Our ultimate goal is to learn a (largely)

decentralized policy, but for clarity we first present the

problem of learning a fully centralized multi-agent pol-

icy. Following the notation of (Ross et al., 2011), let

~πp~sq :“ ~a denote the joint policy that maps the joint

state, ~s “ rs1, . . . , sKs, of all K agents into K actions

~a “ ra1, . . . , aKs. The goal is to minimize imitation loss:

Limitation “ E~s„d~π
rℓp~πp~sqqs ,

where d~π denotes the distribution of states experienced by

joint policy ~π and ℓ is the imitation loss defined over the

demonstrations (e.g., squared loss for deterministic poli-

cies, or cross entropy for stochastic policies).

The decentralized setting decomposes the joint policy ~π “

1Data at http://www.stats.com/data-science/

and see video result at http://hoangminhle.github.io

rπ1, . . . , πKs into K policies, each tailored to a specific

agent index or “role”.2 The loss function is then:

Limitation “
Kÿ

k“1

Es„dπk
rℓpπkpskqqs .

Black-Box Policy Classes. In order to leverage powerful

black-box policy classes such as random forests and deep

learning, we take a learning reduction approach to training

~π. One consequence is that the state space representation

s “ rs1, . . . , sKs must be consistently indexed, e.g., agent

k in one instance must correspond to agent k in another in-

stance. This requirement applies for both centralized and

decentralized policy learning, and is often implicitly as-

sumed in prior work on multi-agent learning. A highly re-

lated issue arises in distributed control of index-free coordi-

nating robots, e.g., to maintain a defined formation (Kloder

& Hutchinson, 2006; Kingston & Egerstedt, 2010).

Motivating example: Soccer Domain. Consider the task of

imitating professional soccer players, where training data

includes play sequences from different teams and games.

Context C corresponds to the behavior of the opposing

team and the ball. The data includes multiple sequences

of K-set of trajectories U “ tU1, U2, . . . , UKu, where the

actual identity of player generating Uk may change from

one demonstration to the next.

One important challenge for black-box policy learning is

constructing an indexing mechanism over the agents to

yield a consistent state representation. For example, the

same index should correspond to the “left defender” in all

instances. Otherwise, the inputs to the policy will be incon-

sistent, making learning difficult if not impossible. Note

that barring extensive annotations or some heuristic rule-

based definitions, it is unnatural to quantitatively define

what makes a player “left defender”. In addition, even if

we had a way to define who the “left defender” is, he may

not stay in the same role during the same sequence.

Role-based Indexing. We address index-free policy learn-

ing via role learning and role-based index assignment. To

motivate our notion of role, let’s first consider the sim-

plest indexing mechanism: one could equate role to agent

identity. However, the data often comes from various se-

quences, with heterogeneous identities and teams of agents.

Thus instead of learning identity-specific policies, it is

more natural and data-efficient to learn a policy per role.

However, a key challenge in learning policies directly is

that the roles are undefined, unobserved, and could change

dynamically within the same sequence. We thus view learn-

ing the coordination, via role assignment, as an unsuper-

vised structured prediction problem.

2It is straightforward to extend our formulation to settings
where multiple agents can occupy the same role, and where not
all roles are occupied across all execution sequences.
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Figure 2. Alternating stochastic optimization training scheme for

our semi-supervised structure regularization model.

Coordination via Structured Role Assignment. Instead

of handcrafting the definition of roles, we learn the roles

in an unsupervised fashion, without attaching any semantic

labels to the roles. At the same time, role transition should

obey certain structural regularity, due to coordination. This

motivates using graphical models to represent the coordi-

nation structure.

Coordinated Policy Learning. We formulate the indexing

mechanism as an assignment function A which maps the

unstructured set U and some probabilistic structured model

q to an indexed set of trajectory A rearranged from U , i.e.,

A : tU1, .., UKu ˆ q ÞÑ rA1, .., AKs ,

where the set tA1, .., AKu ” tU1, .., UKu. We view q as

a latent variable model that infers the role assignments for

each set of demonstrations. Thus, q drives the indexing

mechanism A so that state vectors can be consistently con-

structed to facilitate optimizing for the imitation loss.

We employ entropy regularization, augmenting the imita-

tion loss with some low entropy penalty (Grandvalet et al.,

2004; Dudik et al., 2004), yielding our overall objective:

min
π1,..,πK ,A

Kÿ

k“1

Esk„dπk
rℓpπkpskqq|A,Ds´λHpA|Dq (1)

where both imitation loss and entropy are measured with

respect to the state distribution induced by the policies, and

D is training data. This objective can also be seen as maxi-

mizing the mutual information between latent structure and

observed trajectories (Krause et al., 2010).

3. Learning Approach

Optimizing (1) is challenging for two reasons. First, be-

yond the challenges inherited from single-agent settings,

multi-agent imitation learning must account for multi-

ple simultaneously learning agents, which is known to

cause non-stationarity for multi-agent reinforcement learn-

ing (Busoniu et al., 2008). Second, the latent role assign-

ment model, which forms the basis for coordination, de-

pends on the actions of the learning policies, which in turn

depend on the structured role assignment.

Algorithm 1 Coordinated Multi-Agent Imitation Learning

Input: Multiple unstructured trajectory sets U “ tU1, . . . , UKu
with Uk “ tut,kuTt“1 and context C “ tctu

T
t“1.

Input: Graphical model q with global/local parameters θ and z.
Input: Initialized policies πk, k “ 1, . . . ,K
Input: Step size sequence ρn, n “ 1, 2, . . .
1: repeat
2: rA1, . . . , AKs Ð AssigntU1, . . . , UK |qpθ, zqu
3: rπ1, . . . , πKs Ð Learn rA1, . . . , AK , Cs

4: Roll-out π1, . . . , πK to obtain pA1, . . . , pAK

5: Ak Ð pAk @k
(Alternatively: Ak Ð pAk with prob η for η Ñ 1)

6: qpθ, zq Ð LearnStructuretA1, . . . , AK , C, θ, ρnu
7: until No improvement on validation set

output K policies π1, π2, . . . , πK

We propose an alternating optimization approach to solving

(1), summarized in Figure 2. The main idea is to integrate

imitation learning with unsupervised structure learning by

taking turns to (i) optimize for imitation policies while fix-

ing a structured model (minimizing imitation loss), and (ii)

re-train the latent structure model and reassign roles while

fixing the learning policies (maximizing role assignment

entropy). The alternating nature allows us to circumvent

the circular dependency between policy learning and latent

structure learning. Furthermore, for (i) we develop a stable

multi-agent learning reduction approach.

3.1. Approach Outline

Algorithm 1 outlines our framework. We assume the latent

structure model for computing role assignments is formu-

lated as a graphical model. The multi-agent policy training

procedure Learn utilizes a reduction approach, and can

leverage powerful off-the-shelf supervised learning tools

such as deep neural networks (Hochreiter & Schmidhuber,

1997). The structure learning LearnStructure and

role assignment Assign components are based on graphi-

cal model training and inference. For efficient training, we

employ alternating stochastic optimization (Hoffman et al.,

2013; Johnson & Willsky, 2014; Beal, 2003) on the same

mini-batches. Note that batch training can be deployed

similarly, as illustrated by one of our experiments.

We interleave the three components described above into

a complete learning algorithm. Given an initially unstruc-

tured set of training data, an initialized set of policies, and

prior parameters of the structure model, Algorithm 1 per-

forms alternating structure optimization on each mini-batch

(size 1 in Algorithm 1).

• Line 2: Role assignment is performed on trajectories

tA1, . . . , AKu by running inference procedure (Algo-

rithm 4). The result is an ordered set rA1, . . . , AKs,
where trajectory Ak corresponds to policy πk.

• Line 3-5: Each policy πk is updated using joint multi-

agent training on the ordered set rA1, . . . , AK , Cs
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(Algorithm 2). The updated models are executed to

yield a rolled-out set of trajectories, which replace the

previous set of trajectories tAku.

• Line 6: Parameters of latent structured model are up-

dated from the rolled-out trajectories (Algorithm 3).

The algorithm optionally includes a mixing step on line

5, where the rolled-out trajectories may replace the train-

ing trajectories with increasing probability approaching 1,

which is similar to scheduled sampling (Bengio et al.,

2015), and may help stabilize learning in the early phase

of the algorithm. In our main experiment, we do not notice

a performance gain using this option.

3.2. Joint Multi-Agent Imitation Learning

In this section we describe the Learn procedure for multi-

agent imitation learning in Line 3 of Algorithm 1. As

background, for single agent imitation learning, reduction-

based methods operate by iteratively collecting a new data

set Dn at each round n of training, consisting of state-

action pairs pst, a
˚
t q where a˚

t is some optimal or demon-

strated action given state st. A new policy can be formed

by (i) combining a new policy from this data set Dn with

previously learned policy π (Daumé III et al., 2009) or (ii)

learning a new policy π directly from the data set formed by

aggregating D1, . . . ,Dn (Ross et al., 2011). Other variants

exist although we do not discuss them here.

The intuition behind the iterative reduction approach is to

prevent a mismatch in training and prediction distributions

due to sequential cascading errors (also called covariate-

shift). The main idea is to use the learned policy’s own

predictions in the construction of subsequent states, thus

simulating the test-time performance during training. This

mechanism enables the agent to learn a policy that is ro-

bust to its own mistakes. Reduction-based methods also

accommodate any black-box supervised training subrou-

tine. We focus on using expressive function classes such

as Long Short-Term Memory networks (LSTM) (Hochre-

iter & Schmidhuber, 1997) as the policy class.3

Algorithm 2 outlines the Learn procedure for stable

multi-agent imitation learning. Assume we are given

consistently indexed demonstrations A “ rA1, . . . , AKs,
where each Ak “ tat,kuTt“1

corresponds action of pol-

icy πk. Let the corresponding expert action be a˚
t,k. To

lighten the notation, we denote the per-agent state vector

by st,k “ ϕkprat,1, . . . , at,k, . . . , at,K , ctsq
4

3Note that conventional training of LSTMs does not address
the cascading error problem. While LSTMs are very good at
sequence-to-sequence prediction tasks, they cannot naturally deal
with the drifting of input state distribution drift caused by action
output feedback in dynamical systems (Bengio et al., 2015).

4Generally, state vector st,k of policy πk at time t can be con-
structed as st,k “ rφkpra1:t,1, c1:tsq, . . . , φkpra1:t,K , c1:tsqs

Algorithm 2 Joint Multi-Agent Imitation Learning

LearnpA1, A2, . . . , AK , Cq

Input: Ordered actions Ak “ tat,kuTt“1 @k, context tctu
T
t“1

Input: Initialized policies π1, . . . , πK

Input: base routine TrainpS,Aq mapping state to actions
1: Set increasing prediction horizon j P t1, . . . , T u
2: for t “ 0, j, 2j, . . . , T do
3: for i “ 0, 1, . . . , j ´ 1 do
4: Roll-out ât`i,k “ πkpŝt`i´1,kq @ agent k
5: Cross-update for each policy k P t1, . . . ,Ku

ŝt`i,k “ ϕk prât`i,1, . . . , ât`i,k, . . . , ât`i,K , ct`isq
6: end for
7: Policy update for all agent k

πk Ð Trainptŝt`i,k, a
˚
t`i`1,kuji“0

q
8: end for

output K updated policies π1, π2, . . . , πK

Algorithm 2 employs a roll-out horizon j, which divides

the entire trajectory into T {j segments. The following hap-

pens for every segment:

• Iteratively perform roll-out at each time step i for all

K policies (line 4) to obtain actions tpai,ku.

• Each policy simultaneously updates its state psi,k, us-

ing the prediction from all other policies (line 5).

• At the end of the current segment, all policies are up-

dated using the error signal from the deviation be-

tween predicted pai,k versus expert action a˚
i,k, for all i

along the sub-segment (line 7).

After policy updates, the training moves on to the next j-

length sub-segment, using the freshly updated policies for

subsequent roll-outs. The iteration proceeds until the end

of the sequence is reached. In the outer loop the roll-out

horizon j is incremented.

Two key insights behind our approach are:

• In addition to the training-prediction mismatch issue

in single-agent learning, each agent’s prediction must

also be robust to imperfect predictions from other

agents. This non-stationarity issue also arises in multi-

agent reinforcement learning (Busoniu et al., 2008)

when agents learn simultaneously. We perform joint

training by cross-updating each agent’s state using

previous predictions from other agents.

• Many single-agent imitation learning algorithms as-

sume the presence of a dynamic oracle to provide one-

step corrections a˚
t along the roll-out trajectories. In

practice, dynamic oracle feedback is very expensive

to obtain and some recent work have attempted to re-

lax this requirement (Le et al., 2016; Ho & Ermon,

2016). Without dynamic oracles, the rolled-out trajec-

tory can deviate significantly from demonstrated tra-

jectories when the prediction horizon j is large (« T ),

leading to training instability. Thus j is gradually in-

creased to allow for slowly learning to make good se-

quential predictions over longer horizons.
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For efficient training, we focus on stochastic optimiza-

tion, which can invoke base routine Train multiple times

and thus naturally accommodates varying j. Note that the

batch-training alternatives to Algorithm 2 can also employ

similar training schemes, with similar theoretical guaran-

tees lifted to the multi-agent case. The Appendix shows

how to use DAgger (Ross et al., 2011) for Algorithm 2,

which we used for our synthetic experiment.

3.3. Coordination Structure Learning

The coordination mechanism is based on a latent structured

model that governs the role assignment. The training and

inference procedures seek to address two main issues:

• LearnStructure: unsupervised learning a proba-

bilistic role assignment model q.

• Assign: how q informs the indexing mechanism so

that unstructured trajectories can be mapped to struc-

tured trajectories amenable to Algorithm 2.

Given an arbitrarily ordered set of trajectories U “
tU1, . . . , UK , Cu, let the coordination mechanism under-

lying each such U be governed by a true unknown model

p, with global parameters θ. We suppress the agent/policy

subscript and consider a generic featurized trajectory xt “
rut, cts @t. Let the latent role sequence for the same agent

be z “ z1:T . At any time t, each agent is acting according

to a latent role zt „ Categoricalt1̄, 2̄, . . . , K̄u, which

are the local parameters to the structured model.

Ideally, role and index asignment can be obtained by cal-

culating the true posterior ppz|x, θq, which is often in-

tractable. We instead aim to approximate ppz|x, θq by a

simpler distribution q via techniques from stochastic vari-

ational inference (Hoffman et al., 2013), which allows for

efficient stochastic training on mini-batches that can natu-

rally integrate with our imitation learning subroutine.

In variational inference, posterior approximation is often

cast as optimizing over a simpler model class Q, via search-

ing for parameters θ and z that maximize the evidence

lower bound (ELBO) L:

L pqpz, θqq fi Eq rln ppz, θ, xqs ´ Eq rln qpz, θqs ď ln ppxq

Maximizing L is equivalent to finding q P Q to minimize

the KL divergence KL pqpz, θ|xq||ppz, θ|xqq. We focus on

the structured mean-field variational family, which factor-

izes q as qpz, θq “ qpzqqpθq. This factorization breaks the

dependency between θ and z, but not between single latent

states zt, unlike variational inference for i.i.d data (Kingma

& Welling, 2013).

3.3.1. TRAINING TO LEARN MODEL PARAMETERS

The procedure to learn the parameter of our structured

model is summarized in Algorithm 3. Parameter learning

Algorithm 3 Structure Learning

LearnStructure tU1, . . . , UK , C, θ, ρu ÞÑ qpθ, zq

Input: Xk “ txt,kuTt“1 “ trut,k, ctsu @t, k.X “ tXkuKk“1

Graphical model parameters θ, stepsize ρ
1: Local update: compute qpzq via message-passing while fix-

ing θ (See Appendix for derivations)
2: Global parameter update: via natural gradient ascent

θ Ð θp1 ´ ρq ` ρpθprior ` bJ
Eqpzq rtpz, xqsq

output Updated model qpθ, zq “ qpθqqpzq

proceeds via alternating updates over the factors qpθq and

qpzq, while keeping other factor fixed. Stochastic varia-

tional inference performs such updates efficiently in mini-

batches. We slightly abuse notations and overload θ for the

natural parameters of global parameter θ in the exponential

family. Assuming the usual conjugacy in the exponential

family, the stochastic natural gradient takes a convenient

form (line 2 of Algo 3, and derivation in Appendix), where

tpz, xq is the vector of sufficient statistics, b is a vector of

scaling factors adjusting for the relative size of the mini-

batches. Here the global update assumes optimal local up-

date qpzq has been computed.

Fixing the global parameters, the local updates are based

on message-passing over the underlying graphical model.

The exact mathematical derivation depends on the specific

graph structure. The simplest scenario is to assume inde-

pendence among zt’s, which resembles naive Bayes. In our

experiments, we instead focus on Hidden Markov Models

to capture first-order dependencies in role transitions over

play sequences. In that case, line 1 of Algorithm 3 resem-

bles running the forward-backward algorithm to compute

the update qpzq. The forward-backward algorithm in the

local update step takes OpK2T q time for a chain of length

T and K hidden states. For completeness, derivation of

parameter learning for HMMs is included in the Appendix.

3.3.2. INFERENCE FOR ROLE AND INDEX ASSIGNMENT

We can compute two types of inference on a learned q:

Role inference. Compute the most likely role sequence

tzt,kuTt“1
P t1̄, . . . , K̄uT , e.g., using Viterbi (or dynamic

programming-based forward message passing for graph

structures). This most likely role sequence for agent k,

which is the low-dimensional representation of the coordi-

nation mechanism, can be used to augment the contextual

feature tctu
T
t“1

for each agent’s policy training.

Role-based Index Assignment Transform the unstruc-

tured set U into an ordered set of trajectories A to facilitate

the imitation learning step. This is the more important task

for the overall approach. The intuitive goal of an index-

ing mechanism is to facilitate consistent agent trajectory to

policy mapping. Assume for notational convenience that

we want index k assigned to an unique agent who is most

likely assuming role k̄. Our inference technique rests on the
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Algorithm 4 Multi-Agent Role Assignment

Assign tU1, . . . , UK |qu ÞÑ rA1, . . . , AKs

Input: Approximate inference model q. Unordered trajectories
U “ tUkuKk“1.

1: Calculate cost matrix M P R
KˆK per equation 2

2: A Ð MinCostAssignmentpMq
output Ak “ UApkq @k “ 1, 2, . . . ,K

well-known Linear Assignment Problem (Papadimitriou &

Steiglitz, 1982), which is solved optimally via the Kuhn-

Munkres algorithm. Specifically, construct the cost matrix

M as:

M “ M1 d M2 (2)

M1 “
“
qptxt,ku|zt,k “ k̄q

‰
“

«
Tź

t“1

qpxt,k|zt,k “ k̄q

ff

M2 “
“
ln qptxt,ku|zt,k “ k̄q

‰
“

«
Tÿ

t“1

ln qpxt,k|zt,k “ k̄q

ff

where k “ 1, . . . ,K, k̄ “ 1̄, . . . , K̄,d is the Hadamard

product, and matrices M1,M2 take advantage of the

Markov property of the graphical model. Now solving

the linear assignment problem for cost matrix M , we ob-

tain the matching A from role k̄ to index k, such that the

total cost per agent is minimized. From here, we rear-

range the unordered set tU1, . . . , UKu to the ordered se-

quence rA1, . . . , AKs ” rUAp1q, . . . , UApKqs according to

the minimum cost mapping.

To see why this index assignment procedure results in an

increased entropy in the original objective (1), notice that:

HpA|Dq « ´
Kÿ

k̄“1

P pk̄qqpApAkq “ k̄q log qpApAkq “ k̄q

“ ´
1

K

Kÿ

k̄“1

Mpk̄, kq,

where we assume each latent role k̄ has equal probability.

The RHS increases from the linear assignment and conse-

quent role assignment procedure. Our inference procedure

to perform role assignment is summarized in Algorithm 4.

4. Experiments

We present empirical results from two settings. The first is

a synthetic setting based on predator-prey, where the goal

is to imitate a coordinating team of predators. The second

is a large-scale imitation learning setting from player tra-

jectores in professional soccer games, where the goal is to

imitate defensive team play.

4.1. Predator-Prey Domain

Setting. The predator-prey problem, also frequently called

the Pursuit Domain (Benda, 1985), is a popular setting for

multi-agent reinforcement learning. The traditional setup

is with four predators and one prey, positioned on a grid

board. At each time step, each agent has five moves:

Figure 3.

N,S,E,W or no move. The

world is toroidal: the agents

can move off one end of

the board and come back

on the other end. Agents

make move simultaneously,

but two agents cannot oc-

cupy the same position, and

collisions are avoided by assigning a random move priority

to the agents at each time step. The predators can capture

the prey only if the prey is surrounded by all four preda-

tors. The goal of the predators is to capture the prey as fast

as possible, which necessarily requires coordination.

Data. The demonstration data is collected from 1000 game

instances, where four experts, indexed 1 to 4, are prescribed

the consistent and coordinated role as illustrated in the cap-

ture state of Figure 3. In other words, agent 1 would at-

tempt to capture the prey on the right hand side, which al-

lows for one fixed role for each expert throughout the game.

However, the particular role assignment is hidden from the

imitation learning task. Each expert is then exhaustively

trained using Value Iteration (Sutton & Barto, 1998) in the

reinforcement learning setting, with the reward of 1 if the

agent is in the position next to the prey according to its de-

fined role, and 0 otherwise. A separate set of 100 games

was collected for evaluation. A game is terminated after

50 time steps if the predators fail to capture the prey. In

the test set, the experts fail to capture the prey in 2% of the

games, and on average take 18.3 steps to capture the prey.

Experiment Setup. For this experiment, we use the batch

version of Algorithm 1 (see appendix) to learn to imitate

the experts using only demonstrations. Each policy is rep-

resented by a random forest of 20 trees, and were trained

over 10 iterations. The expert correction for each rolled-out

state is collected via Value Iteration. The experts thus act as

dynamic oracles, which result in a multi-agent training set-

ting analogous to DAgger (Ross et al., 2011). We compare

two versions of multi-agent imitation learning:

• Coordinated Training. We use our algorithm, with

the latent structure model represented by a discrete

Hidden Markov Model with binomial emission. We

use Algorithm 4 to maximize the role consistency of

the dynamic oracles across different games.

• Unstructured Training. An arbitrary role is assigned

to each dynamic oracle for each game, i.e., the agent

index is meaningless.

In both versions, training was done using the same data ag-

gregation scheme and batch training was conducted using

the same random forests configuration.
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Figure 4. Comparing performance in Predator-Prey between our

approach and unstructured multi-agent imitation learning, as a

function of the number of training rounds. Our approach demon-

strates both significantly lower failure rates as well as lower av-

erage time to success (for successful trials).

Results. Figure 4 compares the test performance of our

method versus unstructured multi-agent imitation learning.

Our method quickly approaches expert performance (av-

erage 22 steps with 8% failure rate in the last iteration),

whereas unstructured multi-agent imitation learning perfor-

mance did not improve beyond the first iteration (average

42 steps with 70% failure rate). Note that we even gave the

unstructured baseline some advantage over our method, by

forcing the prey to select the moves last after all predators

make decisions (effectively making the prey slower). With-

out this advantage, the unstructured policies fail to capture

the prey almost 100% of the time. Also, if the same restric-

tion is applied to the policies obtained from our method,

performance would be on par with the experts (100% suc-

cess rate, with similar number of steps taken).

4.2. Multi-agent Imitation Learning for Soccer

Setting. Soccer is a popular domain for multi-agent learn-

ing. RoboCup, the robotic and simulation soccer platform,

is perhaps the most popular testbed for multi-agent rein-

forcement learning research to date (Stone, 2016). The

success of MARL has been limited, however, due to the ex-

tremely high dimensionality of the problem. In this experi-

ment, we aim to learn multi-agent policies for team soccer

defense, based on tracking data from real-life professional

soccer (Bialkowski et al., 2014).

Data. We use the tracking data from 45 games of real

professional soccer from a recent European league. The

data was chunked into sequences with one team attacking

and the other defending. Our goal is to learn up to 10 poli-

cies for team defense (11 players per team, minus the goal

keeper). The training data consists of 7500 sets of trajec-

tories A “ tA1, . . . , A10u , where Ak “ tat,kuTt“1
is the

sequence of positions of one defensive player, and C is the

Figure 5. Experimental results on soccer domain. We see that us-

ing coordination substantially improves the imitation loss, and

that the decentralized policy is comparable to the centralized.

context consisting of opponents and the ball. Overall, there

are about 1.3 million frames at 10 frames per second. The

average sequence length is 176 steps, and the maximum is

1480.

Experiment Setup. Each policy is represented by a re-

current neural network structure (LSTM), with two hid-

den layers of 512 units each. As LSTMs generally require

fixed-length input sequences, we further chunk each tra-

jectory into sub-sequences of length 50, with overlapping

window of 25 time steps. The joint multi-agent imitation

learning procedure follows Algorithm 2 closely. In this set-

up, without access to dynamic oracles for imitation learn-

ing in the style of SEARN (Daumé III et al., 2009) and

DAgger (Ross et al., 2011), we gradually increase the hori-

zon of the rolled-out trajectories from 1 to 10 steps look-

ahead. Empirically, this has the effect of stabilizing the

policy networks early in training, and limits the cascading

errors caused by rolling-out to longer horizons.

The structured model component is learned via stochastic

variational inference on a continuous HMM, where the per-

state emission distribution is a mixture of Gaussians. Train-

ing and inference operate on the same mini-batches used

for joint policy learning.

We compare against two variations. The first employs cen-

tralized policy that aggregates the state vectors of all de-

centralized learner and produces the actions for all players,

i.e., a multi-task policy. The centralized approach generally

requires more model parameters, but is potentially much

more accurate. The second variation is to not employ joint

multi-agent training: we modify Algorithm 2 to not cross-

update states between agents, and each role is trained con-

ditioned on the ground truth of the other agents.

Results. Figure 5 shows the results. Our coordinated

learning approach substantially outperforms conventional

imitation learning without structured coordination. The

imitation loss measures average distance of roll-outs and

ground truth in meters (note the typical size of soccer field
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Figure 6. Result of 10 coordinated imitation policies, correspond-

ing with Figure 1. White is the rolled-out imitation policies.

is 110 ˆ 70 meters). As expected, average loss increases

with longer sequences, due to cascading errors. However,

this error scales sub-linearly with the length of the hori-

zon, even though the policies were trained on sequences

of length 50. Note also that the performance difference be-

tween decentralized and centralized policies is insignificant

compared to the gap between coordinated and unstructured

policies, further highlighting the benefits of structured co-

ordination in multi-agent settings. The loss of a single net-

work, non-joint training scheme is very large and thus omit-

ted from Figure 5 (see the appendix).

Visualizations. Imitation loss, of course, is not a full

reflection of the quality of the learned policies. Unlike

predator-prey, the long-term reward signal is not available,

so we rely on visual inspection as part of evaluation. Fig-

ure 6 overlays policy prediction on top of the actual game

sequence from Figure 1. Additional test examples are in-

cluded in our supplemental video 5. We note that learned

policies are qualitatively similar to the ground truth demon-

strations, and can be useful for applications such as coun-

terfactual replay analysis (Le et al., 2017). Figure 7 dis-

plays the Gaussian components of the underlying HMM.

The components correspond to the dominant modes of the

roles assigned. Unlike the predator-prey domain, roles can

be switched during a sequence of play. See the appendix

for more details on role swap frequency.

5. Other Related Work

The problem of multi-agent imitation learning has not been

widely considered, perhaps with the exception of (Cher-

nova & Veloso, 2007) which focused on very different ap-

plications and technical challenges (i.e., learning a model

of a joint task by collecting samples from direct interaction

with teleoperating human teachers). The actual learning al-

gorithm there requires the learner to collect enough data

points from human teachers for confident classification of

5Watch video at http://hoangminhle.github.io

Figure 7. Components of role distributions, corresponding to a

popular formation arrangement in professional soccer

task. It is not clear how well the proposed method would

translate to other domains.

Index-free policy learning is generally difficult for black-

box machine learning techniques. Some recent work has

called attention to the importance of order to learning when

input or output are sets (Vinyals et al., 2015), motivated by

classic algorithmic and geometric problems such as learn-

ing to sort a set of numbers, or finding convex hull for a

set of points, where no clear indexing mechanism exists.

Other permutation invariant approaches include those for

standard classification (Shivaswamy & Jebara, 2006).

6. Limitations and Future Work

In principle, the training and inference of the latent struc-

ture model can accommodate different types of graphical

models. However, the exact procedure varies depending

on the graph structure. It would be interesting to find do-

mains that can benefit from more general graphical mod-

els. Another possible direction is to develop fully end-

to-end differentiable training methods that can accommo-

date our index-free policy learning formulation, especially

deep learning-based method that could provide computa-

tional speed-up compared to traditional graphical model in-

ference. One potential issue with the end-to-end approach

is the need to depart from a learning-reductions style ap-

proach.

Although we addressed learning from demonstrations in

this paper, the proposed framework can also be employed

for generative modeling, or more efficient structured explo-

ration for reinforcement learning. Along that line, our pro-

posed method could serve as a useful component of general

reinforcement learning, especially in multi-agent settings

where traditional exploration-based approaches such as Q-

learning prove computationally intractable.
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