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Abstract--This paper describes a control algorithm for a 

Wide Area Energy Storage and Management System 

(WAEMS). The WAEMS is designed to meet the demand 

for fast, accurate and reliable regulation services in multi-

area power systems with a significant share of wind power 

and other intermittent generation. The means are utilization 

of flywheel energy storage units, hydro power generation, 

and energy exchange among the participating control areas.  

The objective of the control algorithm is to respond to 

the control signals from the different system operators, 

whilst optimizing the hydro power plant operation by 

reducing the tear and wear on the mechanical parts and 

improving the energy efficiency of the plant.  

The performance of the WAEMS is simulated using a 

mathematical model, including hydro power plant and 

flywheel energy storage models. ACE measurements from 

the California ISO and Bonneville Power Administration 

control areas are used as control signals to the WAEMS.  

Simulations demonstrate excellent regulation response 

and break-through results in terms of improved hydro 

power plant operation. 

 
Index Terms—Control, wind power, regulation, power 

systems. linear programming, quadratic programming 

I.  INTRODUCTION 

he Bonneville Power Administration (BPA) and 

California ISO (CAISO) both expect a significant 

increase of wind power penetration in their respective 

service areas within near future. Studies have shown that 

the increased wind power penetration will require 

additional regulation and load-following capacity [1]-[3]. 

To mitigate the increased demand for regulation 

capacity, a Wide Area Energy Storage and Management 
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System (WAEMS) is proposed in a research project, 

recently conducted by the Pacific Northwest National 

Laboratory for the BPA [4]. The WAEMS will address 

the additional regulation requirement through the energy 

exchange between the participating control areas and 

through the use of energy storage and other generation 

resources. 

The project develops principles, algorithms, market 

integration rules, functional design and technical 

specifications for the WAEMS system. In this paper, we 

propose a control algorithm to be used in the WAEMS, 

and present simulation results obtained using an 

integrated model of the control system and the 

participating units. 

II.  SYSTEM DESCRIPTION 

From the point of view of each of the participating 

control area operators, the WAEMS must react like any 

other regulation resource, i.e. respond to an automatic 

control signal, posted every 4 seconds.  

A system overview is given in Fig. 1. The principle of 

the WAEMS is to summarize the regulation signals from 

each control area operator and coordinate the operation 

of the individual participating storage or generation 

resources to meet the requested total regulation output. 

Dynamic schedules are used to distribute the resources 

between participating control areas. 
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Fig. 1. Overview of the system concept. 
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A.  Participating units 

The WAEMS is conceptually designed to work with 

many different generation and storage resources and 

many participating control areas. However for the initial 

simulations, a setup with 1 generation resource, 1 storage 

resource and 2 participating control areas is evaluated. 

The resources are selected to provide 20 MW of 

regulation each, i.e. a total of 40 MW of regulation. 

The generation resource is a hydro power plant 

commonly found in the Northwestern U.S. No specific 

plant is chosen for the simulation, but typical values for 

e.g. response time and power capacity are used: 

- Power range: 100 MW … 400 MW 

- Regulation service: -20 MW … + 20 MW 

- Energy capacity: Unlimited 

- Response time (First order step response): 

o 63% after 20 sec. 

o 86% after 40 sec. 

o 95% after 60 sec. 

In the WAEMS project, numerous energy storage 

technologies have been evaluated. For reasons like 

reliability, fast response, and long cycle life, the flywheel 

technology has been chosen for the simulations. Further 

details about the evaluated storage technologies are 

published separately in [5]. 

The flywheel plant used in the simulations has the 

following characteristics: 

- Power range:  - 20 MW ... + 20 MW 

- Energy capacity: 100% power for 15 min. = 5 MWh 

- Response time: < 4 sec. 

- Standby loss: 1.1% 

- Roundtrip efficiency ~90 % 

III.  SIMULATION MODEL 

The simulation model is outlined in Fig. 2. It consists 

of several parts, integrated into a unified model. Each 

part is described in subsequent sections. Based on the 

input signal, a control algorithm determines the optimal 

distribution of the requested regulation on the 

participating units. The algorithm calculates setpoints for 

each unit, which are then supplied to the unit models. 

The outcome is time series of hydro power plant output, 

flywheel energy state, and flywheel power output. 

Compared with the flywheel, the hydro plant has a 

significantly longer response time. To achieve a fast 

aggregated response to the regulation signal, the flywheel 

setpoint is modified dynamically to compensate for the 

hydro plant delays. 

 
Regulation signal 

Control algorithm 
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Flywheel setpoint 

Hydro delay 
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Hydro 
power  

Fig. 2. Block diagram of the integrated simulation model. 

 

A.  Control algorithm 

The control algorithm seeks to find the optimal 

distribution of resources, satisfying 3 objectives:  

1. Keep the hydro plant close to its most efficient 

point of operation (ideally ± 1%). Deviations 

from this region of operation will reduce the 

efficiency of the hydro plant. 

2. Maintain desired energy level in flywheel storage, 

depending on regulation service: up, down or 

both. 

3. Supply the requested regulation service at all 

times. 

The last objective should be met if at all possible, so 

mathematically it is expressed as a constraint. However if 

the constraint is violated (e.g. if the flywheel is depleted), 

an additional post-optimization step calculates a solution 

to ensure that the regulation service matches the input 

signal as close as possible. 

The relative weight of objectives 1 and 2 has a 

significant influence on system behavior and must be 

chosen carefully. By changing this relative weight, the 

system can be designed to let either the flywheel or the 

hydro plant take a relatively larger share of the regulation 

task. 

The optimization variables are Xfw and Xhyd, which 

denote the regulation power output from the flywheel and 

the hydro plant, respectively. 

    1)  Variable boundaries 

Power output from, or input to, the flywheel is limited 

by the power converter and generator/motor: 

maxmin fwfwfw PXP ≤≤   (1) 

Furthermore the energy stored in the flywheel cannot 

go below a certain minimum value or exceed a certain 

maximum value during the following period of operation: 

max,,min, fwnextfwfw EEE ≤≤   (2) 

The relation between energy and power is given by 

tXEE fwfwnextfw Δ⋅−=,   (3) 

which inserted into (2) gives: 

t

EE
X

t

EE fwfw
fw

fwfw

Δ

−
≤≤

Δ

− min,max,
  (4) 

The hydro plant is similarly constrained by its 

physical upper and lower limits of power production: 

max,min, hydhydhyd PPP ≤≤   (5) 

The total power output from the hydro plant Phyd is a 
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sum of the scheduled output and the regulation output: 

hydschhydhyd XPP += ,   (6) 

which inserted into (5) gives the limit for the regulation 

output: 

schhydhydhydschhydhyd PPXPP ,max,,min, −≤≤−   (7) 

In addition, the capacity reserved for regulation may 

have an upper and lower limit: 

max,,min,, caphydhydcaphyd PXP ≤≤   (8) 

To summarize, the optimization variables Xfw and Xhyd 

are bound by the non-interdependent limits given by: 
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  (9) 

    2)  Variable interdependent constraints 

The total regulation performed by both units must 

match the regulation signal that is input to the control 

algorithm: 

RSXX hydfw =+   (10) 

Due to the physical location of the units on each side 

of the California-Oregon Intertie, additional constraints 

are necessary when the intertie is congested to prevent 

overloading. However, such constraints are not 

considered in this model. 

    3)  Objective function 

To find the optimum distribution of resources, the 

problem is expressed as a minimization problem of an 

objective function, which consists of a weighted sum of 

objective functions for each objective: 

( ) ( )( )hydhydfwfw
XX

XFXFxF += min)(min   (11) 

Selecting the objective functions influences the 

solution technique used to calculate the optimum. We 

have evaluated linear programming and quadratic 

programming techniques and found the latter to give the 

best results, with no caveats in terms of computation 

time. Consequently, in the following and in the 

presentation of results, only the quadratic programming 

technique is considered. 

The formulation of the flywheel objective function 

aims at maintaining the energy stored in the flywheel at a 

certain level, Efw,offset. The deviation from this level in the 

next period of operation adds quadratically to the 

objective function value: 

( )2,, offsetfwnextfwfwfw EEaF −=   (12) 

where afw is the weight factor of the flywheel objective 

function in the total objective function. Fig. 3 is a plot of 

the flywheel objective function. 

 
Fig. 3.  Plot of flywheel objective function. 

 

Since the optimization variable is power and not the 

energy, the objective function is written as a function of 

Xfw by inserting (3) into (12): 

( )
( )(

( ) ( ) )tXEEtX

EEa
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  (13) 

 

The hydro objective function is formulated to reflect 

the preferred operation at the most efficient power output 

setpoint. Deviation from the most efficient point of 

operation, Phyd,eff,  adds quadratically to the objective 

function value: 

( )2,effhydhydhydhyd PPaF −=   (14) 

where ahyd is the weight factor of the hydro objective 

function in the total objective function. Fig. 4 is a plot of 

the hydro objective function. 

 
Fig. 4.  Plot of hydro objective function. 

 

The hydro objective function is rewritten as a function 

of the optimization variable Xhyd by inserting (6) into 

(14): 

( )
( )(
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 (15) 

    4)  Global minimization 

The global minimization problem is solved by 

minimizing the total objective function given by the sum 

of the objective functions in (13) and (15). The total 
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objective function may thus be written as: 

( )
( ) ⎥

⎦

⎤
⎢
⎣

⎡
−⋅⋅

Δ⋅−⋅⋅−
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⋅
Δ⋅⋅

=

⎥
⎦

⎤
⎢
⎣

⎡
=

⋅+⋅⋅⋅=

effhydschhydhyd

offsetfwfwfw

hyd

fw

hyd

fw

TT

PPa

tEEa
f

a

ta
H

X

X
X

XfXHXF

,,

,

2

2

2

20

02

with

2

1

 (16) 

 

B.  Flywheel Model 

The flywheel model was initially developed and 

supplied by Beacon Power Corporation. For the model to 

be incorporated into the integrated model, outlined in 

Fig. 2, it has been converted to a MATLAB model by 

PNNL. The flywheel model includes charging and 

discharging losses, floating losses and auxiliary power as 

shown in Fig. 5. 
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Fig. 5. Block diagram of the flywheel model. 

 

C.  Hydro Model 

The developed hydro power plant model is shown in 

Fig. 6. The model includes: delay block simulating the 

delay in the plant’s response to the changing regulation 

signal; dead band element; first order plant response 

model; error range simulating deviations of the actual 

plant response from the load setting, and limiting element 

restricting the maximum and minimum regulation output 

provided by the plant. 
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Fig. 6. Block diagram of the hydro model and a plot of a step response. 

In this plot a time constant of 50 seconds is assumed, but in the 

simulations in this paper a time constant of 20 seconds is used. 

    1)  Input Signal 

Due to the limited availability of a real regulation 

signal, Area Control Error (ACE) signals are used as a 

substitute. A total of 36 days of 4-second data throughout 

a year were available for the simulation. The maximum 

period of consecutive data is 48 hours, and the results in 

this paper only treat a single 48 hour period. However 

similar results are obtained for other 24 hour or 48 hour 

periods.  

The ACE data from each control area are added and 

the result is scaled to fit into the 40 MW range of up or 

down regulation. 

IV.  RESULTS 

Some results of the simulations are shown in this 

section. A simulation period of 48 hours is used. The 

three plots in Fig. 7 are a close-up on a shorter period to 

show the input signal and the resulting power outputs in 

detail. It is observed that the aggregate power output 

follows the input signal well, and that the hydro output 

curve is smoother than the flywheel output curve. In 

other words, the system in this simulation is tuned to let 

the flywheel react on the fast changes whereas the hydro 

plant reacts when the flywheel state of charge starts to 

offset from the desired energy level. 
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Fig. 7. Aggregate power output and input signal; flywheel power 

output; and hydro output. 

 

The plots in Fig. 8 show the output from the hydro 

plant together with the boundaries of the region 

considered the most efficient operating range. Operation 

outside this region is reduced from 10.8 to 5.2 hours with 

the proposed control algorithm. Furthermore the plot 

shows a much smoother curve for the hydro output with 

much less frequent changes. 

 
Fig. 8. Hydro power output and hydro power output if there was no 

flywheel. Both compared with the most efficient region of operation. 

 

Finally, in Fig. 9, the state of charge of the flywheel is 

observed. The flywheel is fully depleted in a total of 7 

minutes during the simulation period. 

 
Fig. 9. Flywheel state of charge 

V.  CONCLUSION 

Simulation results clearly demonstrate feasibility and 

efficiency of the proposed Wide Area Energy 

Management and Energy Storage system. The aggregated 

hydro power plant and flywheel storage plant provides a 

faster and more accurate regulation service, than that of 

the hydro plant alone. This is because the flywheel 

compensates for the inaccuracies caused by the response 

delay, dead zone, and deviation characteristics of the 

hydro power plant. 

The use of the flywheel energy storage can be tuned to 

make the hydro power plant regulation curve shallower 

and smoother. This would help to minimize the wearing 

and tearing problem on the participating hydro power 

plant. Additionally, the flywheel helps to keep the hydro 

power plant output closer to the most efficient operating 

point. By a proper selection of the hydro and flywheel 

weight factors in the objective function, the hydro power 

plant operating point can be kept within the 1% deviation 

range from the most efficient point most of the time.  

The hydro power plant is capable of holding the 

flywheel’s state of charge closer to the selected offset 

point whenever it is possible and prevent failures in 

following the regulation requirement when the flywheel 

exhausts its energy regulation range. By a proper 

selection of the flywheel’s energy offset, the flywheel 

energy can be adjusted to efficiently use the entire 

available energy range and minimize the number of 

violations. This energy offset adjustment does not 

noticeably alter the flywheel and hydro power plant 

performance. 
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