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Abstract

Recent works on multi-agent sequential decision mak-
ing using decentralized partially observable Markov de-
cision processes have been concerned with interaction-
oriented resolution techniques and provide promising
results. These techniques take advantage of local inter-
actions and coordination. In this paper, we propose an
approach based on an interaction-oriented resolution of
decentralized decision makers. To this end, distributed
value functions (DVF) have been used by decoupling
the multi-agent problem into a set of individual agent
problems. However existing DVF techniques assume
permanent and free communication between the agents.
In this paper, we extend the DVF methodology to ad-
dress full local observability, limited share of informa-
tion and communication breaks. We apply our new DVF
in a real-world application consisting of multi-robot ex-
ploration where each robot computes locally a strategy
that minimizes the interactions between the robots and
maximizes the space coverage of the team even under
communication constraints. Our technique has been im-
plemented and evaluated in simulation and in real-world
scenarios during a robotic challenge for the exploration
and mapping of an unknown environment. Experimen-
tal results from real-world scenarios and from the chal-
lenge are given where our system was vice-champion.

Introduction

Recent advancements concerning the resolution of decision-
theoretic models based on Decentralized Partially Observ-
able Markov Decision Processes (Dec-POMDPs) allowed a
notable increase in the size of the problems that have been
solved. Especially, one of the directions that attracts more
and more from attention this community is to take advantage
of local interactions and coordination with an interaction-
oriented (IO) resolution (Canu and Mouaddib 2011; Melo
and Veloso 2011; Velagapudi et al. 2011). Such approaches
relax the most restrictive and complex assumption consist-
ing in considering that agents are permanently in interaction.
They become a promising direction concerning real-world
applications of decentralized decision makers.
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The approach developed in this paper is primary moti-
vated by using a Dec-POMDP solved with IO techniques for
an exploration and mapping multi-robot system. This system
has been developed and applied successfully in real-world
scenarios during a DGA1/ANR2 robotic challenge named
CAROTTE for the exploration, mapping and object recog-
nition by mobile robots. In this paper, the distributed SLAM
aspect is out of the paper scope and we focus only on the de-
cision model. We consider that robots are independent and
can share limited information by communication leading to
some kind of observability completion. However a particu-
larly significant challenge is the communication as potential
communication breaks can happen leading to a loss of infor-
mation that are shared between robots.

This paper concerns the global and local coordination of
decentralized decision makers under the assumptions of full
local observability, limited share of information between the
agents and breaks in communication. Global coordination
consists in allocating appropriately goals for the individual
robots and minimizing the interactions that lead to conflicts
between the members of the team. Local coordination is the
resolution of close interactions. The assumptions we made
are not simultaneously addressed in the litterature. For in-
stance existing IO resolutions of decision models do not con-
sider together these hypotheses; classical negotiation based
techniques assume permanent communication; and existing
multi-robot exploration approaches that consider commu-
nication constraints only cope with limited communication
range issue and do not address the problem of failures as
stochastic breaks in communication. So we introduce in this
paper a new IO resolution method for decentralized decision
models that handles limited share of information and breaks
in communication.

In the sequel, we present first related works about the
interaction-oriented resolution of Dec-POMDPs and multi-
robot exploration. This is followed by a background of our
work. Second, we introduce the DVF approach and its exten-
sion to support communication breaks. Then the application
of this model to multi-robot exploration is detailed. Finally,
experiments from real robot scenarios and simulations are
given to demonstrate our method effectiveness when com-
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Figure 1: Decision models according to interdependency,
communication and observability.

munication is not reliable before concluding.

Related Work

Interaction-Oriented Models

Much of the work in multi-agent models address the Dec-
POMDP complexity of resolution through one or more of
the three directions: observability depending on whether
each agent has complete or partial knowledge about the state
of the world; communication according to the possibility and
the cost of sharing information between the agents; and in-
terdependency exploiting the structure of the problem such
as locality of interaction, decomposition of rewards and in-
dependence between the agents. All existing Dec-POMDPs
approaches use different assumptions about these directions.
Fig. 1 summarizes some of these models and how they are
related with parameters to consider to switch from one to
another. Single-agent approaches (MDP and POMDP) de-
pend on whether the agent’s observability about the world is
complete or partial.

As regards multi-agent models and the observability, the
model moves from Dec-POMDP to Dec-MDP when the col-
lective observability is complete and to MMDP when the
individual observability is full. Recent promising works ex-
ploit the interdependency with an interaction-oriented (IO)
resolution of Dec-POMDPs. Introducing some structures
leads to new models which are based on a set of interac-
tive individual decision making problems and thus reduces
the complexity of solving Dec-POMDPs. The ND-POMDP
(Nair et al. 2005) model is a static interactions model ap-
proach, meaning that an agent is always interacting with
the same subset of neighbors. In case of full collective ob-
servability and static graph of interactions, Dec-MDP moves
to OC-Dec-MDP (Beynier and Mouaddib 2005; 2006). In-
teracting all the time with the same agents is not realistic.
Thus models have been proposed that use dynamic interac-
tions such that each agent interacts with an evolving set of
agents: IDMG (Spaan and Melo 2008) and DyLIM (Canu
and Mouaddib 2011). In all of these models, no explicit com-
munications are assumed except for the IDMG model which
has unlimited and free communication between agents in-

teracting together. Few models study the cost of communi-
cation such as COM-MTDP (Pynadath and Tambe 2002).

Multi-Robot Exploration

Multi-robot exploration has received considerable attention
in recent years. Various exploration strategies have been pro-
posed that mainly differ by the way global coordination is
achieved. In (Burgard et al. 2005; Wurm, Stachniss, and
Burgard 2008), global coordination is centralized. The util-
ity of each target is computed as a compromise between the
gain expected at this target (expected area discovered when
the target will be reached taking into account the possible
overlap in between robot sensors) and the cost for reaching
this target. Global coordination is accomplished by assign-
ing different targets to the robots, thus maximising the cov-
erage and reducing the overlap between explored areas of
each robot. Global coordination can also be decentralized as
in (Zlot et al. 2002) where robots bid on targets to negoti-
ate their assignments. Most approaches assume that robots
maintain constant communication while exploring to share
the information they gathered and their locations. However,
permanent and free communication is seldom the case in
practice and a significant challenge is to account for po-
tential communication drop-out and failures. Some recent
approaches consider the constraint of a limited communi-
cation range. Burgard et al. (2005) apply their multi-robot
strategy to each sub-team of robots which are able to com-
municate with each other. This leads in the worst case to a
situation in which all robots individually explore the whole
environment. Powers, Balch, and Lab (2004) try to main-
tain a team connectivity during the exploration for the robots
to remain in constant communication. Hoog, Cameron, and
Visser (2010) impose periodic constraints where the robots
must meet at specific rendez-vous times in order to share
information.

Background

Decentralized - POMDPs

Dec-POMDP (Bernstein et al. 2002) is an extension of
POMDP for decentralized control domains. A Dec-POMDP
is defined with a tuple < I, S,A, T,R,Ω, O >. I is the num-
ber of agents, S the set of joint states and A = {Ai} the set
of joint actions3. T : S × A × S → [0; 1] is a transition
function and R : S×A→ ℜ a reward function. Ω is a set of
observations an agent can receive about the environment and
O : S ×A× S × Ω→ [0; 1] an observation function. If the
global state of the system is collectively totally observable,
the Dec-POMDP is reduced to a Dec-MDP.

We can see an MDP (Puterman 1994) as a Dec-MDP
where I = 1. It is defined with a tuple < S,A, T,R >.
The goal of MDP planning is to find a sequence of actions
maximizing the long-term expected reward. Such a plan is
called a policy π : S → A. An optimal policy π∗ specifies
for each state s the optimal action to execute at the current

3A state of the problem can be written with a tuple s =
(s1, ..., sI) such that sj is the state of robot j. Ai defines the set of
actions ai of robot i.
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step assuming the agent will also act optimally at future time
steps. The value of π∗ is defined by the optimal value func-
tion V ∗ that satisfies the Bellman optimality equation:

V ∗(s) = max
a∈A

(R(s, a) + γ
∑

s′∈S

T (s, a, s′)V ∗(s′)) (1)

where γ is the discount factor. Solving a Dec-POMDP is
done by computing the optimal joint policy. However the
time complexity is NEXP-complete (Bernstein et al. 2002),
that is incredibly hard. Recent interaction-oriented reso-
lution methods of Dec-POMDPs presented in our related
works reduce this complexity.

Distributed Value Functions

Distributed value functions (DVF) have been introduced by
(Schneider et al. 1999) as a way to distribute reinforcement
learning knowledge through different agents in the case of
distributed systems. In a recent paper, we formalize IO reso-
lution of Dec-MDPs with DVFs (Matignon, Jeanpierre, and
Mouaddib 2012b). In our method, DVF describes the Dec-
MDP with two classes: no-interaction class represented as
a set of MDPs, one per agent; and the interaction class for
close interactions. The Dec-MDP is solved as a collection
of MDPs and the interactions between MDPs are considered
by passing some information between agents. This leads to
a significant reduction of the computational complexity by
solving Dec-MDP as a collection of MDPs. Thus, the NEXP
complexity of solving a DecMDP is reduced to the complex-
ity of solving a set of MDPs (polynomial), one per agent.
Each agent computes locally a strategy that minimizes con-
flicts, i.e. that avoids being in the interaction class. The in-
teraction class is a separate layer solved independently by
computing joint policies for these specific joint states.

DVF technique allows each agent to choose a goal which
should not be considered by the others. The value of a goal
depends on the expected rewards at this goal and on the fact
that it is unlikely selected by other agents. In case of per-
manent communication, an agent i computes its DVF Vi ac-
cording to :

∀s ∈ S Vi(s) = max
a∈A

(

R(s, a) + γ
∑

s′∈S

T (s, a, s′)

[Vi(s
′)−

∑

j 6=i

fijPr(s
′|sj)Vj(s

′)]



 (2)

where Pr(s
′|sj) is the probability for agent j of transition-

ing from its current state sj to state s′ and fij is a weight-
ing factor that determines how strongly the value function of
agent j reduces the one of agent i. Thus each agent computes
strategies with DVF so as to minimize interactions. However
when situations of interaction occur, DVF does not handle
those situations and the local coordination must be resolved
with another technique. For instance joint policies could be
computed off-line for the specific joint states of close inter-
actions.

New Distributed Value Functions

DVF provides an interesting way to manage the coordina-
tion of decentralized decision makers. However, it assumes
a permanent and free communication. In this section, we re-
lax the strong assumptions about communication.

Common Settings

We assume that the local observability of each agent is total
so our approach takes place in the Dec-MDP framework. We
also assume that each agent shares with the others only its
current state. So if the communication never fails, agent i
knows at each step t the state sj ∈ S of each other agent j.
When the communication breaks, the states of other agents
are not known at each time step. We make the assumption
that sj ∈ S is the last known state of another agent j at
time tj . In other words, tj is the latest time step where the
communication between agents i and j succeeded. At the
current time t, agent i knows that agent j was at state sj
∆tj = t− tj time steps ago.

New Distributed Value Functions

Given our limited share of information, the agents cannot
exchange information about their value functions. However
each robot i can compute all Vj by empathy. Second, to be
robust to breaks in communication, we must consider that
the states of other agents are not known at each time step.
Thus eq. 2 can be rewritten as following:

∀s ∈ S Vi(s) = max
a∈A

(

R(s, a) + γ
∑

s′∈S

T (s, a, s′)

[Vi(s
′)−

∑

j 6=i

fijPr(s
′|sj ,∆tj)Vj(s

′)]



 (3)

where Pr(s
′|sj ,∆tj) is the probability for agent j of tran-

sitioning to state s′ knowing that j was at state sj ∆tj time
steps ago. In case the communication never fails, the last
known state of an other agent j is at current time tj = t so
∆tj = 0. We set:

Pr(s
′|sj ,∆tj = 0) = Pr(s

′|sj) (4)

Thus eq. 3 is a new DVF that can be used with or without
permanent communication.

However, one challenge to compute new DVF is the es-
timation by agent i of the transition probability of another
agent j knowing that it was at state sj ∆tj time steps ago.
This could be evaluated with:

Pr(s
′|sj ,∆tj) = η

∑

τ∈Traj(sj ,s′)

Pr(τ,∆tj) (5)

where η is a normalizing constant, Traj(sj , s
′) is the set

of trajectories from sj to s′ and Pr(τ,∆tj) the probability
that agent j follows the trajectory τ . The sum over all possi-
ble trajectories is the belief that agent j could be at state s′

knowing that it was at sj ∆tj time steps ago. The computa-
tion complexity of this probability depends on many factors.

2019



First according to the model used, computing the set of tra-
jectories from one state to another in an MDP could quickly
become very complex. However, we believe that the com-
plexity could be reduced by using structured models, such
as Voronoi diagrams in our robotic exploration case. Second
the targeted application could also lead to a simplification of
this probability computation, as for instance the exploration
case detailed in the next section.

Multi-Robot Exploration

Our approach is primary motivated by a real-world applica-
tion of mobile robots to explore an unknown environment
under breaks in communication constraints. We consider
that the state of the robot is known at decision time, that
each robot has access to a map updated with all explored ar-
eas and to the positions of the others (while the robots can
communicate).

New Distributed Value Functions for Multi-Robot
Exploration

In case of breaks in communication, the DVF algorithm (eq.
3) is difficult to apply due to the computational complex-
ity of the transition probability Pr(s

′|sj ,∆tj). Similarly to
(Burgard et al. 2005), we can consider that a robot ignores
the information about its neighbors with which the commu-
nication failed i.e.:

∀s ∈ S Vi(s) = max
a∈A

(

R(s, a) + γ
∑

s′∈S

T (s, a, s′)

[Vi(s
′)−

∑

j∈Ω(i)

fijPr(s
′|sj)Vj(s

′)]



 (6)

where Ω(i) is for the robot i, the set of all the other robots
with which i is still in communication. Obviously, in the
worst case, this leads to a situation where the robots act as if
they were independent.

However, the computation complexity can be reduced in
case of an application of exploration. Indeed the estimation
of the transition probability (eq. 5) can be rewritten as:

Pr(s
′|sj ,∆tj) = η

∑

s′′∈S

Pr(s
′|s′′)Pr(s

′′|sj ,∆tj) (7)

To evaluate successively each probability from one state to
another Pr(s

′|s′′) until the state sj is reached, a wavefront
propagation algorithm can be applied from the last known
state sj of robot j. The obtained values can be consistent
with probabilities and represent the future intentions of a
robot from its last known state. Anyway this is at reduced
efficiency if the communication breaks for a long time.

Computation Details

The different steps to compute new DVF in case of explo-
ration are summed up in Algorithm 1 for one agent i. A de-
cision step consists in updating data structures of the MDP
model from newly obtained data and computing the policy
from DVF. More details about the MDP model are given

Algorithm 1: New DVF pseudo-code for agent i

/*VI is Value Iteration algorithm */

/*WP is Wavefront Propagation algorithm */

begin
while exploration not finished do

//One decision step

Recover newly obtained exploration data
Recover and communicate its current state si
Update MDP model MDPi =< S,A, T,R >
forall j ∈ Ω(i) do

Receives sj

Vemp ← VI(MDPi, γ)
forall j 6= i do

Pr(∗|sj ,∆tj)← WP(sj)
Vj = Vemp

fij =
maxsR(s)
maxsVj(s)

Vi ← DVF(MDPi, fij , γ, Vj , Pr)

Follow the policy associated with Vi

end

in (Matignon, Jeanpierre, and Mouaddib 2012a). The robots
we consider are homogeneous so the empathic value func-
tion Vemp is computed only once by robot i with the standard
value iteration algorithm (Bellman 1957). To evaluate the
transition probability of other robot j, i applies a wavefront
propagation algorithm from the current state sj of robot j.
The weighting factor fij allows to balance the value function
with respect to the rewards.

The agent plans continuously, updating its model and pol-
icy as it perceives changes in its environment. This allows to
update quickly action plan so as to react as soon as possible
to the decisions of the others and to information gained en
route4. However, this requires the decision step to be quick
enough for on-line use. Given that the model will be updated
at each decision step, we use the greedy approach that plans
on short-term horizon.

Local coordination

New DVF compute strategies so as to minimize interactions
but it does not handle situations when the robots are close
to each other that can happen for instance in the starting
zone5 or in some narrow corridor. To solve local coordi-
nation, a Multi-agent MDP (MMDP) (Boutilier 1996) can
be used as the robots concerned by the interaction are close
to each other. Joint policies are computed off-line for these
specific joint states and followed when local coordination is
detected. In our context, these situations can be easily de-
tected by computing the distance between the robot and its
partners. When it is inferior to a security threshold (local
coordination necessary), this results in different behavior ac-
cording to the location one to another. In case a robot follows
another one closely or if they are face to face, one robot

4map is often explored before the robot reached its target.
5In our challenge, all the robots must start and return in a spec-

ified zone where close interactions will necessarily take place.
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stops and waits for the other to pass. When the robots di-
verge, none of the robots freeze; when a robot is followed, it
moves according to its policy. Additionnaly, an emergency
security threshold leads to a retro-traverse movement such
that one robot backtracks to let the other pass if they are too
close. If the communication fails, the robots act as if they
were independant so there is no coordination. But when they
are within sensing range, collision avoidance via the anti-
collision system is applied as a low-level control instead of
local coordination.. Such situations are illustrated in our ex-
periments.

Experimental Platforms

This section describes real and simulated robots.

Real Robots Our Wifibot6 µ-troopers are 6-wheels mobile
robots that embed an Intel Core 2 Duo processor, 2GB RAM
and 4GB flash. Each one is equipped with a laser range scan-
ner. The software running on-board is based on a Data Dis-
tribution System (DDS) implementation from OpenSplice7.
This middle-ware allows for several programs to run con-
currently, even on different computers. In our architecture,
various modules can run asynchronously: Laser acquisition,
SLAM, Decision and Mobility. Each robot is independent
and has its own modules. The SLAM module, based on (Xie
et al. 2010), receives laser readings and provides the other
modules with the robot state. The architecture allows the
robots to exchange their laser scans and their states. While
the communication does not fail, each robot knows the ar-
eas explored by the others and updates its local map with
local and distant scans. During a break in communication,
nothing is exchange between the robots. However, our ar-
chitecture is robust to communication failures. As soon as a
communication between the robots has been re-established,
the map is updated by explored areas of the others and their
relative states are again exchanged. The mobility module im-
plements an advanced point and shoot algorithm, along with
a backtrack feature preventing the robot from being stuck.
The decision module runs asynchronously, computing a new
policy every second in average according to Algorithm 1.

Simulated Robots We use the Stage8 simulator with an
architecture that mimics the real robots. DDS is replaced by
an Inter Process Communication shared memory segment.
Laser acquisition is simulated by a “laser” virtual sensor. A
“position” virtual device simulates both the SLAM module
by providing odometric data and the mobility module by ex-
ecuting the point and shoot algorithm. Finally the decision
module used on real robots can be used with the simulator
without modification.

Experimental Results

In this part we show results from real robot scenarios
and simulations where we test various various communica-
tion schemes (permanent communication, no communcia-
tion and communication breaks) to show the effectiveness

6www.wifibot.com
7http://www.opensplice.com
8http://playerstage.sourceforge.net/

(a) Laboratory experiments. (b) Challenge.

Figure 2: Resulting pixel maps of some areas explored with
two robots. Pixels color ranges from black (obstacle) to
white (free).

of our new DVF when communication is not reliable. These
tests are more general than Pentagone or ISR environments
(Melo and Veloso 2011).

Real Robots

We performed experiments with our two µ-troopers. The
videos, available at http://lmatigno.perso.info.unicaen.fr/
research, show the exploration of the robots. Some interest-
ing situations are underlined (global task repartition, local
coordination, returning home). Resulting maps of these ex-
plored areas are in Fig 2a. Fig. 2b is the resulting map of the
challenge. Fig. 3a shows local maps as seen by each robot
in which the distant robot is seen by the local one in its lo-
cal map. In this snapshot of one video, robots split the space
to explore different areas: robot1 decides to explore the top
of the map and robot2 to explore a corridor. Fig. 3b depicts
a local coordination situation successfully resolved: robot1
decides to move while robot2 waits for the other to pass the
door. No breaks in communication occurred during these ex-
periments. However, we observed some temporary network
errors during other tests and we noticed that our approach
resulted in an efficient exploration process. Once the con-
nection had been re-established, the robots coordinated with
each other again as our architecture is robust to communica-
tion failures.

Simulated Robots

Dense Simulated Environments To show the benefit of
our DVF extension in case of communication breaks, we
used two different simulated environments from Stage (Fig.
4). We chose to show results with these complex environ-
ments because they are dense. Indeed, in such environments,
there are many possible situations of local interaction, and
that is the main difficulty to overcome. Local interactions
are a good indicator of the quality of our DVF policy. Using
random environments, we would have sparse environments
with fewer local interaction situations. The chosen complex
environments are most interesting as they show the interest
of the DVF. In sparse environments, the DVF would be as
much performant but we would not have our local interac-
tions indicator.

Communication Schemes and Strategies We test 4 cases
using various communication schemes and different strate-
gies : no communication i.e. the robots are independent
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(a) Global coordination.

(b) Local coordination.

Figure 3: Consistent local maps and video snapshots.

and compute strategies using standard value iteration (eq.
1); permanent communication with DVF used by the robots
(eq. 2); and communication breaks. In this case, the robots
use DVF when communication is available and during the
breaks, two methods are compared. First they can be in-
dependent during the breaks and each individually explores
the environment. This is the method used in (Burgard et al.
2005) and refered as eq. 6. Second the robots can use new
DVF (Algorithm 1). During each simulation, 5 breaks take
place stochastically, each lasts 25 seconds in office-like1 en-
vironment and 40 seconds in office-like2 environment.

Indicator of the Quality of DVF Policy We plot for each
case the time spent to finish the mission (explore the en-
vironment and all robots returned to their starting position)
and the cumulated mean time spent by all agents in local
interactions during one exploration. Indeed, the suboptimal-
ity comes from local interaction situations. An optimal joint
policy should minimize local interactions, that’s why we use
local interactions as a good indicator of the quality of our

(a) office-like1 (b) office-like2

Figure 4: Simulation environments with starting positions.

(a) office-like1 with 4 robots.

(b) office-like2 with 3 robots.

Figure 5: Results averaged over 5 simulations.

policy. Local interactions are defined as a distance between
two robots inferior to 1 meter. During local interactions, lo-
cal coordination is required if it is possible i.e. if the robots
communicate.

Results Results are in Fig. 5. Independent agents (no com-
munication) finished the mission with the higher time since
the robots individually explore and each robot covers all the
space. Permanent communication gives the fastest explo-
ration and manages to minimize local interactions as robots
spread out efficiently. In case of communication breaks, new
DVF drastically reduces local coordination compared with
the existing approach in the literature (independent agents
during breaks) and the exploration time is slightly superior
to the permanent communication case. It shows that with
new DVF, the agents will manage to coordinate themselves
even if the communication breaks. The local interactions in-
dicator shows that our approach avoids many local inter-
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action situations which are particularly hazardous during a
break as local coordination is not available but only the anti-
collision system.

Moreover, it is interesting to notice that local interactions
are more or less important without communication accord-
ing to the structure of the environment and especially to the
situations of the agents when the communication breaks. In-
deed if a break occurs when the agents are distant, they will
not come into close interactions. In some environment as
in Fig. 4b, local interactions are less frequent even without
communication given that the structure of the environment
allows independent agents to be seldom close together. How-
ever new DVF still reduces local coordination compared
with the other approach.

Conclusion

In this paper, we address the problem of multi-robot explo-
ration under communication breaks constraints with an IO
resolution of Dec-MDPs. We extend the DVF methodology
that assumes permanent and free communication and pro-
pose a new DVF to support breaks in communication. We
apply this method to multi-robot exploration scenarios, so
that each robot computes locally a strategy that minimizes
the interactions between the robots and maximizes the space
coverage. Experimental results from real-world scenarios
and our vice-champion rank at the robotic challenge show
that this method is able to effectively coordinate a team of
robots during exploration and is robust to communication
breaks.
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