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Abstract—In this paper, we consider the coordinated multipoint
(CoMP) transmission design for the downlink cloud radio access
network (Cloud-RAN). Our design aims to optimize the set of
remote radio heads (RRHs) serving each user and the precoding
and transmission power to minimize the total transmission power
while maintaining the fronthaul capacity and users’ quality-of-
service (QoS) constraints. The fronthaul capacity constraint in-
volves a nonconvex and discontinuous function that renders the
optimal exhaustive search method unaffordable for large net-
works. To address this challenge, we propose two low-complexity
algorithms. The first pricing-based algorithm solves the underly-
ing problem through iteratively tackling a related pricing problem
while appropriately updating the pricing parameter. In the second
iterative linear-relaxed algorithm, we directly address the fron-
thaul constraint function by iteratively approximating it with a
suitable linear form using a conjugate function and solving the
corresponding convex problem. For performance evaluation, we
also compare our proposed algorithms with two existing algo-
rithms in the literature. Finally, extensive numerical results are
presented, which illustrate the convergence of our proposed algo-
rithms and confirm that our algorithms significantly outperform
the state-of-the-art existing algorithms.

Index Terms—Cloud radio access network (Cloud-RAN), lim-
ited fronthaul capacity, power minimization, precoding, resource
allocation.

I. INTRODUCTION

THE next-generation wireless cellular network is expected
to provide significantly enhanced capacity to support the

exponential growth of mobile data traffic [1]–[5]. Toward this
end, coordinated multipoint (CoMP) transmission/reception
techniques provide promising solutions, which have been
adopted in the Long-Term Evolution Advanced standard [6].
In fact, CoMP employs different forms of base-station (BS)
coordination with dynamic sharing of channel state information
(CSI) and/or data information among BSs, as well as efficient
transmission, precoding, and resource-allocation algorithms
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[7]. However, implementation of CoMP in wireless cellular
networks typically requires costly high-speed backhauls con-
necting different BSs for CSI and information exchanges and
distributed computation [8], [9].

Cloud-RAN has been recently proposed as an alternative
network architecture that can achieve the performance gains of
the CoMP techniques while effectively exploiting the compu-
tation power of the cloud computing technology. In a Cloud-
RAN, the cloud comprising a pool of baseband processing units
(BBUs) performs most baseband processing tasks while trans-
mission functions are realized by simple remote radio heads
(RRHs) using the processed baseband signals received from the
cloud through a fronthaul transport network [10]–[13]. With a
centralized cloud processing center (CPC), complex resource-
allocation optimization, such as precoding, power control, user
scheduling, interference management algorithms, can be real-
ized, which can translate into significant network performance
improvements. In addition, Cloud-RAN with simple RRHs en-
ables us to reduce both capital and operational expenditures of
the network [12]. Moreover, this emerging network architecture
also allows to deploy dense small cells efficiently [14].

Despite these benefits, there are various technical challenges
one must resolve in designing and deploying the Cloud-RAN
architecture. In particular, suitable mechanisms that efficiently
utilize computing resources in the cloud, fronthaul capacity to
realize advanced communications, baseband signal processing,
and resource-allocation schemes must be developed. Some
recent works have addressed some of these issues, as can be
described in the following. In [15], an efficient clustering al-
gorithm was proposed to reduce the number of computations in
the centralized pool of BBUs where the number of RRHs is very
large. In [16] and [17], compression techniques to minimize the
amount of data transmitted over the fronthaul transport network
were developed.

Several other papers focus on precoding/decoding design
for CoMP considering different design aspects of Cloud-RAN.
In particular, in [18], the joint optimization of antenna se-
lection, regularization, and power allocation was studied to
maximize the average weighted sum rate. The random matrix
theory was utilized to decompose the considered nonconvex
problem into subproblems that can be tackled more easily. In
[19] and [20], the precoding vectors were optimized for all
RRHs to minimize the total network power consumption; the
downlink was considered in [19], whereas both downlink and
uplink communications were addressed in [20]. Total power
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to support radio transmission and operations of fronthaul links
and RRHs is accounted for in these research works, where
the authors show how to transform the underlying problems
into the sparse beamforming problems. Then, these papers
combine the solution techniques employed to address the tra-
ditional power minimization problem in [21] and [22] and the
fronthaul capacity minimization problem in [23] to tackle the
transformed problem. This solution technique is also closely
related to that employed in [24]. In fact, the design problems
considered in [23] and [24] for CoMP and in [19] and [20] for
Cloud-RAN with standard convex constraints do not explicitly
model the fronthaul capacity constraints. Consequently, they
can be solved directly by employing the compressed sensing
techniques [26]–[28]. We would like to emphasize that the
related work [23] aims at minimizing the number of active links
between base stations (RRHs) and users. Therefore, the limited
fronthaul capacity is not explicitly imposed as constraints in
[23], but it is rather considered in the design objective. Note
that the greedy principle proposed in [23] can be employed to
solve our problem (although our problem is not the same with
the problem in [23]); however, such a greedy approach may not
achieve very good performance.

This paper aims to study the CoMP joint transmission design
problem for Cloud-RAN that explicitly considers the fronthaul
capacity and users’ quality-of-service (QoS) constraints. In
particular, we make the following contributions.

• We formulate the joint transmission design problem for
Cloud-RAN, which optimizes the set of RRHs serv-
ing each user together with their precoding and power-
allocation solutions to minimize the total transmission
power considering users’ QoS and fronthaul capacity
constraints. In particular, we assume that certain fronthaul
capacity, which depends on the user’s required QoS, is
consumed to transfer the processed baseband signal from
the cloud to one particular RRH serving that user and that
the fronthaul transport network has limited capacity. The
considered problem is indeed nonconvex, and it comprises
the discontinuous fronthaul capacity constraint and other
traditional power and users’ QoS constraints. Therefore,
addressing this problem through exhaustive search re-
quires exponential computation complexity, which is not
affordable for practically large networks.

• To tackle the considered problem, we then develop two
different low-complexity algorithms. For the first algo-
rithm, which is called pricing-based algorithm, we con-
sider the related pricing problem and devise a novel
mechanism to iteratively update the pricing parameter to
obtain a good feasible solution. The second algorithm,
which is called iterative linear-relaxed algorithm, is de-
veloped by regularizing the fronthaul constraint function
into an approximated linear form and iteratively solving
the approximated optimization problem.

• For performance comparison, we also describe two ex-
isting algorithms proposed in [23] and [25] (with appro-
priate modifications due to different considered settings),
which can also solve our considered problem. We then
study the extended setting where there are multiple in-
dividual fronthaul capacity constraints. We show that it

Fig. 1. Cloud-RAN architecture.

is possible to adapt the proposed low-complexity algo-
rithms to solve the corresponding problem in this setting.
In addition, we indicate the need to introduce multiple
pricing parameters, each of which is required to deal with
one corresponding fronthaul capacity constraint in the
extended iterative linear-relaxed algorithm.

• Numerical results are presented to demonstrate the effi-
cacy of the proposed algorithms and their relative perfor-
mance compared with the optimal algorithm and existing
algorithms. We show the convergence and the impacts
of the number of users, the number of antennas, and
users’ required QoS on the network performance. Specif-
ically, while both two proposed algorithms perform re-
markably well in most cases, the pricing-based algorithm
achieves slightly better performance than the iterative
linear-relaxed algorithm at the cost of longer convergence
time. In addition, both proposed algorithms significantly
outperform the existing algorithms in [23] and [25] for all
considered simulation scenarios.

The remaining of this paper is organized as follows. We de-
scribe the system model and problem formulation in Section II.
In Section III, we present two low-complexity algorithms and
two existing algorithms. Next, we extend our proposed algo-
rithms to the setting with multiple individual fronthaul capac-
ity constraints and the multiple-input–multiple-output (MIMO)
systems where multiple data streams can be transmitted to each
user in Section IV. Numerical results are presented in Section V
followed by the conclusion in Section VI. Some preliminary
results of this paper have been published in [29] and [30].

For notation, we useXT , XH ,Tr(X), and rank(X) to denote
transpose, Hermitian transpose, trace, and rank of matrix X,
respectively. 1x×y and0x×y denote the matrix of ones and the
matrix of zeros whose dimension are x× y, respectively. |S|
denotes the cardinality of set S, and diag(x) is the diagonal
matrix constructed from the elements of vector x.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

The general architecture of Cloud-RAN under consideration,
which is shown in Fig. 1, consists of three main components:
1) CPC consisting a BBU pool; 2) the optical fronthaul trans-
port network (i.e., fronthaul links); and 3) RRH access units
with antennas located at remote sites. Specifically, the CPC
comprising a certain number of BBUs is the heart of this ar-
chitecture where BBUs act as virtual base stations that process
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baseband signals for users and optimize the network-resource-
allocation tasks. The fronthaul transport network connecting
the CPC and distributed RRHs is usually deployed by using
optical fibers. In addition, RRHs communicate with users in
the downlink via RF signals, which are formed by using the
baseband signals and the precoding vectors received from the
BBU pool.

In this paper, we consider the joint transmission design for
CoMP downlink communications in the Cloud-RAN with K
RRHs and M users. Let K and U be the sets of RRHs and users
in the network, respectively. Suppose that RRH k is equipped
with Nk antennas (k ∈ K) and each user has a single antenna.
We assume that each user is served by a specific group of
assigned RRHs, and one RRH can serve a number of users.
When RRH k is assigned to serve user u, this RRH receives
the user’s processed baseband signal from the cloud. Then,
the RRH converts and transmits the corresponding RF signal
using a suitably designed precoding vector. Moreover, denote
vk
u ∈ CNk×1 as the precoding vector at RRH k corresponding

to the signal transmitted to user u. Then, the transmission power
used by RRH k to serve user u can be expressed as

pku = vkH
u vk

u. (1)

Let (k, u) represent the communication link between RRH k
and user u. For simplicity, we assume that each user is virtually
served by all RRHs in all expressions and problem formula-
tions. However, a user is actually served by one particular RRH
if the corresponding transmission power is strictly larger than
zero. Let xu ∈ C denote the signal symbols with unit power
for user u, which are transmitted by RRHs in set K upon
receiving the processed baseband signals from the cloud. Then,
the baseband signal yu received at user u can be written as

yu =
∑

k∈K

hkH
u vk

uxu

︸ ︷︷ ︸

desired signal

+

M∑

i=1, �=u

∑

l∈K

hlH
u vl

ixi

︸ ︷︷ ︸

interference

+ηu (2)

where hk
u ∈ CNk×1 denotes the channel vector between RRH k

and user u, and ηu describes the noise at user u. Then, the
signal-to-interference-plus-noise ratio (SINR) achieved by user
u can be described as

Γu =

∣
∣
∣
∣
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i=1, �=u

∣
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∣
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∑

l∈K
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i

∣
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∣
∣

2

+ σ2

(3)

where σ2 is the noise power. In this paper, we are interested in
design the precoding to satisfy users’ QoS. This QoS constraint
of user u is expressed as

Γu ≥ γ̄u ∀u ∈ U (4)

where γ̄u denotes the target SINR of user u.
To manage the computation complexity in large networks, we

can impose additional constraints where each user u can only be
served by a set of near RRHs Ru (e.g., clustering constraints).

This set of RRHs can be determined based on the distance or
channel gain from them to each user.1 In the following, we
assume that only RRH–user communication links in predeter-
mined set L are allowed, where L = {(k, u)|u ∈ U , k ∈ Ru}.
When no such constraint exists, set L comprises all possible
MK links between K RRHs and M users. We can express the
relation between transmission power and communication link
(k, u) as follows:

pku = vkH
u vk

u = 0 if (k, u) �∈ L. (5)

Remark 1: In this paper, we assume that perfect CSI be-
tween all RRHs and users is available at the CPC. In practice,
the CSI can be estimated by the corresponding users and
RRHs and then transferred to the CPC through the fronthaul
network.2 In general, the transfer of CSI to the CPC over the
fronthaul network consumes much smaller fraction of fronthaul
capacity compared with the transfer of users’ data (i.e., I/Q
data sequences) from the cloud to the RRHs. Moreover, the
transfer of CSI can be performed periodically since the CSI
would change slowly over time, whereas the data transfer over
the fronthaul network occurs continuously. Therefore, we do
not explicitly consider the fronthaul capacity consumption due
to CSI transfer in this paper, which is left for our future work.

1) Fronthaul Capacity: Let pk = [pk1 , . . . , p
k
M ]

T
be the

transmission power vector of RRH k whose elements pku ≥ 0
represent transmission power pku given in (1). We also define

the vector p = [p1T , . . . ,pKT ]
T

to describe the transmission
power of all RRHs for all users. Recall that pku = 0 implies
that RRH k does not serve user u. In contrast, if pku > 0, the
fronthaul link from RRH k to user u is activated for carrying
the baseband signal to serve user u at its required target SINR.
Therefore, the total capacity of the fronthaul links can be
indicated by the value of vector p and the target SINR of users,
which can be written mathematically as

G(p) =
∑

k∈K

∑

u∈U

δ
(
pku

)
Rk,fh

u (6)

where δ(·) denotes the step function, and Rk,fh
u represents the

required capacity for transferring the signal of user u over the
fronthaul network to the RRH k, The required fronthaul capac-
ity Rk,fh

u depends on the actual required data rate corresponding
to the target SINR γ̄u, the specific design of Cloud-RAN, and
the specific quantization technique employed to process the
baseband signals, which are discussed in the following remark.

Remark 2: In the Cloud-RAN downlink system, the CPC
processes the baseband signals and optimizes the precoding
vectors. As described in [38] and [39], there are two strategies
to realize such design, namely “compression-after-precoding”
(CAP) and “compression-before-precoding” (CBP). In the
CAP, which is employed in [16] and [17], the CPC precodes the

1For example, each user is potentially associated with r nearest RRHs as
rth-order Voronoi tessellation [34] or RRHs with strong channel gain as in [35].

2Detailed realization of CSI channel estimation varies depending if the
time-division duplex (TDD) or frequency-division duplex (FDD) strategy is
employed. In particular, in the TDD system, RRHs perform CSI estimation;
then, they transfer the estimated CSI to the CPC.
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data streams of users with their corresponding precoding vec-
tors, then compresses the resulting signals, and finally forwards
them to the corresponding RRHs over the fronthaul network.
For the CBP, the CPC directly compresses the precoding vec-
tors and forwards the compressed precoding vectors and users’
data streams to the corresponding RRHs [38]. Then, the RRHs
precode the signals and transmit to users.

In this paper, we assume that the CBP strategy is employed,
which is motivated by its advantages for the Cloud-RAN system
with preliminary clustering [39]. In this strategy, information
streams and precoding vectors are compressed and transmitted
from the cloud to RRHs separately. The fronthaul capacity
consumed by each RRH depends on the group of users it serves,
which is given in (6). In particular, the required fronthaul
capacity to support the communication link between user u to
RRH k can be calculated as

Rk,fh
u = Rk,pr

u + Rdt
u (γ̄u) (7)

where Rdt
u (γ̄u) and Rk,pr

u correspond to the fronthaul capacity
consumption for transferring the information stream and pre-
coding vectorvk

u for user u, as given in [38, Eq. 3], respectively.
In fact, Rdt

u (γ̄u) is a function of the target SINR (e.g., it can
be expressed as Rdt

u (γ̄u) = log2(1 + γ̄u) if the capacity can
be achieved), and Rk,pr

u can be predetermined based on the
desirable quantization quality of precoding vectors. When the
precoding vectors are quantized and then employed at RRHs,
there are the quantization errors. However, if the corresponding
quantization noise is sufficiently small compared with the in-
terference and noise at receivers, the quantization errors can be
omitted, which is what to be assumed in this paper.

Note that our model allows to capture the scenario where
users demand services with different rate requirements (e.g.,
voice and video services). We are now ready to describe the
considered fronthaul-constrained power minimization (FCPM)
problem in the following.

B. Problem Formulation

We are interested in determining the set of RRHs serving
each user and the corresponding precoding vectors (i.e., {vk

u})
to minimize the total transmission power considering the con-
straints on fronthaul capacity limit, transmission power, and
users’ QoS. In addition to the SINR constraints in (4), we
also impose the constraint on total transmission power for each
RRH k as

∑

u∈U

pku = ‖pk‖1 =
∑

u∈U

vkH
u vk

u ≤ Pk ∀k ∈ K (8)

where Pk (k ∈ K) denotes the maximum power of RRH k,
and ‖x‖1 represents the ℓ1-norm of vector x. Furthermore, we
assume that the capacity of fronthaul transport network between
the cloud and all RRHs is limited, and we denote C as the
fronthaul capacity limit. Then, we have to impose the following
fronthaul capacity constraint:

G(p) =
∑

k∈K

∑

u∈U

δ
(
pku

)
Rk,fh

u ≤ C. (9)

This indeed represents the sum fronthaul capacity constraint.
We will discuss the extended setting with multiple individual
fronthaul capacity constraints in Section IV. Now, it is ready to
state the FCPM problem as follows:

(PFCPM) min
{vk

u},p
‖p‖1

s. t. constraints (1), (4), (5), (8), and (9). (10)

We will describe how to transform this problem into an ap-
propriate form, based on which we can determine its optimal
solution in the following.

1) Optimal Exhaustive Search Algorithm: The main chal-
lenge involved in solving problem PFCPM comes from the
fronthaul capacity constraint (9). Let us now define variables
aku ∈ {0, 1}, where aku = 1 if RRH k serves user u and aku = 0
otherwise. Denote a as the allocation vector [a11, . . . , a

K
M ] and

Sa as the set of all possible a. Then, the consumed fronthaul
capacity corresponding to a given vector a can be written as

G(a) =
∑

k∈K

∑

u∈U

akuR
k,fh
u . (11)

Then, we have to optimize over both integer variables a in Sa

and continuous variables {vk
u} to find the optimal solution of

the considered problem so that G(a) ≤ C. Note, however that
the number of elements in set Sa is finite. Moreover, suppose
that the values of a that satisfy constraint (9) are given, then we
only need to solve following precoding optimization problem:

(Pa) min
{vk

u}

∑

k∈K

∑

u∈U

vkH
u vk

u

s. t. constraints (4) and (8)

vkH
u vk

u = 0 if aku = 0 ∀(u, k). (12)

This problem is indeed the sum-power minimization problem
(SPMP), which can be transformed into a solvable convex
semi-definite program (SDP). This transformation is described
in Appendix A. Here, we refer to such an SPMP for given
a as a sparse PMP. It is now clear that the optimal solution
for problem PFCPM can be determined as follows. First, we
enumerate all possible a that satisfy the fronthaul capacity
constraints (9). Second, for each such feasible a, we solve the
corresponding problem (Pa) and obtain the optimal precoding
vectors and objective value. Finally, the feasible a that achieves
the minimum total transmission power together with the corre-
sponding optimal precoding vectors are the optimal solution of
problem PFCPM.

Such exhaustive search method, however, has exponentially
high complexity. This motivates us to develop low-complexity
algorithms to solve problem PFCPM, which is the focus of the
following section.

III. LOW-COMPLEXITY ALGORITHMS

Here, we describe two low-complexity algorithms with dif-
ferent levels of complexity to solve problem PFCPM. For the
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performance evaluation purposes, we also present two existing
algorithms in [23] and [25].

A. Pricing-Based Algorithm

The first low-complexity algorithm is developed by employ-
ing the penalty method to deal with the step-function fron-
thaul capacity constraint. Specifically, we consider the so-called
pricing fronthaul capacity and power minimization (PFCPM)
problem, which is given in the following:

(PPFCPM) min
{vk

u},p
‖p‖1 + qG(p)

s. t. constraints (1), (4), (5), and (8). (13)

In this problem, the consumed fronthaul capacity G(p) scaled
by a pricing parameter q is added to the objective function
of problem PFCPM, and we have removed the fronthaul ca-
pacity constraint (9). We can obtain a good feasible solution
for problem PFCPM by iteratively solving problem PPFCPM

while adaptively adjusting the pricing parameter q to satisfy the
fronthaul capacity constraint (9). We describe this procedure in
details in the following.

1) Relationship Between FCPM and PFCPM Problems: We
now establish the relationship between problems PFCPM and
PPFCPM, based on which we can develop an efficient algorithm
to solve problem PFCPM. Let GPFCPM(q) be the consumed
fronthaul capacity resulted from solving problem PPFCPM for
a given pricing parameter q. Then, it can be verified that the
optimal precoding vectors and the transmission power of prob-
lems PFCPM and PPFCPM are the same if GPFCPM(q) = C.
This fact enables us to develop an iterative algorithm to solve
problem PFCPM through tackling problem PPFCPM while ad-
justing q iteratively in attempting to attain GPFCPM(q) = C.
Our proposed algorithm is developed based on the assumption
that problem PPFCPM can be solved, which will be addressed
in the following. In the following, we establish some theoretical
results based on which we develop the mechanism to update the
pricing parameter.

Proposition 1: Let σmin be the smallest nonzero value of
|G(a)−G(a′)|, where {a, a′} ⊂ Sa, and q̄ =

∑

k∈K Pk/σmin.
We have the following.

1) GPFCPM(q) is a decreasing function of q.
2) If we increase q ≥ q̄, then GPFCPM(q) cannot be further

decreased.
3) When q ≥ q̄, if GPFCPM(q) > C, problem PFCPM is

infeasible.

Proof: The proof is given in Appendix B. �

These results form the foundation based on which we can
develop an iterative algorithm presented in Algorithm 1. In fact,
we have described how the pricing parameter q is updated over
iterations, which can be summarized as follows. At the first
iteration, q(0) is set equal to q̄ to verify the feasibility of problem
PFCPM. If GPFCPM(q̄) > C, we can conclude that problem
PFCPM is infeasible. Otherwise, we apply the bisection search
method to update q until GPFCPM(q̄) = C.

Algorithm 1 Pricing-based Algorithm for FCPM Problem

1: Solve PFCPM problem using Alg. 2 with q(0) = q̄.
2: if GPFCPM(q̄) > C then

3: Stop, the FCPM problem is infeasible.
4: else if GPFCPM(q̄) = C then

5: Stop, the solution is achieved.
6: else if GPFCPM(q̄) < C then

7: Set l = 0, q(l)U = q̄ and q
(l)
L = 0.

8: repeat

9: Set l = l + 1 and q(l) = (q
(l−1)
U + q

(l−1)
L )/2.

10: Solve PFCPM problem using Alg. 2 with q(l).
11: if GPFCPM(q(l)) > C then

12: Set q(l)U = q
(l−1)
U and q

(l)
L = q(l).

13: else if GPFCPM(q(l)) < C then

14: Set q(l)U = q(l) and q
(l)
L = q

(l−1)
L .

15: end if

16: until GPFCPM(q(l)) = C or q(l)U − q
(l)
L is too small.

17: end if

2) PFCPM Problem Solution: We now develop an efficient
algorithm to solve problem PPFCPM based on the concave
approximation of the step function. Note that the step function
makes the objective function of problem PPFCPM nonsmooth,
which is difficult to solve. To overcome this challenge, the step
function δ(x) for x ≥ 0 can be approximated by a suitable

concave function. Denote f
(k,u)
apx (pku) as the concave penalty

function that approximates the step function δ(pku) correspond-
ing to link (k, u). Then, problem PPFCPM can be approximated
by the following problem:

min
{vk

u},p

∑

k∈K

∑

u∈U

pku + q
∑

k∈K

∑

u∈U

f (k,u)
apx

(
pku

)
Rk,fh

u

s.t. constraints (1), (4), (5), and (8). (14)

The objective function of this approximated problem is concave
and the feasible region determined by all the constraints is
convex. This problem is of the following general form:

min
x

g(x) s.t. x ∈ F (15)

where g(x) is concave with respect to x, and F is the corre-
sponding feasible region. This problem can be solved by the
standard gradient method as follows. We start with an initial
solution x(0) ∈ F and then iteratively update its solution as

x(n+1) = argmin
x

g
(

x(n)
)

+∇g
(

x(n)
)(

x− x(n)
)

s.t. x ∈ F . (16)

In particular, x(n+1) needs to be determined from the following
problem:

min
x

∇g
(

x(n)
)

x s.t. x ∈ F . (17)

Return to our problem, and let x represent the precoding
vectors and power, and g(x) denote the objective function of
problem (14). Then, we have ∇g(x)x =

∑

(k,u)∈L(1 +

q∇fapx(p
k
u)R

k,fh
u )pku. By applying the gradient method, we can
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solve problem (14) by iteratively solving the following problem
until convergence:

min
{vk

u}

∑

k∈K

∑

u∈U

αk(n)
u vkH

u vk
u

s. t. constraints (4), (5), and (8) (18)

where

αk(n)
u = 1 + q∇f (k,u)

apx

(
pku

)
Rk,fh

u . (19)

Problem (18) is a weighted SPMP, which can be transformed
into the convex SDP as presented in Appendix A.

3) Algorithm Design: The algorithm to solve (14) is given
in Algorithm 2. We have the following proposition that states
the convergence property of Algorithm 2.

Algorithm 2 SDP-Based Algorithm for PFCPM Problem

1: Initialization: Set n = 0, and α
k(0)
u = 1 for all RRH–user

links (k, u).
2: Iteration n:

a. Solve problem (18) with {α
k(n−1)
u } to obtain

(p(n), {vk
u}

(n)).

b. Update {αk(n)
u } as in (19).

3: Set n := n+ 1, and go back to Step 2 until convergence.

Proposition 2: Algorithm 2 converges to a local optimal
solution of problem (14).

Proof: The proof is given in Appendix C. �

Algorithm 1, which is proposed to solve problem PFCPM

is based on the solution of problem PPFCPM, which can be
obtained by using Algorithm 2.

B. Iterative Linear-Relaxed Algorithm

Here, we propose an iterative linear-relaxed algorithm to di-
rectly deal with the step-function fronthaul capacity constraint.
Toward this end, we first propose to approximate the step-
function by an approximation function. By doing so, the non-
continuous constraint with step functions becomes a continuous
but still nonconvex one. To convexify the obtained problem, the
nonconvex approximated constraint function is further relaxed
to a linear form by using the concave duality method [32]. The
linear-relaxed constraint function can be made sufficiently close
to the original nonconvex function by iteratively updating its
parameters. First, problem PFCPM can be approximated by the
following problem:

min
{vk

u
},p

‖p‖1 (20)

s. t. constraints (1), (4), (5), and (8)

∑

k∈K

∑

u∈U

f (k,u)
apx

(
pku

)
Rk,fh

u ≤ C. (21)

As mentioned earlier, the function f
(k,u)
apx (pku) is concave with

respect to pku; hence, the constraint (21) is indeed nonconvex.
Hence, we approximate it by the corresponding linear form
based on the duality properties of conjugate of convex functions
[32] as follows. First, it can be verified that the function
f
(k,u)
apx (pku) can be rewritten by using its concave duality as

f (k,u)
apx

(
pku

)
= inf

zk
u

[

zkup
k
u − f (k,u)∗

apx

(
zku
)]

(22)

where f
(k,u)∗
apx (z) is the conjugate function of f (k,u)

apx (w), which
can be expressed as

f (k,u)∗
apx (z) = inf

w

[

zw − f (k,u)
apx (w)

]

. (23)

According to [32], function f (k,u)∗
apx (z) can be determined by the

optimal value of w obtained from the right-hand side of (23) for
a given z. After substituting the results of (23) into (22), it can
be verified that the optimization problem in the right-hand side
of (22) achieves its minimum at

ẑku = ∇f (k,u)
apx (w)

∣
∣
∣
w=pk

u

. (24)

With the representation of f (k,u)
apx (pku) as in (22), the constraints

(9) can be rewritten in a linear form for a given {ẑku} as
∑

k∈K

∑

u∈U

ẑkuR
k,fh
u pku ≤ C +

∑

k∈K

∑

u∈U

Rk,fh
u f (k,u)∗

apx

(
ẑku

)
. (25)

In summary, for a given value of {ẑku}, the problem in (20) and
(21) can be reformulated to

min
{vk

u}

∑

k∈K

∑

u∈U

vkH
u vk

u (26)

s. t. constraints (4), (5), (8),
∑

k∈K

∑

u∈U

ẑkuR
k,fh
u vkH

u vk
u≤C+

∑

k∈K

∑

u∈U

Rk,fh
u f (k,u)∗

apx

(
ẑku

)
.

(27)

Now, the problem in (26) and (27) is the well-known SPMP,
which can be solved by transforming it into the SDP, which
is described in Appendix A where the additional constraint
(27) can be rewritten as (55), shown in Appendix A below. In
summary, we can fulfill our design objectives by updating {ẑku}
iteratively, based on which we repeatedly solve the precoding
problem in (26) and (27). This complete procedure is described
in Algorithm 3 whose properties are stated in the following
proposition.

Algorithm 3 Iterative Linear-Relaxed Algorithm

1: Start with a feasible solution.
2: Set l = 0.
3: repeat

4: Calculate {ẑk,(l)u } as in (24) for all (k, u).

5: Solve problem (26), (27) with {ẑ
k,(l)
u }.

6: Update l = l + 1.
7: until Convergence.
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TABLE I
STEP FUNCTION APPROXIMATION

Proposition 3: Algorithm 3 has the following properties.

1) If the FCPM problem is feasible, Algorithm 3 converges.
2) The feasible solution achieved by Algorithm 3 at con-

vergence satisfies all constraints of the problem in (20)
and (21).

Proof: The proof is given in Appendix D. �

Remark 3: Some careful study of ẑku given in (24) yields

f
(k,u)
apx (pku) = ẑkup

k
u − f

(k,u)∗
apx (ẑku), which can be considered

the first-order approximation (first-order Taylor expansion) of
f
(k,u)
apx (w) at w = pku. In this paper, we prefer using the conju-

gate function concept in approximating the concave function.
This is because the property of the conjugate function, i.e.,
f
(k,u)
apx (w) ≤ zw − f

(k,u)∗
apx (z) for all z, enables us to prove the

convergence of Algorithm 3, which is stated in Proposition 3.

C. Adjusting Precoding and Power Solution

After running Algorithms 1 and 3, the obtained solution may
have several small but nonzero power elements in the power
vector p∗. Since the approximation function is smooth, there
may be significant difference between C(p∗) and

∑

k∈K

∑

u∈M

Rk,fh
u f

(k,u)
apx (pk∗u ). To address this problem, we force the power

value and precoding vector to zero for any link (k, u) as follows:

pk∗u = 0 if f (k,u)
apx

(
pk∗u

)
<

1
2
. (28)

We will show how to design the approximation function so that
this adjustment only results in tolerable performance degrada-
tion in the following.

D. Design of Approximation Function

Here, we discuss the design of an approximation function that
is employed to approximate the step function in the fronthaul
capacity constraint. Let us denote p∗ as the transmission vector
achieved by any of our proposed algorithms at convergence. It
can be verified that we have

∑

k∈K

∑

u∈M Rk,fh
u f

(k,u)
apx (pk∗u ) =

C and the SINR of any user u satisfies Γ∗
u = γ̄u.

First, we want the value of the approximation function to be
close to one for large power values so that it well approximates
the step function. Specifically, it is required that

f (k,u)
apx (Pk) = 1. (29)

In addition, we would like the adjusting procedure described
earlier to result in the deviation of at most ǫ for the achieved
SINR of any user. Let Γ∗

u|pk∗

u =0 denote the SINR achieved by
user u after we apply the adjustment procedure given in (28) for
the obtained power vector p∗. Then, the results in the following
proposition provide the guideline to achieve this design goal.

Proposition 4: If the approximation concave function satis-
fies the following condition:

f (k,u)
apx

(
ǫβk

u

)
≥

1
2

(30)

where βk
u = γ̄uσ

2/|hk
u|

2, then we have

γ̄u − Γ∗
u|pk∗

u =0

γ̄u
< ǫ. (31)

Proof: The proof is given in Appendix E. �

We provide an example of an exponential approximation
function and the required conditions on its parameters in Table I.
Note that other choice of the approximation functions is possible
as long as it satisfies the conditions stated in Proposition 4.

E. Complexity Analysis

The complexity of the exhaustive search and our proposed
algorithms are now investigated based on the number of re-
quired computations. As can be observed, all these algorithms
require us to solve SPMPs several times (i.e., Pa for exhaustive
search algorithm, (18) for the pricing-based algorithm, and
(26) for the linear-relaxed algorithm) by transferring them into
the SDP problems as described in Appendix A. Hence, we
first study the complexity of the SDP program corresponding
to each algorithm. We assume that all RRHs are equipped
with the same number of antennas N , and we consider the
worst case where each UE can be served by all RRHs in the
network. Then, the numbers of variables of all SDP problems
are the same, which is equal to MNK . On other hand, the
numbers of constraints of (Pa) and (18) are M +K , whereas
the corresponding number of (26) is M +K + 1. As given in
[33], the computational complexity involved in solving the SDP
is O(max(m,n)4n1/2 log(ζ−1

SDP)) where n is the number of
variables, m is the number of constraints, and ζSDP represents
the solution accuracy. In practice, the number of users is greater
than that of RRHs, and they are larger than 1, i.e., M > K > 1;
hence, we have MNK > M +K + 1. Thus, we can express
the complexity of solving problem (Pa), (18), and (26) as

XSDP = O
(
Π4.5 log

(
ζ−1
SDP

))
(32)

where Π = MNK . The complexity of the exhaustive search
algorithm and our proposed algorithms can be calculated based
on the number of iterations and XSDP as follows. First, let
us define Rfh

min = minu∈U Rk,fh
u and C̄ = C/Rfh

min. Then, the
number of possible a (i.e., the number of elements of set Sa)
is upper bounded by

(
MK
C̄

)
. Hence, the complexity of the

exhaustive search method can be expressed as

Xexh=

(
MK

C̄

)

×XSDP=O

((
MK

C̄

)

Π4.5 log
(
ζ−1
SDP

)
)

. (33)
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We now quantify the complexity of solving the FCPM problem
using Algorithm 1, which is adopted in Algorithm 2. Note that,
in each iteration of Algorithm 2, problem (18) is solved with
certain values of {αk

u} and q. For a given value of q, the number
of iterations for solving PFCPM problem is O(ζ−2

2 ) because the
gradient method is applied [42], where ζ2 represents the solu-
tion accuracy of Algorithm 1. In addition, using the bisection
searching method, the value of q is typically determined after
O(log(q̄ζ−1

1 )) searching steps where ζ1 denotes the solution
accuracy of Algorithm 1. Hence, the complexity of Algorithm 1
can be calculated as

XPBA =O
(
ζ−2
2

)
×O

(

log

(
q̄

ζ1

))

×XSDP

=O
(
Π4.5ζ−2

2 log
(
ζ−1
SDP

)
log

(
q̄ζ−1

1

))
. (34)

Finally, if we let ILRA be the number of iterations required in
Algorithm 3 to solve the FCPM problem, the complexity of the
Algorithm 3 can be given as

XLRA = ILRA ×XSDP = O
(
ILRAΠ

4.5 log
(
ζ−1
SDP

))
. (35)

As illustrated in the numerical results, Algorithm 3 converges
very fast after around ten iterations for the small system and
30 iterations for the large system. Hence, Algorithm 3 is less
complex than Algorithm 1. Moreover, this complexity study
also shows that the complexities of our proposed algorithms are
much lower than that of the exhaustive searching method.

F. Existing Algorithms

We present two existing algorithms in [23] and [25] to
evaluate the relative performance of our proposed algorithms
in Section V. These works also attempt to determine the set
of RRH–user links for each user, although their considered
problems are different from ours. Therefore, these existing
algorithms are modified so that they can be applied to solve
our considered problem. This is described in the following.

1) Zhao, Quek, and Lei Algorithm [23]: We first describe
the greedy algorithm proposed by Zhao, Quek, and Lei (ZQL),
which is called iterative link removal algorithm in [23]. In this
paper, the authors aim to minimize the number of active BS–
user links (i.e., fronthaul capacity minimization) subject to the
constraints on BSs’ maximum transmission power and users’
target SINRs. This greedy iterative algorithm works as follows.
In each iteration, the power-minimization precoding problem
with a specific set of active BS–user links is solved where
the authors allow all possible BS–user links initially. If this
problem is feasible (i.e., all power and QoS constraints can
be supported), then the active BS–user links are sorted in the
increasing order of their required transmission power. Then,
the set of removed BS–user links is updated before the whole
procedure is repeated in the next iteration.

If the power-minimization precoding problem is not feasible
in a particular iteration, then the number of removed BS–user
links is reduced compared to that in the previous iteration.
Otherwise, we increase the number of removed BS–user links.
These updates for the number of removed BS–user links follow
the bisection method. This iterative procedure is repeated until

the largest number of removed BS–user links can be determined
while all constraints can still be maintained.

This greedy link removal principle can be applied to solve
our problem as follows. We initially solve the precoding prob-
lem for power minimization where all possible RRH–user links
are allowed. Then, the required power values of all RRH–user
links are sorted in increasing order based on which we re-
move the minimum number of links with the lowest power to
maintain the fronthaul capacity constraint. Finally, we solve
the precoding problem again to determine the precoding and
power-allocation solution.

2) Dai and Yu Algorithm [25]: The second algorithm is
proposed by Dai and Yu (DY) [25], where the authors consider
the sum-rate maximization problem subject to the constraints
on RRHs’ transmission power and fronthaul capacity similar
to (38). The main idea of this algorithm is to approximate the
step function in the fronthaul constraint by a simple function
and solve the corresponding optimization problem iteratively.
Specifically, the fronthaul capacity constraint is approximated
as follows [25]:

∑

k∈K

∑

u∈U

βk
uR

k,fh
u pku ≤ C (36)

where βk
u is a parameter associated with the link between RRH

k and user u, which is updated iteratively as

βk
u =

1
pku + τ

(37)

where τ is a small number.
This approximation can be employed to solve our problem

by iteratively solving the problem in (26) and (27), where
the fronthaul capacity constraint is approximated by (36). The
limitation of this approximation is that convergence cannot be
established. In addition, we will show later in Section V that
our proposed algorithms achieve better performance than this
algorithm in all investigated simulation settings.

IV. FURTHER EXTENSION

A. Individual Fronthaul Capacity Constraints

Here, we discuss the extension of the considered CoMP
transmission design where there are multiple individual fron-
thaul capacity constraints. In particular, each of these con-
straints captures the limited capacity of one particular fronthaul
link between the CPC and the corresponding RRH. In this sce-
nario, we have to replace the sum fronthaul capacity constraint
(9) with the following set of constraints:

Gk(p
k) =

∑

u∈M

Rk,fh
u δ

(
pk∗u

)
≤ Ck ∀k ∈ K (38)

where Ck denotes the capacity limit corresponding to the fron-
thaul link of RRH k. Then, we have the following individual
fronthaul constraint power minimization (IFCPM) problem:

(PIFCPM) min
{vk

u},p
‖p‖1

s. t. constraints (1), (4), (5), (8), and (38). (39)
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Obviously, problem PIFCPM is more challenging to address
than problem PFCPM. However, we show in the following
that the same design principles adopted earlier can be em-
ployed to develop low-complexity algorithms in this scenario
as well.

1) Pricing-Based Algorithm: To address multiple fronthaul
capacity constraints in this case, we have to consider the pricing
problem with multiple corresponding pricing parameters qk
whose objective is given as follows:

min
{vk

u
},p

‖p‖1 +
∑

k∈K

qkGk(p
k). (40)

For given pricing parameters qk, k ∈ K, the pricing problem
can also be transformed into the convex SDP form, based
on which we can determine the precoding vectors. The key
challenge is how to iteratively adjust the pricing parameters qk
to satisfy all fronthaul capacity constraints. This procedure has
been presented in our previous conference work [29], which is
omitted here due to the space constraint.

2) Iterative Linear-Relaxed Algorithm: We can apply the
same linearization technique to the sum fronthaul capacity
constraint in Section III-B to deal with each fronthaul capacity
constraint in (38) for problem PIFCPM. In particular, these
constraints can be relaxed into the following form:

∑

u∈U

ẑkuR
k,fh
u vkH

u vk
u ≤ Ck +

∑

u∈U

Rk,fh
u f (k,u)∗

apx (ẑku) ∀k ∈ K.

(41)

Then, these constraints can be transformed into the convex SDP
form as in (56), shown in Appendix A below.

B. MIMO Systems With Multi-stream Communications

We now discuss how our proposed algorithms for multiple-
input–single-output (MISO) systems can be extended for the
MIMO systems where multiple data streams can be transmitted
to each user. Let us consider a multi-stream communication
setting where user u is equipped with Tu antennas and Du data
streams are transmitted to each user u, where Du ≤ min (Tu,
mink∈K Nk). Denote xu = [xu,1xu,2, . . . , xu,Du

]T ∈ CDu×1

as the vector describing Du data streams for user u, where
E{xux

H
u } = IDu×Du

. Moreover, let Vk
u = [vk

u,1v
k
u,2, . . . ,

vk
u,Du

] ∈ CNk×Du denote the precoding matrix at RRH k cor-
responding to the signal transmitted to user u as in [40], Uu =
[uu,1uu,2, . . . ,uu,Du

] ∈ CTu×Du be the decoding matrix of
user u, and Hk

u ∈ CTu×Nk be the channel matrix between RRH
k and user u. Then, the baseband signal yu received at user u
can be written as

yu = UH
u

(
∑

i∈U

∑

l∈K

Hl
uV

l
ixi + Ξu

)

(42)

where Ξu ∈ CTu×1 denotes the additive noise vector, and
E{ΞuΞ

H
u } = σ2ITu×Tu

. Then, the received baseband signal for

stream m of user u can be expressed as

yu,m =
∑

k∈K

Du∑

t=1

uH
u,mHk

uv
k
u,txu,t

+
M∑

i=1, �=u

∑

l∈K

Mi∑

t=1

uH
u,mHl

uv
l
i,txi,t + uH

u,mΞu. (43)

Moreover, the SINR of stream m of user u can be given as

Γu,m =

∣
∣
∣
∣

∑

k∈K

uH
u,mHk

uv
k
u,m

∣
∣
∣
∣

2

∑

(i,t) �=(u,m)

∣
∣
∣
∣

∑

l∈K

uH
u,mHl

uv
l
i,t

∣
∣
∣
∣

2

+ σ2|uu,m|2
. (44)

Assume that each data stream m of every user u has a QoS
requirement, which is represented by target SINR γu,m. Our
design problem for the MIMO system with multi-stream com-
munications (PMIMO) can be written as

min
{Vk

u},{Uu}

∑

∀(k,u)

Tr
(
VkH

u Vk
u

)
(45)

s. t.
∑

u∈U

Tr
(
VkH

u Vk
u

)
≤ Pk ∀k (46)

Γu,m ≥ γ̄u,m ∀(u,m) (47)

Tr
(
VkH

u Vk
u

)
= 0 if (k, u) �∈ L (48)

∑

∀(k,u,m)

δ
(
vkH
u,mvk

u,m

)
Rk,fh

u,m ≤ C (49)

where these constraints capture the power limitation of RRHs,
the QoS requirement of each data stream, the clustering con-
straint, and the limited fronthaul capacity, respectively. Here,
Rk,fh

u,m represents the required fronthaul capacity of RRH k for
transmitting the precoding vector and data stream m of user u.
As described in [41], for a given fixed precoding matrix, the
optimal decoding matrix based on the minimum-mean-square-
error criterion can be expressed as follows:

U⋆
u=

(
∑

i∈U

∑

l∈K

Hl
uV

l
iV

lH
i HlH

u +σ2ITu×Tu

)−1

Hk
uV

k
u. (50)

Then, if Uu is given, we can treat each user u as Du virtual
users {u1, u2, . . . , uDu

}. Specifically, each virtual user um

(m ∈ {1, 2, . . . , Du}) receives a single data stream represented
by data symbol xu,m, the virtual channel vector between RRH
k and user um can be expressed as hk

u,m = HkH
u uu,m, and the

power noise σ2
u,m = σ2|uu,m|2. Therefore, the multistream de-

sign problem can be reformulated by the corresponding virtual
single-stream one. Consequently, our proposed algorithms for
the single-stream MISO setting can be applied to determine the
precoding matrices for this multi-stream MIMO system. Based
on these results, we can easily develop an iterative algorithm,
which is similar to the one in [41], to solve the multi-stream
problem where we alternatively determine the precoding matri-
ces and decoding matrices in each iteration.
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Fig. 2. Network simulation setting. (a) Small network. (b) Large network.

Algorithm 4 MIMO Fronthaul Constraint Algorithm

1: Start with any value of U(0)
u for all u ∈ U .

2: Set l = 0.
3: repeat

4: Use our proposed algorithm (Algorithm 1 or 3) to find
the precoding matrices Vk,(l)

u by determining each pre-
coding vector vk,(l)

u,m .

5: Update the decoding matrices U
(l+1)
u as in (50) for all

u ∈ U .
6: Update l = l+ 1.
7:until Convergence.

V. NUMERICAL RESULTS

We present numerical results to illustrate the performance
achieved by our proposed algorithms. To obtain all numerical
results for our proposed algorithms, we employ the exponential
approximation function given in Table I. To demonstrate the
effectiveness of our design, we consider a small network simu-
lation setting as shown in Fig. 2(a), which allows us to obtain
the global optimal solution based on exhaustive search. We then
further study the network performance for a larger network set-
ting shown in Fig. 2(b). For ease of exposition, we will present
all results using normalized fronthaul capacity, which is defined
as C̄ = C/Rfh

min, where Rfh
min = minu∈U Rk,fh

u . Furthermore,
the initial solution for our iterative linear-relaxed algorithm and
DY algorithm [25] is obtained by running Algorithm 2 with the
pricing parameter q̄.

Unless stated otherwise, the following parameter and simu-
lation setup are adopted for both network settings. The channel
gains are generated by considering both Rayleigh fading and
path loss, which is modeled as Lk

u = 36.8 log10(d
k
u) + 43.8 +

20 log10(fc/5), where dku is the distance from user u to RRH k;
fc = 2.5 GHz. The noise power is set equal to σ2 = 10−13 W.
We set other parameters as follows: ǫ = 10−6, τ = 10−8, RRH
power Pk = 3 W for all k ∈ K, and the number of antennas of
each RRH is equal to 4, except for the results in Fig. 6. We
denote our proposed algorithms and two existing algorithms as
“Pricing-Based Alg.,” “Iterative Linear-Relaxed Alg.,” “ZQL
Alg.” [23], and “DY Alg.” [25], respectively, in relevant figures.

A. Small Network Simulation Setting

We consider three RRHs in this setting where the distance
between their centers is equal to 500 m. Users are randomly
placed inside a circle at the center of three RRHs, whose radius

Fig. 3. Variations of total power under three algorithms.

Fig. 4. Total power versus number of users in a small network.

is 125 m. First, we examine the convergence of our proposed
algorithms and DY algorithm in Fig. 3. Three different curves
represent the variations of total transmission power due to the
pricing-based algorithm, the iterative linear-relaxed algorithm,
and the DY algorithm, respectively. To obtain these simulation
results, we set the number of users equal to 7 (M = 7), and user
target SINR γ̄u = 0 dB for all u ∈ M. It can be observed that
all algorithms converge, although the iterative linear-relaxed
algorithm is the fastest and the pricing-based algorithm is
the slowest but achieves the lowest transmission power. This
figure also illustrates that the DY algorithm converges after
20 iterations; however, the transmission power achieved by this
algorithm is much higher than those achieved by ours.

In Fig. 4, we show the total transmission power of all RRHs
achieved by the exhaustive searching method, our proposed
algorithms, and two reference algorithms, versus the number
of users where the user target SINR is γ̄u = 0 dB. As can be
seen, our proposed algorithms result in lower total transmission
power compared to DY and ZQL algorithms. Moreover, the
pricing-based algorithm is slightly better than the iterative
linear-relaxed algorithm, and both proposed algorithms require
marginally higher total transmission power than that due to
the optimal exhaustive search algorithm. In addition, the DY
algorithm outperforms the ZQL algorithm, but these existing
algorithms demand considerably higher power compared with
our algorithms. Moreover, this figure shows that the total
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Fig. 5. Total power versus user target SINR in a small network.

Fig. 6. Total power versus number of antennas per RRH in a small network.

transmission power increases as the number of users becomes
larger under all algorithms, as expected.

Figs. 5 and 6 shows the variations of total transmission power
versus user target SINR and the number of antennas per RRH
for M = 7, respectively. The target SINR of all users for the
scheme in Fig. 6 is set as γ̄u = 0 dB. As expected, larger
power is needed as users require a higher target SINR, and a
larger number of equipped antennas result in reduction of total
transmission power due to the increasing network degrees of
freedom. In addition, our proposed algorithms can achieve the
total transmission power that is close to that obtained by the
exhaustive search method. Moreover, as can be observed, these
figures also confirm the superiority of the proposed algorithms
compared to the reference algorithms. Once again, the pricing-
based algorithm slightly outperforms the iterative linear-relaxed
algorithm.

B. Large Network Simulation Setting

We now study the performance of the proposed algorithms
for the large network simulation setting where there are ten
hexagonal cells (K = 10) and the distance between the centers
of two nearest RRHs is 500 m. In this setting, three users are
randomly placed inside each cell so that the distance between
each of them and their nearest RRH is either 250 or 125 m.
Overall, we generate 30 users (M = 30) in this network, and

Fig. 7. Variations of utilized fronthaul capacity due to Algorithms 1 and 3 and
DY Algorithm over iterations.

Fig. 8. Total power versus total fronthaul capacity.

we set γ̄u = 0 dB for all users, except for the simulation in
Fig. 9. Fig. 7 shows the convergence of two proposed algo-
rithms and DY algorithm where it confirms that our proposed
algorithms also perform as expected in this large network
setting. Moreover, the pricing-based algorithm requires more
convergence time compared with the iterative linear-relaxed
algorithm and DY algorithm, although the former achieves
smaller transmission power than the latter. Once again, the
iterative linear-relaxed algorithm converges faster than the DY
algorithm.

Figs. 8 and 9 show the total transmission power versus the
normalized fronthaul capacity and users’ target SINR, respec-
tively. Our proposed algorithms again outperform the other ex-
isting algorithms. The iterative linear-relaxed algorithm results
in the total transmission power, which is slightly higher than
that due to the pricing-based algorithm. Moreover, as shown
in Fig. 8, the performance gap between these algorithms are
more significant if the available fronthaul capacity is smaller.
Furthermore, the three algorithms, except the ZQL algorithm,
achieve similar performance for sufficiently large fronthaul
capacity or small target SINR values.

In Fig. 10, we present the variations of total transmission
power versus the cluster size. Here, the cluster size is equal to
the number of nearest RRHs, which are allowed to serve each
user. Specifically, the cluster size of m means that each user can
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Fig. 9. Total power versus user target SINR.

Fig. 10. Total power versus cluster size.

be served by, at most, m nearest RRHs. In this simulation, we
set C̄ = 70 and the target SINR γ̄ = 0 dB. As can be seen, the
larger cluster size results in the lower total transmission power.
However, total transmission power achieved by all algorithms
become flat as the cluster size is sufficiently large. These results
imply that activating weak links between users and RRHs
does not significantly improve the network performance. This
figure again confirms that our proposed algorithms significantly
outperform other existing algorithms, and the pricing-based al-
gorithm is slightly better than iterative linear-relaxed algorithm.

C. Individual Fronthaul Capacity Constraints

Fig. 11 shows variations of total transmission power achieved
by our proposed algorithms and two reference algorithms as
there are multiple individual fronthaul capacity constraints.
In this simulation, we keep the normalized fronthaul capacity
C̄k = 8 for all k > 2 while varying the normalized capacity of
fronthaul links corresponding RRHs 1 and 2, which is denoted
C̄1−2 (i.e., C̄1 = C̄2 = C̄1−2). Again, the individual normalized
fronthaul capacity is defined as C̄k = Ck/R

fh
min. In fact, if we

set C̄1−2 = 0, then RRHs 1 and 2 are turned off, which cannot
serve any user in the network. As can be observed, the total
transmission power decreases with the increase in C̄1−2, which
shows a similar trend as in Fig. 8. Interestingly, all users in
cells 1 and 2 can still be supported at their target SINR by run-
ning pricing-based, iterative linear-relaxed, and DY algorithms,

Fig. 11. Total power versus fronthaul capacity per RRH 1/2.

Fig. 12. Total power versus the number of data streams per user.

even when RRHs 1 and 2 are turned off, which is not the case
with the ZQL algorithm. Overall, our proposed algorithms still
outperform the two existing algorithms.

D. MIMO Systems With Multi-stream Communications

For this simulation, we consider the large network, but we
allocate only two users in each cell to ensure the feasibility of
the network. Each RRH is equipped with eight antennas and
each user has four antennas. The total normalized fronthaul
capacity is set at 100, and the target SINR for each stream is
0 dB. Fig. 12 shows the total transmission power of all RRHs
versus the number of data streams for each users. As shown,
the proposed algorithms still work well for the MIMO multi-
stream and achieve better solution than that of the algorithm in
the literature. Interestingly, the higher number of streams per
user requires the higher transmission power of all RRHs.

VI. CONCLUSION

We have proposed efficient and low-complexity algorithms to
solve the downlink joint transmission problem in Cloud-RAN
that aims to minimize the total transmission power subject to
constraints on transmission power, fronthaul capacity, and users’
QoS. We have considered both scenarios with sum and individ-
ual fronthaul capacity constraints. Numerical results have illus-
trated the efficacy of our proposed algorithms and the impacts
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of different parameters on the network performance. In partic-
ular, the pricing-based and iterative linear-relaxed algorithms
achieve the performance very close to that due to the optimal
exhaustive search. In addition, our proposed algorithms signifi-
cantly outperform two existing algorithms proposed in [23] and
[25] in all investigated scenarios. There are still several interest-
ing directions for future study. First, joint design and optimiza-
tion of CoMP techniques and fronthaul signal compression is
an interesting problem. Furthermore, consideration of CoMP
design, CSI estimation, and feedback deserves further effort.

APPENDIX A
WEIGHTED SUM-POWER MINIMIZATION SOLUTION

Denote Ku as the set of RRHs serving user u, i.e.,
Ku = {k|(k, u) ∈ L}. Let vu denote the precoding solu-
tion over all RRHs in Ku, which is defined as vu =

[vu1T
u ,vu2T

u , . . . ,v
uau

T
u ]

T
, where {u1, . . . , uau

} = Ku, and
au = |Ku|. Therefore, we have vu ∈ CNu×1, where Nu =
∑

k∈Ku
Nk. Here, we are interested in determining vu because

we have vi
u = 0 for all i �∈ Ku (i.e., the precoding vector of any

RRH that does not serve the underlying user is equal to zero).
Let us define Wu = vuv

H
u , we have Wu ∈ CNu×Nu . It is

positive semi-definite (Wu � 0) and has rank one because it is
generated from vector vu. We also define the channel vector

hu,i = [hi1T
u ,hi2T

u , . . . ,h
iai

T
u ]

T
and Hu,i = hu,ih

H
u,i for all

u, i ∈ U . Then, the SINR constraint for user u in (4) and the
power constraint for RRHs can be rewritten as

Tr(Hu,uWu)−γ̄u
∑

i∈U/u

Tr(Hu,iWi) ≥ γ̄uσ
2 ∀u∈U (51)

∑

u∈U

Tr
(
Ek

uWu

)
≤Pk ∀k ∈ K (52)

whereEk
u=diag(0Nu1

×1, . . . ,1Nui
×1, . . . ,0Nuau

×1) ifui=k.
Therefore, the weighted sum-power minimization can be for-
mulated as the following SDP problem:

min
{Wu}

M

u=1

M∑

u=1

Tr(FuWu) (53)

s.t. constraints (51), (52)
Wu � 0, rank(Wu) = 1 ∀u (54)

where Fu = diag(α
u1(n)
u 1Nu1

×1, . . . , α
uau

(n)
u 1Nuau

×1). This
transformation reveals a special structure of the precoding
design problem. Specifically, if we remove the rank-one con-
straints in (54) from (53), then the new problem is convex.
In fact, this relaxed problem is the convex SDP, which can be
therefore solved easily by using standard tools such as the CVX
solver [31]. As given in [21, Th. 3.1] and [36, Lemma 2], if (53)
is feasible, then it has at least one solution, where rank(Wu)=1
for all u ∈ U .

Because the relaxed SDP problem is convex, vu can be
calculated as the eigenvector of Wu if the optimum solution
is unique. Such a unique optimum solution satisfies the rank-
one constraint. As discussed in [21] and [36], the relaxed SDP
may have more than one optimum solution, which means that
the CVX solver cannot ensure to return the rank-one solution in

general. However, this situation almost surely never happens in
practice, except for cases where the channels from two groups
are exactly symmetric. Nevertheless, if the algorithm does
produce one of these solutions where Wu does not have rank
one, we can still obtain a rank-one optimum solution from that
solution by using the method described in [36, Lemma 5], by
applying the solution method for solving the rank-constrained
problem presented in [37, Alg. 2], or by utilizing the best rank-
one approximation based on the largest eigenvalue and the
corresponding eigenvector, as discussed in [33, Sec. II].

In addition, this SDP-based transformation can be applied
to solve the problem (26), (27), and (39), where the additional
linear-relaxed fronthaul constraints (27) and (41) can also be
rewritten, respectively, into the SDP form as follows:

∑

u∈U

Rk,fh
u Tr(ZuWu) ≤ C +

∑

k∈K

∑

u∈U

Rk,fh
u f (k,u)∗

apx

(
ẑku
)

(55)

∑

u∈U

Rk,fh
u Tr

(
Zk
uWu

)
≤ Ck +

∑

u∈U

Rk,fh
u f (k,u)∗

apx

(
ẑku
)

(56)

where Zu = diag(zu1

u 1Nu1
×1, . . . , z

uau

u 1Nuau
×1), and Zk

u =

diag(0Nu1
×1, . . . , z

ui

u 1Nui
×1, . . . ,0Nuau

×1) if ui = k.

APPENDIX B
PROOF OF PROPOSITION 1

A. Proof of Statement 1

Let us consider two values of the pricing parameter q and q′,
where q′ > q. Let (p, {vk

u}) and (p′, {vk′
u }) be the solutions of

the PFCPM problem with q and q′, respectively. Then, we have

∑

∀(u,j)

pju + qGPFCPM(q) ≤
∑

∀(u,j)

pj′u + qGPFCPM(q′) (57)

∑

∀(u,j)

pj′u + q′GPFCPM(q′) ≤
∑

∀(u,j)

pju + q′GPFCPM(q). (58)

After combining and simplifying these two inequalities, we
have (q′ − q)GPFCPM(q′) ≤ (q′ − q)GPFCPM(q). Therefore,
we have finished the proof for the first statement.

B. Proof of Statement 2

We prove that, for any (p, {vk
u}) satisfying constraints (1),

(4), and (8), we always have G(p) ≥ GPFCPM(q) if q ≥ q̄. Let
P opt(q) be the total power of the PFCPM problem correspond-
ing to q. Because (p, {vk

u}) satisfy constraints (1), (4), and (8),
we have

P opt(q) + qGPFCPM(q) ≤
∑

(k,u)∈L

pku + qG(p) (59)

→ GPFCPM(q)−G(p) ≤

∑

(k,u)∈L

pku − P opt(q)

q
<

∑

k∈K

Pk

q̄
.

(60)

Thus, we have GPFCPM(q)−G(p) < σmin if q ≥ q̄. Based
on the definition of σmin, we must have that G(p) cannot be
smaller than GPFCPM(q).
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C. Proof of Statement 3

From the proof of statement 2, we can see that there exists no
(p, {vk

u}) satisfying constraints (1), (8), and (4) so that G(p) ≤
C < GPFCPM(q). Hence, the last statement of Proposition 1 is
proved.

APPENDIX C
PROOF OF PROPOSITION 2

To prove the convergence of Algorithm 2, we will prove that
the value of the objective function of problem (14) (which is
represented by g(x)) decreases after each step of Algorithm 2.
For any vector x representing all precoding vectors and power,
the following inequality holds because of the concavity of
function g(x)

g(x) ≤ g
(

x(n)
)

+∇g
(

x(n)
)(

x− x(n)
)

. (61)

In addition, the solution achieved in the (n+ 1)th iteration is

x(n+1) = argmin∇g(x(n))x s.t. constraints (4), (5), (8).

Hence, we have ∇g(x(n)x(n+1) ≤ ∇g(x(n))x(n). Substituting
x(n+1) into the inequality (61) yields

g
(

x(n+1)
)

≤ g
(

x(n)
)

+∇g
(

x(n)
)(

x(n+1) − x(n)
)

≤ g
(

x(n)
)

.

(62)

Thus, the objective function of problem (14) corresponding to
the solution in each iteration of Algorithm 2 is monotonically
decreasing. Therefore, Algorithm 2 must converge to a local
optimum point.

APPENDIX D
PROOF OF PROPOSITION 3

A. Proof of Statement 1

Denote Ωl as the optimum objective value of problem (26)
and (27) in iteration l, which is obtained after performing
steps 8–12. We will prove that Ωl decreases over each iteration;
hence, our proposed algorithm converges. Denote Fl as the
feasible set of (26) and (27) in iteration l, which corresponds
to the value of {ẑ

k,(l)
u }. Let us define (p(l), {v

k,(l)
u }) as the

optimal solution of the problem in (26) and (27) corresponding
to {ẑ

k,(l)
u } as we run steps 8–12 in Algorithm 3. By setting

{ẑ
k,(l+1)
u } as in (24), we always have (p(l), {v

k,(l)
u }) ∈ Fl+1.

Hence, we must have

Ωl ≥ Ωl+1 ∀l > 0 (63)

which completes the proof.

B. Proof of Statement 2

Denote F as the feasible set of problems (20) and (21). Be-
cause of (22), if

∑

k∈K

∑

u∈U ẑkuR
k,fh
u pku ≤ C +

∑

k∈K

∑

u∈U

Rk,fh
u f

(k,u)∗
apx (ẑku), we have

∑

k∈K

∑

u∈U Rk,fh
u f

(k,u)
apx (pku) ≤ C

for any value of {ẑk,(l+1)
u }. Therefore, we have Fl ⊆ F for any

iteration l, which means the optimal solution of problem (26)
and (27) in any iteration l satisfies all constraints of the problem
in (20) and (21). Hence, Algorithm 3 returns the solution that
satisfies all constraints of the problem in (20) and (21).

APPENDIX E
PROOF OF PROPOSITION 4

Let p∗ and {vk∗
u } be the power vector and precoding vec-

tors achieved after running our proposed algorithms. Because
these results are obtained by solving a weighted sum-power
minimization with an SINR constraint for each user, we have

γ̄u =

∣
∣
∣
∣
∣

∑

j∈K

hjH
u vj∗

u

∣
∣
∣
∣
∣

2

M∑

i=1, �=u

∣
∣
∣
∣

∑

l∈K

hlH
u vl∗

i

∣
∣
∣
∣

2

+ σ2

. (64)

Applying the triangle inequality yields

∣
∣
∣
∣
∣

∑

j∈K

hjH
u vj∗

u

∣
∣
∣
∣
∣

2

M∑

i=1, �=u

∣
∣
∣
∣

∑

l∈K

hlH
u vl∗

i

∣
∣
∣
∣

2

+ σ2

≤

∣
∣
∣
∣
∣

∑

j∈K/k

hjH
u vj∗

u

∣
∣
∣
∣
∣

2

+
∣
∣hkH

u vk∗
u

∣
∣2

M∑

i=1, �=u

∣
∣
∣
∣

∑

l∈K

hlH
u vl∗

i

∣
∣
∣
∣

2

+ σ2

.

(65)

Now, if we suppose that the power of user u and RRH k is
forced to be zero (i.e., pk∗u = 0), then its updated SINR becomes

Γ∗
u|pk∗

u
=0 =

∣
∣
∣
∣
∣

∑

j∈K/k

hjH
u vj∗

u

∣
∣
∣
∣
∣

2

M∑

i=1, �=u

∣
∣
∣
∣

∑

l∈K

hlH
u vl∗

i

∣
∣
∣
∣

2

+ σ2

. (66)

Consider the contribution of the underlying power pk∗u , we have

∣
∣hkH

u vk∗
u

∣
∣2

M∑

i=1, �=u

∣
∣
∣
∣

∑

l∈K

hlH
u vl∗

i

∣
∣
∣
∣

2

+σ2

≤

∣
∣hk

u

∣
∣2
∣
∣vk∗

u

∣
∣2

σ2
=

∣
∣hk

u

∣
∣2 pk∗u
σ2

. (67)

Combining all these results in (64)–(67) yields

γ̄u − Γ∗
u|pk∗

u =0

γ̄u
≤

∣
∣hk

u

∣
∣2 pk∗u

γ̄uσ2
. (68)

Because we have assumed that pk∗u is forced to be zero as in

(28) and f
(k,u)
apx (x) is an increasing function, we have pk∗u <

f
(k,u)−1
apx (1/2), where f

(k,u)−1
apx (x) is the inverse function of

f
(k,u)
apx (x). Therefore, if f (k,u)

apx (x) satisfies (30), which implies

f
(k,u)−1
apx (1/2) ≤ ǫβk

u = (ǫγ̄uσ
2/|hk

u|
2
), we have

γ̄u − Γ∗
u|pk∗

u
=0

γ̄u
<

∣
∣hk

u

∣
∣
2

γ̄uσ2

ǫγ̄uσ
2

|hk
u|

2 = ǫ. (69)

This completes the proof of Proposition 4.
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