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This paper develops a complete framework for coordinated control of multiple unmanned
air vehicles (UAVs) that are tasked to execute collision-free maneuvers under strict spa-
tial and temporal constraints in restricted airspace. The framework proposed includes
strategies for deconflicted real-time path generation, nonlinear path following, and multi-
ple vehicle coordination. Path following relies on the augmentation of existing autopilots
with L1 adaptive output feedback control laws to obtain inner-outer loop control struc-
tures with guaranteed performance. Multiple vehicle coordination is achieved by enforcing
temporal constraints on the speed profiles of the vehicles along their paths in response to
information exchanged over a communication network. Again, L1 adaptive control is used
to yield an inner-outer loop structure for vehicle coordination.

A rigorous proof of stability and performance bounds of the combined path following
and coordination strategies is given. Flight test results obtained at Camp Roberts, CA in
2007 demonstrate the benefits of using L1 adaptive control for path following of a single
vehicle. Hardware-in-the-loop simulations for two vehicles are discussed and provide a
proof of concept for time-critical coordination of multiple vehicles over communication
networks with fixed topologies.

I. Introduction

Autonomous systems are ubiquitous in both military and civilian applications. Among such systems,
unmanned aerial vehicles (UAVs) play an important role and are widely used for military reconnaissance
and strike operations, border patrol missions, forest fire detection, police surveillance and recovery operations,
to name but a few. In a typical application, a single autonomous vehicle is managed by a crew using a ground
station provided by the vehicle manufacturer. To execute more challenging missions, however, requires the use
of multiple vehicles working together to achieve a common objective. Representative examples of cooperative
mission scenarios are sequential auto-landing and coordinated ground target suppression for multiple UAVs.
The first refers to the situation where a fleet of UAVs must break up and arrive at the assigned glideslope
point, separated by pre-specified safe-guarding time-intervals. For the case of ground target suppression,
a formation of UAVs must again break up and execute a coordinated maneuver to arrive at a predefined
position over the target at the same time. In both cases, no absolute temporal constraints are given a priori

- a critical point that needs to be emphasized. Furthermore, the vehicles must execute maneuvers in close
proximity to each other. Thus the key requirement is that all maneuvers must be collision-free. As pointed
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out in Refs.,29,31 the problem at hand poses new challenges to system designers. Among these, the following
are worth stressing:

i) except for some cases of close formation flying like in Ref.,26 the motion of one vehicle does not directly
affect the motion of the other vehicles, that is, the vehicles are dynamically decoupled; the only coupling
arises naturally out of the specification of the tasks that they are required to accomplish together.

ii) the flow of information among vehicles may be severely restricted, either for security reasons or
because of tight bandwidth limitations. As a consequence, no vehicle will be able to communicate with
the entire formation and the inter-vehicle communication network may change over time. It is therefore
imperative to develop coordinated motion control strategies that can yield robust performance in the presence
of communication failures and switching communication topologies. New paradigms are required to address
this fundamental problem, departing from classical centralized control methodologies that deal with systems
where a single (local) feedback controller possesses all the information needed to meet adequate stability and
performance criteria. In fact, in many applications – including the ones described above – it is impractical
for a central unit to have access to the state of the complete vehicle fleet. This makes it impossible to
tackle the control problems at hand in the framework of centralized control theory. There is therefore a need
for decentralized control architectures whereby a set of networked local controllers, having access to partial
information only, perform together to meet a common goal. An example is to make identical subsets of the
states of all systems in a network converge to common values (the agreement problem).

Motivated by these and similar problems, there has been over the past few years a flurry of activity in
the area of multi-agent system networks with application to engineering and science problems. The range
of topics addressed include parallel computing,62 synchronization of oscillators,53 study of collective behav-
ior and flocking,28 multi-system consensus mechanisms,34 multi-vehicle system formations,17 coordinated
motion control,23 asynchronous protocols,18 dynamic graphs,39 stochastic graphs,39,56,57 and graph-related
theory.13,31 Especially relevant are the applications of the theory developed in the area of multi-vehicle
formation control: spacecraft formation flying,38 unmanned aerial vehicle (UAV) control,55,58 coordinated
control of land robots,23 and control of multiple autonomous underwater vehicles (AUVs).20,46,36

In a typical theoretical setup, a cooperative control problem is reduced to an agreement or consensus
problem whereby the topology of the inter-agents communication network is embodied in a communication
graph. It has been shown (see for example Refs.28,45,59) that solutions to these problems result in flocking or
swarming behaviors of the autonomous agents involved. However, stability and performance of these forma-
tions depend strongly on the nature of the underlying communication topology. Therefore, a major focus of
current research is to analyze the impact of various communication models on stability and performance of
the formations of autonomous agents. The studies in Ref.19 address the situations where the communication
topologies are fixed and bidirectional. Ref.34 focuses on the more complicated case of fixed, unidirectional
topologies. Time-varying network topologies in a deterministic setting are addressed in Refs.,28,34,41 while
stochastic models are used in Refs.39,56,57 In Ref.,39 state-dependent graphs are used to model the distance
between agents or the signal strength in each link in the formation.

It is important to point out in the literature on cooperative control that the agents are usually modelled
as identical single integrators,28,41 nonholonomic integrators,34,51,53 identical linear systems,19 or special
classes of linear systems.32 Nonholonomic integrators are typically used to model dynamic systems such
as AUVs,53 robots,34,35 and UAVs.37,51,63 These simplified models may not be adequate to describe the
dynamics of UAVs and AUVs as they undergo the maneuvers required to execute the complex missions of
the type described above.

This paper presents a general framework for the problem of coordinated control of multiple autonomous
agents that must operate under strict spatial and temporal constraints, while ensuring collision-free ma-
neuvers. The proposed framework borrows from multiple disciplines and integrates algorithms for path
generation, path following, time-critical coordination, and L1 adaptive control theory for fast and robust
adaptation. Together, these techniques yield control laws that meet strict performance requirements in the
presence of modeling uncertainties, environmental disturbances, and network failures. The methodology
proposed in the paper is exemplified for the case of UAVs and unfolds in three basic steps.

First, given a multiple vehicle task, a set of feasible trajectories is generated for all UAVs using a direct
method of calculus of variations that takes explicitly into account the initial and final boundary conditions,
a general performance criterion to be optimized, the simplified UAV dynamics, and safety rules for collision
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avoidance. This is done by resorting to an extension of the work reported in Refs.60,64 on the generation
of feasible aircraft trajectories for multiple UAVs. This step yields - for each vehicle - a spatial path to be
followed. The key idea involved is to decouple space and time in the problem formulation. This reduces
drastically the number of optimization parameters, making it easy to implement the optimization algorithms
in real-time and guaranteeing that the computational complexity increases only linearly with the number of
vehicles.

The second step consists of making each vehicle follow its assigned path while tracking a desired speed
profile. Path following control design is first done at a kinematic level, leading to an outer-loop controller
that generates pitch and yaw rate commands to an inner-loop controller. The latter relies on off-the-shelf
autopilots for angular rate command tracking, augmented with an L1 adaptive output feedback control law
that guarantees stability and performance of the complete system for each vehicle in the presence of mod-
elling uncertainties and environmental disturbances. This methodology departs from standard backstepping
techniques in that the final path following control law makes explicit use of existing UAV autopilots and
yields “separation” of inner and outer control loop systems. The key factor that guarantees appropriate
behaviour of the two subsystems put together is the introduction of an L1 adaptive control law that exploits
the circle of ideas exposed in Ref.6 The benefit of the L1 adaptive controller is its ability of fast and robust
adaptation, as proven in Refs.7,8, 9, 10,11,12 It has analytically computable performance bounds for a system’s
input and output signals in addition to its guaranteed time-delay margin.9,10 The L1 adaptive controller
has been augmented to existing controllers in several aircraft applications (see Refs.2,5 for example) and
has been found to exhibit excellent system performance. Since a typical autopilot is designed to provide
waypoint control, the proposed framework significantly expands the span of their applications.

Note that path following implies tracking a given spatial path without regard to any temporal constraints
using any feasible speed profile. Thus, the proposed path following algorithm is naturally compatible with
path (rather than time) dependent trajectories generated in the first step. Notice also that using the
space/time decomposition makes the speed profile of each vehicle an extra degree of freedom to be exploited
in the time-coordination step.

Finally, in the third step the speed profile of each vehicle is adjusted about the nominal speed profile
derived in the first step to enforce the temporal constraints that must be met in real-time in order to
coordinate the entire fleet of AUVs. This step relies on the underlying communication network as a means
of information exchange between the vehicles.

The methodology proposed relies on the decoupling of spatial and temporal assignments during the path
generation, path following and coordination phases, respectively. From the above, it also follows that the
solution advanced builds on three key ingredients: i) the use of direct methods of calculus of variations for
real-time trajectory generation, ii) a path following strategy for the spatial assignment, and iii) a coordination
or synchronization algorithm for multi-vehicle temporal assignment so as to achieve coordination. The last
two techniques are well rooted in previous results reported in Ref.24 on coordinated path following (CPF)
control of multiple wheeled robots in the presence of bidirectional communication constrains. See also Ref.54

for related work in the area of marine vehicles and Ref.24 for the extension of the circle of ideas exploited
in Ref.23 to a very general class of vehicles and communication networks with intermittent failures, time-
varying topologies, and delays. In Refs.,23,24 the CPF problem is naturally split into two. At the lower
(or inner-loop) level, the path-following problem is solved for individual vehicles, each having access to
local measurements only. Coordination is achieved by synchronizing the so-called coordination states at
the higher (or outer loop) level. The coordination level is supported by the communication network over
which information is exchanged. The types of links available and the constraints they impose are captured
in the framework of graph theory,25 which is the tool par excellence to study the impact of communication
topologies on the performance that can be achieved with coordination. A similar approach is pursued in
the current paper, where tools from Lyapunov-based stability analysis, graph theory, and L1 adaptation are
brought together to yield results on the overall coordinated behavior of a fleet of UAVs executing a variety
of time-coordinated missions.

The paper is organized as follows. Section II introduces specific algorithms for path generation and path
following algorithms for UAVs in 3D space. At this stage, path following is done at the kinematic level
(outer-loop control). Section III describes an L1 adaptive augmentation technique for path following that
yields an inner-loop control structure and exploits the availability of off-the-shelf autopilots for pitch and
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yaw rates. Section IV derives a strategy for time-coordinated control of multiple UAVs at the kinematic
level that relies on the adjustment of the desired speed profile of each vehicle. This is extended in Section
V to include the vehicle dynamics by resorting to another L1 adaptive augmentation loop that makes use
of existing speed of the autopilots. Section VI includes the stability proof of combined path-following and
time-coordinated control strategies of multiple UAVs with L1 adaptive augmentation. Section VII describes
actual flight test results performed in Camp Roberts, CA, in February and May of 2007 and includes a
description of the hardware used in the configuration. The paper ends with the conclusions in Section VIII.

II. Path Following in 3D Space

This section describes algorithms for UAV path generation and path following in 3D space. We recall
that a path is simply a curve pc : τ → R

3 parametrized by τ in a closed subset of R+, that is, pc = pc(τ). If
τ is identified with time t or is a function thereof then, with a slight abuse of notation, pc(t) = pc(τ(t)) will
be called a trajectory. Path following refers to the problem of making a vehicle converge to and following
a path pc(τ) with no assigned time schedule. However, the vehicle speed may be assigned as a function of
parameter τ . Trajectory tracking is the problem of making the vehicle track a trajectory pc(t), that is, the
vehicle must meet simultaneous constraints in space and time.

II.A. Feasible Path Generation

Real time path generation that explicitly accounts for dynamic constraints is a critical requirement for
the autonomous vehicles of today. In this section, we describe a path generation algorithm that is suitable
for real-time computation of feasible trajectories for multiple UAVs that are de-conflicted in space and that
can be followed by resorting to the path following algorithm described later in the paper. The key ideas
involved can be best explained with the help of an example. Consider a fleet of n UAVs that are tasked to
start from different locations and arrive at the same final target simultaneously. The exact time of arrival is
not specified, but it may be restricted to lie within certain bounds.

Suppose the objective is to execute this multi-vehicle mission while avoiding inter-vehicle collisions,
meeting dynamical constraints (e.g. bounds on maximum accelerations), and minimizing a weighted com-
bination of vehicle energy expenditures. At first inspection, a possible solution to this problem would
be to solve a constrained optimization problem that would yield (if at all possible) feasible trajectories
pci

(t), t ∈ [to, tf ]; i = 1, 2, ..., n for the vehicles, with to and tf denoting initial and final time, respectively.
Trajectory tracking systems on-board the UAVs would then ensure precise tracking of the trajectories gen-
erated, thus meeting the mission objectives.

This seemingly straightforward solution suffers from a major drawback: it does not allow for any “devi-
ations from the plan”. Absolute timing becomes crucial because the strategy described does not lend itself
to on-line modification in the event that one or more of the vehicles cannot execute trajectory tracking
accurately (e.g. due to adverse winds or lack of sufficient propulsion power). For this reason, it is far more
practical to adopt a different solution where absolute time is not crucial and enough room is given to each
vehicle to adjust its motion along the path in response to the motions of the other vehicles. The goal is
that of reaching a terminal formation pattern that will ensure simultaneous arrival times. Dispensing with
absolute time is key to the solution proposed. In this set-up, the optimization process should be viewed
as a method to produce paths pci

(τi) without explicit time constraints, but with timing laws for τi(t) that
effectively dictate how the nominal speed of each vehicle should evolve along the path. Using this set-up,
spatial and temporal constraints are essentially decoupled and captured in the descriptions of pci

(τi) and
ηi(τ) = dτi/dt, respectively, as will be seen later. Furthermore, adopting polynomial approximations for
pci

(τi) and ηi(τ) = dτi/dt keeps the number of optimization parameters reduced and makes real-time com-
putational requirements easy to achieve. Intuitively, by making the path of a generic vehicle a polynomial
function of τ ∈ [0, τf ], the shape of the path in space can be changed by increasing or decreasing τ - a single
optimization parameter. This, coupled with a polynomial approximation for η(τ) = dτ/dt makes it easy
to shape the speed and acceleration profile of the vehicle along the path so as to meet desired dynamical
constraints. The paths thus generated are the “templates” used for path following, as explained in Section
II.B later in the paper.
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The above circle of ideas was first explored in Refs.42,60,61,64 for a single aircraft. This paper extends
these results to the case of multiple UAVs following earlier work by the authors reported in Ref.30 As will
be seen, the approach to path generation exploits a separation between spatial and temporal specifications.
Let pc(τ) = [x(τ), y(τ), z(τ)]⊤ denote a desired path to be followed by a single UAV, parameterized by τ =
[0; τf ]. For computational efficiency, assume each coordinate x(τ), y(τ), z(τ) is represented by an algebraic
polynomial of degree N of the form

xi(τ) =
N∑

k=0

aikτ
k, i = 1, 2, 3, (1)

where we set x1 = x, x2 = y, x3 = z for notational convenience. The degree N of polynomials xi(τ) is
determined by the number of boundary conditions that must be satisfied. Notice that these conditions (that
involve spatial derivatives) are computed with respect to the parameter τ . There is an obvious need to
relate them to actual temporal derivatives, but this issue will only be addressed later. For the time being,
let d0 and df be the highest-order of the spatial derivatives of xi(τ) that must meet specified boundary
constraints at the initial and final points of the path, respectively. Then, the minimum degree N ∗ of each
polynomial in (1) is N∗ = d0 + df + 1. For example, if the desired path includes constraints on initial and
final positions, velocities, and accelerations (second-order derivatives), then the degree of each polynomial
is N∗ = 2 + 2 + 1 = 5. Explicit formulae for computing boundary conditions p′c(0), p

′′
c (0) and p′c(τf ), p

′′
c (τf )

are given later in this section. Additional degrees of freedom may be included by making N > N ∗. As
an illustrative example, Table 1 shows how to compute the polynomial coefficients in (1) for polynomial
trajectories of 5th and 6th degree. For 6th degree polynomial trajectories, an additional constraint on the
fictitious initial jerk is included, which increases the order of the resulting polynomial and affords extra
(design) parameters x′′′i (0); i = 1, 2, 3. Figure 1 shows examples of admissible 5th and 6th order polynomial
paths when only τf or τf and x′′′i (0); i = 1, 2, 3, viewed as optimization parameters, vary. Figure 1 (right)
shows how an increase in the number of optimization parameters leads to a larger class of admissible paths
(in this particular case, parameters corresponding to initial jerk are added as free variables).

It is now important to clarify how temporal constraints may be included in the feasible path computation
process. A trivial solution would be to make τ = t. In this case, solving the polynomial fitting problem that
is at the root of Fig. 1 yields the speed profiles of Fig. 2. Little control exists over the resulting speeds even
with fifth and sixth order polynomials, because once x1(t), x2(t), x3(t) have been computed to satisfy the
boundary constraints imposed, speed v is inevitably given by

v(t) =
√

ẋ2
1(t) + ẋ2

2(t) + ẋ2
3(t). (2)

We therefore turn our attention to a different procedure that will afford us the possibility of meeting
strict boundary conditions and constraints without increasing the complexity of the path generation process.
To this effect, let vmin, vmax and amax denote predefined bounds on the vehicle’s speed and acceleration,
respectively. Let η(τ) = dτ/dt, yet to be determined, dictate how parameter τ evolves in time. A path pc(τ)
(with an underlying assignment η(τ)) is said to constitute a feasible path if the resulting trajectory can be
tracked by an UAV without exceeding prespecified bounds on its velocity and total acceleration along that
trajectory. With an obvious use of notation, we will later refer to a spatial path only, without the associated
η(τ), as a feasible path.

From (2), and for a given choice of η(τ), the temporal speed vp(τ(t)) and acceleration ap(τ(t)) of the
vehicle along the path (abbv. vp(τ) and vp(τ), respectively) are given by

vp(τ) = η(τ)
√

x′21 (τ) + x′22 (τ) + x′23 (τ) = η(τ)||p′c(τ)||,
ap(τ) = ||p′′c (τ)η2(τ) + p′c(τ)η

′(τ)η(τ)||. (3)
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Table 1. Examples of computation of the coefficients of 5th and 6th order polynomial paths.

5th order

Boundary conditions xi(0), x
′
i(0), x

′′
i (0), xi(τf ), x

′
i(τf ), x

′′
i (τf )

d0/df 2/2

N∗/N 5/5

Linear algebraic matrix

equation to solve for the

coefficients aik













1 0 0 0 0 0

0 1 0 0 0 0

0 0 2 0 0 0

1 τf τ2
f τ3

f τ4
f τ5

f

0 1 2τf 3τ2
f 4τ3

f 5τ4
f

0 0 2 6τf 12τ2
f 20τ3

f

























ai0

ai1

ai2

ai3
ai4

ai5













=













xi(0)

x′i(0)

x′′i (0)

xi(τf )

x′i(τf )

x′′i (τf )













6th order

Boundary conditions xi(0), x
′
i(0), x

′′
i (0), x

′′′
i (0), xi(τf ), x

′
i(τf ), x

′′
i (τf )

d0/df 3/2

N∗/N 5/6

Linear algebraic matrix

equation to solve for the

coefficients aik















1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 2 0 0 0 0

0 0 0 6 0 0 0

1 τf τ2
f τ3

f τ4
f τ5

f τ6
f

0 1 2τf 3τ2
f 4τ3

f 5τ4
f 6τ5

f

0 0 2 6τf 12τ2
f 20τ3

f 30τ4
f





























ai0
ai1

ai2

ai3

ai4
ai5

ai6















=















xi(0)

x′i(0)

x′′i (0)

x′′′i (0)

xi(τf )

x′i(τf )

x′′i (τf )















  

Figure 1. Admissible trajectories for 5th and 6th order polynomials.

At this point, a choice for η(τ) must be made. A particular choice is simply η(τ) = η(0)+ τ
τf

(η(f)−η(0))
with η(0) = vp(0) and η(τf ) = vp(tf ), where tf is the terminal time yet to be determined. This polynomial
is of degree sufficiently high to satisfy boundary conditions on speed and acceleration. This follows from the
fact that the boundary conditions p′c(0), p

′′
c (0), p

′
c(τf ), p

′′
c (τf ) can be easily obtained from given ṗc(0), p̈c(0),
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Figure 2. Speed profile corresponding to the paths shown in Figure 1 when τ = t. Left: varying τf . Right: varying τf

and the initial jerk.

.

ṗc(tf ), p̈c(tf ) using the definition of η(τ). In fact, since ṗc(t) = p′c(τ)η(τ), it is easy to see that

p′c(0) =
ṗc(0)

η(0)
,

p′c(τf ) =
ṗc(tf )

η(τf )
,

p′′c (0) =
p̈c(0) − p′c(0)η

′(0)η(0)

η2(0)
,

p′′c (τf ) =
p̈c(tf ) − p′c(tf )η

′(τf )η(τf )

η2(τf )
,

where η′(0) = η′(τf ) =
η(τf )−η(o)

τf
. Furthermore, the choice of boundary conditions on η(τ) guarantees that

||p′c(0)|| = ||p′c(tf )|| = 1.
It now follows from (3) that a path pc(τ) is feasible if all boundary conditions are met, together with the

additional speed and acceleration constraints

vmin ≤ η(τ) ||p′c(τ)|| ≤ vmax, ||p′′c (τ)η2(τ) + p′c(τ)η
′(τ)η(τ)|| ≤ amax, ∀τ ∈ [0, τf ]. (4)

A feasible trajectory can be obtained by solving, for example, the optimization problem

F1 : min
Ξ
J subject to (4)

and to the boundary conditions at initial and final points, where Ξ is the vector of optimization parameters
that includes either τf or τf and x′′′i (0) for i = 1, 2, 3. The latter definition of Ξ corresponds to the case
where the degree of the polynomial path is selected to be 6 (see Table 1). The cost function J may be defined
to be the total fuel consumption of the UAV given by

J =

∫ tf

0

cfcDρv
3
c (t)dt =

∫ τf

0

cfcDρη
3(τ) ||p′c(τ)||3 dτ,

where ρ is dynamic pressure, cf is the specific fuel consumption constant, and cD is the total drag coefficient
of the UAV. Other choices of J can be made to address time optimal or minimum length paths.

In this paper, the above methodology is extended to the case of multiple UAVs. In particular, we address
the problem of time-coordinated control where all UAV’s must arrive at their respective final destinations at
the same time. The dimension of the corresponding optimization problem increases and the time coordination
requirement introduces additional constraints on parameters τfi; i = 1, 2, .., n. Without loss of generality, we
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compute the total time of flight tf1 for UAV 1. A similar procedure can be used to compute the times of
flight tfi; i = 2, .., n. Using the definition of ηi(τ),

tf1 =

∫ τf1

0

dτ1
η1(τ1)

.

It follows immediately that the minimum time of flight tf1min
of UAV 1 is given by

tf1min
=

∫ τf1

0

||p′1(τ1)|| dτ1
vmax1

.

Similarly, its maximum time of flight is

tf1max
=

∫ τf1

0

||p′1(τ1)|| dτ1
vmin1

.

Hence, UAV 1 will arrive at the target in the interval T1 = [tf1min
, tf1max

]. Let Ti = [tfimin
, tfimax

] denote
the time interval for the arrival of UAV i at its assigned target. Clearly, the time coordinated problem has a
solution if and only if Ti

⋂
Tj 6= ∅ ∀i, j = 1, . . . , n, i 6= j. This is guaranteed if mini tfimax

≥ maxi tfimin
for

i = 1, . . . , n. Thus, for the case of multiple UAVs additional constraints must be imposed on τfi; i = 1, .., n.
Feasible, spatially deconflicted trajectories for all vehicles can be obtained by solving an optimization problem
of the form

F2 :







min
Ξi,i=1,...,n

n∑

i=1

wiJi subject to boundary conditions and (4) for any i ∈ [1, n] and

min
j,k=1,...,n,j 6=k

||pcj
(τj) − pck

(τk)||2 ≥ E2 for any τj , τk ∈ [0, τfj ] × [0, τfk],

min
i
tfimax

≥ max
i
tfimin

, for i = 1, . . . , n,

(5)

where Ji represents total fuel consumption of UAV i and the weights wi > 0 penalize the energy consumptions
of all UAVs i ∈ [1, n]. Note that in F2 an additional constraint minj,k=1,...,n,j 6=k ||pcj

(τj) − pck
(τk)||2 ≥ E2

for any τj , τk ∈ [0, τfj ] × [0, τfk] was added to guarantee spatially deconflicted trajectories separated by
a minimum distance E. In addition, we emphasize that the dimension of the optimization problem F2
increases linearly with the number of UAVs.

The optimization problems F1, F2 can be effectively solved in real-time by adding a penalty function G as
discussed in Ref.64 and by using any zero-order optimization technique. As an example, Fig. 3 illustrates the
flexibility afforded by the reference polynomials to compute a coordinated target reconnaissance mission by
three UAVs. In this case, Ξ = [τf1 τf2 τf3]. The final value of the optimization parameter vector Ξfinal =
[5512.8 7771.9 10217.0] resulted in spatially deconflicted paths where the minimum distance between any
two paths did not fall below 349 m (the minimum required distance was 100 m). Furthermore, the nominal
speed profiles shown in Fig. 4 stayed within the predefined limits of [vmin vmax] = [15m/sec 25m/sec]. The
selected speed limits were below the physical capabilities of the UAVs used in the flight tests. This was done
to ensure that each path can be tracked in the presence of winds. The maximum acceleration corresponding
to each path did not exceed 0.6m/sec2, well below the limit of 0.5g. It is important to point out that these
profiles simply confirm that each path is indeed feasible. They will not be used directly by the controllers
discussed in the following sections. In fact, coordinated speed references that depend on the true speed
of the leader along its path will be generated online to guarantee time coordination of the UAVs. Finally,
the intervals τi for i = 1, 2, 3 were computed to be [203.47 508.66], [281.39 703.48], and [408.66 1021.70]
respectively. Their intersection [408.66 508.66] is 100 seconds long - sufficient duration to guarantee that
UAVs 2 and 3 can arrive at their respective destinations at the same time as UAV 1. This situation is
illustrated in Figure 5.
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Figure 3. Example of spatially deconflicted trajectories. Top view, moving from right to left (left), 3D view, moving
from left to right (right).
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Figure 4. Feasible speed profiles for each UAV.
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Figure 5. Intersection of time intervals Ti for each UAV.
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Figure 6. Problem Geometry

II.B. Path Following of the Polynomial Trajectories using UAV Kinematics

In order for each vehicle to follow the spatial path generated by the methodology introduced above, a path
following algorithm that extends the one in Ref.52 to a 3D setting is introduced with a further modification
aimed at meeting time-critical and inter-vehicle constraints. At this level, only the simplified kinematic
equations of the vehicle will be addressed by taking pitch rate and yaw rate as virtual outer-loop control
inputs. The dynamics are dealt with in Section III by introducing an inner-loop control law via the novel
L1 adaptive output feedback controller. The required notation is introduced with reference to Fig. 6. Let F
be a Serret-Frenet frame attached to a generic point on the path, and let W be the wind frame attached to
the UAV center of mass Q (a frame that has its x-axis aligned with the UAV’s velocity vector). Further let
ωFFI denote the angular velocity of F with respect to the inertial frame I, resolved in F . Let pc(τ) be the
path to be followed by a UAV and P be an arbitrary point on the path that plays the role of the center of
mass of a “virtual” aircraft to be followed. This is a different approach as compared to the set-up for path
following originally proposed in Ref.,40 where P was simply defined as the point on the path that is closest
to the vehicle. Since this point may not be uniquely defined, the strategy in Ref.40 led to more conservative
estimates for the region of attraction about the path to be followed which we wish to relax. Endowing P
with an extra degree of freedom is the key to the algorithm presented in Ref.,52 which is extended in this
paper to the 3D case. Notice that Q can be resolved in I as qI = [xI yI zI ]

⊤ or in F as qF = [xF yF zF ]⊤.
With the above notation, the simplified UAV kinematic equations can be written as







ẋI = v cos γ cosψ

ẏI = −v cos γ sinψ

żI = v sin γ
[

γ̇

ψ̇

]

=

[

1 0

0 cos−1 γ

][

q

r

]

,

(6)

where v is the magnitude of the UAV’s velocity vector, γ is the flight path angle, ψ is the heading angle, and
q, r are the y-axis and z-axis components, respectively of the vehicle’s rotational velocity resolved in wind
frame W . For the purpose of this paper, q and r will be referred to as pitch rate and yaw rate, respectively
in the wind frame W .

Following standard nomenclature,29,15 let l denote the path length along the desired path pc. Note,
that for infinitesimal perturbations along the path dpc and dl, we obtain that ||dpc|| = ||dl||. Therefore,
||dpc/dl|| = 1 and

dpc
dτ

=
dpc
dl

dl

dτ
⇒
∣
∣
∣
∣

dl

dτ

∣
∣
∣
∣
=

∥
∥
∥
∥

dpc
dτ

∥
∥
∥
∥

= ‖p′c(τ)‖.
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Thus
∣
∣ dl
dτ

∣
∣ = ‖p′c(τ)‖ defines a differential relationship between l and τ . Next we derive the unit vectors

T,N,B that define the Frenet frame F attached to the path pc(l) at a point defined by l. Let

T (l) =
dpc(l)

dl
/

∥
∥
∥
∥

dpc(l)

dl

∥
∥
∥
∥
,

N(l) =
dT (l)

dl
/

∥
∥
∥
∥

dT (l)

dl

∥
∥
∥
∥
,

and B(l) = T (l) ×N(l).

Then these vectors respectively define the tangent, normal, and binormal to the path at the point determined
by l. The vectors T,N,B are orthonormal and represent the basis vectors of F and can be used to construct
the rotation matrix RIF = [T N B] from F to I. It is well known that

ṘIF = RIFS(ωFFI) (7)

and that ωFFI = [ζl̇ 0 κl̇]⊤, where S is a skew-symmetric operator induced by the elements of ωFFI ,

κ(l) =
∥
∥
∥
dT (l)
dl

∥
∥
∥ is the curvature of pc(l) and ζ(l) =

∥
∥
∥
dB(l)
dl

∥
∥
∥ is its torsion. Using equation (7) and Fig. 6 we

obtain

qI = pc(l) +RIF qF ,

and therefore

q̇I = RIF






l̇

0

0




+RIF






ẋF

ẏF

żF




+RIF




w

F
FI ×






ẋF

ẏF

żF









 . (8)

Using (8) and the fact that

RFI






ẋI
ẏI

żI




 = RFWR

W
I






ẋI
ẏI

żI




 = RFW






v

0

0




 ,

where RFW and RWI are the rotation matrices from W to F and I to W respectively, we obtain

RFI






ẋI

ẏI

żI




 =






l̇(1 − κyF ) + ẋF

ẏF + l̇(κxF − ζzF )

ż1 + ζl̇yF






and





ẋF

ẏF

żF




 =






−l̇(1 − κyF )

−l̇(κxF − ζzF )

−ζl̇yF




+RFW






v

0

0




 . (9)

Let λe denote the Euler angles φe, θe, ψe that parameterize locally the rotation matrix from F to W .
Then λ̇e = Q−1(λe) ω

W
WF , where

Q−1(λe) =






1 sinφe tan θe cosφe tan θe

0 cosφe − sinφe
0 sinφe

cos θe

cosφe

cos θe




 , (10)

is nonsingular for θe 6= ±π
2 , and ωWWF denotes the angular velocity of W with respect to F resolved in W .

Note that ωWWF = ωWWI − ωWFI and ωWFI = RWF ωFFI . Thus,

λ̇e = Q−1(λe)
(
ωWWI −RWF (λe)ω

F
FI

)
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and
[

θ̇e
ψ̇e

]

=

[

sinψeζl̇

−l̇(ζ tan θe cosψe + κ)

]

︸ ︷︷ ︸

≡D

+

[

cosφe − sinφe
sinφe

cos θe

cosφe

cos θe

]

︸ ︷︷ ︸

≡G

[

q

r

]

, (11)

where D and G are defined for all θe 6= ±π
2 . Let

[

q

r

]

= G−1

([

uθ
uψ

]

−D

)

, (12)

where uθ and uψ are control inputs that have yet to be defined. Then, combining equations (9) and (12)
yields the equations for the (path following) kinematic error dynamics:

Ge :

ẋF (t) = −l̇(t)(1 − κ(l(t))yF (t)) + v(t) cos(θe(t)) cos(ψe(t))

ẏF (t) = −l̇(t)(κ(l(t))xF (t) − ζ(l(t))zF (t)) + v(t) cos(θe(t)) sin(ψe(t))

żF (t) = −ζ(l(t))l̇(t)yF (t) − v(t) sin(θe(t))

θ̇e(t) = uθ(t)

ψ̇e(t) = uψ(t)

l̇(t) = K1xF (t) + v(t) cos(θe(t)) cos(ψe(t))

y(t) = [uθ(t) uψ(t)]⊤,

(13)

where K1 > 0 is a constant and y(t) is the vector of the input signals uθ and uψ which have yet to be
designed. We assume that the speed profile of the UAV along the path is bounded below by vmin > 0:

v(t) ≥ vmin, ∀ t ≥ 0. (14)

Let
x(t) = [xF (t) yF (t) zF (t) θe(t) − δθ(t) ψe(t) − δψ(t)]⊤ ,

where

δθ(t) = sin−1

(
zF (t)

|zF (t)| + d1

)

,

δψ(t) = sin−1

(
yF (t)

|yF (t)| + d2

)

, (15)

where d1 > 0 , d2 > 0 are positive constants. Note that any choice of d1 and d2 guarantees |δθ(t)|, |δψ(t)| < π
2 .

For simplicity, we choose d1 = d2. Furthermore, define positive c1, c2 and d such that:

α ,
√

2c2/c1 d+ sin−1

√
2 d

d1 +
√

2 d
<
π

2
. (16)

Note, since sin−1
( √

2d
d1+

√
2d

)

< π/2, there always exist c1, c2 and d that verify (16). Let yc(t) = [uθc
(t) uψc

(t)]⊤,

with

uθc
(t) = −K2(θe(t) − δθ(t)) +

c2
c1
zF (t)v(t)

sin(θe(t)) − sin(δθ(t))

θe(t) − δθ(t)
+ δ̇θ(t)

uψc
(t) = −K3(ψe(t) − δψ(t)) − c3

c1
yF (t)v(t) cos(θe(t))

sin(ψe(t)) + sin(δψ(t))

ψe(t) − δψ(t)
+ δ̇ψ(t) (17)

for some positive constants K2 and K3. It follows from30 that Ge can be stabilized by the functions in (17)
as stated in the following lemma.
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Lemma 1 For any v(t) verifying (14), if c1, c2, d, d1 are chosen to satisfy (16), the kinematic error equations
in (13) with the controllers uθ(t) = uθc

(t), uψ(t) = uψc
(t) defined in (17), are exponentially stable with the

domain of attraction

Ω =

{

x : Vc(x) ≤
d2

2c1

}

, (18)

where

Vc(t) = x⊤(t)Px(t) , P = diag

(
1

2c1

1

2c1

1

2c1

1

2c2

1

2c2

)

. (19)

Proof. It follows from (13) and (17) that

V̇c =
xF
c1

(−l̇(1 − κyF ) + v cos(θe) cos(ψe)) +
yF
c1

(−l̇(κxF − ζzF ) + v cos(θe) sin(ψe)) +
zF
c1

(−ζl̇yF − v sin(θe)) +
θe − δθ
c2

(uθc
(t) − δ̇θ) +

ψe − δψ
c2

(uψc
− δ̇ψ)

=
−xF l̇ + v cos(θe)(xF cos(ψe) + yF sin(ψe))

c1
+

−zF v sin(θe)

c1
− K2

c2
(θe − δθ)

2 − K3

c2
(ψe − δψ)2 +

vzF (sin(θe) − sin(δθ))

c1
− yF v cos(θe)(sin(ψe) + sin(δψ))

c1

= −K1

c1
x2
F − K2

c2
(θe − δθ)

2 − K3

c2
(ψe − δψ)2 − vyF sin(δψ) cos(θe) + vzF sin(δθ)

c1
(20)

Using (15), we have

V̇c = −K1

c1
x2
F − K2

c2
(θe − δθ)

2 − K3

c2
(ψe − δψ)2 − vz2

F

c1(|zF | + d1)
− v cos(θe)y

2
F

c1(|yF | + d2)
= − x⊤Qx , (21)

where

Q = diag

(
K1

c1

v cos(θe)

c1(|yF | + d2)

v

c1(|zF | + d1)

K2

c2

K3

c2

)

. (22)

Note that over the compact set Ω, the following upper bounds hold:

|xF (t)| ≤ d

|yF (t)| ≤ d

|zF (t)| ≤ d

|θe(t)| ≤
√

c2d2

c1
+ sup(δθ(t)) =

√

c2d2

c1
+ sin−1

(
d

d1 + d

)

<
π

2

|ψe(t)| ≤
√

c2d2

c1
+ sup(δψ(t)) =

√

c2d2

c1
+ sin−1

(
d

d2 + d

)

<
π

2
, (23)

where we have used the relationship (16) and the fact that d1 = d2 and c = d2

2c1
. It follows from (22) and

(23) that Q ≥ Qc, where

Qc = diag
(K1

c1

vmin cosα

c1(d+ d2)

vmin

c1(d+ d1)

K2

c2

K3

c2

)

. (24)

Since Qc > 0 and
V̇c(t) ≤ −x⊤(t)Qcx(t) ∀ t ≥ 0 , (25)

then x(t) is exponentially stable over the compact set Ω, which completes the proof. �

Remark 1 Notice that the solution to the path following problem assumes only that v(t) is bounded below
but is otherwise undefined. This extra degree of freedom is due to the decoupling of space and time in the
problem formulation, which allows for the use of v(t) at a later stage for coordination in time.
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III. L1 Adaptive Output Feedback Augmentation for Path Following in the

Presence of Autopilot

III.A. L1 Adaptive Output Feedback Controller

As discussed above decoupling of space and time in the problem formulation allows for path following and
coordination to be solved independently. To achieve the objective of time-critical coordination of UAVs, we
need to ensure that the velocity profile for each UAV along its corresponding path – yet to be determined in
the coordination step – matches the a priori specified bounds defined in the path generation step. Thus, for
every UAV one needs to define the rate inputs uθ (pitch) and uψ (yaw) to the autopilot and the speed profile
v (velocity) along the path. The first two control signals must achieve the path following objective, while the
velocity command should be exploited for coordination in time. Since the commercial autopilots are designed
only to track simple way-point commands, in this section we modify the pitch and yaw rates from (17) – by
augmenting those with L1-adaptive loops – to ensure that the UAV can follow the path defined in the path
generation step. Recall that the controller in (17) was derived from purely kinematic considerations. The
L1 adaptive augmentation presented in this section allows to account for the UAV dynamics.

To this end, we consider the complete system of kinematic error equations defined as subsystem Ge along
with subsystem Gp, which models the closed-loop system of the UAV with the autopilot:

Ge : ẋ(t) = f(x(t)) + g(x(t))y(t) (26)

Gp : y(s) = Gp(s)(u(s) + z(s)), (27)

where y(s) and u(s) are the Laplace transforms of y(t) and u(t) respectively, and z(s) is the Laplace transform
of z(t), which models the unknown bounded time-varying disturbances. The subsystem Gp has the input
u(t) = [u1(t) u2(t) u3(t)]

⊤ issued from the outer loop and output y(t) = [uθ(t) uψ(t) v(t)]⊤, the input of
subsystem Ge. The subsystems Ge and Gp form the cascaded system shown in Fig. 7.

We note that x(t) and y(t) are the measured outputs of this cascaded system, and u(t) is the only control
signal. The maps f and g are known, while Gp(s) is an unknown transfer function. The control objective
is to stabilize x(t) by the design of u(t) without any modifications to the autopilot included in Gp. In that
respect, we note that Gp can be described as

uθ(s) = Gp1(s)(u1(s) + z1(s)) (28)

Gp : uψ(s) = Gp2(s)(u2(s) + z2(s)) (29)

v(s) = Gp3(s)(u3(s) + z3(s)) , (30)

where Gp1(s), Gp2(s), Gp3(s) are unknown stable transfer functions, z1(s), z2(s), z3(s) represent the Laplace
transformation of some bounded time-varying disturbance signals z1(t), z2(t), z3(t), respectively. We note
that the autopilot is designed to ensure that y(t) tracks any smooth u(t) in the absence of Ge. We further
assume that the time-varying disturbances z1(t), z2(t), z3(t) are bounded functions of time with uniformly
bounded derivatives. That is,

|zi(t)| ≤ Li0 , i = 1, 2, 3 (31)

|żi(t)| ≤ Li1 , i = 1, 2, 3 , (32)

where Li0, Li1 are some conservative known bounds.

Remark 2 We notice that the bandwidth of the control channel of the closed-loop UAV with the autopilot
is very limited, and the model (28) - (30) is valid only for low-frequency approximation of Gp. Additionally,
only very limited knowledge of the autopilot is assumed at this point. We do not assume knowledge of the
state dimension of the unknown transfer functions Gpi(s), i = 1, 2, 3. We only assume that these are strictly
proper transfer functions.

Next, we isolate the autopilot with the UAV to design an adaptive controller for it to track any desired
bounded continuous reference input. Notice that since uθc

(t) and uψc
(t) stabilize the subsystem Ge, the
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Figure 7. Cascaded systems

control objective for the subsystem Gp is reduced to designing an adaptive output feedback controller u(t)
such that the output y(t) = [uθ(t) uψ(t) v(t)]⊤ tracks the reference input yc(t) = [uθc

(t) uψc
(t) vc(t)]

⊤

following a desired reference model, i.e.

uθ(s) ≈ M(s)uθc
(s) (33)

uψ(s) ≈ M(s)uψc
(s) (34)

v(s) ≈ M(s)vc(s) , (35)

where the desired velocity command vc(t) will be specified in Section IV to achieve the coordination in time.
In this paper, for simplicity we consider a first order system, by setting

M(s) =
m

s+m
, m > 0. (36)

Since the systems in (33), (34) and (35) have the same structure, we define the L1 adaptive control architec-
ture only for the system in (33). The same design philosophy is true for the systems in (34) and (35). The
elements of L1 adaptive controller for the system in (33) are presented next:

State Predictor: We consider the following state predictor:

˙̂uθ(t) = −mûθ(t) +m (u1(t) + σ̂(t)) , ûθ(0) = 0 , (37)

where the adaptive estimate σ̂(t) is governed by the following adaptation law.
Adaptive Law: The adaptation of σ̂(t) is defined as:

˙̂σ(t) = ΓcProj(σ̂(t),−ũθ(t)), σ̂(0) = 0, (38)

where ũθ(t) = ûθ(t) − uθ(t) is the error signal between the output of the system in (28) and the state
predictor in (37), Γc ∈ IR+ is the adaptation rate subject to a computable lower bound,12 while Proj denotes
the projection operator, which is performed on a compact set large enough to encompass the possible variation
of uncertainties.48 Quantitative analysis on the lower bound of Γc and other design details can be found in
Ref.12

Control Law: The control signal is generated by:

u1(s) = uθc
(s) − C(s)σ̂(s) , (39)

where C(s) is a strictly proper system with C(0) = 1, and uθc
(t) is the output of the stabilizing function in

(17). In this paper, we consider the simplest choice of a first order low-pass filter:

C(s) =
ω

s+ ω
. (40)
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The complete L1 adaptive controller consists of (37), (38) and (39) subject to the following L1-gain
stability requirement introduced in Ref.12

L1-gain stability requirement: C(s) and M(s) need to ensure that

H(s) =
Gp1(s)M(s)

C(s)Gp1(s) + (1 − C(s))M(s)
(41)

is stable and
‖G(s)‖L1

Lz1 < 1 , (42)

where
G(s) = H(s)(1 − C(s)) , (43)

and Lz1 is the Lipschitz constant of z1(t) w.r.t. uθ(t).
Here, we note that we need to find suitable m and ω to stabilize H(s) in (41). The condition in (42) is

always satisfied for the system Gp, since z1(t) does not depend on uθ(t), which renders Lz1 = 0. In general,
this may not be true.

III.B. Closed-loop Reference System

Consider the following closed-loop reference system:

uθref
(s) = M(s)(u1ref

(s) + σref (s)),

σref (s) =
(Gp1(s) −M(s))u1ref

(s) +Gp1(s)z1(s)

M(s)
(44)

u1ref
(s) = uθc

(s) − C(s)σref (s) .

It follows from Ref.12 that for any given M(s) and C(s), there exist constants γθ1 > 0 and γu1
> 0 leading

to the following result.

Lemma 2 Given the system in (28) and the L1 adaptive controller defined via (37), (38) and (39) subject
to (42), we have:

‖uθ − uθref
‖L∞

≤ γθ1√
Γc

, (45)

‖u1 − u1ref
‖L∞

≤ γu1√
Γc

. (46)

It follows from Lemma 2 that by increasing the adaptation rate Γc, we can render the bounds between
the input/output signals of the closed-loop adaptive system and the reference system arbitrarily small.

III.C. Desired Low-pass system

Letting

ydes(s) =






uθdes
(s)

uψdes
(s)

vdes(s)




 = M(s)yc(s) , (47)

where vdes(t) will follow from definition of vc(t) in the time-coordination step in Section IV, the performance
bounds between the reference system in (44) and the low-pass system in (47) are given by the following
lemma.

Lemma 3 Given the system in (33) with the control signal in (28), we have:

‖uθdes
− uθref

‖L∞
≤ γθ2 , (48)

where

γθ2 = ‖H(s) −M(s)‖L1
‖uθc

‖L∞
+ ‖G(s)‖L1

L10. (49)
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Proof. It follows from (44) that

u1ref
(s) = uθc

(s) − C(s)
(Gp1(s) −M(s))u1ref

(s) +Gp1(s)z1(s)

M(s)
,

and hence

u1ref
(s) =

M(s)uθc
(s) − C(s)Gp1(s)z1(s)

C(s)Gp1(s) + (1 − C(s))M(s)
. (50)

From (44), we have
uθref

(s) = Gp1(s)(u1ref
(s) + z1(s)) . (51)

Substituting (50) into (51), it follows from (41) that

uθref
(s) = Gp1(s)

(M(s)uθc
(s) − C(s)Gp1(s)z1(s)

C(s)Gp1(s) + (1 − C(s))M(s)
+ z1(s)

)

= Gp1(s)M(s)

(
uθc

(s) + (1 − C(s))z1(s)

C(s)Gp1(s) + (1 − C(s))M(s)

)

= H(s) (uθc
(s) + (1 − C(s))z1(s)) . (52)

Using the definition in (47), we have

uθref
(s) − uθdes

(s) = (H(s) −M(s))uθc
(s) +H(s)(1 − C(s))z1(s) .

Assuming H(s) is strictly proper and stable, it follows from (43) that G(s) is also strictly proper and stable
and hence

‖uθref
− uθdes

‖L∞
≤ ‖H(s) −M(s)‖L1

‖uθc
‖L∞

+ ‖H(s)(1 − C(s))‖L1
‖z1‖L∞

. (53)

Therefore, the relationship in (48) follows from (49) and (53), which proves the Lemma. �

Lemma 4 Given the L1 adaptive controller defined via (37), (38) and (39) subject to (42), if

|uθ(0) − uθc
(0)| ≤ dθ

m
, (54)

where dθ = ‖u̇θc
‖L∞

, we have:

‖uθ − uθc
‖L∞

≤ γθ , (55)

where γθ =
γθ1√
Γc

+ γθ2 + dθ

m
.

Proof. Let uθref
(0) = uθdes

(0) = uθ(0). It follows from Lemmas 2 and 3 that

‖uθ − uθref
‖L∞

+ ‖uθref
− uθdes

‖L∞
≤ γθ1√

Γc
+ γθ2 . (56)

Since u̇θdes
= −muθdes

+muθc
, we have

u̇θdes
− u̇θc

= −m(uθdes
− uθc

) + u̇θc
. (57)

The bound on the initial error in (54) leads to

|uθdes
(t) − uθc

(t)| ≤ dθ
m
, ∀ t ≥ 0 . (58)

A straightforward upper bounding

‖uθ − uθc
‖L∞

≤ ‖uθ − uθref
‖L∞

+ ‖uθref
− uθdes

‖L∞
+ ‖uθdes

− uθc
‖L∞

, (59)
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Figure 8. L1 adaptive control of cascaded systems for path following

leads to the claim in (55). �

Similarly, if we implement the L1 adaptive controller for the systems in (34) and (35), subject to

|uψ(0) − uψc
(0)| ≤ dψ

m
, (60)

|v(0) − vc(0)| ≤ dv
m
, (61)

where dψ = ‖u̇ψc
‖L∞

and dv = ‖v̇c‖L∞
, we can derive

‖uψ − uψc
‖L∞

≤ γψ (62)

‖v − vc‖L∞
≤ γv , (63)

with γψ, γv > 0 being constants similar to γθ. It we further want to reduce the bounds γθ, γψ, γv, we need
to choose m, ω and Γc large. It is straightforward to verify that

lim
Γc→∞

(
γθ1√
Γc

+ lim
ω→∞

γθ2

)

= 0 .

Since uθc
(t) is usually a low-pass signal with bounded derivative, γθ3 can be rendered arbitrarily small by

increasing m. Hence, we have

lim
Γc→∞,m→∞

(

lim
ω→∞

γθ

)

= 0 , (64)

which is equally true for γψ and γv.

III.D. Path-following with L1 Adaptive Augmentation

The cascaded closed-loop system defined via (17) (37), (38) and (39) is illustrated in Figure 8. We recall
the main Theorem of Ref.6 on stability of the cascaded system, which basically specifies the choice of the
design constants in the L1 adaptive controller to ensure that the original domain of attraction for kinematic
error equations given in (18) can be retained with L1 adaptive augmentation in the presence of a closed-loop
UAV with the autopilot. Notice that the performance bounds for L1 adaptive controller above are computed
for all three inputs to the autopilot (pitch rate, yaw rate and velocity), however due to the decoupling of
space and time in the problem formulation, the path following problem is solved via pitch rate and yaw rate
commands, therefore the stability proof below is pursued via the same Lyapunov function (19) independent
of the velocity component. The latter will be addressed later in the paper in the context of time-critical
coordination, where we will explicitly specify the desired velocity profile vc(t).
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Lemma 5 Given the cascaded controller defined via (17) (37), (38) and (39) subject to (14) and (16), if
the initial conditions are bounded as in (54), (60), (61) and x(0) ∈ Ω, where Ω is defined in (18), i.e.

Vc(x(0)) ≤
d2

2c1
, (65)

and m, ω and Γc verify

γθ + γψ ≤ dλmin(Q)

2λmax(P )

√
c2
c1
, (66)

then x(t) ∈ Ω for all t ≥ 0, i.e.

Vc(x(t)) ≤
d2

2c1
, ∀ t ≥ 0 , (67)

and the closed-loop system in (13) and (28) - (30) is ultimately bounded with the same bounds given in
Lemma 1:

|xF (t)| ≤ d , ∀ t ≥ 0 ,

|θe(t)| ≤ α , ∀ t ≥ 0 , (68)

|ψe(t)| ≤ α , ∀ t ≥ 0 ,

with α being defined in (16).

Proof. Using the same Lyapunov function as in (19) for the kinematic loop, it follows from (13) that

V̇c =
xF
c1

(−l̇(1 − κyF ) + v cos(θe) cos(ψe)) +
yF
c1

(−l̇(κxF − ζzF ) + v cos(θe) sin(ψe)) +
zF
c1

(−ζl̇yF − v sin(θe)) +
θe − δθ
c2

(uθ − δ̇θ) +
ψe − δψ
c2

(uψ − δ̇ψ)

=
xF
c1

(−l̇(1 − κyF ) + v cos(θe) cos(ψe)) +
yF
c1

(−l̇(κxF − ζzF ) + v cos(θe) sin(ψe)) +
zF
c1

(−ζl̇yF − v sin(θe)) +
θe − δθ
c2

(uθc
− δ̇θ) +

ψe − δψ
c2

(uψc
− δ̇ψ)

+
θe − δθ
c2

(uθ − uθc
) +

ψe − δψ
c3

(uψ − uψc
) , (69)

where we have taken into consideration the errors between uθ and uθc
, uψ and uψc

. From (15) we have

V̇c ≤ −x⊤Qcx+
θe − δθ
c2

(uθ − uθc
) +

ψe − δψ
c3

(uψ − uψc
) , (70)

where Qc is defined in (24). It follows from (55) and (62) that

V̇c ≤ −x⊤Qcx+
|θe − δθ|

c2
γθ +

|ψe − δψ|
c3

γψ . (71)

We prove (67) by contradiction. We note that Vc(t) is continuous and differentiable. If (67) is not true, there
exists t′ such that

Vc(τ) ≤ d2

2c1
, ∀ τ ∈ [0, t′] , (72)

Vc(t
′) =

d2

2c1
, (73)

V̇c(t
′) > 0 . (74)
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It follows from (72) that for any τ ∈ [0, t′]

|xF (τ)| ≤ d , (75)

|yF (τ)| ≤ d ,

|zF (τ)| ≤ d ,

|θe(τ) − δθ(τ)| ≤
√

c2/c1d , (76)

|ψe(τ) − δψ(τ)| ≤
√

c2/c1d , (77)

|θe(τ)| ≤
√

c2d2

c1
+ sup(δθ(τ)) =

√

c2d2

c1
+ sin−1

(
d

d1 + d

)

= α ,

|ψe(τ)| ≤
√

c2d2

c1
+ sup(δψ(τ)) =

√

c2d2

c1
+ sin−1

(
d

d2 + d

)

= α . (78)

The upper bound in (71) along with (76)-(77) leads to

V̇c(t
′) ≤ −x⊤(t′)Qcx(t

′) +
d√
c1c2

(γθ + γψ) . (79)

Since

x⊤(t′)Qcx(t
′) ≥ λmin(Q)

λmax(P )
V (t′) , (80)

it follows from (73) that

x⊤(t′)Qcx(t
′) ≥ d2λmin(Q)

2c1λmax(P )
. (81)

The design constraints in (66) lead to
V̇c(t

′) ≤ 0 , (82)

which contradicts the assumption in (74). Hence, (67) holds. Since (72) leads to (75)-(78) for τ ∈ [0, t′], the
condition in (67) implies that (75)-(78) hold for all t ≥ 0, and therefore the bounds in (68) hold. �

Remark 3 The conditions on design constants in (66) can be satisfied by increasing m and ω as it follows
from (64). Large m further requires ω and Γc be large. In practice, m and ω cannot be chosen arbitrarily
large due to the limited bandwidth of the control channel of Gp.

Remark 4 We notice that the above stability proof is different from common backstepping-type analysis for
cascaded systems. The advantage of the above structure for the feedback design is that it retains the properties
of the autopilot, which is designed to stabilize the inner-loop. As a result it leads to ultimate boundedness
instead of asymptotic stability.

IV. Time-Critical Coordination in the Absence of Autopilot

Having solved the complete path following problem for a single vehicle and an arbitrary speed profile, we
now address the general problem of time-coordinated control of multiple vehicles. Examples of applications
in which this would be useful include situations where all vehicles must arrive at their final destinations at
exactly the same time, or at different times so as to meet a desired inter-vehicle arrival schedule. Without
loss of generality, we consider the problem of simultaneous arrival. Let tf be the arrival time of the first
UAV. Denote lfi

as the total length of the spatial path for ith UAV. In addition, let li(t) be the length from
the origin to Pi(t) along the spatial path of the ith UAV. Define l′i(t) = li(t)/lfi. Clearly, l′i(tf ) = 1 for

i = 1, 2, . . . , n implies that all vehicles arrive at their final destination at the same time. Since l̇′i(t) = l̇i(t)/lfi,
it follows from (13) that

l̇′i(t) =
K1xFi

(t) + vi(t) cos θe,i(t) cosψe,i(t)

lfi
, (83)
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where for simplicity we have kept K1 without indexing. Following the same design philosophy, as we did
for path following, we will first define the desired velocity profile vci

(t) for the kinematics of the ith UAV
given by (83) to ensure that it achieves the time-critical coordination objective. Then using the same steps
as in Section III we will rely on u3(t) to ensure that v(t) can follow vc(t) according to a desired reference
model M(s). The desired velocity profile for each vehicle will be defined via dynamic inversion to achieve
the time-coordination objective. Letting

ucoordi
=
K1xFi

+ vci
cos θe,i cosψe,i
lfi

, (84)

where ucoordi
is the ith element of ucoord, it follows from (83) that the simplified coordination dynamics can

be written as:
l̇′(t) = ucoord(t) , (85)

where l′ = [l′1 ...l′n]
⊤ and ucoord = [ucoord1

...ucoordn
]⊤. Given a strategy for ucoord, the desired velocity

profile for the ith UAV can be computed as:

vci
=
ucoordi

lfi −K1xFi

cos θe,i cosψe,i
, i = 1, · · · , n. (86)

Thus, the coordination problem is reduced to defining ucoord(t) such that l′i(tf ) = 1 for i = 1, 2, . . . , n. To
account for the communication constraints, we borrow tools from algebraic graph theory (see for example
Refs.3,25). To this effect, let L denote the Laplacian of a connected undirected graph Γ that captures the
underlying bidirectional communication network of the UAV formation (in particular, the graph specifies for
each vehicle what vehicles it exchanges information with). It is well known that L ∈ R

n×n, L ≥ 0, rank(L) =
n − 1, and L1n = 0.3 Therefore, there exists a positive definite diagonal matrix Ld with the nonzero
eigenvalues of L on the diagonal and an orthonormal matrix U ∈ R

n×(n−1), rank(U) = n− 1, such that

[
1n√
n

U
]⊤

L
[

1n√
n

U
]

=

[

0 0

0 Ld

]

, (87)

U⊤1n = 0, U⊤U = I, and ULdU
⊤ = L.

Motivated by the analysis in Ref.,23 define the error vector

µ(t) = U⊤l′(t). (88)

It follows from U⊤1n = 0 that µ(t) = 0 if and only if l′1(t) = l′2(t) = . . . = l′n(t). This is well known in the
literature on cooperative control as an Agreement Problem (see for example Refs.28,19). It follows from (85)
and U⊤U = I that

µ̇(t) = U⊤ucoord(t). (89)

Using this setup and considering the coordination system with simplified dynamics of (85), we impose that
each UAV exchanges its coordination parameter l′i(t) with its neighbors according to the topology of the
communications network, as expressed in terms of the connected undirected graph Γ. Elect vehicle 1 as the
formation leader and let vd,1(t) denote its desired speed profile. We note that the desired arriving time of

the all UAVs is then defined via tf =
lf1

vd,1
. The coordination problem is reduced to design of a control law

for ucoord so that that µ(tf ) = 0 for the dynamics in (89).

Remark 5 The problem formulation above leads to an inherently finite time horizon problem for the dy-
namics in (89). In this paper, we solve it indirectly by using asymptotic analysis. Following a common
practice, this can only be done approximately by judicious choice of the control gains and initial conditions.
The solution to it is given below by Lemma 7, which is similar to the one in Ref.44 for coordination of mobile
robots.
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Let

ucoord(t) = aLl′(t) +

[
vd,1(t)
lf1

χI(t)

]

= C⊤
1

(
vd,1(t)

lf1
+ aC1Ll

′(t)

)

+ C⊤
2 (aC2Ll

′(t) + χI(t)) (90)

χ̇I(t) = cC2Ll
′(t),

where a and c are negative scalars and
[

C1

C2

]

=

[

1 0⊤n−1

0n−1 I(n−1)×(n−1)

]

. (91)

The control law in (90) has a Proportional-Integral (PI) structure, thus allowing each vehicle to learn the
speed of the leader, rather than having it available a priori. In fact, in scalar form the control law ucoord

can be written as

ucoord,1(t) =
vd,1(t)

lf1
+
∑

j∈J1

a(l′1(t) − l′j(t)),

ucoord,i(t) =
∑

j∈Ji

a(l′i(t) − l′j(t)) + χI,i(t), (92)

χ̇I,i(t) =
∑

j∈Ji

c(l′i(t) − l′j(t)), i = 2, . . . , n ,

where Ji denotes the set of neighboring vehicles that vehicle i is allowed to communicate with. Clearly, this
implementation meets the communication constraints addressed in the coordination problem formulation.
Notice also how the gains a and c play the role of tuning knobs to adjust the speed of convergence of the
coordination error µ(t) to 0. This is important in light of the comments made in Remark 5.

The following Lemma will be useful for proving stability of (89) with (90).

Lemma 6 Let A,B,C be positive definite matrices of compatible dimensions. Then the roots of det(λ2A+
Bλ+ C) = 0 have negative real parts.

Proof. (By contradiction) Suppose it is not true. Then,

Re(λ) ≥ 0. (93)

Let λ = α+ jω, where α ≥ 0 and ω ≥ 0. Then there exists

p = pr + pij 6= 0 (94)

such that
(
(α2 − ω2)A+ αB + C

)
pr − (2αωA+Bω)pi = 0,

and
(
(α2 − ω2)A+ αB + C

)
pi − (2αωA+Bω)pr = 0,

which in turn implies that

p⊤i (2αA+B)pi + p⊤r (2αA+B)pr = 0. (95)

Since A, B are positive definite and α ≥ 0, then 2αA + B is positive definite. Hence, pi = pr = 0, which
contradicts (94). Therefore, (93) is not true, and this completes the proof. �

The feedback system consisting of (89), (90) can be written as

χ̇I = cC2ULdµ (96)

µ̇ = aLdµ+ U⊤
(

C⊤
1

vd,1
lf1

+ C⊤
2 χI

)

,
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where we have used the fact that L = ULdU
⊤. Let

xv(t) =

[

ec(t)

µ(t)

]

, ec(t) = χI(t) −
vd,1(t)

lf1
1n−1. (97)

It follows from (96) that the coordination system can be rewritten as:

ẋv =

[

0 cC2ULd

U⊤C⊤
2 aLd

]

xv +

[

0

U⊤C⊤
1
vd,1

lf1

+ U⊤C⊤
2
vd,1

lf1

1n−1

]

. (98)

It follows from (91) that
C⊤

2 1n−1 + C⊤
1 = 1n . (99)

Since U⊤1n = 0 (see (87)), we have

U⊤C⊤
1

vd,1
lf1

+ U⊤C⊤
2

vd,1
lf1

1n−1 = 0 ,

and hence (98) can be rewritten as:

ẋv =

[

0 cC2ULd

U⊤C⊤
2 aLd

]

xv . (100)

The next Lemma follows directly from Ref.,30 which ensures that µ = 0 is an exponentially stable origin
for the system in (89) with (90).

Lemma 7 The control law in (90) solves the coordination problem for the dynamics in (89).

Proof. First we prove that the matrix C2U ∈ R
(n−1)×(n−1) has rank n− 1. From the definition of C2, it

follows that C2U consists of the last n−1 rows of U . Suppose there exists a vector, x̄ such that x̄⊤C2U = 0.
Let x̄1 = [0 x̄⊤]⊤. Since x̄⊤C2 = x̄⊤1 , we obtain that x̄⊤1 U = 0, which contradicts the fact that 1⊤nU = 0
and 1n is the only element in the kernel of U (see (87)).

Next, we compute the eigenvalues of the state matrix associated with (109) as the solutions of

det

[

λI −cC2ULd

−U⊤C⊤
2 λI − aLd

]

= 0 (101)

leading to

det(λI(λI − aLd) − cU⊤C⊤
2 C2ULd) = det(λ2L−1

d − aλI − cU⊤C⊤
2 C2U) = 0.

In the last step we have exploited the fact that for any compatible square matrices A,B,C,D

det

[

A B

C D

]

= det(AD − CB) (102)

if AC = CA.27 Since C2U is full rank, U⊤C⊤
2 C2U is positive definite. It now follows from Lemma 6 that

the roots λ in (101) have negative real parts for any negative scalar gains a and c, thus proving stability. �

V. L1 Adaptive Augmentation of the Velocity Loop for Time-Critical

Coordination in the Presence of Autopilot

Recall that in Section III we defined the L1 adaptive augmentation for all three inputs to the autopilot:
pitch rate uθc

(t), yaw rate uψc
(t) and velocity vc(t), but we proceeded only with analysis of the pitch rate,
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Figure 9. L1 adaptive control of cascaded systems for coordination

acknowledging that the other two are the same. We further pursued the stability of cascaded system in
Section III.D in the context of path following problem without any regard to the velocity component. In
this section, we pursue the stability analysis of the coordination dynamics in the presence of velocity error,
Fig. 9. Recall that the signal u3(t) designed for (30) leads to v(t), for which the desired control objective is
stated in (35) with vc(t) being defined in (86). Letting

ṽi(t) = vci
(t) − vi(t), i = 1, · · · , n , (103)

denote the velocity error for the ith vehicle in the coordination, if the upper bound on the initial condition
in (61) holds, it follows from (63) that

‖ṽi‖L∞
≤ γvi

, i = 1, .., n . (104)

In this section, we analyze the performance of the coordination dynamics in the presence of this error.
The kinematic equation in (83) can be rewritten as:

l̇′i(t) = ucoordi
(t) +

ṽi(t) cos θe,i(t) cosψe,i(t)

lfi
. (105)

Then the coordination dynamics in (89) take the form:

µ̇(t) = U⊤ucoord(t) + U⊤ϕ(t) , (106)

where ϕ(t) ∈ R
n is a vector with its ith element

ṽi(t) cos θe,i(t) cosψe,i(t)
lfi

, and therefore the closed-loop coordi-

nation system (96) can be written as

χ̇I = cC2ULdµ (107)

µ̇ = aLdµ+ U⊤
(

C⊤
1

vd,1
lf1

+ C⊤
2 χI

)

+ U⊤ϕ.

It follows from (107) that the coordination system can be rewritten as:

ẋv =

[

0 cC2ULd

U⊤C⊤
2 aLd

]

xv +

[

0

U⊤ϕ

]

+

[

0

U⊤C⊤
1
vd,1

lf1

+ U⊤C⊤
2
vd,1

lf1

1n−1

]

, (108)

and hence (108) can be rewritten as:

ẋv =

[

0 cC2ULd

U⊤C⊤
2 aLd

]

xv +

[

0

U⊤ϕ

]

. (109)
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We note that Lemma 7 implies that

[

0 cC2Ld

U⊤C⊤
2 aLd

]

is Hurwitz. Hence, there exists symmetric positive

definite matrix Pe which solves the following Lyapunov equation

[

0 cC2Ld
U⊤C⊤

2 aLd

]⊤

Pe + Pe

[

0 cC2Ld
U⊤C⊤

2 aLd

]

= −Qe, (110)

where Qe ∈ R
2(n−1)×2(n−1) is a positive semi-definite matrix. Since | cos θe,i cosψe,i| ≤ 1, it follows from

(104) and the upper bound on initial condition in (61) that there exists constant kv > 0 such that

∥
∥
∥
∥
∥
Pe

[

0

U⊤ϕ

]∥
∥
∥
∥
∥
≤ kvγv , (111)

where γv = max{γv1 , · · · , γvn
}.

Lemma 8 Let Ve(t) = x⊤v (t)Pexv(t). Suppose that the upper bound on initial condition in (61) holds for all
vehicles

|vi(0) − vci
(0)| ≤ dv

m
, i = 1, · · · , n ,

and

Ve(0) > λmax(Pe)

(
2kvγv

λmin(Qe)

)2

. (112)

Then
Ve(t) ≤ Ve(0) , ∀ t ≥ 0 , (113)

and the system in (109) is ultimately bounded.

Proof. It follows from (109) and (110) and the definition of ϕ that

V̇e ≤ x⊤v Qexv + 2x⊤v Pe

[

0

U⊤ϕ

]

. (114)

Using the upper bound from (111) we have

V̇e(t) ≤ −x⊤v (t)Qexv(t) + 2kvγv‖xv(t)‖ . (115)

We note that Ve(t) is continuous. For any t′ ≥ 0 such that

Ve(t
′) = Ve(0) , (116)

it follows from (112) that

Ve(t
′) ≥ λmax(Pe)

(
2kvγv

λmin(Qe)

)2

. (117)

Since Ve(t
′) ≤ λmax(Pe)‖xv(t′)‖2, it follows from (117) that

‖xv(t′)‖ ≥ 2kvγv
λmin(Qe)

. (118)

It follows from (115) and (118) that

V̇e(t
′) ≤ −λmin(Qe)‖xv(t′)‖2 + 2kvγv‖xv(t′)‖ ≤ 0 , (119)

which implies that V (t) cannot exceed Ve(0). This completes the proof. �
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Figure 10. Coordinated path following

VI. Combined Path Following and Time Critical Coordination with L1

Adaptive Augmentation

The complete architecture of coordinated path following is presented in Fig. 10, the stability of which we
prove in this section.

First we notice that from L = ULdU
⊤ in (87), (88) and (90) it follows that

ucoord(t) = aULdU
⊤l′(t) +

[
vd,1(t)
lf1

χI(t)

]

= aULdµ(t) +

[
vd,1(t)
lf1

χI(t)

]

. (120)

Since (91) and (97) imply that

[
vd,1(t)
lf1

χI(t)

]

=

[
vd,1(t)
lf1

ec(t) +
vd,1(t)
lf1

1n−1

]

= C⊤
2 ec(t) +

vd,1(t)

lf1
1n , (121)

it follows from the definition of Cv in (129) and (120) that

ucoord(t) = Cvxv(t) +
vd,1(t)

lf1
1n . (122)

Since

‖Cvxv(t)‖2 ≤ λmax(C
⊤
v Cv)

λmin(Pe)
Ve(t) , (123)

we have

‖Cvxv(t)‖ ≤
√

λmax(C⊤
v Cv)

λmin(Pe)
Ve(t) , (124)

and hence

‖yvi
(t)‖ ≤

√

λmax(C⊤
v Cv)

λmin(Pe)
Ve(t) , (125)

where yvi
is the ith element of Cvxv(t).
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First we will prove that the resulting velocity for the ith UAV verifies the a priori specified lower bound:

vi ≥ vmin . (126)

Next we show that the entire closed-loop system, which consists of kinematic path-following, time-critical
coordination and L1 adaptive augmentation for both loops, is stable. The main result of this paper is stated
next.

Theorem 1 Let V̄e be the upper bound

λmax(Pe)

(
2kvγv

λmin(Qe)

)2

≤ V̄e , (127)

while c1, c2, d, γv verify the condition in (16) in addition to
(

vd,1

lf1

−
√

λmax(C⊤
v Cv)

λmin(Pe) V̄e

)

lfi −K1d

cos2 α
> vmin + γvi

, i = 1, .., n , (128)

where vmin is the lower bound (126),

Cv =
[
aULd C⊤

2

]
, (129)

and let m, ω and Γc in the design of L1 adaptive controller be chosen to verify

γθi
+ γψi

≤ dλmin(Q)

2λmax(P )

√
c2
c1
, i = 1, · · · , n. (130)

If the initial condition for the Lyapunov function of the ith vehicle is constrained to its domain of attraction,
defined via (18):

Vci
(0) ≤ d2

2c1
, i = 1, · · · , n , (131)

and in addition to (54), (60), (61) one has

Ve(0) ≤ V̄e , (132)

then

Vci
(t) ≤ d2

2c1
, ∀ t ≥ 0 , i = 1, .., n ,

Ve(t) ≤ V̄e , ∀ t ≥ 0 , (133)

implying that the entire system is ultimately bounded.

Proof. At first we will prove

vi(t) > vmin, ∀ t ≥ 0 , i = 1, .., n . (134)

If (134) is not true, since vi(0) > vmin and vi(t) is continuous, there exists τ and a vehicle, j ∈ {1, . . . , n},
such that

vj(τ) = vmin. (135)

In addition, we have
vi(t) ≥ vmin, ∀ t ∈ [0, τ ] , i = 1, .., n . (136)

Since (130), (131) and (136) verify the condition of Lemma 5, it follows that for all i = 1, · · · , n

|xFi
(t)| ≤ d , ∀ t ∈ [0, τ ] ,

|θei
(t)| ≤ α , ∀ t ∈ [0, τ ] , (137)

|ψei
(t)| ≤ α , ∀ t ∈ [0, τ ] .
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Since the results of Lemma 8 hold independent of path following, it follows from (127), (132) that

Ve(t) ≤ V̄e , ∀ t ≥ 0 . (138)

It follows from (125) and (138) that

‖yvi
(t)‖ ≤

√

λmax(C⊤
v Cv)

λmin(Pe)
V̄e , (139)

Hence, it follows form (122) that

|ucoordi
(t)| ≥ vd,1(t)

lf1
−
√

λmax(C⊤
v Cv)

λmin(Pe)
V̄e , ∀ t ≥ 0 . (140)

Thus, (86) implies

vci
≥

(

vd,1

lf1

−
√

λmax(C⊤
v Cv)

λmin(Pe) V̄e

)

lfi −K1xFi

cos θe,i cosψe,i
. (141)

It follows from (137) and (141) that

vci
(t) ≥

(

vd,1

lf1

−
√

λmax(C⊤
v Cv)

λmin(Pe) V̄e

)

lfi −K1d

cos2 α
, t ∈ [0, τ ] , i = 1, .., n . (142)

From (104) and (128) it follows that

vi(t) ≥ vci
(t) − γvi

> vmin , ∀ t ∈ [0, τ ] , i = 1, .., n , (143)

which contradicts (135). Therefore, (134) holds. If (134) is true, it can be verified easily that the conditions
of Lemmas 1 and 8 are verified for any t ≥ 0, and (133) is proved. �

In case of exact tracking of vi(t), uθi
(t), uψi

(t) of their commands vci
(t), uθci

(t), uψci
(t), i = 1, .., n, we

have
γθi

= 0 , γψi
= 0 , γvi

= 0 , i = 1, .., n. (144)

The following corollary can be proved straightforwardly.

Corollary 1 If c1, c2, d and V̄e verify (16) in addition to
(

vd,1

lf1

−
√

λmax(C⊤
v Cv)

λmin(Pe) V̄e

)

lfi −K1d

cos2 α
> vmin , (145)

and

Vci
(0) ≤ d2

2c1
, (146)

Ve(0) ≤ V̄e , (147)

then

Vci
(t) ≤ d2

2c1
, ∀ t ≥ 0,

Ve(t) ≤ V̄e , ‘∀ t ≥ 0 , (148)

and the entire system is ultimately bounded.

The proof of Corollary 1 follows from Theorem 1 immediately. We note that (145) can always be satisfied
by choosing d and V̄e small enough.

28 of 34

American Institute of Aeronautics and Astronautics



VII. Hardware in-the-Loop Setup and Experimental Results

The complete path following control system with adaptation for a single UAV, shown in Figure 8, was
implemented on an experimental UAV Rascal operated by NPS. The Hardware In The Loop (HITL) and
flight test setups30 are shown in Fig. 11; note that both configurations are identical except the sensor data
is software generated in the HITL simulation.

 
Figure 11. Avionics architecture including two embedded processors and an AP

Customized RASCAL model aircraft were used for the experimental part of the work (Fig.12). Payload
bay of each aircraft is used to house two PC104 embedded computers assembled in a stack, wireless network
link, and the Piccolo autopilot47 with its dedicated control channel. The first PC-104 board (see SBC (RT)
in Fig. 11) runs developed algorithms in real-time while directly communicating with the autopilot (AP) over
the serial link. The second PC-104 computer (see SBC (Win) in Fig. 11) is equipped with a mesh network
card (Motorola WMC6300 Mesh Card) that provides wireless communication to another UAV as well as
to the data processing center on the ground. This second computer performs software bridging of onboard
wired and external wireless mesh networks. Thus, direct connection with the onboard autopilot efficiently
eliminates communication delays between the high-level control algorithm and the autopilot. In turn, an
integration of the self-configuring wireless mesh network allows for transparent inter-vehicle communication
making it suitable for coordination in time.

In order to provide data for the qualitative analysis of the developed path following and coordination
algorithms, the onboard avionics has also been equipped with the capability to store critical data in real time
into the onboard solid state memory disk (see SSD in Fig. 11). The autopilot telemetry information including
spatial attitude, rates and the inertial speed is logged with 20 Hz sampling rate, while the positional data
is logged at 1Hz frequency; they are the highest possible rates delivered by the autopilot. Internal data of
the path following-coordination and adaptation algorithms is logged with 100Hz sampling rate. In addition,
some limited data is transmitted to the ground while in flight. This allows for online estimation of the
algorithms performance and control gains tuning. The key element of this architecture is that the standard
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 Figure 12. RASCAL UAV and its payload bay with the custom built avionics

Piccolo GCS retains full authority control over the autopilot at each stage of the flight, thereby securing the
flight operation. When the AP is in the autonomous mode, the onboard segment receives commands over the
mesh network from either the data processing segment, the collaborating small UAV (SUAV) or any other
mesh-enabled PC. The standard GCS command and control link with AP allows monitoring the correctness
of the flight operation through the pre-built functionality of the Operator Interface (OI) software that comes
with the Piccolo AP. The control response provided by the UAV under the AP control is transmitted to the
GCS, where they are available for continuous analysis. Should a “glitch” in the new control algorithm, AP
behavior, SUAV dynamics or communication occur, the safety of the flight is not compromised. A pre-built
set of AP safety limits immediately detects this, displays particular warning or even automatically regains
control of the SUAV, thus returning it to safe conditions.

Based on the presented hardware setup, the cascaded controller defined in (17), (37), (38), and (39) with
M(s) = 1

10s+1 , C(s) = 1
10s+1 , and Γ = 10 was flight tested in February 2007. The subsystem Gp represents

the Rascal with the Piccolo autopilot as described in Ref.30 Figure 13 shows how the developed system
was used for the flight testing of the path following/adaptation/coordination algorithms running onboard
in real-time; a collective picture of 15 trials obtained during just one flight test is presented. As for the
coordination, the speed of virtual cooperative UAV was simulated to be constant. In this picture, the red
trajectories represent the required/commanded flight path and the blue one shows the actual flight path of
the UAV. Each trial was used to tune the control law parameters in order to achieve more accurate path
following and coordination. Having been transmitted to the ground while in flight, these trajectories, as well
as the control commands with the AP responses, allow for rapid evaluation and adjustment of the control
performance.
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 Figure 13. Performance comparison with and without L1 adaptation (left) and 3D path following in the autonomous

landing scenario (right)

Figure 14(a) presents one of the trials of Fig.13 in details; it shows the inertial position of UAV with
respect to the commanded feasible trajectory generated online as introduced in Section II. Figure 14(a) also
shows the corresponding rate commands of the autopilot as well as errors of the UAV tracking the trajectory.
It can be seen that the maximum deviation from the desired trajectory is about 40m, which corresponds to
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the point of the sharp turn. Other than at this point, the tracking errors are very small and the UAV is
following the commanded path very closely.

(a) Desired (red) and actual (blue) UAV tra-
jectories from flight test with L1 adaptive con-
troller

(b) Top: path following turn rate command and
contributions from outer loop and L1 adapta-
tion. Bottom: path following errors

 

(c) Simultaneous arrival of two UAVs to the

same terminal conditions (separated by alti-
tude).

 

(d) Coordination states for each UAV.

Figure 14. Flight Test Results (top) and Hardware-in-the-Loop Simulations (bottom)

Figures 14(c) - 14(d) include results of an HITL test where two UAVs follow feasible trajectories while
using their velocities to coordinate simultaneous arrival at their respective terminal conditions. Results of
Figure 14(c) show the desired and the actual paths of each UAV. Control commands and errors for both
UAVs are similar to the results of one UAV tracking the path. As in the case of one UAV, the control efforts
required to bring each airplane to the commanded trajectory do not exceed any limitations imposed by the
autopilot and are typical for this class of UAVs. Finally, normalized coordination states for each UAV are
presented in Figure 14(d); two graphs represent coordination efforts required to deliver two UAVs to the
terminal conditions at the same time. Both airplanes arrive at the final position at nearly the same time.

The results presented above demonstrate feasibility of the onboard integration of the path following,
adaptation and coordination concepts. During the flight experiments, the required control commands (in-
cluding adaptive contribution) have never exceeded the limits defined for the UAV in traditional waypoint
navigation mode. At the same time the achieved functionality of the UAV following 3D curves in inertial
space has never been available for the airplanes equipped with traditional AP; adaptive concept explicitly
outperforms the conventional waypoint navigation method. Presented results not only demonstrate the
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feasibility of the concept but provide a roadmap for further development and onboard implementation of
intelligent multi-UAV coordination.

VIII. Conclusion

A novel solution was presented to the problem of coordinated control of multiple unmanned air vehicles
(UAVs) that ensures collision-free maneuvers under strict spatial and temporal constraints. The theoretical
framework adopted includes algorithms for deconflicted real-time path generation, nonlinear path following,
and multiple vehicle coordination. Path following led to a classical inner-outer structure that relies on
the augmentation of existing autopilots with L1 adaptive output feedback control laws. Multiple vehicle
coordinated control was done by adjusting the speed profiles of the vehicles along their paths in response to
information exchanged over the underlying communication network. The L1 adaptive control was once again
used to yield an inner-outer loop structure for vehicle coordination with guaranteed performance bounds.

Both theoretical and flight test results were presented. Simulations showed the efficacy of the path
following and time-critical coordination algorithms. Flight test results obtained at Camp Roberts, CA
in 2007 proved that the algorithm for path generation lends itself to real-time implementation and yields
feasible trajectories that meet prescribed conditions. The experimental results were also instrumental in
demonstrating the benefits of using L1 adaptive control loops for path following of single vehicle by resorting
to an inner-outer loop control structure and coordination of two vehicles over fixed communication network
topology. Future work will extend the framework to time-varying network topologies, including network
failures and time-delays.
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